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A B S T R A C T

Monocular Simultaneous Localization and Mapping (SLAM), Visual Odometry (VO), and Struc-
ture from Motion (SFM) are techniques that have emerged recently to address the problem of 
reconstructing objects or environments using monocular cameras. Monocular pure visual tech-
niques have become attractive solutions for 3D reconstruction tasks due to their affordability, 
lightweight, easy deployment, good outdoor performance, and availability in most handheld 
devices without requiring additional input devices. In this work, we comprehensively overview 
the SLAM, VO, and SFM solutions for the 3D reconstruction problem that uses a monocular RGB 
camera as the only source of information to gather basic knowledge of this ill-posed problem and 
classify the existing techniques following a taxonomy. To achieve this goal, we extended the 
existing taxonomy to cover all the current classifications in the literature, comprising classic, 
machine learning, direct, indirect, dense, and sparse methods. We performed a detailed overview 
of 42 methods, considering 18 classic and 24 machine learning methods according to the ten 
categories defined in our extended taxonomy, comprehensively systematizing their algorithms 
and providing their basic formulations. Relevant information about each algorithm was sum-
marized in nine criteria for classic methods and eleven criteria for machine learning methods to 
provide the reader with decision components to implement, select or design a 3D reconstruction 
system. Finally, an analysis of the temporal evolution of each category was performed, which 
determined that the classical-sparse-indirect and classical-dense-indirect categories have been the 
most accepted solutions to the monocular 3D reconstruction problem over the last 18 years.

* Corresponding author. Department of Mathematics, Escuela Politécnica Nacional, Ladrón de Guevara E11-235, Quito, 170525, Ecuador.
E-mail addresses: erickherreraresearch@gmail.com, erick.herrera@epn.edu.ec (E.P. Herrera-Granda), jctorres@ugr.es (J.C. Torres-Cantero), 

diego.peluffo@sdas-group.com, peluffo.diego@um6p.ma (D.H. Peluffo-Ordóñez). 
1 The author’s affiliation at the time the article was submitted was: Unidad de Educación en Línea, Universidad de Otavalo, Av. de los Sarances y 

Pendoneros, Otavalo 100202, Ecuador. Affiliation changed to a since 2024.

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2024.e37356
Received 13 June 2023; Received in revised form 29 August 2024; Accepted 2 September 2024  

Heliyon 10 (2024) e37356 

Available online 6 September 2024 
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:erickherreraresearch@gmail.com
mailto:erick.herrera@epn.edu.ec
mailto:jctorres@ugr.es
mailto:diego.peluffo@sdas-group.com
mailto:peluffo.diego@um6p.ma
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e37356
https://doi.org/10.1016/j.heliyon.2024.e37356
http://creativecommons.org/licenses/by/4.0/


1. Introduction

In recent years, computer vision has witnessed a significant surge in the development of technologies focused on 3D reconstruction 
using monocular cameras. This growing interest is primarily driven by the widespread availability of affordable and lightweight 
monocular cameras commonly found in handheld devices. Despite their simplicity, these devices have shown remarkable capability in 
outdoor performance for 3D reconstruction tasks, attracting considerable attention from the research community [1].

The application of monocular 3D reconstruction spans a diverse range of fields. In robotics, it has contributed to scene under-
standing, allowing the advancement of autonomous driving and aiding in unmanned aerial vehicle navigation [2–9]. The augmented 
reality sector has also benefited, particularly in scene reconstruction and body mapping [2,7–13]. The film industry has utilized these 
techniques for facial puppetry and reenactment [1,14,15], and the medical field has seen advancements in the 3D reconstruction of 
surgical cavities and virtual endoscopy [16–19]. Thus, several solutions have been proposed to address the 3D reconstruction problem, 
notably monocular Simultaneous Localization and Mapping (SLAM), Visual Odometry (VO), and Structure from Motion (SFM). Each 
technique brings a unique perspective and methodology to the challenge of reconstructing environments and objects using monocular 
cameras.

VO is a discipline focused on ego-motion estimation, developed over the need to determine the robot’s position and orientation 
using camera images, where 3D reconstruction is commonly used as a map-generating step from where vehicle location is estimated. 
There exists a wide range of solutions that can be used to perform odometry tasks, like wheel odometry, global position systems (GPS), 
global navigation satellite systems (GNSS), inertial navigation systems (INS), laser sensors, ultrasonic sensors, and VO [20]. Wheel 
odometry typically uses encoders, which are low-cost solutions; however, it produces position drift due to wheel slippage. INS are used 
to calculate position and orientation over three axes through accelerometers and gyroscopes, as the position is obtained by solving 
second-order integrals causing position drift due to minor errors in acceleration that can produce significant errors in position. 
GPS/GNSS obtain position information by trilateration of information obtained from three or more satellites, avoiding error accu-
mulation over time; however, position measures obtained by GPS/GNSS can present meter-range errors and cannot be used for indoor 
or underwater applications. Similarly, laser and ultrasonic sensors provide scalar distance measurements from the sensor to the target 
using time-of-flight or phase shift principles, but they also present reflection problems depending on the material or orientation of the 
target surface. In contrast, VO is a low-cost solution more accurate than GPS, INS, ultrasonic sensors, and wheel odometry due to its low 
position error range from 0.1 to 2 % [21]. As an odometry solution, VO is characterized by a satisfactory balance between cost, 
reliability, and implementation complexity [22]. Furthermore, studies like [23,24] established that VO obtains better results by 
generating geometric maps of the environment from which the robot could be localized.

SLAM is the ability developed for a mobile robot to start in an unknown environment and incrementally build a map using the 
information obtained from camera observations and simultaneously compute the estimated trajectory using single or multiple cameras 
[25,26]. Moreover, SFM algorithms have been referred to as Monocular SLAM [27] due to their similarity in obtaining a geometric 
representation by generating and tracking sparse or dense world models using direct or indirect techniques.

The primary distinction between Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM) methods lies in the 
characteristic that in VO, the points are typically not reused once they exit the field of view. In contrast, SLAM typically enables the 
recycling of previously triangulated points as they reenter the field of view in loop-closure steps [20]. Another major difference be-
tween these disciplines is that SLAM performs both tasks simultaneously, generating a map of the environment and using this map to 
estimate the camera pose. SFM focuses more on generating a scene map, while VO focuses more on estimating the pose, also called 
ego-motion (translation and orientation of an agent) [21]. It must be mentioned that SLAM methods consist of larger systems 
developed to obtain a geometric representation and provide a sense of orientation (typically as a camera pose), trajectory, and loop 
closure, among others. In SLAM systems, this information is used for navigation tasks and scene comprehension, being complex 
systems, and sometimes, this information is employed for geometric map optimization tasks. In addition, the development of multiple 
SLAM systems was inspired by VO and SFM formulations [3,28–30] extending their pipelines to estimate ego-motion and geometry 
simultaneously. Thus, irrespectively of the denomination that may be given to every SLAM, VO, and SFM approach, all of them hold 
the common goal of both 3D scene reconstruction and camera pose estimation using imaging sensors, but with further specialization in 
the main task for which each was designed [2,20,24].

Despite their strengths, these methodologies face several limitations. Monocular pure visual 3D reconstruction involves some 
critical and well-known problems related to the lack of scale information and the computational complexity of recovering 3D models 
from sequences of monocular images without geometric priors. Nowadays, available monocular methods still lag behind controlled 
multi-view setups in quality, accuracy, and completeness [1]. Simplifications in real-world image formation processes, such as 
assuming low-frequency, distant illumination and neglecting shadows and global illumination effects, limit the accuracy of re-
constructions. Additionally, a significant challenge arises in the presence of purely rotational movements in the absence of a stereo-
scopic baseline, which complicates the accurate capture and modelling of three-dimensional structures, as the lack of a baseline 
hinders the effective differentiation of depth and spatial relationships.

Another well-identified challenge across SLAM, VO, and SFM is the absence of a comprehensive taxonomy that categorizes the vast 
array of existing solutions. This lack of classification and joint analysis poses a significant barrier to advancing the field. Moreover, 
each discipline has its own set of limitations. For instance, while producing superior 3D reconstruction results, SLAM systems often 
struggle with long-term operation and large loop closures, especially in dynamic environments [31]. VO methods, on the other hand, 
are sensitive to varying operating conditions, such as lighting and textures, affecting their robustness [20]. SFM techniques, while 
excelling in structure recovery, do not fully leverage the advantages of simultaneous pose and geometry recovery [32].

To address these challenges, our research conducted a comprehensive overview of the SLAM, VO, and SFM solutions for monocular 
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3D reconstruction, with a particular focus on those based on a monocular RGB camera as the sole source of information. In contrast to 
previous surveys like [20,31,33–36], our work extends the existing taxonomy, including a broader range of classifications, such as 
classic, machine learning, direct, indirect, dense, and sparse methods, which allows to cover multiple new proposals like hybrid, 
classic, and machine-learning based systems and their variants. This new taxonomy represents a significant advancement in organizing 
and understanding the field, considering techniques’ rapid evolution and diversity. Our detailed review of 42 methods is more 
extensive than most existing surveys, covering classic and machine-learning approaches. We provide systematic categorization and 
essential formulations for implementing, selecting, or designing a 3D reconstruction system. Furthermore, our work includes a time 
citation evolution analysis, a novel aspect not commonly found in other reviews, offering insights into the acceptance and evolution of 
these methods over the past 18 years. The here-presented analysis and comparative study provide insights into algorithm selection, 
which makes this work a valuable resource for researchers and practitioners.

As a notable contribution, our review work presents a more exhaustive effort in categorising these methods compared to previous 
works because it comprehensively covers the main 42 monocular methods, allowing to gather their foundations, formulations, al-
gorithm design, and extract categorical selection criteria. For instance, we not only focus on SLAM, VO, and SFM individually but also 
explore their interrelations and implications for monocular 3D reconstruction. This holistic view is absent in many existing surveys, 
which often concentrate on isolated aspects of the problem. This way, our research extends beyond existing literature by providing an 
updated, detailed, and comprehensive overview that integrates various aspects of monocular 3D reconstruction. Our novel taxonomy, 
extensive methodological review, and time citation analysis constitute the main contributions, setting our work apart from existing 
surveys and reviews in the field.

This work was specifically undertaken to delve into the methodologies for creating 3D geometric representations (reconstructions) 
of an environment using a single moving monocular RGB camera. As such, the investigation excluded techniques beyond the scope of 
this study, such as Visual-Inertial (utilizing Inertial Navigation Systems for enhanced tracking), RGB-D (employing additional sensors 
to capture depth information from the surroundings), omnidirectional, and stereo techniques.

2. Related works

In the literature, since monocular 3D reconstruction is an ill-posed problem that can be solved by combining different techniques 
and algorithms from disciplines like computer vision, robotics, and machine learning, only a few works can currently be related to this 
overview. In 2016, Aqel et al. [20] developed a comprehensive review of visual odometry types, approaches, challenges, and appli-
cations. In this work, authors described the different input modalities and motivations for studying the VO problem, so a first taxonomy 
was established to define the difference between feature- and appearance-based approaches. The differentiating factor with our 
approach is that we covered SLAM, VO, and SFM problems. In contrast, only the VO problem was explored in the work mentioned 
above, not focusing on the monocular input mode. In 2021, Servières et al. [31] proposed a detailed review of the state-of-the-art 
classification and experimental benchmarking of visual and visual-inertial SLAM techniques, detailing the basic structure of SLAM 
system, SLAM evolution problem beginning from its appearance, then introducing the visual SLAM and visual-inertial SLAM, 
addressed using direct and indirect classification. In addition, an experimental benchmark was carried out using DSO [24], LSD-SLAM 
[37], ORB-SLAM2 [38], ROVIO [39], and Vins-Mono [40] systems. In contrast to Ref. [31], we are not only focused on the SLAM 
approach but are especially interested in 3D reconstruction, so SLAM, VO, and SFM are suitable for our work. In addition, we are not 
only interested in the description and historical appearance of each method; instead, we are primarily focused on providing an 
appropriate taxonomy and describing each of the most important algorithms to give the reader an appropriate overview that can help 
them to correctly select the most appropriate method for projects and research.

In the survey articles category, a few works address the pure visual monocular approach. In the Taketomi et al. study [33], a survey 
focused on the 2010 to 2016 period, developed specifically for the visual SLAM (vSLAM) approach. This study described the main 
elements of the vSLAM problem and adopted the feature-based and direct classification to briefly overview the main SLAM systems 
from 2010 to 2016. In this way, MonoSLAM [28], PTAM [41], and ORB-SLAM [11] were addressed as feature-based techniques, 
whereas DTAM [27], LSD-SLAM [3], SVO [23], and DSO [24] were described as direct formulations. In addition, the Taketomi et al. 
survey detailed the KinectFusion [42], Dense visual SLAM [43,44], Elastic Fusion [44], and SLAM++ [45] as RGB-D techniques. 
Another important survey that might be considered is the work of [36], which presents a survey in monocular SLAM algorithms for 
outdoor applications, mainly focused on natural environments requiring long-range capable techniques that are not affected by 
sunlight and can manage textured images with plenty of vegetation. The authors selected the most prominent algorithms available 
until 2018, so DSO [24], ORB-SLAM [11], and LSD-SLAM [3] were selected. These algorithms were reviewed and compared using the 
RMSE of the translational error over eight sequences recorded by the authors. Results evidenced that DSO was the method that 
performed better for outdoor applications. However, there was a lot of work that could be done to enhance reconstruction and tracking 
quality. In addition, the work [34] presents a survey of the main visual SLAM systems, focused on the methods that made considerable 
contributions before 2018. The survey summarizes the SLAM history, its relationship with the SFM and VO problems, the SLAM 
classification, the key issues, and improvement trends. The study adopted feature-based and direct classification, where many existing 
SLAM systems were mentioned. However, the authors reviewed the PTAM [41] and ORB-SLAM [11] as feature-based approaches and 
the DTAM [27], SVO [23], LSD-SLAM [3], and DSO [24] as direct approaches. One of the most recent surveys performed for monocular 
pure visual systems is the study of [46], which mainly focused on the monocular visual odometry problem, where authors described 
the VO problem, its formulation, and its similarities with the most recent SLAM proposals. In addition, the authors overviewed the 
MonoSLAM, PTAM, DTAM, KinectFusion, DVO, SVO, LSD-SLAM, DSO, and eight additional RGB-D methods. In contrast with the 
mentioned surveys, we performed a comprehensive and consistent survey of 42 algorithms, not only focused on a type of problem 
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(SLAM, SFM, or VO) or a specific category of the classification. Instead, we worked with a completely extended classification 
considering all the monocular pure visual systems contributing to the monocular 3D reconstruction problem.

The work that we can refer to as closest to our approach is the article developed by Macario et al. [35], which is a comprehensive 
survey developed for visual SLAM algorithms where authors provide the reader with a set of initial concepts, a taxonomy based on 
direct and indirect classification, a review of eight visual-only SLAM methods, six visual-inertial SLAM methods, five RGB-D SLAM 
methods, and finally the discussion of open problems and open directions. The work was comprehensively explained, and each al-
gorithm addressed was adequately described and systematized. We followed a similar direction, focusing our investigation on the 
monocular input mode, so we further analyzed this modality, properly defining and applying a taxonomy that better characterizes each 
algorithm. In addition, 42 of the most representative algorithms available are analyzed in depth, including an exhaustive overview of 
the newest Machine Learning-based (ML) approaches that had not been discussed in any of the cited related works.

3. Contributions and outline

To the best of our knowledge, this is the first overview specialized in the monocular 3D reconstruction problem that considers 
SLAM, VO, and SFM solutions, integrating them into a complete taxonomy. To summarize, the key contributions of our work are:

1) A taxonomy designed to contain all possible current existing literature approaches built considering three classifications and all 
possible combinations defining ten categories overviewed in detail.

2) A comprehensive overview of the most representative 42 monocular SLAM, VO, and SFM algorithms comprised by 18 classic 
monocular methods and 24 methods that integrate machine learning techniques. Each examined method includes its algorithm 
systematization, including mathematic principles for those algorithms that made innovations in their formulations, especially 
regarding depth map estimation or optimization, since this work is focused on 3D reconstruction.

3) We defined 11 criteria to provide the reader with the components to implement, select or design a 3D reconstruction system, nine 
applicable to classic systems and two additional criteria only applicable to machine learning approaches. Information was gathered 
for each algorithm and is presented in Tables 2 and 3, where the criteria are: type of algorithm (SLAM, VO, or SFM), tracking 
method (direct vs. indirect), map density (dense vs. sparse), pixels used (the technique to extract pixel information), estimation 
method (depth map estimation technique), global optimization, relocalization, loop closure (whether or not the algorithm includes 
optimization, relocalization or loop closure steps), availability (open source repository where the algorithm is available), CNN 
architecture (commonly known employed CNN architecture) and the main tasks for which a CNN was employed.

4) A discussion of open questions, available solutions, future directions for each classification and temporal analysis of the citation 
scores achieved by each taxonomy category give the reader an intuition of the impact and acceptance that each classification, 
method and category has generated in this research field.

This paper is organized as follows: Section 4 discusses input modalities, section 5 introduces the basics, notation, and taxonomy, 
section 6 presents an overview of the most representative classic methods, section 7 introduces an overview of the most representative 
methods that integrate machine learning, section 8 provides a discussion made over the entire taxonomy. Finally, conclusions are 
presented in section 9.

Table 1 
Input modalities used in 3D reconstruction.

Type of camera Pros Cons

Stereo Depth information and image scale are computed 
instantaneously. 
Depth information is easily obtained 
Provide 3D information

Require more calibration effort and are more expensive than monocular ones. 
Difficult shutter synchronization 
It gets degraded to a monocular device when the stereo baseline is smaller than 
the camera-to-object distances.

Omni- 
directional

Present a larger FOV close to 360◦, and images provide 
more information. 
Features remain longer in the image, helping to obtain 
well-refined models.

More expensive than the rest 
Not compatible with mobile devices 
Some may not work in dynamic environments. 
Present distortions that come from the equirectangular representation

Monocular 
RGB-D

Provide depth measurements with each image in real- 
time rates 
Easy deployment 
Compatible with mobile devices 
Suitable for small robotics and indoor environments

Produce erroneous measurements under sunlight. 
Limited by the range of the active sensor and the size of the projected pattern 
More expensive than monocular RGB sensors

Monocular RGB Lowest cost 
Ubiquitous 
Easy deployment 
Available on most mobile devices 
Simple calibration 
Not limited by sensor range 
Suitable for small robotics in indoor and outdoor 
environments 
Can work under sunlight

Presents image scale uncertainty. 
Does not provide depth measurements. 
Reconstruction tasks may consume more computational resources.
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4. Input modalities

The goal of obtaining a 3D geometric representation of the scene is a complex task that can be achieved using camera sensors. In the 
past, some state-of-the-art systems were built using complex camera arrays and lightning setups, primarily for indoor applications. 
Nowadays, different capture devices range from costly multi-view and stereo setups to cheap monocular sensors. Next, a brief overview 
of several input modalities used for 3D reconstruction is introduced.

4.1. Stereo setups

Multi-view setups consist of an array or a set of pairwise stereo cameras distributed in a configuration that allows the capture of 
simultaneous views of the same object at the same time [1]. Remarkably, stereo systems that use a pair of cameras are called stereo 
systems [20]. Binocular cameras have two separate camera sensors, so in-depth information and image scale can be computed 
instantaneously by triangulation due to their fixed and known stereo baseline size. However, these cameras are generally more 
expensive than monocular sensors and require more calibration effort. In addition, these sensors must acquire images at the same time 
interval, which can be achieved by synchronizing shutter speed using an external trigger signal [47]. Generally, maintaining a cali-
brated constant baseline between two cameras requires much more effort than in the monocular case stereo as setups are degraded to 
monocular when the baseline is much smaller than the distance from the scene to the camera [48]. Hence, they are limited to working 
in small and indoor environments.

Table 2 
Input modalities used in 3D reconstruction.

Method SLAM, VO 
or SFM

Tracking 
method

Map 
density

Pixels used Estimation Global 
optimi- 
zation

Relocal- 
ization

Loop 
closure

Availa- 
bility

Jin et al. (2000) 
[58]

SFM Feature- 
based

Sparse Hi.grad. EKF – – – –

MonoSLAM 
(2007) [28]

SLAM Feature- 
based

Sparse Shi Tomasi EKF – – – [113]

PTAM (2007) 
[71]

SLAM Feature- 
based

Sparse Hi.grad. BA – [114]

OpenMVG (2013) 
[73]

SFM Feature- 
based

Sparse Hi.grad. BA – [115]

ORB-SLAM 
(2015) [11]

SLAM Feature- 
based

Sparse Hi.grad. Local BA [116]

COLMAP (2016) 
[77]

SFM Feature- 
based

Sparse PnP matches Local and Global BA – – [117]

ORB-SLAM2 
(2017) [38]

SLAM Feature- 
based

Sparse Hi.grad. Local BA [118]

ORB-SLAM3 
(2021) [81]

SLAM Feature- 
based

Sparse Hi.grad. Local BA [119]

Valgaerts et al. 
(2011) [85]

SFM Optical flow Dense 8-point 
matches

Robust 8-point 
algorithm

– – – –

Ranftl et al. 
(2016) [88]

SFM Optical flow Dense FlowFields Superpixel graph 
minimization

– – – –

Stühmer et al. 
(2010) [91]

SLAM Direct Dense Hi.grad. Cost volume 
refinement

– –

DTAM (2011) 
[27]

SLAM Direct Dense Hi.grad. Cost volume 
refinement

– [120]

REMODE (2014) 
[4]

SLAM Direct Dense Hi.grad. Bayesian estimation – – – [121]

LSD-SLAM (2014) 
[37]

SLAM Direct Semi- 
Dense

Edgelets Pose graph 
optimization

– [122]

DSO (2017) [24] VO Direct Sparse Hi.grad. Local BA – – – [123]
LDSO (2018) [64] VO Direct Sparse Hi.grad. Local BA 

GPGO
– [124]

DSM (2020) [30] SLAM Direct Sparse Hi. grad. Photometric BA – – [125]

SVO (2014) [23] VO Hybrid Sparse FAST + Hi. 
grad.

Local BA – – – [126]

Hi.grad. is used to abbreviate a set of pixels with high-intensity gradient.
EKF is used to abbreviate the Extended Kalman Filter technique.
BA is used to abbreviate the Bundle Adjustment technique.
GPGO is used to abbreviate the Global Pose Graph Optimization technique.
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Table 3 
Summary of the most representative ml monocular SLAM, VO, and SFM systems.

Method SLAM, VO 
or SFM

Tracking 
method

Map 
density

Pixels used Estimation CNN 
architecture

CNN’s main estimation 
tasks

Global 
optimi- 
zation

Reloca- 
lization

Loop 
closure

Avai- 
lability

DynaSLAM 
(2018) [102]

SLAM Feature- 
based

Sparse Hi.grad. Local BA Mask R-CNN Instance segmentation [192]

BA-Net (2019) 
[59]

SFM Feature- 
based

Sparse Hi.grad. BA DRN-54 Depth 
Damping factor

– – – [138]

Steenbeek et al. 
(2022) [6]

SLAM Feature- 
based

Sparse Hi.grad. BA ResNet-50 
Enc.dec.

Scale 
Depth map densify

[193]

Sun et al. (2022) 
[60]

SLAM Feature- 
based

Sparse Hi.grad. BA ResNetXt-50 
Enc.dec.

Scale 
Relative depth 
Depth

–

Lee et al. (2022) 
[159]

SLAM Feature- 
based

Sparse Hi.grad. BA Enc. dec. Scale 
Semantic segmentation 
Feature refinement

–

SVR-Net (2023) 
[161]

SLAM Feature- 
based

Sparse Learned features Optimal match 
recurrent network

ScanNet Local map 
Relative pose 
TSDF values

– – –

DeMoN (2017) 
[141]

SFM Optical flow Dense SIFT keypoints 
matching 
FlowFields

8-point algorithm 
RANSAC

Chain Enc.dec. Optical flow 
Depth 
Pose 
Surface normals

– – – [108]

DeepV2D (2020) 
[144]

SLAM Optical flow 
Feature- 
based

Dense Learned features 3D Stereo matching 
over cost volumes

Residual Flow 
Hourglass 
Enc.dec.

Depth 
Pose 
3D stereo matching

– – [106]

VOLDOR (2020) 
[163]

VO Optical flow 
residuals

Dense Learned features Generalized 
Expectation- 
Maximization

PWC-Net Optical flow – – – [104]

DROID-SLAM 
(2021) [167]

SLAM Optical flow Dense Learned features 
Between keyframes 
edges

BA Residual blocks Feature extraction 
Optical flow 
Estate estimation

– [194]

SDF-SLAM [146] SLAM Feature- 
based

Dense Learned features and 
descriptors

BA Enc.dec. Feature and descriptor 
extraction 
Semantic segmentation

–

NeRF-SLAM 
(2022) [169]

SLAM Optical-flow Dense Learned features 
Between keyframes 
edges

BA 
Radiance field 
optimization

Residual blocks 
Neural 
Radiance Fields

Feature extraction 
Optical flow 
Estate estimation

– [195]

Rosinol et al. 
(2023) [170]

SLAM Optical-flow Dense Learned features 
Between keyframes 
edges

BA 
Probabilistic 
volumetric fusion

Residual blocks Feature extraction 
Optical flow 
Estate estimation

– –

CNN-SLAM 
(2017) [2]

SLAM Direct Semi- 
dense

Hi.grad. Pose Graph 
optimization

ResNet-50 
FCN

Depth 
Semantic segmentation

– [105], a

DeepTAM (2018) 
[171]

SLAM Direct 
Optical flow

Dense Hi. grad. Cost volume 
refinement

Enc.dec. Pose hypotheses 
Optical flow 
Depth 
Depth refinement

– [111]

DeepFusion 
[174]

SLAM Direct Semi- 
dense

Hi. grad. Opt framework U-Net Log-depth gradients 
and uncertainties 
Scale

– – –

(continued on next page)
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Table 3 (continued )

Method SLAM, VO 
or SFM

Tracking 
method

Map 
density

Pixels used Estimation CNN 
architecture

CNN’s main estimation 
tasks

Global 
optimi- 
zation

Reloca- 
lization

Loop 
closure

Avai- 
lability

CodeSLAM 
(2018) [134]

SLAM Direct Dense Hi. grad. BA U-Net 
Variational 
Enc.dec.

Code 
Compact depth

– – [107], b

DeepFactors 
(2020) [10]

SLAM Direct Dense Hi. grad. Multiview BA U-Net 
Variational 
Enc.dec.

Code 
Compact depth 
Uncertainty

[112]

DVSO (2018) 
[140]

VO Direct Sparse Hi. grad. BA ResNet-50 
Encoder- 
decoder

Disparity maps – – – [110], c

CNN-DVO (2020) 
[103]

SLAM Direct Sparse Hi. grad. 
Dynamic upsampling 
and downsampling

BA U-Net 
Encoder- 
decoder

Depth – [191]

D3VO (2020) 
[139]

VO Direct Sparse Hi.grad. BA U-Net 
Encoder- 
decoder

Depth, Pose, 
Uncertainty

– – – –

MonoRec (2021) 
[182]

SFM Direct Sparse Hi. grad. 
Mask filter

BA U-Net 
ResNet-18 
features 
Encoder- 
decoder

Depth 
Mask 
Moving objects

– – – [109]

DDSO (2022) 
[145]

VO Direct Sparse Hi. grad. BA ResNet-50 
Encoder- 
decoder

Depth 
Pose 
Transformations

– – – –

CNN-SVO (2019) 
[66]

VO Hybrid Sparse FAST + Hi.grad. Local BA ResNet-50 
Encoder- 
Decoder

Depth – – – [196]

Hi.grad. is used to abbreviate a set of pixels with a high-intensity gradient.
Enc.dec. is used to abbreviate the Encoder-decoder CNN architecture.
EKF is used to abbreviate the Extended Kalman Filter technique.
BA is used to abbreviate the Bundle Adjustment technique.

a Unofficial implementation of the CNN-SLAM method. There is no official implementation of this method yet.
b Unofficial implementation of the Code-SLAM method. There is no official implementation of this method yet.
c Unofficial implementation of the DVSO method. There is no official implementation of this method yet.
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4.2. Omni-directional cameras

Many authors decided to utilize omnidirectional cameras, like [49–52], due to their wide field of vision (FOV). According to 
Ref. [51], Omnidirectional cameras provide more information than regular cameras, and the features found in the images stay longer, 
helping to obtain well-refined 3D scenery models. However, Omnidirectional cameras are expensive, require a lot of setup effort, and 
are incompatible with mobile devices. Furthermore, some of these devices incrementally scan the scene using mechanical rotation, so 
these devices are intended to work in static conditions and may not work in dynamic environments [53]. One of the main problems 
these devices have for the 3D reconstruction task is the generation of distortions in the image that comes from the equirectangular 
representation, which happens when the obtained spherical pixels projected to a plane get significantly distorted, which can cause 
depth prediction errors [53].

4.3. Monocular RGB-D

RGB-D sensors have an additional active or passive sensor that allows the system to get depth measurements of the environment 
associated with each image pixel in real-time. Such depth measurements help solve the monocular reconstruction’s depth and scale 
ambiguity because they can be used as an estimate of the environment geometry. These devices can be classified as passive or active. In 
contrast to stereo sensors, passive RGB-D cameras typically present a projector instead of a second camera, projecting a pattern in the 
image to find coincident points. To prevent this pattern from being distinguished by the human eye, these sensors commonly work in 
the infrared domain (IR). RGB-D cameras using infrared projectors known as active. It must be mentioned that active RGB-D cameras 
can produce erroneous measurements under sunlight [2] due to sunlight IR radiation that overpowers the projector. For this reason, 
some RGB-D cameras present a combination of active and passive sensors that are activated whether under sunlight or not, which can 
significantly increase the cost of this kind of device. Another common limitation of these light devices is that they cannot reconstruct 
objects smaller than the projected pattern [1].

Time of Flight (ToF) is another active RGB-D camera that gets the depth measurements by emitting a light pulse and computing the 
time it takes to reach the object. This time measurement is challenging because this event occurs at the speed of light. That is why ToF 
RGB-D cameras typically perform worse than RGB-D light ones [1].

4.4. Monocular RGB

RGB cameras capture the intensity of the received light in three channels: red, green, and blue. RGB devices are designed to work in 
different configurations, ranging from CCD sensors acquiring each signal in a separate sensor to Bayer pattern-based sensors where 
colour filters are interleaved in front of a single sensor [1]. Monocular cameras are known for reducing the effect of calibration errors. 
They are ubiquitous, low cost, easy to deploy, and available in most portable devices, which is considered a significant incentive that 
has kept the attention of researchers, who usually prefer this type of input to perform reconstruction tasks involved in SLAM, SFM, and 
VO. Nevertheless, this input involves an ill-posed problem because monocular vision suffers from scale uncertainty [54,55], and the 
techniques used to achieve the goal of 3D reconstruction typically require a lot of computational resources. Table 1 summarizes the 
features and drawbacks of using the different input modalities for 3D reconstruction.

As noticed in Table 1, although monocular RGB cameras present some important challenges due to their sensor less nature, not 
allowing them to provide direct depth measurements, they present the most attractive set of pros, especially for small robotics ap-
plications. Monocular RGB sensors present the lowest price among all the available camera types, are easy to deploy, and are 
compatible with almost all the existing portable devices and processors, like Single Board Computers (SBC) and Field Programmable 

Fig. 1. Bibliometric co-authorship analysis results were executed in VOSviewer using the association strength method, full-count strategy, and at 
least two documents per author.
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Gate Arrays (FPGA), which makes this input modality especially attractive for researchers. This is why the research was developed, 
focusing on the monocular RGB input modality.

5. Basics and notation

5.1. Literature review process

Scene- 3D reconstruction using monocular cameras is a complex challenge that has kept the interest of many researchers. However, 
there are few studies in this discipline, and as an ill-posed problem, each approach is considerably different from the rest, so the 
terminology could be used in varied ways. For that reason, the main objective of this paper was to establish a taxonomy and provide the 
reader with some basics about the discipline. In this way, we used the following search criteria in Scopus and Scholar Google, applied 
to the time range from 2000 to April of 2023, performing the search only for the English language: TITLE-ABS-KEY (("SLAM" OR "VO" 
OR "SFM" OR "Simultaneous Localization and Mapping" OR "Visual Odometry" OR "Structure from Motion")) AND ("Monocular" OR 
"Visual" OR "RGB") AND NOT ("RGB-D" OR "Stereo" OR "omnidirectional" OR "Visual Inertial" OR "VI")). After complete and inde-
pendent reading, we set apart works that applied RGB-D, stereo, or omnidirectional cameras, obtaining a total of 137 studies focused 
on monocular RGB 3D reconstruction. The bibliometric information of each article was extracted using Scopus and Mendeley, so a .ris 
file was extracted, and its information was processed using VOSviewer software [56]. Bibliometric co-authorship analysis was set 
under selected bibliometric data, association strength method, full-count strategy, and a minimum of two documents to consider an 
author, so 64 authors met the threshold. Results obtained on bibliometric analysis are illustrated in Fig. 1.

As can be seen, the bibliometric analysis helped us to find the authors with the greatest link strength based on their contribution to 
the state of the art, so the authors with the highest overall link strength were Cremers, D., Czarnowski, J., Davison, A., Clark, R. and 
Leuteneger, S., with link strengths of 28, 13, 12, 11 and 11 respectively. In this way, our literature review strategy was guided by an 
exhaustive reading, starting with the most representative authors, in order to gather basic knowledge. Then, we kept extending the 
bibliographic database according to the studies cited in each study as previous contributions and studies that were used for 
comparisons.

5.2. Notation

Throughout the paper, bold lowercase letters (x) represent vectors for statements and formulations. Bold uppercase letters (R) 
represent matrixes. Scalars are represented by light lowercase letters (c). Functions and images are represented by upper-case light 
letters (I). Let us define image I containing a set of pixels. For each q pixel in the image, let us assume that there is a d depth value 
allowing for the projection of its corresponding 3D coordinates x = (x, y, z)T. In this way, camera poses are represented as trans-
formation matrixes Ti ∈ SE(3), transforming a point from the real-world frame to the camera frame. R represents rotation matrixes, 
while Π and Π− 1 are projection and back projection functions. Additionally, d∗ represents inverse depth values, so D and D∗ correspond 
to depth and inverse depth maps.

5.3. Initial words and approaches

One of the main motivations of visual SLAM, SFM, and VO is Camera pose estimation, which initially used to be approached in three 
ways: using a feature-based approach, an appearance-based approach, or by a hybrid feature- and appearance-based approach [20,21, 
51].

Feature-based approach, as implemented in Refs. [10,11,38,57–59], typically performs image feature extraction (corner, lines, 
curves, among others), representative features matching, and motion estimation tasks. Matching is performed using the Euclidean 
distance of the feature vectors of both images to find matching candidates. In this way, given two images of the same scene at different 
poses, the first image features are matched with their corresponding features of the second image, thus providing a 3D position of the 
points related to those features, as depicted in Fig. 2. Motion is typically estimated by observing the feature displacement, where the 

Fig. 2. Feature matching and 3D position triangulation from multiple views.
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camera pose is determined by finding a geometric transformation between each pair of images using a set of correspondent features.
While the feature-based approach tracks a set of features, appearance-based methods monitor the appearance changes of each 

acquired image using pixel intensity information. Therefore, an alternative to working with pixel intensity is computing the optical 
flow, which can be used to estimate camera motion and speed. Optical flow (OF) computes the displacement of brightness patterns 
from one image to the next, using neighbouring pixels’ intensity values. Depending on the number of pixels used to estimate camera 
motion, OF algorithms can be classified as dense or sparse. Dense methods do not require a feature extraction stage since they use the 
full image information, making them less robust to noise than sparse ones [60]. A commonly used method for appearance-based 
ego-motion estimation is template matching, consisting of selecting a template from the first image and trying to match it to the 
next frame. Template matching is based on determining whether a sub-image, named template, exists or not in a larger image called 
search area by calculating similarity measures like normalized cross-correlation (NCC), the sum of square or absolute differences 
(SSD/SAD). The algorithm shifts the template over the search area, and the position that presents the higher similarity measure is the 
position of the template found in the new image [20]. Next, the pixel displacements of the template Δu, Δv are declared as vectors, thus 
defining the velocity and subsequent acceleration in the flow field as depicted in Fig. 3. These displacements can be converted to 
horizontal and vertical physical displacements using camera calibration parameters for different applications.

According to Refs. [61,62], feature-based approaches tend to fail in low-textured environments (e.g., walls, roads) due to the small 
number of salient features that can be recognized and tracked. On the other hand, appearance-based approaches are more robust and 
allow better tracking in low-textured environments [61]. However, they are sensitive to photometric changes and require excellent 
initialization for good results. For that reason, systems like the Scaramuzza & Siegwart proposal [50] were built using a hybrid of 
feature- and appearance-based approaches.

Considering that 3D reconstruction is a constitutive challenge for monocular SLAM, SFM, and VO techniques, the previous clas-
sification of feature, appearance, or hybrid approaches is unsuitable to contain this wide variety of solutions for this monocular ill- 
posed problem. Thus, a better categorization could be found in the works of [24,25,27,37,63–65], where two main classifications 
emerge: direct and indirect, dense, and sparse.

Consequently, monocular SLAM, VO, and SFM are divided into two main categories, depending on the number of features used for 
tasks required in 3D reconstruction. Hence, sparse and dense classification is a way to categorize them. In addition, another classi-
fication depends on the need to perform preprocessing before obtaining the actual parameters and measurements. Indirect methods use 
this preprocessing step, which generates an intermediate representation of noisy measurements to be optimized before estimating 
geometry and camera motion. In contrast, direct formulations use pixel information directly. In addition, due to the major im-
provements in machine learning and the impressive results this new category has achieved, a new component for the taxonomy was 
introduced, as depicted in Fig. 4. In this way, we established three classifications to determine an appropriate taxonomy for the 
monocular 3D reconstruction problem: direct vs. indirect, dense vs. sparse, and classic vs. machine learning.

• Direct vs. Indirect. Direct techniques do not use preprocessing steps like the feature or optical flow extraction, whereas indirect 
techniques use these preprocessing steps.

• Dense vs. Sparse. Dense refers to techniques using the entire or most of the image pixel information, whereas sparse refers to 
techniques using only a subset of selected pixel information.

• Classic vs. Machine Learning. Classic methods, also known as geometric-based methods, rely on geometry, odometry or prob-
abilistic suggestions to run their entire pipeline. They do not require any learning steps, so they must be appropriately tuned and 
calibrated for functioning, compared to learning-based methods, which have demonstrated their power in performing low-level 
tasks (feature extraction, depth estimation, pose estimation) and high-level tasks (classification and semantic segmentation). 
For that reason, many researchers have focused on developing neural networks for pose prediction, depth prediction, feature 

Fig. 3. Optical flow field and optical flow acceleration field generation from consecutive frames. Where F is the optical flow field, and Δu and Δv 
are the pixel displacements of the template.
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extraction, and semantic segmentation (among others) combining them with classic frameworks to enhance their accuracy, 
generalization capabilities, robustness, scene comprehension capabilities, and the like.

Fig. 4 depicts the three classifications considered in this study. Combining these three forms of classification and considering that 
there are hybrid approaches [23,66] combining direct and indirect techniques to perform the reconstruction task, we propose the 
following taxonomy: Classic + Dense + Direct, Classic + Sparse + Direct, Classic + Dense + Indirect, Classic + Sparse + Indirect, 
Classic + Hybrid, ML + Dense + Direct, ML + Sparse + Direct, ML + Dense + Indirect, ML + Classic + Sparse + Indirect and ML +
Hybrid. The classification of the currently existing methods is depicted in Fig. 5.

6. Classic methods

Classic monocular SLAM, SFM, and VO techniques, also known as the geometric-based approach, are the first categories addressed 
in this study. These methods are called geometric-based approaches, usually relying on geometric information to perform 3D 
reconstruction running their entire SLAM, VO, or SFM pipelines. However, since recovering the scene geometry as a reconstruction is 
an ill-posed problem, many proposals may combine traditional geometric techniques with others, including probabilistics, optimi-
zation, computer vision, heuristic techniques, and so on. Nevertheless, in this classification, we do not include formulations that use 

Fig. 4. Extended taxonomy for monocular 3D reconstruction methods.

Fig. 5. Classifications for monocular 3D reconstruction systems. The top examples represent direct and indirect classification, while the middle 
examples belong to sparse and dense classification. The examples below correspond to classic and machine learning classification. Examples were 
obtained by implementations of ORB-SLAM2 [21], DSO [2], LDSO [10], and MonoRec [43] on the datasets TUM-Mono [44] sequence 42, 
TUM-RGB-D [45] sequence Freiburg-1-room and KITTI [46] sequence 7, respectively.
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machine learning, which will be discussed in Section 7.
As mentioned by Engel et al., the scene geometry can be estimated using a probabilistic model that uses noisy measurements Y from 

the images, generating an X estimator for the 3D model and the ego-motion [24]. This way, the 3D reconstruction problem can be 
solved using classic approaches from indirect and direct paradigms. In the indirect approach, camera measurements are preprocessed, 
giving an intermediate representation that solves part of the problem. These intermediate obtained values are then used as noisy inputs 
for the X estimator. In the second group, called direct, the systems skip the preprocessing step and directly use the measurements 
obtained from the observations as noisy inputs for the X estimator in a probabilistic model. This classification also determines how 
optimization is carried out, so direct methods optimize photometric errors (pixel intensity difference) since direct methods obtain 
photometric measurements. In contrast, indirect methods optimize geometric errors since preprocessing computes geometric values.

6.1. Classic + indirect methods

As previously mentioned, indirect methods use preprocessing steps to extract information about the input image sequence through 
visual features, descriptors, or optical flow. Although, at the same time, classic indirect systems can be designed to recover a sparse or 
dense 3D reconstruction environment, both subcategories will be discussed in sections 6.1.1 and 6.1.2. Fig. 6 presents a timeline for the 
appearance of the most important methods of this category selected based on their number of citations and contributions for new 
implementations or comparisons. Fig. 6 shows that one of the most important SLAM developments belongs to this category, the ORB- 
SLAM system and its successors, which has one of this study’s most impressive citation scores.

6.1.1. Classic + sparse + indirect methods
This category includes some of the most popular approaches, typically based on 3D geometry estimation from keypoint matches 

using geometry error without prior geometry. This category of SLAM methods uses a subset of the pixel information to perform its 
constitutive processes, so the output is also a subset of the expected scene reconstruction, which in some applications, such as robotics, 
is sufficient to perform tasks such as robot navigation or even place recognition. Therefore, these methods are indirect due to their pre- 
processing, where new variables, such as features and their positions, are computed by replacing pixel information so that the rest of 
the processes are performed using these new values.

Jin et al. (2000). One of the first works found in this category was developed in 2000 by Jin et al. [58], called "Real-Time 3-D 
Motion and Structure of Point Features" consisting of a system able to select and track a certain number of high-contrast point fea-
tures in an image sequence estimating a three-dimensional relative position and motion from an inertial reference. The goal was 
achieved by selecting an N-tuple of points, a reference plane Y0 and their depth using the projection ρ rays, obtaining a discrete-time 
non-linear dynamic system through a translation vector function T a rotation matrix R and its linear and rotational velocities V, ω̂ 
using the hat notation, α represents corresponding accelerations. Authors assume that the noisy projection can be measured by Yi(t) =
π
(
R(t)Yi

0ρi +T(t)
)
+ ni(t) ∈ R2 corresponding to the projection model. Also, it was proven that the model was minimal, and the 

Extended Kalman Filter based on it was stable. Its conventional state space representation is as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi
0(t + 1) = Yi

0(t),with i ∈ {4,…,N},Yi
0(0) = Yi

0,

ρi(t + 1) = ρi(t) i ∈ {2,…,N}, ρi(0) = ρi
0

T(t + 1) = exp(ω̂(t))T(t) + V(t),T(0) = T0

Ω(t + 1) = LogSO(3)(exp(ω̂(t))exp(Ω̂(t))),Ω(0) = Ω0

V(t + 1) = V(t) + αv(t),V(0) = V0

ω(t + 1) = ω(t) + αω(t),ω(0) = ω0

Yi(t) = π
(
exp(Ω̂(t))Yi

0(t)p
i(t) + T(t)

)
+ ni(t),

(1) 

where ni ∼ N (0, Σn), LogSO(3)(R) stands for Ω and i = {1 . . . N}. The implemented algorithm uses the above model and performs 
initialization (initial feature selection), transient (prediction, update, gain, and linearization), and regime tasks (initialization, pre-
diction, and update), where features are tracked, removed, and updated following a Riccati equation and new features are inserted to 
the state after a probation time. Fig. 7 presents the Jin et al. algorithm inspired by the article [58].

MonoSLAM (2007). The first monocular visual SLAM system was introduced in 2007 by Davison et al. [28], built based on [67–69] 
to create a "pure vision" system able to construct persistent 3D maps of the environment on the fly while estimating camera ego-motion 
and closing loops to correct drift, in real-time by using a monocular camera as the only information source. This persistent sparse map 

Fig. 6. Most representative monocular SLAM, VO, or SFM classic indirect systems–A Timeline.
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is estimated within a probabilistic framework employing a set of landmarks. Key contributions in this work are the active guided 
measurement and high-quality mapping features, a motion model integration for smooth camera motion estimation to allow the 
system to capture prior information in an image sequence, and the implementation of feature initialization and feature orientation 
estimation techniques. Authors established that using SLAM, where probabilistic camera state estimation is performed simultaneously 
with its map, instead of SFM, is used to benefit in running estimates for efficient processing. The basis of the MonoSLAM approach is the 
estimation of a probabilistic feature map that represents the state of the camera at any time and all the features of interest, as the 
Extended Kalman Filter constantly updates this map. MonoSLAM uses large image patches (11 × 11 pixels) as long-term landmarks 
where detection is performed by Shi and Tomasi operators [70]. Due to the scale ambiguity of monocular SLAM, the system initial-
ization was carried out by giving the system a certain amount of scene-prior information by placing a known rectangular target in front 
of the camera. Next, depth estimation was done by placing a semi-infinite line with its direction at each 2D position. Then, a set of 
discrete depth hypotheses were distributed along this line in the form of probability density functions so they are incrementally 
estimated during camera movement until distribution collapses to a peak; so when standard deviation drops below a threshold, dis-
tribution can be approximated as Gaussian. A drawback is that the algorithm complexity increases proportionally to the scene size, 
returning a sparse map of landmarks, which is far from an accurate reconstruction. Fig. 8 presents the MonoSLAM algorithm inspired 
by the article [28].

PTAM (2009). In 2009, Klein & Murray [71] developed a tracking and mapping system called "Parallel Tracking and Mapping" 
(PTAM) applied to the augmented reality context, intended to transform a flat surface into a playing field that can be used for VR 
simulation, however, limited to small AR applications. PTAM was the first system performing tracking and mapping tasks in two 
parallel threads since modern computers have more than one processing core, where the tracking thread oversaw estimating a prior 
pose, projecting map points into an image, searching coarsest-scale features in the image, updating camera pose from these matches, 
patch searching of reprojected points, pose estimation of the current frame from the matches found. In contrast, the mapping thread 
was designed to perform map initialization, refinement, and expansion as keyframes are picked from the tracking thread, 
Levenberg-Marquardt bundle adjustment to adjust the pose for every keyframe and data association refinement using an outlier 
management technique based on a Tukey estimator. In this system, tracking and mapping are not linked, so many redundant frames 
could be skipped, allowing the processors to concentrate on a small number of keyframes, allowing operation with larger map size, and 
replacing incremental mapping with an accurate batch method, in this case, bundle adjustment. This application was developed to 
perform video game AR integrations and was compared to EKF-SLAM [29], reducing the trajectory error significantly. Fig. 9 illustrates 
the PTAM algorithm inspired by the article [71].

OpenMVG (2013). OpenMVG (Open Multiple View Geometry) Structure from Motion (SfM) system is an open-source project used 
for reconstructing 3D shapes of objects, scenes, or structures from a series of 2-dimensional images that can be acquired at the same 

Fig. 7. Diagram of Jin et al., algorithm. Adapted from Ref. [58].

Fig. 8. Diagram of MonoSLAM algorithm diagram. Adapted from Ref. [28].
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time (using stereo setups), or from series of monocular images (incremental). It was proposed by Moulon et al. in 2013 [72] and 
improved upon prior methods from additional contributors by utilizing a hash-map algorithm, incorporating a graph-based geometry 
verification process, and scaling to handle large datasets [73]. The system uses a pipeline that involves camera calibration, feature 
extraction and matching, geometric filtering, 3D reconstruction, global optimization, and colourization. One of the main improve-
ments of OpenMVG over previous SfM systems is the use of a hash-map algorithm, which optimizes the feature extraction and 
matching process by storing the features’ positions and descriptors in memory for easy access and comparison, which allows an 
efficient management of large datasets and faster computation times. Also, OpenMVG employs a graph-based geometry verification 
process, which compares the estimated camera poses and 3D reconstructions with a similarity graph. The graph represents recurring 
geometric relationships and helps to eliminate false matches and outliers, improving the overall accuracy of the reconstruction. 
Another improvement of OpenMVG is the ability to handle large datasets and scalability. The system has been shown to handle up to 
100,000 images in a single run and to reconstruct complex scenes and structures. This scalability is due to efficient memory man-
agement and data structure optimisations, such as the use of locally homogeneous patches and sparsity-based representation of feature 
matches. Several factors influence the quality of the reconstruction, including the camera calibration, the quality and number of 
images, the scalability of the system, and the accuracy of the feature extraction and matching. OpenMVG addresses these factors with 
features such as automatic camera calibration, parallelization of the feature extraction and matching, and robust estimation of camera 
poses and 3D points. The system also allows the user to fine-tune the reconstruction process and provides various visualization tools for 
examining and manipulating the 3D models.

The OpenMVG library was built upon a collection of modules displayed on a user interface that allows easy configuration. The 
modules are image processing, feature extraction and description, feature and image collection matching, multiple view geometry, 
robust estimation, structure from motion, and localization. The image processing module encodes each image in a 2D-pixel container 
based on the Eigen matrix structure, and it allows the image processing operations to be performed: image sampling, primitive 
drawing, colour space conversion, and image filtering. Feature extraction and description module oversees detecting distinctive and 
repetitive image points and descriptors, which allows OpenMVG to describe the image as a collection of regions which are abstract 
chosen attributes embedded in each point descriptor, which can be blob regions, corner regions or affine invariant regions. Feature and 
image collection matching are carried out in OpenMVG by providing a search framework based on the nearest-neighbours techniques 
for any vector dimension, which can be configured as BruteForce, ANN-kD trees, and Cascade hashing, which can be used to compute 

Fig. 9. Diagram of PTAM algorithm. Adapted from Ref. [71].

Fig. 10. Diagram of OpenMVG algorithm. Adapted from the article [73].
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the nearest 3D points by matching features over the image sequence. The Multi-View Geometry module allows the checking of multi- 
view geometric constraints on matched pairs, so OpenMVG provides: multiple models and solvers like the 4-point algorithm for 
homography; the 7/8-point algorithm for fundamental matrix; the 5-point algorithm for essential matrix estimation; P3P, DLT, and 
ePnP for the absolute pose; similarity transformations; and triangulation tools. The robust estimation module detects and removes 
corrupted or noisy image pairs, including RANSAC and MaxConsensus for prior thresholding and Least Median of Squares and 
contrario-RANSAC as threshold-free techniques. Finally, the SFM module allows OpenMVG to obtain 3D reconstructions applying the 
global or incremental pipelines using images with low cross-coverage, where it is well identified that the incremental approach tends to 
suffer from drift due to its sequential nature. Finally, Bundle Adjustment is executed as part of the SFM module to perform a non-linear 
refinement over the SFM scene by minimizing the reprojection error. Fig. 10 illustrates the OpenMVG algorithm inspired by the article 
[73].

ORB-SLAM (2015). A couple of years later, an impressive new monocular system called ORB-SLAM by Mur-Artal et al. [11] was 
launched based on the use of ORB features, which are multiscale FAST corners with a 256-bit descriptor, the same used for tracking, 
mapping, relocalization, and loop closing, due to its fast computing and matching properties. The system starts with feature extraction, 
a preprocessing step that is why ORB-SLAM could be classified as an indirect technique. Here, the input is preprocessed to extract ORB 
features at salient key-point locations, and then the rest of the process is performed over these features, so the rest of the input image 
information is discarded. Compared to PTAM, ORB-SLAM performs bundle adjustment, which is considered the gold standard for SFM 
due to its excellent performance. Bundle Adjustment used to be considered unaffordable for real-time applications due to its high 
computational cost. However, authors thought it could be minimized by working on corresponding scene feature observations using a 
subset of keyframes, avoiding redundancy on keyframe selection, and using sets of keyframes with significant parallax and plenty of 
matches in loop closure. Thus, ORB-SLAM uses an initial estimation for keyframe poses and point location in the optimization stage, 
implementing optimization focused on local map exploration, providing the ability to perform global optimizations to close loops.

In this method, Bundle Adjustment optimization is performed for the 3-D locations xω,j =
(

xω,j, yω,j, zω,j

)T
, and the keyframe poses 

Tiω, are optimized by minimizing the reprojection error for the xi,j points, so the error for a point j in an i keyframe is: 

ei,j = xi,j − πi
(
Tiω,xωj

)
, πi
(
Tiω,Xω,j

)
=

⎡

⎢
⎢
⎢
⎣

fi,u
xi,j

zi,j
+ ci,u

fi,v
yi,j

zi,j
+ ci,u

⎤

⎥
⎥
⎥
⎦
, and

[
xi,j yi,j zi,j

]T
=Riωxω,j + tiω, (2) 

where πi is the projection function, Riω and tiω are rotation and translation components of Tiω. 
(

fi,u, fi,v
)

and 
(
ci,u, ci,v

)
are the focal 

length and main point associated with the i camera. This way, the cost function to be minimized is: C =
∑

i,j
Hh

(
eT

i,j,Ω
− 1
i,j ei,j

)
, where Hh is 

the Huber robust cost function, Ωi,j = σ2
i,jІ2×2 is the covariance matrix associated with the scale for each detected keypoint.

ORB-SLAM is a system built over the systems: PTAM [71], a place recognition technique called Bags of Words of [74], the scale 
aware loop closing technique of [13], and the incorporation of co-visibility information studied in Refs. [75,76]. All these techniques 

Fig. 11. Diagram of ORB-SLAM algorithm. Adapted from Ref. [11].
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combined and improved allowed the creation of a new system whose contributions include the use of the same tracking, mapping, 
relocalization, and loop closing features in real-time operation and satisfactory invariance to changes in viewpoint and illumination; 
use of a local co-visibility graph for tracking and mapping providing map size independence allowing real-time operation in large 
sceneries; use of a loop closing technique based on pose graph optimization; the ability to recover from tracking failure; a model 
selection based automatic initialization; and the implementation of map point and keyframe selection by the survival of the fittest 
technique. Similarly, PTAM ORB-SLAM uses three parallel threads for tracking, local mapping, and loop closing where the tracking 
thread performs the task of localizing the camera with every frame and decides when a keyframe should be inserted; the local mapping 
thread processes each new keyframe and executes bundle adjustment for 3D reconstruction of elements near to camera pose; and loop 
closing thread in charge of searching loops with each new keyframe and computing a similarity transformation measuring accumu-
lated drift when a loop is detected. ORB-SLAM also implemented a non-prohibitive policy for spawning and culling keyframes for 
flexible map expansion, which can detect and delete redundant keyframes. Results showed that the main benefit of indirect techniques 
is that they can match features even with a wide baseline. According to Ref. [11], accuracy can still be improved by including points at 
infinity in the tracking containing primary rotation information. Also, it can be upgraded by using a denser map, or the system could be 
used as a backbone from which an accurate dense map may be built. Fig. 11 presents the ORB-SLAM algorithm inspired by the article 
[11].

COLMAP (2016). COLMAP is a method proposed for photogrammetry and computer vision, which aims to reconstruct a 3D scene 
from a set of 2D images. The main strategy of the method is to estimate camera poses and 3D points in the scene by optimizing a bundle 
adjustment problem. COLMAP employs feature-based matching to establish correspondences among images and then refines the 
matches based on geometric consistency to reject outliers. The method also introduces several improvements in the optimization 
process, such as a novel parameterization for rotation and a more robust optimization technique based on the Levenberg-Marquardt 
algorithm. SFM techniques are typically built over two stages: correspondence search and incremental reconstruction. The corre-
spondence search is responsible for identifying overlaps in the input images and projections of the same points in such overlapping 
images to build a graph of image projections for each point. For this purpose, COLMAP performs feature extraction to select sets of local 
features invariant to radiometric and geometric changes to allow SFM to recognize them across multiple images; then, matching is 
executed to discover images viewing the same scene part by searching feature correspondences that are the most similar features in 
each image; finally, a geometric verification step must be addressed because matching is only based in appearance, and it is not 
guaranteed that feature correspondences are mapping the same scene point, so SFM verifies this matches by estimating trans-
formations and if a transformation maps a sufficient number of features it is considered as verified. The second stage in COLMAP is 
incremental reconstruction, which takes the scene graph from the correspondence search to recover pose estimates and the scene 
structure as a point cloud. The incremental reconstruction starts with the initialization process that carefully selects an initial two-view 
reconstruction, which is crucial to prevent trajectory loss issues. Then, the image registration allows the system to register new images 
by solving the Perspective-n-Point (PnP) problem using the previously identified feature correspondences of triangulated points; then, 
the triangulation allows the extension of the scene point cloud representation by adding a set of points coming from each new image. 
Finally, since SFM tends to drift quickly to non-recoverable states, BA is applied to refine the camera and point parameters by 
minimizing the reprojection error. The main contributions of COLMAP to the SFM pipeline are incorporating improvements in image 
registration, triangulation, and BA procedures. COLMAP introduces a robust next-best image selection method to improve pose 
estimation and recover a reliable triangulation, which is an uncertainty-driven approach that uses a multi-resolution analysis by using 
a score S, which is higher if more points are visible and if the distribution of those points is uniform. In addition, COLMAP introduces a 
novel, robust, efficient triangulation procedure that aims to be more robust to outliers and recover independent points merged into one 
track by using the RANSAC approach to handle different levels of outlier contamination in the multi-view triangulation process. 
Finally, in COLMAP, BA was implemented for image registration and triangulation, allowing a local BA to be performed on the set of 

Fig. 12. Diagram of COLMAP algorithm. Adapted from Ref. [77].
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connected images for each image registration, and it performs a global BA each time the model grows a certain percentage.
Compared to similar methods, COLMAP shows better performance in terms of accuracy, efficiency and scalability. For example, 

COLMAP can handle large image collections with hundreds of thousands of images while maintaining reconstruction quality without 
the limitations of handling large datasets. Moreover, COLMAP shows superior accuracy in reconstructing the scene’s geometry, which 
is important for virtual and augmented reality applications. Another advantage of COLMAP is its flexibility in handling different types 
of input data, such as unordered image sets, image sequences, and video frames. These features make COLMAP suitable for various 
applications, from 3D modelling of cultural heritage to robotic vision and autonomous driving. Additionally, COLMAP provides a 
comprehensive set of tools for visualizing and analyzing the reconstruction results, including point cloud rendering, texture mapping, 
and error analysis. Fig. 12 presents the COLMAP algorithm inspired by the article [77].

ORB-SLAM2 (2017). Next, Mur. Artal and Tardós continued the work of ORB-SLAM, developing ORB-SLAM2 [38], a system that 
extended the capabilities of its predecessor, allowing the system to operate with monocular, stereo, and RGB-D sensors. It was mainly 
developed based on the previous system but included stereo matching procedures for stereo cameras and stereo coordinate generation 
for RGB-D sensors. The main innovation in the monocular scenario was implementing a fourth thread responsible for performing a full 
Bundle Adjustment after loop closure pose graph optimization to compute the optimal structure and motion solution. This optimization 
procedure implies high computational cost because it is performed over all the points and features, so it is executed in a separate 
thread, allowing the system to continue expanding the map and detecting loops simultaneously. Like ORB-SLAM, this system incor-
porated an embedded DBoW2 place recognition module for relocalization and a co-visibility graph for large environments. For stereo 
and RGB-D implementation, monocular key points are also used to contribute rotation and translation estimation but do not provide 
scale information because this prior information can be measured or triangulated by the sensor. This method uses Levenberg-Marquard 
optimization by the implemented module g2o, optimizing the camera pose in the tracking thread, the local window of keyframes, 
points in the mapping thread, and all keyframes and points after loop closure. Therefore, full Bundle Adjustment is the case of local 
Bundle Adjustment, where all map points and keyframes are optimized except the origin keyframe.

ORB-SLAM2 also includes a localization mode that disables local mapping and loop closing threads for known areas as long as there 
are no significant changes in the landscape, allowing for long-term and lightweight localization and functionality. This method was 
compared with many of the existent Stereo, RGB-D, and monocular systems of the time, outperforming most of them in the EuRoC 
[78], TUM [79], and KITTI [7] datasets, proving its functionality in a large variety of environments. In addition, this study proposes 
that its application could be extended to a wide variety of new sensors like omnidirectional, fisheye cameras, and large-scale dense 
fusion. Fig. 13 illustrates the ORB-SLAM2 algorithm inspired by the article [38].

ORB-SLAM3 (2021). It is well known that ORB-SLAM has been the gold standard of feature-based monocular SLAM systems for 
many years and has inspired the development of many other systems like DF-ORB-SLAM, ORB-SLAM-VI and ORB-SLAM3 [80–82]. 
ORB-SLAM3, proposed by Campos et al. [81], is the latest proposal to integrate and improve the developments of its predecessors. This 
system can perform visual, visual-inertial, and multimap SLAM with monocular, stereo, and RGB-D cameras for pinhole and fisheye 
devices. One of the most considerable contributions made in this work is its capability of performing four types of data association: 
short-term, enabling the system to match map elements of the last few seconds; mid-term data association, to match map elements 
close to the camera that present slight accumulated drift; long-term data association, to match map elements of previously visited areas 
using a place recognition technique regardless of accumulated drift; finally, multimap data association, to match and use BA map 
elements from previous mapping sessions creating a map from where the system can perform an accurate localization. The main 

Fig. 13. Diagram of ORB-SLAM2 algorithm. Adapted from Ref. [38].
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contributions of this method compared to previous versions are: a monocular and stereo visual-inertial system based on 
Maximum-a-Posteriori estimation (MAP), improving ORB-VI using the initialization technique of [83]; a new place recognition 
technique to improve its recall by checking geometrical and local keyframes consistency with three co-visible map keyframes, slightly 
incrementing computational cost; ORB-SLAM atlas, which is a multimap SLAM system, inspired in Ref. [84], to represent a set of 
disconnected maps that can be used in every map operation of place recognition, camera localization, loop closure, and map merging, 
enabling the combination of maps built at different times performing an incremental multi-session SLAM or even creating new maps 
when tracking is lost; an abstract camera representation, bringing the capability of use to any camera model by providing its projection 
and un-projection Jacobian functions. Moreover, a significant improvement is the ATLAS system, providing an active map where the 
tracking thread localizes incoming frames, continuously optimizing and increasing the Atlas with new keyframes, where even 
non-active maps await to be connected. The tracking thread computes the pose of a current frame concerning the active map, min-
imizes reprojection error, and selects which frames become keyframes. The local mapping thread adds keyframes and points to the 
active map, removes redundant points, and refines the map by bundle adjustment using a window of neighbouring keyframes. Finally, 
the loop and map merging thread detects common regions in the Atlas, so if common areas are found, loop correction is performed, and 
then an independent thread performs full BA to refine the whole map. ORB-SLAM3 was tested against a large set of monocular, stereo, 
monocular inertial, and stereo inertial methods in the EuRoC and TUM-VI datasets using RMSE (Root Mean Square Error) and ATE 
(Absolute Trajectory Error) metrics where the system proved to outperform all the methods in most sequences. Still, it was reported 
that ORB-SLAM3 fails in texture-less environments, slow motion, or pure rotational applications. Fig. 14 illustrates the ORB-SLAM3 
algorithm inspired by the article [81].

6.1.2. Classic + dense + indirect methods
This formulation mainly estimates the 3D geometry from or in conjunction with the regularized optical flow field; combining the 

geometric error (deviation from the flow field) with the obtained geometric prior (explained by the smoothness of the flow field) [24] 

Fig. 14. Diagram of ORB-SLAM3 algorithm. Adapted from Ref. [81].
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is common. As mentioned above, this category of monocular methods requires a large amount of input information using most pixel 
values to perform its constituting processes. For instance, dense monocular methods do not require extracting a subset of features 
because they work directly over the entire input. So, these methods do not require discrete features but involve major computational 
costs due to the larger amount of data that will be processed. This category of methods is considered indirect because most depend on 
optical flow information obtained in a preprocessing step.

Valgaerts et al. (2011). In 2012, Valgaerts et al. [85] performed a comparative study of dense and sparse methods, where the 
authors proposed a variational dense 3D reconstruction model to recover the fundamental matrix and optical flow by minimizing a 
single energy function. The authors also explored the difference between sparse feature-based methods for estimating epipolar ge-
ometry and dense energy-based methods commonly used for estimating correspondences within the image sequence. The investigation 
aimed to demonstrate that dense optical flow methods can also be used to estimate epipolar geometry, suggesting exploring a joint 
variational approach to jointly estimating epipolar geometry and optical flow. They compared feature-based techniques systems using 
Scale Invariant Feature Transform (SIFT) and Kanade-Lucas-Tomasi tracker (KLT) feature matching algorithms. Moreover, the use of 
Random Sampling Consensus (RANSAC) and Least Median of Squares (LMedS) techniques for estimating the fundamental matrix were 
evaluated. RANSAC extensions LORANSAC (local optimization RANSAC) of [86] and DEGENSAC (degenerate configurations RAN-
SAC) [87] were analyzed as well. Several tests determined that dense estimation applied to epipolar geometry presents advantages 
over sparse methods when features are not well localized or when a small number of out-of-plane correspondences must be included to 
overcome degeneracy problems.

They also tested their variational model on many applications. One was automatic 3D reconstruction by extracting the camera 
projection matrices for the estimated basic matrix, triangulating the back-projected ray for each pixel, or applying a projective 
transformation when no additional camera or scene information is available. This method achieved 3D reconstruction simultaneously, 
solving dense epipolar geometry and two-image optical flow by associating a 3D point in space with each image pixel. Therefore, 
authors achieved higher accuracy and stability than separate epipolar and optical flow estimations. However, as this method relies on 
image sequence enabling stable estimation, the system was limited to rigid applications without moving objects. Fig. 15 illustrates 
Valgaerts et al. algorithm inspired by the article [85].

Ranftl et al. (2016). One of the most successful methods in this category is the work of Ranftl et al. [88], called "Dense Monocular 
Depth Estimation in Complex Dynamic Scenes", which is a system able to obtain a dense depth map for both static and dynamic objects 
using only two consecutive frames. It uses a segmentation algorithm that segments optical flow, obtaining a set of motion models, each 
with its epipolar geometry, and then the scene can be reconstructed, optimizing a convex problem. In this method, depth estimation 
comprises two stages. First is motion segmentation, where a dynamic scene is divided into a set of moving models with their epipolar 
geometry performed in an optical flow field formulated as a variational labelling problem. Second is reconstruction, where the scene is 
assembled by jointly reasoning the scale and location of different components relative to the camera by object triangulation and 
reconstruction of all its constitutive objects.

In the Motion segmentation stage, the dynamic scene is decomposed into an independent rigid motion set described by their 
fundamental matrix and a per-pixel assignment. This process, formulated as a joint estimation labelling problem, requires a dense 

optical flow field F =
(

fx, fy
)

between the I1 and I2 images generating a soft ul assignment of each pixel to either one l label for distinct 

Ml motion models or an additional l + 1 outlier label, so the formulation is: 

(
u∗

l ,M
∗
l
)
= arg minul ,Fl

∑L+1

l=1
ul ⋅ g(Fl)+ ‖Wl∇ul‖2,1, subject to

∑L+1

l=1
ui

l =1, ui
l ≥0,∀l. rank(Fl)=2, (3) 

Fig. 15. Diagram of Valgaerts et al., algorithm. Adapted from Ref. [85].
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where gi(Ml) corresponds to the symmetric distance to the epipolar lines for every l ∈ {1 . . . L} model, xi
1 =

[
xiyi,1

]T and xi
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xi −
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]

are the homogeneous coordinates in the first image and their corresponding homogeneous coordinates of the second 

image, respectively. ‖Wl∇ul‖2,1 is the smoothness term, ∇ the linear operator represents the discrete difference between x and y, and 
Wl is the diagonal weighting matrix applied to enable edge-preserving regularization. Then, the energy described in the equation is 
optimized using a variant of the primal-dual algorithm employing entropy proximal terms for implicitly representing simplex con-
straints to solve for labelling efficiently. So, fundamental matrices Ml are decomposed in parallel for all the L models, and soft as-
signments ui are used to reweight the individual correspondence: 

M∗
l = arg minFl

∑M

i=1
ui

l

((
xi

1
)TMl

(
xi

2
))2

, subject to rank(Ml)=2=2, (5) 

Then the subproblems are approximately solved using a reweighted version of an 8-point algorithm proposed in Ref. [89]. To 
obtain the number of dynamic models, the process performs the following steps: Apply the 8-point algorithm to mine a small set of 
candidates; Solve the energy equation by expanding the pool of motion candidates; add new models by robustly estimating motion 
from pixels with outlier label; expand the pool by splitting labels with disconnected regions; perform alternating minimization again 
and repeat the process until no further energy minimization can be made. Following this procedure, a set of epipolar geometries F∗

l and 
membership probabilities u∗

l is obtained for each pixel. Finally, a robust reconstruction is performed using these epipolar models and 
optical flow information using a super-pixel-based formulation.

This system was tested over KITTI [7] and MPI Sintel [90] datasets, outperforming most of the dynamic scene geometry from 
monocular video techniques of the time, using different techniques for optical flow computation like Large Displacement Optical Flow 
(LDOF), EpicFlow, and FlowFields. Thus, it was found that since the proposed method relies on optic flow information, the whole 
system will fail if the optic flow estimation fails. In addition, this process has the limitations of a purely geometric approach that does 
not use prior information about shape and scene size. Hence, the authors suggest that the proposed method can be complemented by 
ML techniques to estimate the absolute scale. Fig. 16 illustrates the Ranftl et al. algorithm, inspired by the article [88].

6.2. Classic + direct methods

Direct methods are developed to recover scene geometry and agent ego-motion using direct pixel intensity information, so unlike 
indirect methods, these formulations do not require pre-processing steps such as feature extraction (which drastically reduces the 
amount of information available to the SLAM system, saving computational resources and time, but limiting the final 3D recon-
struction density). In contrast, a direct approach works with each pixel intensity value on the image or at least most of them, so the final 
3D reconstruction quality is commonly higher than indirect approaches. However, direct formulations rely on the brightness constancy 
assumption, which establishes that brightness over an object’s position must be the same over different angles. Unfortunately, this is 
not always true, so these formulations are known to fail in scenes that display motion blur, moving objects, or non-Lambertian surfaces.

This category of methods can also be divided according to the final density of the 3D map so that there are dense and sparse 
formulations, which will be discussed in sections 6.2.1 and 6.2.2. Fig. 17 shows a timeline of the most representative contributions in 

Fig. 16. Diagram of Ranftl et al., algorithm. Adapted from Ref. [88].
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this area. As shown in Fig. 17, three of the most representative monocular systems of all time belong to the category DTAM [27], 
LSD-SLAM [37], and DSO [24]. It must be noted that although DSO has recently been introduced, it has attracted the interest of many 
researchers, achieving impressive citation scores.

6.2.1. Classic + dense + direct methods
This category of slam approaches is dense because most input information is used to perform the reconstruction. In addition, they 

are classified as direct techniques because of the lack of preprocessing stages, so the input image is directly employed to obtain 
environment geometry. This formulation commonly applies photometric error and geometric priors to estimate dense or semi-dense 
geometry because they work directly on pixel intensity information.

Stühmer et al. (2010). Stümer, Gumhold, and Cremers [68] suggested one of the first approaches to these techniques [91], called 
"Real-Time Dense Geometry from a Handheld Camera," a real-time variational system to estimate dense depth maps using multiple 
images directly. Given a set of images, this method uses data terms relative to the coordinate system of a specific view and uses its 
perspective projection to map such coordinates in a second camera frame; thus [91], the following energy function was proposed to 
estimate depth maps using multiple images: 

E(h)= λ
∫

Y

∑

i∈T(x)

|ρi(x,D)|d2x+

∫

Y
|∇D|d2x, (6) 

where D is the depth map, x = (x1, x2,1)T homogeneous 2D coordinates, d(x,D) is the depth value for each pixel, Yi is the image plane, 
and Ti is the camera pose. In this case, T(x) contains all image indexes where perspective projection π(exp(T̂i) ⋅d(x,D)) is contained in 
the image boundaries, and ρi(x,D) is the linearized residual data term for an Ii image: 

ρi(x,D)= Ii(x,D0) + (D − D0)ID
i (x) − I0(x), (7) 

where ID
i (x) represents the derivative d

dDIi(x,D)|D0
. As can be seen, the formulation takes direct pixel information into the energy 

function, and the D depth map is obtained after a minimization procedure, so this is a direct method. In addition, it is noticeable that 
this energy function is quite complex because the data term consists of the sum of absolute values for linear functions, and simple 
thresholding techniques cannot minimize it. Hence, the authors provide a proposal for generalized thresholding.

The advantage of this dense multi-view proposal over two-image techniques is that different views should help estimate disparity 
information in areas occluded by other views because this system can add information from images where the object is not occluded. 
Another benefit is an increase in the signal-to-noise ratio, which improves results when the input images are affected by noise, which is 
common in video captured by most webcams or handheld devices. To summarize, in this method, instead of using real-time pose 
estimation measurements, the depth map is estimated using the current input image and the N closest keyframes to the current pose, so 
by using keyframe camera pose estimates, the amount of noise is minimized. Finally, this proposal was embedded with the camera 
tracking module of a PTAM implementation [41], which can store keyframes, and each camera pose associated with each keyframe is 

Fig. 17. Timeline for the most representative monocular SLAM, VO, or SFM classic direct systems.

Fig. 18. Diagram Stühmer et al. algorithm. Adapted from Ref. [91].
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refined iteratively. Similarly, the depth map related to its corresponding keyframe is refined using the N closest keyframes. Fig. 18 
illustrates the Stühmer et al. algorithm inspired by the article [91].

DTAM (2011). Another direct dense approach was proposed by Newcombe et al. [27], a dense per-pixel method that aims to create 
a dense 3D model by performing a dense and sub-pixel reconstruction for accurate camera tracking. This dense model was used to 
perform a full image alignment with respect to the current model so that camera motion could be estimated. Immediately, the model is 
extended and updated using the tracked images by creating and refining dense depth maps. In this method, the dense model corre-
sponds to overlapping keyframes, where depth values d are back projected from every pixel, resulting in a direct method. Here an r 
keyframe comprises an Ir image, a camera pose Trω, and a Cr cost. Every qr pixel has an associated cost error Cr(q, d) for each d depth 
value. Then a large amount of m ∈ T(r) video frames are used to compute the cost volume, being T(r) a set of nearby frames. Then, the 
photometric error is computed by projecting each point of the volume into all the overlapping images summing L1 norms of each 
photometric error: 

Cr(q, d)=
1

T(r)
∑

m∈T(r)
‖ρr(Im,q, d)‖1, (8) 

ρr(Im,q, d)= Ir(q) − Im
(
Λ
( (

ζTmrΛ− 1(q, d)
))
, (9) 

where ρr is the photometric error for every overlapped image, ζ is the intrinsic matrix, Λ(xc) = (x/z, y/z)T is de-homogenization for a 
3D point xc = (x, y, z)T . The inverse depth map is obtained by minimizing the energy functional Ed∗ , which comprises non-convex 
photometric error cost as a data term and a convex regularizer term: 

ED∗ =

∫

Ω

{
g(q)‖∇d∗(q)‖ϵ + λC(q, d∗(q))

}
dq, (10) 

where g(q) = e− α‖∇Ir(q)‖β
2 is per pixel weight, D∗ is the inverse depth map, ∇d∗(q) is the inverse depth map gradient, and Ω is the image 

domain, ϵ is set to a small value to reduce the stair-casing effect, λ = 1/(1+0.5d) reflects data term quality and α and β are auxiliary 
variables. Thus, DTAM runs over an energy minimization framework using a photometric error data term and a robust spatial reg-
ularization term, so it starts defining a projective photometric cost volume (disparity space image in stereo matching) regularized using 
a weighted Huber norm on the inverse depth map gradient. Then, it is discretized and solved using duality principles to get the primal- 
dual form, where the weighted Huber regulator is replaced by its conjugate by applying the Legendre-Frenchel transform, so the 
inverse depth map can be extracted by iteratively minimizing the cost volume for every pixel from a reference frame. DTAM uses the 
PTAM point-feature-based method for initialization until the first keyframe is captured. It then switches to its own fully dense tracking 
and mapping pipeline. Next, a new keyframe is added when the number of pixels without visible surface information from the previous 
predicted image is below a threshold. In brief, this method estimates camera pose in real-time by finding motion parameters generating 
a synthetic view that best matches a live video frame. Fig. 19 illustrates the DTAM algorithm inspired by the article [27].

REMODE (2014). In 2014 Pizzoli, Förster, and Scaramuzza [4] proposed another dense direct method called REMODE, an 
abbreviation of "Regularized Monocular Depth Estimation", which is able to perform a dense depth map computation using Bayesian 
estimation and a novel complex optimization, developing a platform that acts like a depth sensor able to handle a large depth range. In 
REMODE, each pixel depth was estimated independently using a probabilistic approach and a new smoothing proposal. This per-pixel 
Bayesian depth estimation was built over the method proposed in Ref. [92], extending it by adding an optimization step consisting of 
regularization using a weighted Huber norm. However, unlike DTAM, depth uncertainty was used to exploit a convex formulation, 
avoiding the effect of noisy camera localizations. Thus, in REMODE, depth is computed as a Bayesian estimation problem by trian-
gulating from a reference view and the last view acquired. Then, the pixel’s depth is handled as a parametric model updated for every 
observation, and smoothness is achieved by minimizing a regularized energy function. Furthermore, REMODE includes a probabilistic 
approach where a depth hypothesis dk is generated using the 

{
Ik,Tk,ω

}
observation by triangulating r and k views, where Tk,ω is a rigid 

body transformation that describes the camera pose for every image. The depth sensor was modelled as a distribution that combines a 
good measurement, normally distributed around the real depth ̂d, and an outlier measure containing the depth of the desired structure. 

Fig. 19. Diagram of DTAM algorithm. Adapted from Ref. [27].
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p(dk|d̂, ρ)= ρN
(
dk|d̂, σ2

k
)
+ (1 − ρ)U (dk|dmin, dmax), (11) 

where ρ and σ2
k are the probability and variance of good measurement, p (d̂, p) is the prior (knowledge of uncertainty) on true depth 

and the ratio of measurements supporting it. Then, the corresponding posterior is approximated as a product of Gaussian distribution 
for depth and Beta distribution for the inlier ratio. 

q
(
d̂, ρ|ak, bk, μk, τ2

k
)
=Beta(ρ|ak, bk)N

(
d̂|μk, τ2

k
)
, (12) 

ak, bk are parameters controlling Beta distribution. Then, for every q pixel μk and τ2
k are the mean depth estimation, its confidence for 

each observation and the denoised depth map F(q) is obtained by the following energy minimization: 

min
F

∫

Ω

{
G(q)‖∇F(q)‖ϵ + λ‖F(q) − D(q)‖1

}
dq, (13) 

D(q) is the depth map, and G(q) is the “G-Weighted Total Variation” weighting function [93]. These equations are basic methods 
and examples of how a probabilistic approach can be incorporated to obtain a denoised depth map directly from pixel information. 
REMODE uses a tracking thread inspired by the odometry system of SVO [23], using an image alignment formulation to estimate the 
pose but working only with pixel intensity information. After that, the mapping thread triangulates the depth using each frame and the 
reference view, so the depth of each pixel is formulated as a parametric model computed as a Bayesian estimation problem that in-
cludes a regularizer based on the gradient Huber norm of the gradient, so the solution is obtained iteratively by minimization, 
exploiting a primal-dual formulation and a gradient descent-ascent technique. Fig. 20 illustrates the REMODE algorithm inspired by 
the article [4].

LSD-SLAM (2014). In the study by Engel et al. [37], a real-time monocular SLAM and 3D reconstruction system was developed that 
not only tracks the camera motion locally but also constructs consistent, large-scale, environment-dense maps by using a semi-dense 
representation that tracks depth values only on gradient surfaces. The method uses direct image alignment and filter-based estimation 
of semi-dense depth maps based on the proposal [65]. The global depth map is represented as a pose graph consisting of keyframes as 
vertices and 3D similarity transforms as edges, with the ability to detect environmental scale changes and correct for accumulated drift. 
LSD-SLAM uses an appearance-only loop detection algorithm, FAB-MAP [94], to propose candidates for large loop closures and extract 
their features without reusing any information acquired in the visual odometry front end. Contributions of the LSD-SLAM method 
consist of a direct method to perform alignment of two keyframes on ξ ϵ sim(3), and a probabilistically consistent incorporation of 
noisy uncertainty of the estimated depth into tracking. The novel image alignment is performed by Gauss-Newton minimization of the 
photometric error: 

E(T)=
∑

i

(
Iref (qi) − I

(
ω
(
qi,D∗

ref (qi),T
)))2

, (14) 

where I are images, D∗ is the per-pixel inverse depth map, qi is the image point, ω is a 3D projective warped function, and T is the 
camera pose. The complete method requires tracking, depth map estimation, and map initialization. The tracking module continuously 
tracks new images estimating the rigid body pose on the current keyframe, so the relative pose is calculated by minimizing the 
variance-normalized photometric error: 

Fig. 20. Diagram of REMODE algorithm. Adapted from Ref. [4].
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where r2
q and σ2

rq 
are the photometric residual and variance, respectively. Also, for adding a keyframe to the map, the closest keyframes 

are found, and the edges are estimated by SE(3), so minimization is performed by the equation: 
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Summarizing LSD-SLAM can obtain dense depth maps by estimating the rigid body pose from camera frames with respect to the 
current keyframe, using the previous frame for initialization (tracking). Next, the tracked frames are used to refine or replace the 
current keyframe so that depth is refined by multiple per-pixel small baseline comparisons (depth map estimation). Finally, when a 
new keyframe is replaced as a tracking reference and no further refinement is executed, it is added to the global map (map optimi-
zation). Fig. 21 shows the LSD-SLAM algorithm inspired by the article [37].

6.2.2. Classic + sparse + direct methods
This category of formulations typically uses photometric error optimized directly from the input frames without requiring the 

introduction of geometric priors and preprocessing steps. A crucial benefit from the direct formulation is that it commonly uses pixel- 
wise inverse depth, which does not require a point to be recognized by itself, allowing a more grained and detailed geometry rep-
resentation. Furthermore, this process allows for the sampling from every pixel, including edges and weak intensity variations, adding 
robustness to textured environments, whereas sparse methods do not require geometric priors, avoiding their limitations. Such priors 
involve the introduction of correlations between geometry parameters in which real-time statistically consistent joint optimization is 
typically impossible. These priors can also introduce bias, resulting in the tendency to reduce large-scale accuracy. Direct methods do 
not rely on a set of points’ repeatability, so they can operate on low-texture surfaces with contours. Many methods from this category 
apply photometric bundle adjustment to minimize the photometric error of mapped point observations on a local sliding window of 
active keyframes, where points are sampled across pixels with high gradients, such as edges and intensity variations. In this context, 
VO systems typically use sliding windows that select close-in-time active keyframes, marginalizing map points far from the field of 
view. This situation could represent a disadvantage since VO systems cannot benefit from map point reobservations. On the other hand, 
VSLAM sparse direct systems typically build persistent maps of the scene representing a network of keyframes connected through 
observing the same region at different times.

DSO (2017). The work of [24] introduced a sparse formulation of direct visual odometry called Direct Sparse Odometry (DSO). 
This approach was designed to combine the advantages of direct methods (such as the ability to reconstruct most points, not just 
corners) with those of the sparse approach (such as the flexibility and efficiency of joint optimization). This monocular visual odometry 
algorithm can track even scenes with little texture, where indirect approaches often fail. DSO performs a continuous optimization of 
the photometric error applied to a set of recent frames, taking into account a photometrically calibrated model in the image formation 
process inspired by the proposal of [95]. At the same time, it optimizes the full likelihood for all the parameters involved in the model, 
such as camera poses, intrinsics, extrinsics, and inverse depth values in a photometric process equivalent to a windowed sparse bundle 
adjustment. Such processes require enough accurate initializations in the front end to carry out a non-convex optimization in the back 
end.

The minimization process has to be carried out for the photometric error of a point p in a reference frame Ii over a small pixel 
neighbourhood, where experimentally, it was revealed that 8 pixels arranged in a residual spread pattern provide sufficient infor-

Fig. 21. Diagram of LSD-SLAM algorithm. Adapted from Ref. [37].
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mation for computation. The formulation for photometric error to be minimized is as follows: 

Eqj : =
∑

i∈N q

ωq

⃦
⃦
⃦
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(
Ij[qʹ] − bj

)
−

tjeaj

tieai (Ii[q] − bi)

⃦
⃦
⃦
⃦

γ
, (17) 

where N q is the set of pixels, ti, and tj are exposure times for the Ii and Ij images, ai, bi, aj, and bj are the brightness transfer function 
parameters for Ti, Tj poses of the involved frames. The gradient-dependent weighting ωq and the projected point position qʹ, are given 
by: 

qʹ=Πc
(
RΠ− 1
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(
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)
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:= TjT− 1
i ,ωq : =

ζ2

ζ2 + ‖∇Ii(q)‖2
2

, (18) 

where ζ represents the camera intrinsics matrix, Πζ , Π− 1
ζ are projection and the back-projection functions, and dq is the inverse depth 

for a projected point position. Finally, i runs for all F frames, q runs for all P i points of the image, and j runs over all obs(q) frames, 
where the point is visible, so the full photometric error for DSO was: 

Ephoto =
∑

i∈F

∑

q∈P i

∑

j∈obs(q)

Eqj. (19) 

DSO algorithm performance comprises two modules in control of frame and point management. Frame management is intended to 
work over a set of active frames where each new frame is tracked from the current keyframe, two-frame direct alignment, a multiscale 
image pyramid, and a constant motion model track all its points. Then, a new keyframe is created when the field of view changes, on 
occlusions and disocclusions, and when camera exposure time changes. Consequently, old keyframes are marginalized when they are 
not visible enough, and the farthest keyframe is marginalized when the maximum number of active keyframes is exceeded. Finally, the 
point management module oversees the selection of candidate points within an optimization window, point tracking and candidate 
point activation as required for windowed optimization. The algorithm was evaluated adequately over three datasets, proving that 
using a large amount of data does not necessarily increase accuracy; however, using a sparse set of points improves accuracy and 
robustness. Fig. 22 introduces the DSO algorithm inspired by the article [24].

LDSO (2018). An extension of the DSO system was developed in the work of Gao et al. [64]. Since DSO allows using any pixel with a 
significant intensity gradient, it ensures repeatability points favouring corner features to detect loop closure candidates using the 
bag-of-words approach. Depth estimates of matched feature points were used to compute Sim (3) constraints; thus, in combination 
with pose-only bundle adjustment and point cloud alignment, they are fused with a co-visibility graph of relative poses extracted from 
the DSO sliding window optimization stage.

Point selection is still needed in direct methods, yet a noticeable difference between direct and indirect methods is that point 
repeatability is not required in direct methods. In LDSO, corners and high gradient pixels are used where corners are used for 
generating BoW models, and the other pixels are used for tracking. LDSO proposes loop candidates for a keyframe by querying the 
database (using only those outside the window). Then, the method tries to match each corresponding feature, and the initial guess of SE 
(3) is computed by performing a RANSAC PnP. Next, a Sim (3) transformation is optimized using the Gauss-Newton method, mini-
mizing the following cost function: 
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Fig. 22. Diagram of DSO algorithm. Adapted from Ref. [24].
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where Scr is the loop candidate for the current keyframe, Π and Π− 1 are projection and back projection functions, respectively. ω1 and 
ω2 are weights to balance measurement units, Q 2 and Q 1 are ORB features with and without depth information, respectively. qi are the 
reconstructed features, d∗

qi 
are their inverse depths, and mi are the matched features for the current frame. By integrating loop closure 

and global map optimization, LDSO reduced rotation, translation, and scale drift while keeping tracking accuracy and robustness like 
DSO. One of the key contributions from LSDO was using ORB descriptors as corner trackers introduced to be packed into Bag of Words 
(BoW), especially contributing to performing feature matching between keyframes. In this way, the LDSO implementation is pretty like 
the original DSO; however, it adds a loop closing module based on a global pose graph optimization that works over 5 to 7 DSO 
keyframes sliding window, enabling the system to use even marginalized keyframes to close loops. This process is achieved by 
maintaining connectivity between keyframes and constantly matching ORB features between all keyframes and the current keyframe 
so loop candidates can be submitted by querying the keyframe database; then, LDSO performs global pose graph optimization fusing 
the sliding window estimates with the global pose graph. Fig. 23 presents the LDSO algorithm inspired by the article [64].

DSM (2020). Another notable recent work in this category is the Direct Sparse Mapping (DSM) proposed by Zubizarreta et al. [30], 
a system built over the DSO basis. However, as a VSLAM approach, the authors tried to use information from scene reobservations to 
improve accuracy, reduce motion drift and reduce structural inconsistencies. This method can be considered the first monocular visual 
SLAM system able to detect point reobservations from each entire image and extract the rich information that they provide. In contrast 
to LDSO [64], which uses only a sparse set of feature reobservations, DSM can build a persistent map, allowing the reuse of existing 
map information through a photometric formulation without incorporating a pose graph or relocalization. It uses a local map 
co-visibility window (LMCW) criteria to detect active keyframes that observe the same region, a coarse-to-fine strategy to process point 
reobservations with the photometric model, a robust influence function based on the t-distribution and a pixel-wise outlier man-
agement strategy to increase PBA consistency against outliers that could be generated as activation of distant keyframes occurs. Like 
many other monocular VSLAM methods, the system presents a tracking frontend and an optimization backend, where the tracking 
thread manages to obtain the camera pose, selecting frames that may turn into keyframes. Also, the optimization mapping thread 
processes every new frame to track points from active keyframes, which are the input for PBA optimizing motion and structure. In 
addition, this thread maintains global consistency by removing outliers, detecting occlusions, and avoiding point duplications. Robust 
nonlinear PBA was implemented using an outlier management strategy based on the photometric error distribution, where t-distri-
bution proved to explain better dense photometric errors than other distributions through a weight function [96,97]. Experiments 
demonstrated that DSM outperformed similar sparse direct and indirect systems using a t-distribution robust influence function along 
with 4 or 3 co-visible keyframes for LMCW in most of the sequences of the EuRoC dataset. Fig. 24 illustrates the DSM algorithm inspired 
by the article [30].

6.3. Classic + hybrid methods

Only a few works can be properly catalogued as hybrid methods, considering direct vs. indirect classification. It is well known that 
the gold standard of this category is the Semi-Direct Monocular Visual Odometry (SVO) of [23], including its variants and imple-
mentations [98,99] which, despite being a few, have highly attracted the interest from researchers due to their ability to combine the 
advantages of direct and indirect formulations. For example, SVO only extracts features as a pre-processing stage when a keyframe is 
initialized; the system then performs direct motion estimation instead of feature matching. It thus benefits from both paradigms, 
achieving the high accuracy of direct methods and the speed of sparse indirect formulations.

SVO (2014). The work "Fast Semi-Direct Monocular Visual Odometry" by Förster et al. [23] is an approach in which the authors 
aimed to develop a system that does not require feature extraction or robust matching to estimate ego-motion addressed by working 
directly on pixel intensities. SVO is known as a semi-direct method because it combines the advantages of both direct and indirect 
techniques as it is divided into two threads: motion and mapping using feature correspondences obtained by direct motion estimation 

Fig. 23. Diagram of LDSO algorithm. Adapted from [64].
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instead of feature extraction or matching. This process reduces the feature extraction procedures, which are only required when a 
keyframe is chosen to insert new points on the map. The system also uses many small patches instead of a small set of large planar 
patches, which performed better, as reported in Refs. [100,101], increasing robustness and allowing the neglect of patch normals. The 
motion thread estimates camera motion using a sparse model-based image alignment algorithm, where sparse point-feature infor-
mation is sufficient to estimate motion and feature correspondences, minimizing the photometric error between correspondences of 
the same 3D points. Next, the reprojected points are refined, and the pose and structure are refined by minimizing the reprojection 
error. The mapping thread uses a Bayesian filter to model outlier measurements to estimate the depth for each feature position, so 3D 
points are inserted when its depth filter uncertainty becomes small enough, resulting in a map of outliers and points to be efficiently 
tracked. One of the key strengths of SVO to be pointed out is its high framerate, able to run at 55 fps on embedded computers and at 300 
fps on consumer laptops of the time, providing an outlier-resistant probabilistic mapping method and robustness to redundant and 
low-texture scenarios. Fig. 25 shows the SVO algorithm inspired by the article [23].

6.4. General comments for classic approaches

As mentioned above, monocular 3D reconstruction is an ill-posed problem that can be formulated, solved and optimized from 
different perspectives. This section has reviewed the most representative monocular SLAM, VO, and SFM approaches, which can be 
catalogued as classic because they do not use machine-learning techniques. These works have been treated according to the proposed 
taxonomy, as various similarities could be identified in the systems of each category.

For the direct and indirect classification, it is noticeable that several preprocessing and direct techniques were addressed, like the 
use of feature extraction techniques in sparse indirect formulations, optical flow in dense indirect formulations, direct motion for-
mulations for direct proposals, and a combination of both techniques in hybrid processes. This allowed us to establish nine criteria that 

Fig. 24. Diagram of DSM algorithm. Adapted from Ref. [30].

Fig. 25. Diagram of SVO algorithm. Adapted from Ref. [23].
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can be used to better select each system due to their influence on system performance, dimensionality, applicability and imple-
mentation. Table 2 summarizes the criteria for each classic monocular system.

Additionally, we have run implementations available as open-source code. Fig. 26 introduces results obtained by implementing 
classic monocular SLAM, VO, and SFM systems in publicly available datasets where: Fig. 26.a. represents the input image, Fig. 26.b. 
presents results obtained using the ORB-SLAM (indirect + sparse) algorithm, Fig. 26.c. presents results obtained using the DF-ORB- 
SLAM (indirect + dense) algorithm, Fig. 26.d. presents results obtained using the LSD-SLAM (direct + dense) algorithm, Fig. 36.e 
presents results obtained using the DSO (direct + sparse) algorithm, and Fig. 26.f. presents results obtained using the SVO (hybrid) 
algorithm. While many machine learning techniques identified in this research are accessible as open-source code [6,10,66,102–111], 
it was observed during implementation that, despite their adaptability to various input modalities like RBD-D or INS, they were not 
publicly available in their pure monocular RGB form. Additionally, some methods required external modules not included in the 
provided code, e.g., Refs. [104,107,109,112]. Thus, these methods could not be included as examples of monocular 3D reconstruction 
in Fig. 26.

7. Machine learning methods

In recent years, given the impressive developments in artificial intelligence, especially in deep learning, researchers have explored 
the possibility of extending the classic SLAM, SFM or VO techniques by implementing deep neural networks to perform different tasks 
to reduce depth estimation errors, improve 3D reconstruction quality, improve camera pose estimation, improve loop closure, estimate 
scale, and the like.

Another notable disadvantage of monocular techniques is scale ambiguity. Depending on the environment and camera calibration, 
objects or surfaces may be interpreted as having a different size than they actually do because monocular systems are not provided with 
an initial measurement of the scene’s depth. Therefore, deep learning monocular methods commonly contribute to VO, SLAM, and 
SFM systems performing tasks like boosting VO from learning-based depth predictions, integrating depth representations into com-
ponents (feature points, depth maps, and optimizers), performing additional tasks (like semantic segmentation) depth, optical flow and 
camera motion estimation and the like. Therefore, previous studies have researched replacing hand-crafted features with learned 
features [130–133], implementing neural 3D representations [10,134–138], combining learned depth predictions with classical SLAM 
backends [2,66,139,140], and developing SLAM or VO systems trained end to end [138,141–144].

Learning-based methods are generally less explicable, and they typically struggle when applied in unseen environments or with 
different camera calibrations. However, they still represent a promising solution for monocular visual SLAM, especially for pure 
rotation applications, slow motion, or motion without roll and pitch rotation, where SLAM or VO systems might face initialization or 
generalisation problems.

7.1. ML + indirect methods

Deep learning has helped 3D reconstruction systems perform many tasks that significantly improve the system’s overall perfor-
mance. Tasks range from simple parameter estimation for the initialization of SLAM, VO or SFM systems [145] to replacing an entire 
module on a SLAM pipeline (like depth or pose estimation) [139,144] or even providing new capabilities to the system (like semantic 
segmentation) [2,146]. As indirect methods, the studies in this category include preprocessing steps in their frameworks, in the form of 

Fig. 26. Examples of the results obtained by classic approach implementations. (a) represents the input image, (b) presents results obtained using 
the ORB-SLAM (indirect + sparse) algorithm [38], (c) presents results obtained using the DF-ORB-SLAM (indirect + dense) algorithm [82], (d) 
presents results obtained using the LSD-SLAM (direct + dense) algorithm [3], (e) presents results obtained using the DSO (direct + sparse) algorithm 
[24], and (f) presents results obtained using the SVO (hybrid) algorithm [23]. Top row results correspond to the indoor example sequence seq_01, 
and bottom row results correspond to the outdoor sequence seq_29 of the TUM-MONO dataset [127]. The examples were obtained through multiple 
executions of each algorithm in our previous comparative work [128]. For further information on the implementation and performance of each 
algorithm and category, we encourage the reader to address the paper [128] and the repository: https://github.com/erickherreraresearch/ 
MonocularPureVisualSLAMComparison [129].
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feature extraction and optical flow extraction, performed as steps before the pose estimation or depth prediction processes. Hence, the 
quality of the final 3D map directly depends on the amount and quality of information extracted in this preprocessing step.

Like classic methods, ML + indirect methods can recover dense and sparse 3D environment maps, so both categories are discussed 
in sections 7.1.1 and 7.1.2. Fig. 27 illustrates a timeline for the most representative SFM, VO, or SFM methods using machine learning 
indirectly working with image information. One of the most impressive ML methods belongs to this category, DeMoN [108], which has 
an outstanding ML citation score due to its impressive results.

7.1.1. ML + sparse + indirect methods
Like classic methods, ML + Indirect methods can be internally classified as dense and sparse, depending on the density of the 3D 

reconstruction obtained. Sparse methods have the advantage of working with a small amount of information. Still, at the same time, 
this represents a constraint for the final reconstruction because some valuable information can also be excluded in pixel selection or 
feature extraction steps, which has also motivated the development of CNN architectures specialized in densifying the obtained 3D 
map [6,60], achieving promising results while preserving the performance advantages of working in a sparse paradigm.

DynaSLAM (2018). In 2018, Bescos et al. [102] developed an algorithm for detecting, segmenting, and painting dynamic infor-
mation available in the scene frame sequence information. This algorithm was built on top of a simpler and lighter version of the 
ORB-SLAM2 [38] algorithm, adding a CNN to segment a priori dynamic content on a pixel-by-pixel basis and a multi-view geometry 
approach to detect additional dynamic information that the CNN cannot detect. Dynamic information such as people and bicycles may 
be present in the scene image sequences used for 3D reconstruction. SLAM, SFM, and VO approaches can only discard a small fraction 
of this information as outliers because they are built over a static model assumption. In this way, given the impressive results that CNN 
has demonstrated for semantic segmentation tasks, authors proposed to integrate the Mask R-CNN of [147] to detect and segment 
regions of the image that potentially belong to the movable classes that the network was trained for e.q., person, bicycle, car, 
motorcycle, bus, train, boat, bird, cat, among others. The Mask R-CNN implementation extends the ResNet C4 and FPN backbones, 
adding a mask branch to predict a segmentation mask for each instance. The network was trained to detect the classes available on MS 
COCO [148], and if additional classes are required, it can be tuned with new training data. After potentially moving objects are 
segmented, the tracking thread, built over the ORB-SLAM2 algorithm, performs feature projection, correspondence search, repro-
jection error minimization, and camera pose optimization. In addition, some dynamic information, like a book carried by a person, 
might not be recognized by the CNN because they are not included in the CNN classes, so authors included a multi-view geometry 
stage, calculating the back-projections of each key point to compute the parallax angle which is used to differentiate movable from 
static objects. In this way, given the fact that geometric approaches present initialization problems due to their multi-view nature and 
learning approaches cannot recognize every possible moving object, DynaSLAM benefits from both approaches, overcoming initial-
ization by including ML and combining the use of the CNN and multi-view geometry to track and segment moving objects. Experi-
mental results proved that combining the geometric and CNN achieved better results than just one. To summarize, DynaSLAM 
segments the input images to remove the information of potentially dynamic objects from the scene images. It then performs low-cost 
tracking based on ORB-SLAM2. Next, a combination of CNN and multi-view geometry is applied to completely remove the information 
of moving objects, so that a background inpainting technique based on information from previous frames can be applied to complete 
the information removed from each frame; finally, accurate tracking and mapping can be applied over the static image segments of 
each frame. Fig. 28 describes the DynaSLAM algorithm inspired by Ref. [102].

BA-Net (2019). A prime relevant work in this category is BA-Net of Tang & Tan [59], which combines domain knowledge with 
deep learning. It enforces multi-view geometry constraints regarding feature-metric error by optimizing scene depths and camera 
motion by employing feature-metric bundle adjustment. Furthermore, the authors proposed a method to make the 
Levenberg-Marquard (LM) algorithm differentiable, enabling the network to learn suitable features by implementing a learned 
feed-forward multilayer perceptron (MLP) to predict the damping factor λ for the LM algorithm. This work also introduced a novel 
depth parameterization method to recover dense per-pixel depth, and depth maps are obtained by a convolutional neural network that 
generates a set of basis depth maps for each input image using an end-to-end learned generator. Then, the final depth is optimized as a 
linear combination of such basis performing a feature-metric BA.

This study formulated Bundle Adjustment as a differentiable BA layer, minimizing the distance between aligned network feature 
maps. In this regard, the feature-metric BA uses the network features of multiple images as inputs to optimize scene geometry and 
camera motion. Typically, BA with reprojection error is considered one of the best structure-from-motion approaches; however, with 
limitations: only information related to their feature types is utilized (typically corners, blobs, line segments); features must match 
each other, generating a large number of outliers, so the method depends on outlier rejection techniques. To overcome such issues, BA- 

Fig. 27. Most representative monocular SLAM, VO or SFM, ML indirect systems–a Timeline.
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Net proposed a feature-metric BA algorithm estimating scene depth and camera motion parameters, minimizing the feature-metric 
difference of aligned pixels: 

ef
i,j(X )= Fi

(
Π
(

Ti, dj ⋅ qj

))
− F1

(
qj

)
, (21) 

where F = {Fi|i= 1…Ni} are feature pyramids for the I = {Ii|i= 1…Ni} images, T = {Ti|i= 1…Ni} are camera poses, X =
[
T1,T2…TNi , d1, d2…dNj

]T is the optimization parameter, Π is the function that projects scene points to image space, dj ∈ D =
{
dj|j= 1…Nj

}
is the depth of qj pixel at the image, and dj ⋅ qj upgrades the qj pixel to its 3D coordinate. BA-Layer predicts T camera 

poses and D dense depth map during the forward process and back-propagates the loss of T and D to the F feature pyramids in the 
training process.

BA-Net network structure was built over the DRN-54 backbone containing a depth map generator, a feature pyramid constructor to 
build multiscale feature maps, and a BA-Layer optimizing depth map and camera poses using a novel differentiable LM algorithm. 
Making the LM algorithm differentiable is mandatory to solve the optimization problem. For this reason, the authors proposed a 
strategy to soften the if-else problems related to the LM algorithm by predicting the damping factor λ (proved sensitive to different data 
sets) using an MLP network. In brief, each new frame in BA-Net is taken as an input DRN-54 network, and convolutions and upsampling 
steps are performed to extract feature maps to construct feature pyramids by feature map concatenation. In addition, depth estimation 
is performed by passing information through the DRN-54 encoder with a modified 128-channel decoder generating multiple basis 
depth maps, linearly combined to create a final depth map that is jointly optimized with the pose by feature-error minimization using a 
differentiable form of LM algorithm. Fig. 29 describes the BA-Net algorithm inspired by the article [59].

Steenbeek et al. (2022). Some implementations based on the ORB-SLAM popular classic approach integrate deep learning to boost 
the system, like [149,150]. However, a recent study in Ref. [6], "CNN-Based Dense Monocular Visual SLAM for Real-Time UAV 
Exploration in Emergency Conditions," developed based on the original ORB-SLAM2 [38] using its monocular input designed to work 
using a drone camera as image source combined with an implemented and trained CNN to densify the 3D reconstruction also obtaining 
the scale of the scene. In this work, authors pursued the goal of implementing this improved system to be applied in UAV exploration 
for emergency conditions because, in such conditions, the lightest and cheapest equipment is required to perform 3D reconstruction 
tasks; so inertial units, ultrasound, LIDAR, RGB-D or stereo cameras are unsuitable. Likewise, as previously described, the ORB-SLAM2 
original algorithm is one of the best geometric sparse indirect approaches due to its excellent pose and trajectory estimation perfor-
mance. In any case, ORB-SLAM2 3D reconstruction is not dense enough for many applications, and like the majority of SLAM systems, 

Fig. 28. Diagram of DynaSLAM algorithm. Adapted from Ref. [102].

Fig. 29. Diagram of BA-NET algorithm. Adapted from Ref. [59].
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it faces scale ambiguity problems. To overcome these issues, the authors integrated the system with the CNN Single Image Depth 
Estimation (SIDE) algorithm [5], a monocular approach that worked efficiently with real-time monocular input. In this regard, the 
system was composed of a UAV RGB camera image sequence acquired with a commercial drone transmitted to a laptop executing the 
ORB-SLAM2 algorithm to estimate the pose and a sparse depth map that, in conjunction with RGB input images constituted the input of 
the neural network assigned to produce a scaled pose and a denser depth map. Then, they are stored and merged using the OctoMap 
solution [151]. The ORB-SLAM system was not remarkably modified, so just a couple of parameters were configured based on 
experimentation, like the selection of six pyramid levels for feature detection, 25 shared features were used to connect two frames, and 
the minimum interval between keyframes was set to 15 due to UAV fast movements. CNN SIDE network had an encoder-decoder 
architecture where the encoder processes input information, producing a feature map passed to the decoder, consisting of a 
ResNet-50 connected to pooling and linear transformation layers. The decoder part was inspired by the design of [152] using an 
up-sampling strategy conformed by up-projection blocks enabling high-level information to be passed through the network, pro-
gressively increasing and densifying map sizes. Then, the estimated depth map is compared with the triangulated SLAM features, 
obtaining a scale factor that keeps the reconstruction scaled to its real size. The CNN was trained on the NYU Depth v2 dataset [153] 
acquired using a Kinect sensor, so, as the drone and Kinect have different cameras, dataset images had to be cropped considering a 
different field of view and resampled using the intrinsic parameters of the new camera. The authors also included a median filter to 
strengthen the scale ratio, allowing the discard of outliers, which, based on experimentations, significantly improved the scale esti-
mated by the CNN. Experimental results showed that even though the map was considerably densified by including the neural 
network, the result was not dense enough to be considered a dense approach, in addition to obtaining poor map quality compared to 
similar proposals. The authors reported that this may be because current SIDE algorithms cannot reconstruct 3D environments like 
stereo approaches. Such an effect can be attributed to using a low-level computer to run the whole pipeline, so the authors reported 
using more computational power for future work. Fig. 30 exhibits the Steenbeek et al. algorithm inspired by the article [6].

Sun et al. (2022). Another recent work in this category is the system of Sun et al. [60], which is a framework that aims to improve 
VO by embedding a depth estimation module. The system was built on top of the popular classic ORB-SLAM [11] to extend its 
generalisation capabilities and densify the obtained 3D reconstruction. The authors were able to embed a neural network in 
ORB-SLAM, following the approach of DiverseDepth [154], embedding it as a depth module working in two modes contributing to 
odometry and mapping. In the first mode, the network is fed only with a monocular image predicting a relative depth map that does not 
provide scale information but contains a large amount of near-far relationship information useful to discard outliers, preserving an 
accurate set of points from which accurate camera poses can be calculated. In the second mode, the network is fed with an RGB image 
and a sparse depth map to predict scale-consistent depth that is then applied to perform a denser mapping. As previously mentioned, 
authors were especially interested in improving generalization capabilities, so ORB-SLAM was used as the SLAM base model due to its 
excellent capabilities for working in indoor and outdoor environments. The deep neural network used in this study was inspired by the 
proposal of [155], an encoder-decoder architecture designed for different working modes being randomly trained to alternate between 
them. Based on the ResNetXt-50 backbone, this network architecture was designed to predict a depth map from an affine invariant 
transformation with respect to the ground truth when fed with a single image predicting an accurate scale consistent depth map when a 

Fig. 30. Diagram of Steenbeek et al., algorithm. Adapted from Ref. [6].
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sparse depth map is conveniently added from the SLAM system. To extend network generalization capabilities, the authors used 
diverse training data coming from five different datasets: Taskonomy [156], DIML [157], ApolloScape [8], DiverseDepth [154], and 
RedWeb [158], which were recorded using high and medium accuracy annotation devices like LiDAR, Laser and Stereo setups having 
indoors and outdoors dense sequences. In the training stage, a FAST corner detector was used to sample sparse depth points for dense 
depth datasets to match the behaviour of the sparse depth coming from the SLAM system, and the two input modes were selected 
randomly, so two different loss functions were set for each mode. Experimental results showed that the ORB-SLAM system improved 
considerably in terms of generalization, strengthening indoor and outdoor scenes performance, improving depth estimation capa-
bilities, and reducing the absolute trajectory error evaluated on the KITTI dataset. Despite such excellent results in visual odometry 
evaluation, it must be mentioned that the obtained depth maps were denser than ORB-SLAM, but in our opinion, compared to the 
reconstruction results of other dense proposals, they are not dense enough to be considered a dense indirect approach. Fig. 31 exhibits 
the Sun et al. algorithm inspired by the article [60].

Lee et al. (2022). One of the most recent approaches made on the sparse indirect category that incorporates deep learning in its 
framework is the work of [159], which aims to improve the accuracy and robustness of existing SLAM methods for autonomous 
driving. SLAM systems are essential for self-driving vehicles, as they allow the estimation of their position and the mapping of the 
environment using a single camera. The authors have formulated a deep neural network-based monocular SLAM system that integrates 
semantic segmentation and 3D geometry estimation to improve the system’s accuracy. The proposed system was built upon 
ORB-SLAM, which was extended by implementing a deep neural network for estimating 3D geometry and adding a semantic seg-
mentation module to improve the quality of the generated point cloud. The semantic segmentation module was integrated to help 
differentiate objects with similar geometries, like cars, pedestrians, and trees, using a labelling technique to improve the accuracy of 
the point cloud construction. It must be pointed out that the proposed monocular SLAM system’s main innovation is its ability to 
leverage semantic segmentation for more accurate 3D environment reconstruction and mapping, where the system’s deep neural 
network-based formulation allows it to learn and adapt to different environments and lighting conditions, making it robust to 
real-world scenarios. Moreover, the system uses a novel loss function that penalizes the translation and rotation errors differently to 
stabilize the estimated pose. In brief, the Lee et al. method was designed using three modules: localization mapping and segmentation. 
The localization module is responsible for selecting keyframes when mapping and segmentation modules complete each keyframe 
processing; this allows the extraction of corner features and the camera pose of each keyframe, estimated from the points of connected 
keyframes. The mapping module triangulates current and connected corner features to generate new 3D points. Then, it estimates a 
ground plane only using the points labelled as ground by the CNN, which also recovers the appropriate scale for camera poses. In this 
way, the mapping module estimates scale-corrected camera poses and 3D points. In contrast, the segmentation module performs 
deep-learning semantic segmentation over each down-sampled keyframe and refines the corner features existing on the keyframe by 
removing moving objects and areas with low-parallax, using the ERFNet CNN proposed in Ref. [160]. Thus, some additional im-
provements made in the Lee et al. approach are its scale correction in 3D mapping and its novel technique to remove factors that can 
lead to inappropriate mapping in each keyframe.

To evaluate the proposed monocular SLAM system’s performance, the authors conducted experiments on the KITTI benchmark 
dataset, which allowed them to demonstrate that their system outperforms the existing state-of-the-art monocular SLAM methods like 
ORB-SLAM, ORB-SLAM2, and Mask-SLAM. The proposed system achieved an average translational error of 0.19 %, significantly lower 
than the 0.40 % error achieved by the closest competitor. Additionally, it was observed that the system’s semantic segmentation 
module improved the 3D reconstruction accuracy and enabled the generation of a detailed semantic map. Fig. 32 illustrates the Lee 
et al., algorithm inspired by the article [159].

SVR-Net (2023). The SVR-Net SLAM system [161] is a technique for simultaneous localization and mapping that was developed 
for both pure visual and visual + range sensors. Its purpose is to provide accurate 3D maps of unknown environments. A key 
contribution of this system is the incorporation of a Sparse Voxelized Recurrent (SVR) network, which is used to estimate the 3D 
location of key points in the scene. This improvement enables the system to achieve robust feature tracking, even in challenging 
lighting conditions or in the presence of occlusions. The SVR-Net SLAM system incorporates several other novel features, including an 
online learning algorithm that continually adapts to changing environmental conditions and graph optimization to refine the estimated 
camera poses and map structure. The system also includes loop-closure detection, which helps improve the map’s overall accuracy and 
consistency. Compared to other SLAM systems that rely solely on visual or range sensors, the SVR-Net SLAM system offers several key 

Fig. 31. Diagram of Sun et al., algorithm. Adapted from Ref. [60].
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advantages, such as its ability to produce highly detailed and accurate maps of complex environments, including structures with 
multiple levels and non-planar surfaces. Additionally, the system is computationally efficient, making it well-suited for real-time 
applications.

In brief, SVR-Net SLAM utilises a coarse-to-fine approach to achieve efficient tracking and dense global mapping. It comprises two 
modules for processing raw data and refining the results. At the first stage, the system receives a pair of frames from where the raw pose 
and local map are estimated using the SVR network, so it starts representing the map as sparse voxels with TSDF (truncated signed 
distance function) values. Then, the map is extended using the first stage, the global map. In the second stage, SVR-Net SLAM performs 
voxel up-sampling, followed by pose and map refinement; then, the global map is extended by fusing it with the resulting fine local 
map. Specifically, the SVR-Net module was trained over the ScanNet(V2) proposal [162] as an end-to-end tracking and mapping 
network that takes a pair of RGB frames along with a set of voxel coordinates and outputs their local map, relative pose, and the TSDF 
values for the set of voxels. For this purpose, SVR-Net begins extracting feature maps for the images. Then, it transforms the feature 
map into feature voxels for each keyframe (first frame), and it estimates the correlations with the features of the second frame to 
provide similarity information for matching. Next, after sampling according to the currently estimated pose, a matching network 

Fig. 32. Diagram of Lee et al., algorithm. Adapted from Ref. [159].

Fig. 33. Diagram of SVR-Net SLAM algorithm. Adapted from Ref. [161].
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matches the features (optimal match search in the correlation field), updates the pose, and maps iteratively. This way, voxels are 
projected to the second frame using the estimated pose from the previous iteration. The correlation values obtained from the sample 
are inputted into the matching network to predict the updated TSDF values and corrected projection coordinates. Then, the 
feature-matching step outputs are utilized to update the pose and map estimations of SVR-Net. Finally, the SLAM pipeline, built over 
the Kinect-Fusion method [42], uses the local map information to extend the global map and enhance its global consistency. Fig. 33 
illustrates the SVR-Net algorithm inspired by the article [161].

7.1.2. ML + dense + indirect methods
Indirect methods usually employ optical flow for depth prediction. It is important to note that a challenging task in VO frameworks 

is characterising feature location errors, which motion blur, occlusions, and viewpoint variations can corrupt. Specifically, the efficacy 
of direct methods typically relies on small motion and appearance-constancy assumptions, representing a limitation to providing 
robustness to scene variability, which reduces their applicability [163]. Recently, machine learning optical flow estimation, which can 
be described as a combination of rigid flow and an unconstrained flow describing general object motion, has reached state-of-the-art 
performance [164,165] demonstrating a superb level of accuracy, robustness, and generalization becoming an excellent solution, 
especially under challenging conditions like texture-less surfaces, motion blur, and large occlusions.

DeMoN (2017). Ummenhofer et al. [141] introduced a noteworthy example of this practice with their work on DeMoN, a motion 
system structure. DeMoN features the first CNN that jointly computes depth and camera motion using unconstrained image pairs, 
improving its predictions. The network also estimates surface normals, optical flow, and matching confidence. Furthermore, DeMoN 
can exploit motion parallax information, a powerful clue to generalizing new scenarios enabling egomotion estimation. For this 
purpose, the system alternates optical flow estimation with depth and camera motion estimation. The system includes an adapted 
version of FlowNet [166] to solve optical flow using a pair of images. The network outputs, depth maps, and motion vectors could be 
very different, so they must be balanced using loss functions; hence, L1 loss L for inverse depth values is: 

L depth =
∑

i,j
|sd∗(i, j) − d̂∗ (i, j)|, (22) 

where d∗ = 1
z is the inverse depth, d̂∗ is the ground truth, and s is the predicted scale. The normal and optical flow use L2 norm to 

penalize deviation from n̂ and ŵ ground truths: 

L normal =
∑

i,j
‖n(i, j) − n̂(i, j)‖2, (23) 

L flow =
∑

i,j
‖w(i, j) − ŵ(i, j)‖2, (24) 

then the loss for motion vectors is: 

L rotation =‖r − r̂‖2, (25) 

L traslation =‖t − t̂‖2, (26) 

where r = θv is a minimal parameterization of a rotation with angle θ and v axis, and t is the translation vector. Finally, the scale- 
invariant loss for a discrete scale invariant gradient g is: 

Fig. 34. Diagram of DeMoN algorithm. Adapted from Ref. [141].
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gh[f ](i, j)=
(

f(i + h, j) − f(i, j)
|f(i + h, j)| + |f(i, j)|

,
f(i, j + h) − f(i, j)

|f(i, j + h)| + |f(i, j)|

)T

, (27) 

L grad d∗ =
∑

h∈{1,2,4,8,16}

∑

i,j
‖gh[d∗](i, j) − gh[d̂∗ ](i, j)‖2, (28) 

to cover gradients at different scales, five different h spacings are used so the network can compare within a neighbourhood for 
every pixel. Finally, the system applies scale invariant gradient loss to each optical flow component to enhance the smoothness of the 
estimated flow fields, enhancing sharpness for motion discontinuities. Summarizing, DeMoN takes both images as input to predict the 
depth map using the first image and the relative pose using the second image. The CNN comprises a chain of encoder-decoder networks 
that iterate over optical flow, the depth map, and egomotion estimation. Therefore, the system is constituted of three main compo-
nents: the bootstrap net that takes an image pair as input and outputs the initial depth and motion estimates, using encoder-decoder 
networks that calculate optical flow and confidence maps of the flow; the iterative net casting to sharpen discontinuities, improve the 
scale of the depth values, correct wrong estimates of initial bootstrapping network and improve depth, normal and motion estimates; 
and a final refinement net that increases the resolution of the final depth map. Fig. 34 illustrates the DeMoN algorithm inspired by the 
article [141].

DeepV2D (2020). Teed & Deng [144] proposed DeepV2D, an end-to-end learned pipeline that alternates depth and motion 
modules to predict depth and camera pose. The motion module uses depth estimates to predict camera pose, which becomes more 
accurate as depth estimates converge. Both modules were built over neural networks ruled by geometric principles but combined in an 
end-to-end differentiable architecture to perform structure from motion. The depth module takes camera motion as input and cal-
culates depth prediction, whereas the motion module takes depth as input, estimating a motion correction term as output. The 
deepV2D depth module builds a cost volume using learned features where information is added to multiple viewpoints using a pooling 
layer. In this way, the depth module is composed of: a 2D feature extractor, which is a 2D encoder using two stacked hourglass 
networks that map each frame to a dense feature map; a cost volume back-projection module that reprojects coordinates in each frame 
for each possible depth; and a 3D stereo matching network performing stereo matching over a defined set of cost volumes. The motion 
module outputs a set of perturbations as error terms used to update the camera pose. Motion module requires of: initialization, where a 
frame is chosen as a keyframe, and relative motion is predicted; feature extraction, where learned features map every frame to a feature 
map; error term, taking two frames and an hourglass network predicting residual flow between their feature maps; and optimization 
layer, where pose increments are solved applying a Gauss-Newton update. Although DeepV2D was mainly developed and focused on 
depth estimation, it can be turned into an SLAM system by training the neural network to directly map optical flow to camera motion 
without requiring optical flow supervision. As a contribution, this work differs from DeMoN [141] because its motion module can be 
used on a variable number of frames. DeepV2D features a new motion estimation architecture called Flow-SE3, which sets it apart from 
other works like DeMoN and DeepTAM. This architecture allows the system to apply geometric constraints on camera motion, reducing 
reprojection error and benefiting from end-to-end training. Fig. 35 illustrates the DeepV2D algorithm inspired by the article [144].

VOLDOR (2021). Another recent work worth mentioning is the VOLDOR VO system developed by Min & Dunn [163]. This system 
utilises log-logistic depth residuals to perform visual odometry. It takes an externally estimated optical flow input, computed by 
machine learning estimators, and a probabilistic model to develop a VO pipeline that does not require feature extraction, RANSAC 
estimation, or local bundle adjustment processes to output camera pose and depth maps. It was observed that optical flow residuals 
tend to conform to a log-logistic distribution, which is the base of its probabilistic framework ruled by a Fisk-distributed residual model 
that jointly estimates camera motion, pixel depth, and motion-track confidence using a generalized expectation maximization (EM) 
formulation. Similarly, the VOLDOR inference framework uses a generalized expectation-maximization formulation to infer depth and 
rigidness, a maximum likelihood estimator (MLE) to bootstrap subsequent camera pose, a maximum inlier estimation to mitigate MLE 
criteria, and a forward-backwards algorithm to infer rigidness from the image reduced to hidden Markov chains. VOLDOR is agnostic 
to the optical flow input estimator, so PWC-net [165] was used to estimate the external dense optical flow input. PWC-net is a CNN that 
uses pyramidal processing, warped features, and cost volume to warp the CNN features of a second image using the optical flow 

Fig. 35. Diagram of DeepV2D algorithm. Adapted from Ref. [144].
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estimate of the current image, being 17 times smaller and easier to train than FlowNet2 [164] and comprised of a feature extractor, an 
optical flow estimator and context networks.

In summary, VOLDOR uses a Fisk residual model to perform inference from a sequence of optical flows extracted by an external 
estimator (PWC-net system in this case), where the first camera pose is initialized from epipolar geometry from the first optical flow 
using the least median-square estimator. After that, depths are triangulated by two-view triangulation using optical flow and the first 
camera pose. Finally, the update is performed by inference over the Fisk residual model, where a generalized expectation maximi-
zation model updates depth and rigidness. Then, a maximum likelihood estimator is used for sequentially bootstrapping subsequent 
camera poses, while a maximum inlier estimation criterion is used to reduce bias generated at initialization and update processes. In 
conjunction with the Fisk residual model and maximum inlier estimation, this CNN system achieved optimum results in an ablation 
study and outperformed similar optical flow systems in the KITTY and TUM RGB-D datasets. Fig. 36 describes the VOLDOR algorithm 
inspired by the article [163].

DROID-SLAM (2021). One of the recent notable works is DROID-SLAM, which stands for ’Differentiable Recurrent Optimization- 
Inspired Design’ [167]. This deep learning-based system performs iterative camera pose updates and estimates depth maps through a 
dense bundle adjustment layer. DROID-SLAM predicts updates in the dense flow fields domain using a Gated Recurrent Unit (GRU) to 
produce an error correction term in the dense correspondence field and a depth map. DROID-SLAM can perform real-time localization 
and mapping by using frontend and backend threads. The front-end inputs new frames, extracts features, selects keyframes and ex-
ecutes local bundle adjustment. At the same time, the backend thread simultaneously performs global bundle adjustment over the 
entire set of historic keyframes. DROID-SLAM is a differentiable architecture built over RAFT [168] (Recurrent all-pairs field trans-
forms for optical flow), facilitating the system to work with optical flow, performing recurrent iterative updates so instead of updating 
the optical flow, the system updates depth maps and camera poses obtained through a differentiable bundle adjustment layer 
calculating the Gauss-Newton update to maximize compatibility with current optical flow estimate. DROID-SLAM can work with 
monocular, RGB-D, and stereo input, demonstrating an exceptional performance on the TartanAir, EuRoC, TUM-RGB-D, and 
ETH3D-SLAM benchmarks, outperforming acknowledged classic and learned-based monocular systems in most sequences. The authors 

Fig. 36. Diagram of VOLDOR algorithm. Adapted from Ref. [163].

Fig. 37. Diagram of DROID-SLAM algorithm. Adapted from Ref. [167].
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noted that the monocular system has a major limitation in its high computational cost. During the experimental stage, 24 GB of GPU 
memory was required to run the EuRoC, TartanAir, and ETH3D sequences. Fig. 37 presents the DROID-SLAM algorithm inspired by the 
article [167].

SDF-SLAM (2022). Another important and relevant work in this category is SDF-SLAM [146]. It is a monocular system based on the 
ideas of ORB-SLAM but with a novel feature extraction method and a dense semantic network for estimating dense depth labels. This 
places SDF-SLAM in the dense category of the taxonomy. As previously stated, the original ORB-SLAM system was designed to extract 
texture information, such as edges or corners, by using a combination of algorithms, including SIFT, SURF, ORB, and others, to extract 
feature points from each pair of adjacent frames based on their similarity. Feature points of each frame are projected to the next frame 
using the change in camera pose, where PnP is used to minimize errors between the projected point and actual matching. Next, PnP 
converts those feature points into 3D coordinates using the camera pose, fusing all the features and creating a depth map.

Nevertheless, the map created by ORB-SLAM is not dense enough for many applications and lacks semantic information which a 
machine can recognize. This way, the proposal aims for accurate camera trajectory estimation and recovery of a three-dimensional 
scene semantic reconstruction map. Therefore, the semantic and depth fusion proposal fuses camera poses with depth and semantic 
information at the frame level to obtain a 3D semantic reconstruction achieved by implementing three key components: a feature point 
and CNN feature description (FPFDCNN) trained to perform feature extraction from a pair of images calculating vectors as descriptors 
for every feature point; a deep semantic fusion CNN (SDFCNN) trained to perform simultaneous semantic segmentation and depth 
prediction from RGB images, allowing the system to drastically reduce the number of estimated parameters; a monocular visual SLAM 
system embedding a deep learning system adding a data correction module to globally optimize the point cloud to obtain consistent 
point clouds. For such purposes, SDF-SLAM uses two neural networks where FPFDCNN is used to extract feature points from a pair of 
adjacent frames, matching them to obtain feature-matching pairs. Then, a minimization process is applied to obtain camera rotation 
and displacement matrixes, fed along with the image to SDFCNN to recover a dense map and a semantic segmentation. Finally, the data 
calibration module is fed with dense map, pose, and semantic segmentation information to perform global and local optimization tasks, 
creating a three-dimensional semantic map. The FPFDCNN was built over the encoder-decoder architecture constituted by an input 
layer, encoder layers (to extract the feature map), decoder layers (to restore the original image size and feature descriptors), output 
layers, and concatenate layers. For one thing, SDFCNN was implemented using a unified semantic down-sampling layer to process 
information in feature maps and an up-sampling layer for feature extraction and restoration that uses discriminative layers for feature 
classification, probability estimation, and depth regression estimation. Experiments carried out using SDF-SLAM on the TUM dataset 
demonstrated a clear improvement over the classic ORB-SLAM [11] and LSD-SLAM [37] methods, also demonstrating a significant 
improvement in semantic segmentation quality compared with CNN-SLAM [2], achieving 90 % accuracy for point cloud prediction 
and 67 % in semantic labelling. Another advantage of SDF-SLAM is that this technique can be fused with many classic SLAM ap-
proaches, which authors demonstrated with reported results running the same network architectures over the DSO framework. Fig. 38 
illustrates the SDF-SLAM algorithm inspired by the article [146].

NeRF-SLAM (2022). Article [169] presents NeRF-SLAM, a monocular method for indoor scene reconstruction using normal priors, 
to enhance reconstruction accuracy and detail. The method combines the advantages of Neural Radiance Fields (NeRF) and the 
DROID-SLAM [167] approach as a tracking module to recover real-time accurate and detailed reconstructions of indoor scenes. 
NeRF-SLAM was developed to address limitations such as challenges in handling dynamic environments and occlusions and limited 

Fig. 38. Diagram of SDF-SLAM algorithm. Adapted from Ref. [146].
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scalability in many monocular systems. NeRF-SLAM framework aims to overcome these limitations by using an implicit neural rep-
resentation to model the scene’s geometry and appearance, incorporating normal priors to improve reconstruction detail and accuracy. 
The framework consists of three components: a frontend that estimates the camera poses and generates sparse 3D point clouds, a 
backend that fuses the sparse point clouds, generating the final implicit representation of the scene, and a normal prediction module 
trained to predict surface normals from the implicit representation. The tracking front was built over DROID-SLAM, gathering dense 
depth maps and poses for each keyframe taken from an eight-keyframe sliding window. For this purpose, DROID-SLAM estimates the 
optical flow of each pair of frames using an approach inspired by Raft, which is a Convolutional GRU that computes the flow and 
weight using the correlation of each two-frames and a guess of the current optical flow. Then, DROID-SLAM solves the dense BA 
problem using the flows and weights representing the 3D geometry as a parameterized set of inverse depth maps, which helps solve the 
BA problem efficiently using a linear least squares formulation. Then, the method computes marginal covariances for the depth maps 
and poses, which are used along with the depth, poses, and input RGB images to optimize the radiance field’s parameters and refine the 
camera poses. As a result, the mapping backend uses the information obtained by the tracking front end to supervise the radiance field, 
which leads the system to obtain biased reconstructions. In summary, in NeRF-SLAM, the tracking thread continuously minimizes the 
BA reprojection error over an active window of keyframes. At the same time, the mapping thread optimizes all the keyframes obtained 
from the tracking thread, where the tracking thread only generates a new keyframe each time the mean of the optical flow between the 
previous keyframe and the current frame is higher than a threshold.

From extensive experiments on several datasets comparing NeRF-SLAM with state-of-the-art methods, it was observed that NeRF- 
SLAM outperformed existing methods in terms of reconstruction accuracy, detail, and robustness to dynamic scenes and occlusions, 
making NeRF-SLAM a promising approach for indoor scene reconstruction that combines the strengths of neural networks and SLAM. 
Fig. 39 illustrates the NeRF-SLAM algorithm inspired by the article [169].

Rosinol et al. (2023). The proposed probabilistic volumetric fusion method is a novel approach for dense mapping and recon-
structing 3D environments from RGB-D (colour and depth) or monocular RGB data. It outperformed most existing state-of-the-art 
methods in accuracy, robustness, and speed. The proposed method extends the traditional volumetric fusion method by intro-
ducing a probabilistic framework based on Gaussian Process Regression (GPR). This probabilistic volumetric fusion method presents a 
novel approach to 3D environment reconstruction from RGB data that allows a more robust and accurate reconstruction by incor-
porating uncertainty in the depth measurements, which is crucial for robust decision-making in uncertain environments. Its proba-
bilistic framework and real-time performance provide superior accuracy and robustness over existing state-of-the-art methods. The 
main improvement of this method over existing techniques is the ability to handle many frames in real-time. In brief, this method 
pursues the goal of fusing dense, noisy depth maps weighted by probabilistic uncertainty estimations into a volumetric map. For this 
purpose, the system uses the Droid-SLAM frontend to recover pose estimates and dense depth maps, which were also adapted to 
recover dense uncertainty maps. The Droid-SLAM framework is applied to obtain a set of inverse depths per keyframe to solve the BA 
problem. Then, the inverse depth uncertainties are computed from the information matrix of the underlying bundle adjustment 
problem, using the marginal covariances for the per-pixel depth variables, which allows recovering sparse depth maps that are up- 
sampled using the Raft upsampling operator, and the depth variances are computed considering a nonlinear uncertainty propaga-
tion. Next, a fusion strategy is applied to produce a volumetric map using an uncertainty-aware volumetric mapping technique which, 
in contrast to Droid-SLAM (which uses an ad-hoc depth filter), uses the estimated uncertainties of each depth map on a probabilistic 
volumetric fusion model to provide a robust and mathematically sound alternative to reconstruct the scene geometry. Finally, the 3D 
mesh is extracted from the volume based on a maximum uncertainty bound. Only the voxels that present an uncertainty below this 

Fig. 39. Diagram of NeRF-SLAM algorithm. Adapted from Ref. [169].
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bound are meshed to extract the surfaces.
The Rosinol et al. system was evaluated on different datasets, including synthetic and real-world data, and it was compared with 

several state-of-the-art methods, including fusion-based methods, such as KinectFusion and ElasticFusion, and deep-learning-based 
methods, such as MVSNet and NERF, demonstrating its robustness and generalization capability. The accuracy and quality of the 
proposed method make it suitable for use in augmented/virtual reality and computer graphics, including virtual game environments 
and movie production. This makes it a promising area for future research and development. In addition, its outstanding real-time 
performance makes it suitable for robotics applications, such as autonomous navigation in unknown environments. Fig. 40 illus-
trates the Rosinol et al. algorithm inspired by the article [170].

7.2. ML + direct methods

In recent years, machine learning has emerged as a promising avenue for research in monocular 3D reconstruction. This is due to its 
ability to address well-known limitations of monocular systems, such as scale ambiguity, motion blur, texture-less surfaces, and re-
petitive patterns. Classic direct systems face significant challenges, including reliance on a good initialization, the brightness constancy 
assumption, their performance in low-illumination environments, and their ability to generalize to unseen environments. Accordingly, 
in the past decade, researchers have made interesting contributions to overcome these challenges by embedding neural network ar-
chitectures in classic SLAM, VO, or SFM proposals, enhancing performance and, in most cases, have demonstrated to outperform their 
classic versions.

ML + Direct methods, like the rest of the taxonomy categories, may be divided into dense and sparse, depending on the density of 
recovered 3D reconstruction, so both of these alternatives are discussed in sections 7.2.1 and 7.2.2. Fig. 41 describes a timeline for the 
appearance of the most representative ML + direct methods in the last decade. Two of the most representative ML approaches belong 
to this category: CNN-SLAM and CodeSLAM, significantly contributing to the state-of-the-art, yielding impressive citation scores 
providing two interesting paths for researchers: the integration of semantic segmentation and the use of encoder-decoder architectures, 
respectively.

7.2.1. ML + dense + direct methods
Similar to classic SLAM methods, machine learning dense formulations can be classified as dense or sparse depending on the 

sparsity of the final reconstruction. Some authors have proposed improving pose and depth estimation and estimating parameters such 
as scale factors or initialization terms. In addition, as shown in the previous section, the possibility of training networks to densify the 
map output of classic SLAM systems exists; thus, classic sparse methods were added to this category with their densified machine 
learning versions. As shown in Fig. 41, most ML direct approaches belong to the dense category due to the excellent results machine 
learning has achieved in densifying their 3D reconstructions.

CNN-SLAM (2017). An exciting work that achieved the goal of fusing deep convolutional depth prediction with a dense direct 
system is the work of [2]. It uses CNN-predicted depth maps in monocular SLAM to overcome the issue of estimating the absolute 
reconstruction scale by learning from examples and getting rid of assumptions and geometric constraints. The obtained CNN depth 
map is used as an initial guess to perform a dense reconstruction, which is then refined by the LSD-SLAM direct approach. Most 
monocular SLAM systems have restraint scene absolute scale, so the final reconstruction scale is ambiguous.

In contrast, the CNN-predicted depth map provides absolute scale information, aiding the pose estimation process for more 

Fig. 40. Diagram of Rosinol et al. algorithm. Adapted from Ref. [170].
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accurate pose trajectory and scene reconstruction. Also, most monocular systems fail under pure rotational camera movements due to 
the lack of a stereo baseline in contrast to a CNN-predicted depth map which does not face these problems because each frame is 
estimated individually. The system was built over the depth prediction method of [152] with the direct SLAM system by using the 
CNN-predicted depth map of every new keyframe as prior information for the SLAM system. The network architecture presents a first 
stage based on ResNet-50 initialized with pre-trained weights on ImageNet to estimate the environment scale. Then, a second part of 
the network replaces the last pooling and fully connected layers with a sequence of residual up-sampling blocks. Finally, drop-out is 
applied, and a convolutional layer outputs the predicted depth map.

The CNN depth prediction and direct SLAM are fused using the uncertainty map. Uncertainty map U ki is the elementwise distance 
between the depth map of the current keyframe ki and the closest keyframe kj: 

U ki (u)=
(

Dki (u) − Dkj

(
Π
(

ζTki
kj

V ki (u)
)))2

, (29) 

where ζ is the camera intrinsics matrix, V ki(u) = ζ − 1u̇Dki(u) represents a 3D element of the vertex map computed from the depth map 

of the current keyframe, u is a generic depth map element, with u̇ being its homogeneous representation, v = Π
(

ζTki
kjV ki(u)

)
, and Ũ kj 

is the uncertainty related to the CNN estimation. The depth and uncertainty map of a frame are fused with those of the closest keyframe 
to improve the accuracy of every initialized keyframe where the uncertainty of the nearest keyframe is: 

Ũ kj (v)=
Dkj (v)
Dki (u)

U kj (v) + σ2
p , (30) 

next, the two uncertainty and depth maps are fused using the following weighted expressions: 

Dki (u)=
Ũ kj (v) • Dki (u) + U ki (u) • Dkj (v)

U ki (u) + Ũ kj (v)
, (31) 

U ki (u)=
Ũ kj (v) • U ki (u)

U ki (u) + Ũ kj (v)
. (32) 

In CNN-SLAM, the authors performed semantic segmentation by relying on the idea that the same network can be used to perform 
high-dimensional regression tasks. Therefore, CNN-SLAM could be considered the first example that jointly performed semantic 
segmentation and 3D reconstruction, opening up a new research avenue where multiple 3D regression tasks can be performed along 

Fig. 41. Timeline for the most representative monocular SLAM, VO or SFM, ML direct systems.

Fig. 42. Diagram of CNN-SLAM algorithm. Adapted from Ref. [2].
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with depth prediction. To summarize, the CNN-SLAM system collects keyframes as a subset of visually distinct frames whose pose is 
refined by pose graph optimization. Simultaneously, camera pose estimation is performed by estimating the transformation of the 
current frame to the closest keyframe. The CNN-predicted depth map is obtained only for keyframes with high frame rates. An un-
certainty map is created by measuring pixel-wise confidence for every prediction. At the same time, a second convolutional network 
conducts semantic label fusion to predict a semantic segmentation for each frame. Finally, the relative pose is optimized through a pose 
graph on keyframes. Fig. 42 illustrates the CNN-SLAM algorithm inspired by the article [2].

DeepTAM (2018). Zhou et al.’s DeepTAM [171] is an improved version of DTAM [27], formulated as a deep learning problem 
using two CNN architectures for tracking and mapping tasks. The proposal’s main contributions include a tracking network designed 
for incremental frame-to-keyframe tracking, a multiple hypothesis proposal for camera pose estimation, a mapping network that 
combines depth estimation with image priors, and a depth refinement strategy that combines CNN architectures with a narrow band 
technique. The tracking network of DeepTAM aligns the current image with a keyframe containing depth and the colour image to infer 
the camera pose, essentially computing 2D to 3D correspondence between the image and the keyframe. For this purpose, the authors 
used an encoder-decoder-based architecture to learn 6 DOF estimation poses related to a keyframe and use the optical flow, ensuring 
the network learns to exploit the relation between a pair of images. Hence, the decoder of the tracking network performs two tasks: 
optical flow prediction and pose hypothesis generation. They also used a coarse-to-fine strategy to learn to track large and small 
camera motion, so the authors trained three tracking networks to generate the pose hypothesis at different resolutions. Consequently, 
the tracking network performs an incremental pose estimation where each network is specialized for a distinct resolution level. Hence, 
each network computes a pose estimate where the latest pose guess is taken as a virtual keyframe at each resolution, thereby tracking 
the camera pose, and the final pose estimate is the product of all the incremental pose updates.

The DeepTAM mapping network was developed based on the plane sweep stereo concept. It accumulates multiple-image infor-
mation in a cost volume and extracts the depth map through a CNN using image-based priors and the accumulated depth information. 
To improve depth prediction, the authors used a network that iteratively refines the depth prediction using the cost volume within a 
narrow band around the geometry estimate of previous frames. In DeepTAM, the mapping architecture consists of fixed- and narrow- 
band modules. The fixed band module takes the input image and the cost volume to output an interpolation factor and depth esti-
mation. The narrow band module runs iteratively to build a learned cost volume; finally, the depth map is obtained by applying a 
differentiable soft argmin operator, and a second encoder-decoder takes the depth estimation and the keyframe image producing a 
refined depth map. It is no secret that machine learning techniques tend to suffer from overfitting, so authors took special care in 
designing DeepTAM architecture and its configuration for the learning problem so that the network cannot learn simple shortcuts that 
may result in generalization problems. In addition, the authors used data augmentation techniques applied in the training process and 
used train datasets like SUN3D [172] and SUNCG [173] to learn to track 6 DOF motion. Thus, some of the key advantages of DeepTAM 
are its strong tracking capabilities, which, on experimental evaluations, have proven to achieve better results than its predecessor 
CNN-SLAM and its ability to process more than two images to refine the depth map, avoiding drift. Fig. 43 presents the DeepTAM 
algorithm inspired by the article [171].

DeepFusion (2019). In Ref. [174], the authors proposed a 3D reconstruction system named DeepFusion. Using a monocular SLAM 
system, the system aims to obtain dense scaled depth maps and poses in real time. Predicted depth gradients are used as a constraint on 
the neighbourhood pixels to ensure global reconstruction consistency and learned uncertainties are used to fuse the different 

Fig. 43. Diagram of DeepTAM algorithm. Adapted from Ref. [171].
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modalities. This proposal was formulated by fusing the sparse monocular system ORB-SLAM2 [38] output with a CNN’s depth and 
gradient predictions in a probabilistic framework using uncertainties obtained by predicting the per-pixel mean and variance fused 
with the geometric constraints. In this system, the network needs to be executed once by a keyframe, so the depth map is optimized for 
each frame constantly using new geometric constraints. The shape and absolute scale are obtained using a cost function that includes 
per-pixel losses based on the CNN depth predictions and depth estimates using pairwise constraints from the network depth gradient 
predictions. Network architecture was based on U-Net [175] trained to predict log-depth, modified by adding three decoders to predict 
log-depth uncertainties, log-depth gradients, and log-depth gradient uncertainties as log-depths were selected over depth or inverse 
depths due to their scale-invariance properties. An associated uncertainty was integrated into the formulation to fuse CNN output with 
the monocular SLAM system estimates for every pixel in each of the log-depth and gradient images, which was performed by making 
the network learn to predict the mean and variance by training the network on the SceneNet RGB-D dataset, using the maximum 
likelihood cost function: 

L NN(ω)=
∑

i

(
yi − μω,i(x)

)

σω,i(x)2 + log
(

σω,i(x)2
)
, (33) 

where ω is the set of weights, x is the set of input pixels, yi is the ground truth for each pixel, and μω,i(x), and σω,i(x)2 are mean and 
variance predictions. As mentioned earlier, the monocular depth estimation was performed using the [65] method, as depth values 
were searched over the epipolar line for every pixel in the keyframe with sufficient texture by minimizing the sum of squared dif-
ferences of five equally spaced points. As DeepFusion is a direct dense system, depth is estimated by minimizing the photometric error: 

Ei =Ii

(
Π
(

ζT− 1
WC1

TWC0 Π− 1( xi, dsemi,i
)))

− I0(xi), (34) 

where ζ is a matrix containing the camera intrinsics, TWC0 and T− 1
WC1 

correspond to keyframe, and reference frame poses, respectively. 
I∗( ⋅) is the function that returns intensity values for each pixel, Π is the projection and homogenization function, Π− 1( xi, dsemi,i

)
is the 

back-projection function, which returns a 3D point for each pixel having dsemi,i. depth. Once the minimum is found, an interpolation 
between two steps is done to find the optimal depth. Next, uncertainty for each semi-dense measurement is approximated by σ2

i =
(
JTJ
)− 1 (where J is the Jacobian of error function). After that, depth estimates and uncertainties are converted to log space matching 

CNN outputs. To sum up, for every new RGB image, the system obtains the pose using ORB-SLAM2 [38]. Next, the semi-dense depth 
estimates for each keyframe are updated using the [65] algorithm. Then, if a new keyframe is selected, CNN predicts log-depth 
gradients associated uncertainties, and if the current frame is not a keyframe, it is used for optimization where a set of log-depth 
values and scale correction factors are minimized in a cost function using Opt optimization framework [176]. Finally, the output is 
fused using an associated uncertainty formulation, solving depth and pose jointly. Fig. 44 describes the DeepFusion algorithm inspired 
by the article [174].

CodeSLAM (2018). Bloesch et al.’s CodeSLAM [134] is a system designed to generate a dense and concise representation of scene 
geometry using a code derived from a single image and an intensity image. This code consists of a small set of unknown parameters, 
enabling a compact representation of scene geometry without compromising reconstruction details. The encoding strategy was 
designed based on the principle that encoding the full depth of an image is unnecessary, as most of the information is already available 
in the image intensities. Hence, the code retains only that part of the information that cannot be retrieved from image intensities. Each 
depth map becomes a function of the image I and an unknown code c that will be estimated using a neural network D = D(I,c). The 
CNN used in this system consists of a combination of the monocular depth estimation architecture of [177] and the encoder network of 
[178] configured to obtain a small code size, where the accuracy is maximized by training to minimize reconstruction error. This 
architecture takes the intensity image as input for a U-Net to obtain a high-dimensional image representation. Then, the extracted 
intensity features are encoded and decoded, obtaining the image depth map. Encoding and decoding procedures are carried out by a 
typical down-sampling architecture achieved by stride convolutions, followed by a variational component in the bottleneck of an 

Fig. 44. Diagram of DeepFusion algorithm. Adapted from Ref. [174].
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autoencoder, composed of two fully connected layers that sample the code using a Gaussian distribution subject to regularization cost, 
then decoded by an upsampling architecture using bilinear interpolation and concatenating with processed image intensities of 
previous layers.

The network also outputs the mean and depth uncertainty using four pyramid levels. CodeSLAM includes an inference framework 
based on an N-frame SFM paradigm where codes and poses are optimized using loss functions based on photometric and geometric 
errors. Thus, residuals and Jacobians are computed to apply a damped Gauss-Newton algorithm to find the optimal code and pose for 
each frame. Then, tracking is performed by estimating the pose in the current keyframe with respect to the existing keyframe map. The 
SLAM system for this approach was developed following the concept of PTAM [71,114] by alternating tracking and mapping, where 
the system initializes by taking two frames and jointly optimizing their relative poses and codes. Then, after some iterations, a baseline 
is achieved, and a keyframe is inserted to perform global optimization. It must be mentioned that the CodeSLAM geometry encoding 
proposal allows joint optimization of geometry and motion, which showed improved performance on the EuRoC dataset over its 
predecessors, giving the system robustness to deal well with fast and pure-rotational motions. Fig. 45 illustrates the CodeSLAM al-
gorithm inspired by the article [134].

DeepFactors (2020). Czarnowski et al. [10] proposed DeepFactors, a probabilistic dense SLAM system that employs an efficiently 
learned depth map representation. The system combines classical SLAM principles with priors learned from data over geometry in a 
probabilistic factor-graph framework. The system includes three types of errors/factors that are used to estimate camera trajectory and 
scene geometry: photometric factor being the direct difference between image intensities and target image; reprojection being the 
difference between the observed and hypothesized matched landmark locations; and the sparse geometric factor, computing the 
difference in scene geometry comparing depth maps of a frame and its target image. Ablation studies performed in this work took 
photometric error as a baseline system, as it is a direct method concluding that reprojection error improves local minimum avoidance 
and increases the convergence rate.

In contrast, geometric error introduces a prior about the world and helps pin depth maps to form a single reconstruction in texture- 
less areas lacking photometric information. This way, the study introduced the idea of using the three-consistency metrics to improve 
the performance of monocular reconstruction systems. DeepFactors was built based on CodeSLAM [134] but with a different mapping 
backend formulating the problem as a multiview bundle adjustment, introducing the use of a three-factor error formulation, and 
improvements on improvements on keyframing, map maintenance, and tracking. In contrast to DeepTAM [171], this approach relies 
less on network generalization, performing a more robust optimization correcting wrong predictions from the network where neural 
networks are priorly focused on obtaining an image-conditioned manifold from which the optimization process will be executed. To 
achieve real-time performance, the authors used a Generalized Purpose GPU (GPGPU), modifying the CodeSLAM network using a 
U-Net to extract features from the input images, reducing image size by multiple convolution steps. Next, a Variational Auto-Encoder 
(VAE) learns an optimizable compact depth representation; then, the decoder interprets this information into depth values. The 
encoder and decoder architectures are conditioned by the features using concatenations. An additional output of the feature network is 
an uncertainty parameter used in a negative log of a Laplacian likelihood loss as a metric for supervising the reconstructed depth, 
whereas the predicted depth map is supervised with an L1 loss. Fig. 46 exemplifies the DeepFactors algorithm inspired by the article 
[10].

7.2.2. ML + sparse + direct methods
Direct methods, such as classic approaches, can be divided into two subsections depending on the final density 3D map obtained 

from the reconstruction. These subsections are dense and sparse. By adding machine learning contributions to this formula, we get the 
ML + Dense + Direct and ML + Sparse + Direct method classifications. Therefore, the ML + Sparse + Direct category is commonly 
implemented due to the impressive results that sparse direct classic methods, like DSO [24], have achieved. In this section, we 
introduce the most successful machine learning integrations made over the DSO system and improved versions, where the integration 
of neural networks was performed to enhance map quality, tracking, generalization capabilities and overcoming well-known failure 
modes like brightness assumption violations, motion blur, repetitive textures among others. Some of the proposals described in this 
section have obtained denser reconstructions [141,180] and produced dense or semi-dense output maps due to the incorporation of 

Fig. 45. Diagram of CodeSLAM algorithm. Adapted from Ref. [134].
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machine learning. However, those methods were incorporated into this category because such systems use a sparse set of selected 
points as a working principle.

DVSO (2018). An early approach in this category is the “Deep Virtual Stereo Odometry” (DVSO) proposed by Yang et al. [140]. 
DVSO is a system that improves the performance of DSO [24] by incorporating deep learning and the stereo extension of DSO (Stereo 
DSO) [12]. It creates a virtual stereo odometry system using monocular input as the only source of information. The study’s objective 
was accomplished by integrating a semi-supervised neural network to predict depth maps from image input. These depth maps were 
then used to initialize sparse depths for the DSO algorithm at a consistent depth scale.

Additionally, odometry was improved using a novel virtual stereo term that coupled the depth estimated in the DSO windowed 
bundle adjustment with depth predictions. This monocular semi-supervised neural network was designed to predict refined disparity 
estimates incorporating three key ingredients to enhance the system: a self-supervised learning based on a photo-consistency approach 
relying on image reconstruction loss, a supervised learning approach based on Stereo DSO depth predictions used as ground truth, and 
a two-stage refinement strategy for network predictions using an architecture of stacked encoder-decoder networks. The network 
proposed in this work was called StackNet, stacking two networks, SimpleNet and ResidualNet, inspired by DispNet [179] using an 
encoder-decoder scheme. SimpleNet is an encoder-decoder architecture, using ResNet-50 as an encoder-decoder with skip connections 
that unprojects feature maps to their original size, generating four pairs of disparity maps at different resolutions. On the other hand, 
ResidualNet was inspired in FlowNet 2.0 [164] implemented to refine disparity maps predicted by SimpleNet, managing this infor-
mation in a stereo format as reconstructed right image (obtained by warping the input image into the view of a rectified stereo image), 
generated left image and the reconstruction error. Again, learning was designed to be guided by a loss function that takes into account 
five terms in a linear combination: self-supervised loss, to measure the quality of the reconstructed image; supervised loss, to take into 
account the deviation of the predicted disparity map from the disparity sparse set of pixels estimated by DSO; left-right disparity 
consistency loss, to ensure consistency between the left and right disparity images; disparity smoothness regularization, to promote 
that the predicted disparity map be locally smooth; and the occlusion regularization that penalizes the total sum of absolute disparities 
to improve system behaviour for background depths and complex transitions at occlusions. With the carefully tuned scheme, the 

Fig. 46. Diagram of DeepFactors algorithm. Adapted from Ref. [10].

Fig. 47. Diagram of DVSO algorithm. Adapted from Ref. [140].
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authors could outperform classic monocular VO systems and even stereo VO systems, although using only the monocular input. Fig. 47 
illustrates the DVSO algorithm inspired by the article [140].

CNN-DVO (2020). One of the most successful implementations in this category is the work of Cheng et al. [103], called CNN-DVO. 
They integrated deep CNN depths as priors for initialization, local bundle adjustment, and loop closure in a sparse direct visual 
odometry system using deep learning. CNN-DVO is the first direct framework that fully integrates depth prediction with initialization, 
tracking, and marginalization components to jointly optimize all model parameters, including inverse depth, camera pose, and affine 
model. The work also proved the benefit of using extra constraints given by depth prior, including fixing the arbitrary initialization 
scale to a constant value, significantly suppressing scale drift during tracking, and recovering the 3D measure correspondence in loop 
closure while maintaining a consistent scale. In addition, the work proposes an improvement on the point selection strategy using near 
low and high gradient regions, which helps to avoid clustering, making the tracking thread more adaptable to large stereo baselines 
and promoting robustness of pose estimation in extreme motion situations.

Additionally, joint optimization is broken into two steps: solving the pose from a coarse prior and correcting the depth from the 
pose values given in the first stage. Inspired by Ref. [64], this proposal divides the SLAM problem into coarse tracking and map 
refinement. In addition, authors used a keyframe selection strategy based on marginalization results and from a pose graph with a BoW 
database of ORB features extracted from each keyframe uniformly selected from the image space to guarantee that mapped points can 
be reproduced in the next frame, contributing to a proper loop closure. The method incorporates dynamic up-sampling and 
down-sampling of points in multiscale image rectangular subsections. After generating the tracking points set and applying DSO point 
selection, the system slides kernels of size 2x over the whole image and computes a histogram of gradients within the region defined by 
the kernel. Points in low-gradient pixel locations are randomly discarded when the region is sparse. The final tracking set is the union 
of the points selected from each kernel. The SE(3) keyframe pose and inverse depth are parameterized and composed as a minimization 
problem. The system uses the Monodepth2 model [180] as the CNN depth predictor, giving the information to estimate the next frame 
camera pose and refine pose estimation. Then, Gauss-Newton optimization is performed for every selected point to refine optimal 
reprojection locations and recover inverse depth in the epipolar line. In this case, the variance of each observation is defined as: 

σ2
d = λ

(
dʹ

6

)2

+ (1 − λ)σ2
d,obs, (35) 

where d∗ is the inverse depth, dʹ is the predicted inverse depth, λ is the weight (empirically set to 0.57), σd is the standard deviation 
that, in this case, corresponds to a linear combination of the inverse depth and the observation variance σd,obs. As a result, this empirical 
proposal provides room where noisy depth predictions converge. Then, depth prior is incorporated as a residual rid to penalize inverse 
depth deviations between keyframes to properly scale estimated transformations between them: 

rid =
(
Ij
[
pʹ( Ti,Tj, dʹ, ζ

)]
− bj

)
−

tjeaj

tieai
(Ii(p) − bi), (36) 

where Ti,Tj are the camera poses, ζ is the camera intrinsics matrix, ai, aj, bi, bj correspond to affine bright coefficients, Ii and Ij are a pair 
of keyframes, ṕ  in Ij are projected points from p in Ii. First, a windowed optimization like DSO is performed, then BRIEF descriptors are 
extracted from each keyframe, maintaining the same BoW database used for loop detection query. Next, RANSAC PnP is applied to 
initialize transformations, and Sim(3) transformation is optimized by 3D-2D geometric constraints. CNN-DVO uses a depth filter to 
initialize inverse depth estimation for each selected point, so error variance is formulated as: 

σ2
d∗ = α2

(

ζ d + ζ d
JdΣJd + Jʹ

dΣJʹ
d

JdΣJd
+ σ2

d

)

, (37) 

where the inverse depth d∗ = d(I0, I1, dʹ, ξ,Π) is a function of depth prior and geometrical projection input, dʹ is the inverse depth prior, 
ξ is the relative transformation matrix, Π is the projection function, cd is the normalization constant (empirically set to 0.2), Jd is the 
Jacobian of d, Jʹ

d = [dx, − dy]T is the conjugated Jacobian of d, Σ =
[
Ix, Iy

]T[Ix.Iy
]

is the input error covariance, and α is the propor-
tionality constant defined in Ref. [65]. Then, the inverse depth prior is initialized as a function N

(
dʹ,σ2

d
)
, then the system performs a 

Gauss-Newton optimization to shrink the inverse depth upper bound for each map point candidate through inverse depth residual rid: 

rid =
∑

i∈P i

‖I1[Π(qi, d, ξ) − eaI0(qi) + b]‖γ , (38) 

where γ is the Huber norm, and P i is the residual pattern. Depth prior narrows the search region, turning the method tenable to large 
baseline stereo problems. Then, the depth propagation for tracking is performed by updating inverse depth defined by a formulation 

like the Kalman filter step where a noisy observation N
(
dʹ, σ2

dʹ
)

is fused with the geometrical propagation prior N
(

d1,σ2
d1

)
: 

dʹ
1(d1, dʹ)=N

(
σ2

d1
dʹ + σ2

dʹd1

σ2
d1
+ σ2

dʹ
,

σ2
d1

σ2
dʹ

σ2
d1
+ σ2

dʹ

)

. (39) 

To sum up, CNN-DVO is based on the principles of direct SLAM. The tracking thread extracts a pose hessian prior to every new 
frame, and depth is initialized by dynamically up-sampling and down-sampling points in multiscale rectangular image subsections. A 
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coarse pose is estimated using the sliding window approach. Simultaneously, a depth prediction from CNN is extracted and regu-
larized. This prediction is then used to estimate the depth of the next frame, which is continuously propagated into each tracking frame 
and refined by local bundle adjustment. Next, the tracking thread performs marginalization to solve camera pose and eliminate outlier 
map points, removing redundant keyframes resulting in a refined depth map and a pose graph using a BoW database and ORB features 
extracted for loop closing. Finally, Sim (3) transformations are optimized through 3D-2D geometric constraints. Fig. 48 describes the 
CNN-DVO algorithm inspired by the article [103].

D3VO (2020). D3VO is a system developed by Yang et al. [139] that combines the DSO VO system [24] with deep learning to 
improve the original system in monocular depth prediction, camera pose, and photometric uncertainty estimation tasks. Unlike DVSO, 
which relies on the depth measurement extracted by StereoDSO [12] and uses a semi-supervised approach, D3VO can be trained from 
only stereo videos without any external depth supervision signal. The process is carried out by incorporating DepthNet and PoseNet, 
convolutional neural networks following a U-Net-like architecture built upon MonoDepth2 [180], extending its capabilities to predict 
brightness transformation parameters and photometric uncertainty. This self-supervised neural network was incorporated to address 
typical direct sparse issues like illumination changes, non-Lambertian surfaces, high-frequency areas, motion blur, and moving objects 
that breach the brightness consistency assumption.

Consequently, pixels that are likely to breach this assumption are down-weighted. Specifically, the self-supervised training network 
and the VO system share similar photometric objectives, so the authors proposed using learned weights to replace the weighting 
function based on photometric residuals, which in DSO was empirically set. In D3VO, the self-supervised neural network not only 
estimates depth pose uncertainty but also estimates affine brightness transformation parameters to align the illumination of each set of 
training images in a self-supervised manner. So, photometric uncertainty for each pixel can be predicted from the distribution over the 
possible brightness values, tightly incorporating predicted information in the tracking front-end and the photometric bundle adjust-
ment performed in the backend. More specifically, failure cases of brightness constancy assumption introduce noise in the system, so 
the authors applied the heteroscedastic aleatoric uncertainty for neural networks in Ref. [181] to predict a subsequent probability 
distribution for each parameterized pixel with its mean and variance. Thus, predictive uncertainty enables CNN to update the 
weighting of the residual dependent on the input data to improve the model to noisy data. Instead of initializing depth values randomly 
like most classic SLAM systems, D3VO uses depth values predicted by DepthNet having scale prior information. In addition, instead of a 
constant velocity model, this approach uses poses predicted by PoseNet to build a nonlinear factor graph, where every new frame is 
tracked from the current keyframe by direct image alignment. As a result, D3VO uses predicted poses as initializations in the tracking 
front-end and the optimization backend while adding depth information as a regulator for the energy function to perform photometric 
bundle adjustment. Experimental results demonstrated that the combination of D3VO techniques allowed the system to outperform its 
predecessor’s performance, achieving excellent trajectory estimation results comparable to those obtained by state-of-the-art visu-
al-inertial odometry approaches, although relying only on monocular input. Fig. 49 illustrates the D3VO algorithm inspired by the 
article [139].

Fig. 48. Diagram of CNN-DVO algorithm. Adapted from Ref. [103].
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MonoRec (2021). An impressive and successful proposal made over the ideas of DSO [24] is the MonoRec system of Wimbauer 
et al. [182], which, more than a VO or SLAM system, is conceived as a 3D reconstruction system built by integrating two neural 
networks as a MaskModule and a DepthModule to extend the applicability of monocular SFM to static and dynamic environments. 
Depth prediction methods that fuse deep learning have emerged in two modalities, as multiview stereo (MVS) [183–185] and 
monocular depth prediction [139,186,187] systems. However, not all focus on obtaining an incremental geometric representation of 
the scene. MVS methods consider information from multiple views to recover depth information working over a stationary assumption 
in the environment, so they are affected by the presence of moving objects.

In contrast, monocular depth prediction methods perform well on moving objects as they make depth predictions from a single 
image. However, these methods heavily rely on the object’s appearance from the camera’s perspective, which is influenced by the 
camera’s intrinsic and extrinsic characteristics. MonoRec combines both approaches for benefit using two modules, MaskModule and 
DepthModule. MaskModule uses encoded information obtained from multiple views as cost volume tensors built using Structural 
Similarity Index Measure (SSIM) to identify moving pixels, which are removed by downweighting their voxels in the cost volume 
trained to determine each pixel’s probability for belonging to a moving object by detecting inconsistent geometric information in a set 
of cost volumes. MaskNet uses pre-trained ResNet-18 features to encode prior information, and then a U-Net-adapted architecture with 
skip connections predicts a mask of probabilities. The DepthModule was built based on a U-Net architecture predicting an inverse 
depth map using the complete cost volume and an image as input. After that, the wrong predictions from moving objects are removed 
by multiplying the predicted depth map with the mask. MonoRec was trained using a multistage training approach using a semi- 
supervised loss formulation not requiring LiDAR ground truth measures where stages are bootstrapping, MaskModule refinement, 
and DepthModule refinement. In bootstrap, each module is trained separately, where the DepthModule uses a semi-supervised loss 
combining a self-supervised photometric term and an edge-aware smoothness term based on [180] using sparse depth maps from the 

Fig. 49. Diagram of D3VO algorithm. Adapted from Ref. [139].

Fig. 50. Diagram of MonoRec algorithm. Adapted from Ref. [182].
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DVSO system.
In contrast, MaskModule is trained using a mask loss corresponding to the binary cross entropy between the predicted mask and 

ground truth. In the MaskModule refinement stage, a supervised mask loss is added as a regularizer to stabilize training. New gradients 
are added to their corresponding structure in the cost volume to improve mask prediction capabilities and prevent overfitting. Finally, 
the DepthModule refinement stage was incorporated to make the DepthModule able to predict depths for moving objects by per-
forming further stereo forward passes using the resulting depth map as prior for moving objects. Experimental results performed over 
the KITTI, TUM-Mono, and Oxford Robot-Car datasets proved the impressive capabilities of MonoRec regarding obtaining scene semi- 
dense point clouds. Ablation studies proved the importance of using MaskModule and DepthModule refinements to improve moving 
object detection and mapping. Fig. 50 describes the MonoRec algorithm inspired by the article [182].

DDSO (2022). Zhao et al.’s [145] DDSO is a monocular SLAM proposal that builds upon the DSO visual odometry framework [24]. 
The DDSO system incorporates deep neural networks trained in an unsupervised manner to enhance the accuracy and robustness of the 
DSO system. DSO estimates the pose from photometric information, eliminating the need to calculate feature descriptors. However, it 
has been demonstrated that direct methods are sensitive to photometric changes between frames and highly dependent on good 
initialization, which can be challenging in complex environments. In DSO, pose accuracy depends highly on the image alignment 
algorithm, which obtains inter-frame poses, optimizing the initial pose from a constant motion model. However, this constant motion 
model assumes that the current inter-frame pose is the same as the last, unsuitable for strong movements, motion blur, or highly 
repetitive textures. The constant motion model does not have prior camera pose information in DSO initialization, so a unit matrix is 
used empirically. In this way, DDSO improves the performance of DSO by enhancing this constant motion model using 
deep-learning-based pose estimation for initialization, replacing the unit matrix, and, for tracking, adding inter-frame pose infor-
mation. This novel initialization is achieved using a CNN called TrajNet, which is trained unsupervised using four geometric con-
straints. One of the main contributions of this study was the novel pose-to-trajectory constraint. TrajNet is formulated and trained 
along with a depth estimation network called DepthNet, where the geometry constraints between the outputs of each pair of deep 
models serve as a training monitor. So the key supervisory signal for TrajNet is integrated of: the view reconstruction constraint to take 
into account the view reconstruction errors coming from pairs of consecutive frames based on the same depth map; the smoothness 
constraint, which is a loss term that promotes the representation of geometric details; the depth alignment constraint, to promote scale 
consistency in the outputs of DepthNet by aligning the scale of adjacent depth maps; and the novel pose-to-trajectory constraint that 
aims to improve the trajectory generation ability of the network promoting the scale consistency for three consecutive poses taking into 
account inter-frame poses.

In DSO, the Gauss-Newton algorithm optimizes the total photometric error of a sliding window of 5–7 keyframes. Then, the whole 
process can be considered a nonlinear optimization problem, so an initial transformation should be provided, and it will be iteratively 
optimized; hence, DSO’s original proposal uses a unit matrix as the initial transformation. Furthermore, when tracking is lost, DSO 
initializes three motion models and 27 small rotations when image alignment fails, which is a complex process. DDSO TrajNet provides 
initial transformations and models for failure modes to overcome these issues. Experimental results proved that TrajNet integration 
allowed DDSO to outperform the original DSO system, allowing it to obtain robust and accurate trajectories and depth maps without 
complex calibration. Fig. 51 presents the DDSO algorithm inspired by the article [145].

7.3. ML + hybrid methods

Like traditional methods, there is a hybrid category for techniques that effectively combine direct and indirect principles. In this 
case, we considered the SVO [23] system, which combines direct pixel information extraction with feature extraction to perform both 
camera tracking and sparse depth map creation. In recent years, this system has been updated, integrating a CNN to enhance its 
generalization and initialization capabilities discussed in the next section. Despite the reduced number of works in this category, the 

Fig. 51. Diagram of MonoRec algorithm. Adapted from Ref. [182].
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scientific community has received this category well, being widely used for robotic implementations, thus reaching high citation 
scores.

CNN-SVO (2019). The implementation of depth filters in the SVO mapping thread and the proposed use of direct pixel matching in 
the semi-direct framework of SVO have enabled the system to achieve efficient camera motion estimation at high frame rates. 
However, this proposal still has shortcomings, especially regarding the high-depth uncertainty in the map point initialization process. 
This problem is addressed in the study of [66], where authors incorporated a CNN to overcome this depth uncertainty limitation. The 
system was built entirely over the SVO framework [23], adding prior depth knowledge obtained by the single-image CNN MonoDepth 
of [187] for reducing the uncertainty in identifying feature correspondences, which was built over the Resnet50 backbone using a 
variant of its encoder-decoder architecture. SVO’s original proposal divided the system into mapping and tracking threads. Depth 
values for each feature are obtained by finding feature correspondence over the epipolar line, recovering depth by triangulation. The 
mapping thread runs the initialization of new map points with high depth uncertainty, updating this depth uncertainty using depth 
filters created to approximate the mean and variance of current depth values to separate inliers from outliers; hence, a depth filter 
converges when a point depth uncertainty is small. However, in the original SVO, depth uncertainty tends to be large, leading to two 
problems: erroneous feature correspondence on the epipolar line and many depth estimations far from converging to their true depth. 
Consequently, the CNN depth prediction is used to estimate better the mean and variance used in each depth filter, allowing for faster 
and more accurate convergence.

As shown in Fig. 52, MonoDepth is added as a depth estimation module in the mapping thread, providing strong depth priors in the 
map points initialization process to initialize the depth filters, whereas the original SVO proposal initialized depth filters as average 
depth measurements of current image μn = 1/davg and variance were set as a function of the minimum depth of the image σ2

n = 1/
(6dmin )

2; CNN-SVO replaced these simple values with more precise information of the depth estimation coming from the CNN for each 
filter position as μn = 1/dCNN, σ2

n = 1/(6dCNN )
2. Experimental results demonstrated that adding prior CNN depth information 

improved the system’s performance for overexposed and underexposed images thanks to its illumination invariance properties, 
facilitating feature correspondence between views and overcoming key illumination issues of original SVO. Fig. 52 introduces the 
CNN-SVO algorithm inspired by the article [66].

7.4. General comments for ML approaches

As previously mentioned, machine learning techniques, particularly convolutional neural networks, have been extensively 
incorporated into various traditional proposals to address the issues and failure modes identified in each taxonomy category. It is worth 
noting that, as cited in works [104,163], some researchers believe that classic geometric approaches still outperform ML methods 
regarding reconstruction quality or tracking.

However, as analyzed in this article, machine learning researchers have attempted to address this issue by developing and 
implementing new convolutional neural network architectures and creating more robust datasets to improve the training process. On 
the other hand, as demonstrated in many of the reviewed systems above, CNN can be used not only to recover scene depth or camera 

Fig. 52. Diagram of CNN-SVO algorithm. Adapted from Ref. [66].
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pose but also to densify depth maps, estimate initialization parameters, perform preprocessing steps such as feature extraction or 
optical flow estimation, and perform additional tasks such as semantic segmentation. Thus, from diverse perspectives, CNN can 
positively contribute to SLAM, VO, and SFM. Another broadly cited problem of machine learning proposals is overfitting [171], as the 
authors mentioned above keep contributing to the strengthening of different datasets suggesting new datasets like [8,79,154,156–158, 
188] constantly facilitating researchers to perform more robust training processes and to incorporate more sophisticated training to 
their systems in the form of semi-supervised [182] and self-supervised approaches [5,132,180,189]. Similarly, some authors have 
reported problems related to the generalization of ML methods [60], which has been addressed by many researchers combining the use 
of datasets recorded in different situations like indoors [79], outdoors [127], autonomous driving [7] and even MAV [78] flying 
sequences. Thus, we can conclude that ML methods have explored various alternatives to solve the 3D reconstruction problem, making 
outstanding contributions to this research field. Furthermore, depending on the application that a SLAM, VO, or SFM system will have, 
we have gathered the same selection criteria described in classic approaches, adding specific criteria only applicable to ML systems, 
which are the CNN architectures that were integrated and the main estimation tasks that motivated the use of CNN for each system. 
Table 3 illustrates information gathered for 11 criteria reviewed in each ML system.

Additionally, we have run some implementations of the ML methods available as open-source code. Some examples of the 
implemented algorithm executions are shown in Fig. 53, where: Fig. 53.a. represents the input image, Fig. 53.b. presents results 
obtained using the DynaSLAM (indirect + sparse) algorithm, Fig. 53.c. presents results obtained using the CNN-DSO (direct + sparse) 
algorithm, and Fig. 53.d. presents results obtained using the CNN-SVO (hybrid) algorithm. The implemented examples were selected 
due to their availability and the capacity to run depending on the monocular RGB input modality as the unique source of information. 
It must be mentioned that methods like [2,10,59,134,139,141,145,163,171,182,190,191] were made publicly available by their 
open-source codes, but their open-source published version did not include their monocular RGB pipeline and they depend on 
additional information, like externally estimated optical flow or depth prior information; thus they were not included in Fig. 53 ex-
amples. Fig. 53 illustrates results obtained by implementing ML monocular SLAM, VO, and SFM systems over publicly available 
datasets.

8. Discussion

SLAM, VO, and SFM are problems that have been extensively studied over the last three decades, particularly in the last two 
decades, due to the limited computational power available to perform their constituent tasks. However, it should be noted that there 
are still unresolved issues that have motivated the development of the previously described systems. These include reinforcing existing 
systems, optimizing computational resources, adding scene comprehension capabilities, tracking and reconstructing moving objects, 
increasing map density, improving generalization capabilities for unseen environments, achieving per-pixel dense scaled recon-
struction, and others. For instance, reinforcement of currently available methods has been extensively studied by authors like [27,30, 

Fig. 53. Examples of results obtained by ML approach implementations. (a) represents the input image, (b) presents results obtained using the 
DynaSLAM (indirect + sparse) algorithm [192], (c) presents results obtained using the CNN-DSO (direct + sparse) algorithm [197], (d) presents 
results obtained using the CNN-SVO (hybrid) algorithm [196]. Top row results correspond to the indoor example sequence seq_01, and bottom row 
results correspond to the outdoor sequence seq_29 of the TUM-MONO dataset [127]. The examples were obtained through multiple executions of 
each algorithm in our previous comparative work [107]. For further information on the implementation and performance of each algorithm and 
category, we encourage the reader to address the paper [128] and the repository: https://github.com/erickherreraresearch/ 
MonocularPureVisualSLAMComparison [129].
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38,64,81] working on original systems still implementing classic techniques and implementing neural networks over classic imple-
mentations [2,6,66,110,138,139,146,171]. Optimization of computational resources has been studied mainly for those imple-
mentations made over embedded devices with little computation capacity, like UAVs or drones, where authors had to implement 
unique feature, point, and frame selection strategies to work on a reduced amount of information [6,23]. The addition of scene 
comprehension capabilities is addressed in classic methods like [38,81] adding scene comprehension modules, or using machine 
learning to label point sets belonging to that the network was previously trained to recognize [2,146]. Moving object detection and 
depth prediction have also been studied by authors like [182,198], who have used artificial intelligence to create masks to determine 
the probability of each pixel belonging to moving objects, favoring object detection, removal, and prediction. The increase of map 
density has also been addressed by using classic dense techniques based on the optical flow [85,91] or pixel intensities [4,27,37], even 
using neural networks trained for this purpose [6,60]. Authors like [58] proposed using multiple datasets in the training stage to 
increment generalization capabilities. In contrast, others, like [182], used multistage training techniques, and others applied ML 
regularization and data augmentation techniques. Moreover, the goal of recovering scene scale from monocular images had been 
studied using neural networks especially trained for such [60,174,193] or by including this parameter on the CNN inference model.

Despite the numerous proposals made by authors to overcome the failure of monocular 3D reconstruction modalities and open 
problems, many possibilities and combinations still require further study. Additionally, there are many more possibilities beyond this 
overview’s scope. Therefore, we have gathered cite score information of the methods reviewed in the previous sections, providing the 
reader with a sense of evolution in research fields.

The information presented and discussed in the following sections was gathered using the Scopus database, per-year citation 
metrics, and the taxonomy proposed in this paper. The data was structured in a data frame considering the categoric variables: method 
name, whether it was a Classic or ML method, its dense or sparse classification, its direct or indirect classification, and its taxonomy 
final category. The data frame also considered numeric variables for the year, and the number of cites the article has received each year 
since its publication. The citation score variable was normalized using the preProcess function of the caret R package, which uses the 
Min-Max Scaling method to allow the data transform to the scale from 0 to 1, which is compatible with the selected trend identifying 
technique. To identify the trend of each time series, we employed the prophet function of Facebook’s Prophet package in R which took 
the normalized citing score and the year as inputs, giving the trend and yearly components as outputs, from where we captured the 
trend, which was finally rescaled and plotted using Splines with Loess method for ease of visualization. Considering the limited amount 
of existing data (from 2005 to 2023) and the discrete nature of the dependent variable, trends and patterns were easy to visualize since 
there were no observed considerable fluctuations or randomness in the data; thus, the additive decomposition assumption was 
accepted. Nevertheless, due to the small sample size available, these observed patterns and trends cannot be considered for inferential 
purposes; thus, their use is limited to an interval from 2005 to 2023. In addition, it must be mentioned that forecasting and an in-depth 
time series analysis of the presented data are out of the scope of this study.

8.1. Classic vs. machine learning

Beginning with the primary classification of classic and machine learning (ML) methods, Fig. 54 displays citation scores for each 
category from 2005 to 2022. It is important to note that metrics from 2000 to 2005 (the year of the first cited system release [56]) were 
not provided due to their low citation score. Additionally, we did not include data for incomplete years, so metrics for 2023 were not 
considered for this analysis, as the year had not yet ended at the time of article submission. Ther citation scores presented in 
Figs. 54–57 correspond to the number of citations each study has gathered since its year of publication.

Fig. 54. Citation score evolution for classic and ML methods since 2005. Dashed lines represent the trend line for each classification obtained, 
setting a 99 % confidence interval and the Loess method.
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As evidenced in Fig. 54, over the last 18 years, classic methods have achieved higher citation scores attributed to the extensive time 
interval that these methods have been available, most of them as open-source implementations. It can be noticed that ML methods 
started to attract the research community’s attention in 2017 as pertaining citation scores kept increasing over time. We believe this 
trend will continue, so we expect ML citation scores to be close to the impressive values achieved by classic methods shortly.

8.2. Direct vs. indirect

Regarding the direct vs. indirect classification, common issues can be highlighted in both categories. Indirect methods mostly rely 
on geometric Bundle Adjustment based on reprojection error. However, some authors like [24,59] have pointed out that this procedure 
has drawbacks, such as relying only on the information corresponding to their feature types (such as corners, blobs, or line segments). 
Feature matching between frames can also introduce a significant number of outliers. As mentioned in Refs. [11,24,59], direct for-
mulations are sensitive to initialization due to the photometric effect of increasing non-convexity. Direct formulations are also sensitive 
to camera exposure and changes in white balance, being more sensitive to outliers (like motion blur or moving objects). In this way, 
many formulations have emerged to overcome the issues of each modality getting benefits from both. For example, some indirect 
implementations, like [59], introduced direct pixel information to densify the recovered depth maps while preserving an indirect 
backend. Indeed, there are direct formulations like [30] that implemented additional feature extraction techniques enhancing tracking 

Fig. 55. Citation score evolution for direct, indirect, and hybrid methods since 2005. Dashed lines represent the trend line for each classification 
obtained, setting a 99 % confidence interval and the Loess method.

Fig. 56. Citation score evolution for dense and sparse methods since 2005. Dashed lines represent the trend line for each classification obtained, 
setting a 99 % confidence interval and the Loess method.
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capabilities. Again, this was formally addressed by hybrid self-denominated semi-direct approaches [30,138], where the main dif-
ference with proposals like [30,59] resides in the ability to fuse both modalities in their optimization backend completely. The cat-
egories were processed with data from the Scopus database, so a citation progress analysis was performed over the years. Fig. 55 
represents the direct vs. indirect evolution classification from 2005 to 2022.

Fig. 55 shows that indirect methods are the most cited of the three taxonomy categories, closely followed by direct and hybrid 
approaches in the third position. This behaviour may be attributed to the ample time interval that indirect methods have been studied, 
being the first type of proposals that appeared in this research field. In contrast, the first direct processes were released in 2010, and 
hybrid techniques were addressed in 2014. It must be pointed out that, in this study, we have addressed 16 indirect, 17 direct, and two 
hybrid methods, so it is noticeable that hybrid approaches have reached an impressive number of citations despite the low number of 
works available in this category.

8.3. Dense vs. sparse

Next are dense and sparse categories for the third component of the proposed taxonomy, which relies on the number of points that 
conform to the final 3D reconstruction. As mentioned in works like [4,10,23,27,65,66,85,88,99,193,199], the selection process for 
each of them strongly depends on the final application for which some 3D reconstruction systems may be used or created. For instance, 
if the application requires maps as dense as possible for navigation [7,182], exploration [5,6,16,18] or augmented reality applications 
[41,114], then a dense approach is appropriate. However, if the application does not require high 3D reconstruction definition or is 
required for fast movement [11,23] or little computer capabilities processors applications [6,23,60], then a sparse system is suitable. 
Following the same process used for the remaining classifications, the database was processed using dense vs. sparse classification as a 
categorical variable. The results are presented in Fig. 56.

8.4. Complete taxonomy

Finally, for the sake of completeness, we analyzed the dataset using the complete taxonomy as a categorical variable. As established 
in section 5, this taxonomy comprises ten levels produced by combining the three classifications in every possible configuration. 
Classic + Dense + Direct, Classic + Sparse + Direct, Classic + Dense + Indirect, Classic + Sparse + Indirect, Classic + Hybrid, ML +
Dense + Direct, ML + Sparse + Direct, ML + Dense + Indirect, ML + Classic + Sparse + Indirect and ML + Hybrid. Fig. 57 describes the 
evolution of the taxonomy in each category of citations over time.

As evidenced in Fig. 57, the classic sparse indirect category achieved the highest citation scores, which remains the category that 
has most attracted the attention of researchers and inspired the most representative formulations. This behaviour may be attributed to 
the early availability of impressive methods like MonoSlam, PTAM, and ORB-SLAM [11,28,41] and the availability of their 
open-source codes, enabling their use in many implementations or for comparison with new proposals. In addition, the second most 
cited category is classic dense direct again, the high citation scores achieved may be caused by its capability to overcome one of the 
most critical issues of sparse indirect systems, which is the ability to recover well-defined depth maps that can be used for a large 
variety of applications. Finally, the third place is occupied by a relatively recent classic sparse direct approach (2018) that has attracted 
considerable attention from the scientific community. This behaviour could be motivated by the impressive results obtained by the 
systems derived from DSO [24], which significantly overcame the issue of noise introduced by direct pixel information extraction 
while keeping the set of points small enough to be processed with low computational resources. Thus, the effect observed in the citation 

Fig. 57. Citation score evolution for taxonomy proposed categories over time. Dashed lines represent the trend line for each classification obtained, 
setting a 99 % confidence interval and the Loess method.
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scores of the different categories in taxonomy can be explained because of outstanding works that have significantly contributed to the 
state-of-the-art like MonoSlam, PTAM, DTAM, LSD-SLAM, REMODE, SVO, ORB-SLAM, DSO, among others. Fig. 58 lists systems 
reviewed as yearly released in this article with their corresponding citation scores.

8.5. Comparative analysis

In our previous study [128], we compared the most important publicly available monocular SLAM, VO, and SFM methods suitable 
for 3D reconstruction tasks. For that comparison, we selected the most representative works for each category: indirect + sparse [38], 
indirect + dense [82], direct + dense [3], direct + sparse [24,30,64], hybrid, and three machine learning extensions of the classic 
approaches [66,102,197]. We extensively tested each algorithm in the most complete monocular pure visual dataset, the TUM-mono 
dataset [127], which includes 50 sequences for outdoor and indoor environments, covering a wide range of motion patterns. Following 
the recommendations of [25,127,200], we performed ten executions of each sequence forwards and backwards, giving 1000 execu-
tions for each algorithm and a total of 10000 observations that allowed us to build a large database which was used to perform a 
statistical analysis of the metrics proposed in the benchmark. The metrics considered the translation error et , rotation error er, scale 
error es, alignment error ealign for the start and end segments and the translational RMSE ermse. The gathered data was evaluated using 
the accumulated error and motion bias plots proposed by Ref. [127], and then each variable average behaviour was tested using the 
Kruskal-Wallis and the pairwise Wilcoxon signed-rank tests. Table 4 presents an extract of the results obtained in the study [128].

As shown in Table 4, the sparse direct methods present clear advantages over the other evaluated methods, registering a significant 
error reduction compared to the rest of the classic taxonomy. Thus, it is evident that the introduction of the DSO method represents one 
of the most important contributions in this research field, allowing for impressive SLAM development and VO systems and a 
considerable error reduction, which directly contributes to enhancing the precision of these systems. Moreover, it can be noticed that 
the addition of ML modules in classic pipelines significantly improved the performance of the classic methods, which is evidenced by a 
critical error reduction in the CNN-SVO and DynaSLAM methods when compared with their classic versions. For further details on the 
experimental protocol and the comparative results, we encourage the reader to address the paper [107] and the repository [108].

From all the information detailed in this work, we can provide the reader with a summary of the main advantages and disad-
vantages that have been identified for each category of the proposed taxonomy, according to what the authors detailed in their 
publications and with the experience that we gathered by implementing more than ten publicly available methods. The main benefits 

Fig. 58. Reviewed methods citation score. The right legend depicts a colour for each taxonomy classification ordered from the highest cited 
category to the lowest. The methods are ordered on the vertical axis according to their year of appearance.
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and shortcomings of each category are summarized in Table 5.
Table 5 shows that each category has its own set of advantages and issues inherent to the framework’s nature. This indicates a trade- 

off between sparsity and preprocessing. Sparser methods result in faster and lighter performance due to the limited information, but 
the final reconstruction may lack crucial details which are significant for certain applications. Likewise, preprocessing entails addi-
tional steps, varying in computational workload. If preprocessing is focused on reducing the amount of information, like feature 
extraction, then the method will become lighter and faster, but it may present issues in texture-less areas due to the lack of corners and 
edges commonly tracked as features.

However, optical flow can provide more information at the cost of high computational requirements. Therefore, many authors have 
contributed to ML extensions, employed CNNs to densify final reconstructions, or used lighter ML alternatives to recover optical flow. 
Finally, it must be mentioned that a light advantage still exists in using classic techniques due to the large number of publicly available 
systems for implementation and testing. This also represents a scalability advantage for the classic methods, considering their 
availability and multiple researchers’ reports of their ease of integration with existing ML modules to contribute to multiple tasks.

9. Conclusions

Scene 3D reconstruction is a complex problem that can be addressed using various techniques and technologies. This work provides 
an overview of one of the most attractive alternatives to 3D reconstruction: the visual reconstruction of an environment using a 
monocular RGB camera as the sole source of information. We discussed several input modes and their advantages and disadvantages, 
considering three main techniques applicable to this task (SLAM, VO, and SFM) and establishing a taxonomy containing the most likely 
system configurations in the literature. Three classifications were defined, providing ten possible combinations comprising an 
extended taxonomy. Also, 42 of the most representative monocular systems were reviewed comprehensively. In order to guide the 
selection and application of such systems, we have gathered nine criteria for each classic system being decision components for the 
implementation of a 3D reconstruction system, which are: type of algorithm, tracking method, map density, pixels used, estimation 
method, global optimization, relocalization, loop closure, and availability. We have gathered eleven criteria for ML methods, the same 
as classic procedures, although introducing two additional criteria for the network: CNN architecture and CNN main estimation tasks.

Furthermore, researchers can use the comprehensive information gathered to select the most suitable algorithm or taxonomy 
category for their projects. Additionally, we have discussed the main strengths and shortcomings of each of the classifications that 
comprise the taxonomy, and we have analyzed the progress of each classification and category of the taxonomy in the last 18 years 
according to their citation scores that give an intuition of the impact and acceptance that each of them has produced in this research 
field. Finally, for future work, we will use the proposed taxonomy to compare each category’s most representative open-source al-
gorithms to determine their advantages and disadvantages to select the more suitable methodology for monocular 3D reconstruction of 
indoor scenes.

Data availability statement

Comparative data and 20 video examples of multiple algorithm executions are publicly available in the repository: https://github. 
com/erickherreraresearch/MonocularPureVisualSLAMComparison.

Table 4 
Medians and Kruskal-Walli’s comparisons for the error metrics of the TUM-mono benchmark. Adapted from Ref. [128].

Method Translation error Rotation error Scale error Start-segment 
alignment error

End-segment 
alignment error

RMSE

Kruskal-Wallis 
general test

χ2 = 3582.9 pval. =

2.2e − 16
χ2 = 2278.4 pval. =

2.2e − 16
χ2 = 2419.1 pval. =

2.2e − 16
χ2 = 4575.7 pval. =

2.2e − 16
χ2 = 3718 pval. =

2.2e − 16
χ2 = 530.78 pval. =

2.2e − 16
DSO (Dir. + Spa.) 0.8064585a 0.8800369b 1.064086ab 0.003974759a 0.004184367a 0.1950799ab

LDSO (Dir. + Spa.) 0.7892125a 0.9135608ab 1.061302ab 0.007925665b 0.008009198b 0.1944492a

CNN-DSO (Dir. +
Spa. + ML)

0.7980411a 0.9618528a 1.058849a 0.008987173b 0.006199582c 0.2083872ab

DSM (Dir. + Spa.) 0.8519143b 1.1117710c 1.064615b 0.015794222c 0.015537213d 0.2167750b

DynaSLAM (Ind. +
Spa. + ML)

1.7473504c 1.5730542d 1.126499c 0.004286919a 0.005516179e 0.2389837cd

ORB-SLAM2 (Ind. 
+ Spa.)

2.8738313d 2.3585843e 1.260155d 0.004311949a 0.005102672e 0.3165024e

CNN-SVO (Hybrid 
+ ML)

1.6248001c 1.4159545d 1.086399e 0.067201999d 0.062036008f 0.2373532c

DF-ORB-SLAM 
(Ind. + Den.)

3.6423921e 3.4940400f 1.238232f 0.053360456e 0.084420570g 0.3643844e

SVO (Hybrid) 5.4819407f 3.3772024f 1.343603g 0.108150349f 0.117753996h 0.3642558e

LSD-SLAM (Dir. +
Den.)

9.1403348g 14.9621188g 2.044298h 0.158469383g 0.190127787i 0.3507099d

Means with different letters in the same column differ significantly according to the Kruskal-Walli’s test, and pairwise Wilcoxon signed rank test for 
pvalue ≤ 0.05.
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Table 5 
Pros and shortcomings for each category of the proposed taxonomy.

Category Pros Cons

Classic +
Indirect +
Sparse

Computationally efficient by using only a subset of features. Feature 
extraction enhances matching across frames. Preprocessing 
refinement produces high accuracy.

Sparse reconstructions can suffer from a lack of detail critical for some 
applications. Dependent on repeatability and invariance of extracted 
features. Fail in low texture environments lacking features. Some of 
these methods may produce localization errors when visiting low- 
textured areas.

Classic +
Indirect +
Dense

Commonly utilises optical flow to maximize pixel data for dense 
reconstructions. Optical flow provides motion cues to aid tracking and 
mapping. Enhanced refinement through optimization techniques 
using optical flow information.

Optical flow estimation is a computationally expensive preprocessing 
step. Performance relies heavily on optical flow accuracy. Sensitivity 
to scenarios with independently moving objects.

Classic +
Direct +
Dense

Able to utilize most pixel data, leading to more detailed 
reconstructions. Bypass the need for feature extraction or optical flow 
estimation steps. Can operate directly on photometric data for 
estimating geometry.

Rely on brightness constancy assumption, prone to failure with 
illumination changes. Require precise initialization due to non-convex 
optimization. Computationally intensive due to large data volumes. A 
large amount of information implies large outlier volumes, so robust 
and efficient filtering techniques are required.

Classic +
Sparse +
Direct

Avoid relying on geometric priors that may introduce bias. Able to 
sample pixels with various intensity gradients, capturing edges, 
corners, textures, and many other types of information. Can operate 
directly on photometric data for estimating geometry. More efficient 
computation compared to dense methods.

Sparse reconstructions can suffer from a lack of detail critical for some 
applications. Susceptible to noise without dense pixel information. 
Struggle with texture-less regions lacking gradients.

Classic +
Hybrid

Combines the benefits of both direct pixel data and feature extraction. 
Proficient tracking from direct alignment and feature matching. 
Computationally efficient compared to purely dense methods.

Complexity in integrating both modalities into a unified backend. 
Potentially suboptimal performance compared to dedicated direct/ 
indirect methods. Very few exemplar methods exist currently. 
Algorithms may present relocalization and loop closure errors in 
texture-less scenarios.

ML + Indirect 
+ Sparse

Augments feature extraction, description and matching. Provides 
strong priors to aid SLAM initialization and scale recovery. Maintains 
efficiency of sparse optimization backend.

Sparse reconstructions can suffer from a lack of detail critical for some 
applications. Risk of overfitting with limited training data complexity. 
Generalization remains a challenge. A sparse set of points based on 
feature matching can be insufficient to recover accurate scales and 
reconstructions.

ML + Indirect 
+ Dense

Integration of learning enhances optical flow accuracy. CNNs boost 
feature extraction, matching, and pose estimation. More robust to 
challenging lighting conditions and motion patterns compared to 
classical flow. Enhanced refinement through optimization techniques 
using optical flow information.

Computationally expensive due to dense flow estimation. Complexity 
in integrating CNN outputs into optimization backend. Generalization 
can be poor when exploring environments or motion patterns 
considerably different from the training data.

ML + Direct +
Dense

CNNs can enhance initialization and handle photometric variations. 
End-to-end learning is feasible for pose and depth estimation. They 
can recover denser reconstructions. CNNs can be used to overcome 
scale ambiguity and densify the reconstructions based on pixel 
information.

Still rely on brightness constancy assumption. Susceptible to 
overfitting due to limited training data complexity. Generalization 
can be poor in novel environments. High computational cost due to 
large data volumes. Still susceptible to large amounts of outliers.

ML + Direct +
Sparse

CNN integration improves initialization and tracking robustness. 
Depth priors from CNNs mitigate scale ambiguity. Maintain 
computational efficiency of sparse methods. A reduced set of filtered 
pixel information reduces computational complexity. Less susceptible 
to outliers compared to dense methods. Reconstruction quality and 
CNN performance benefit considerably from a good point selection 
strategy.

Restricted by sparsity, lacking detail in reconstructions. 
Generalization remains a challenge. Access to training data with 
ground truth depth is limited. Susceptible to noisy information 
coming from the CNNs. CNN integrations can only contribute in 
scenarios similar to training data.

ML + Hybrid Combines the benefits of learning and direct alignment techniques. 
Improves initialization while retaining tracking precision. Efficient 
compared to dense learned methods. More stable performance 
compared to classic hybrid techniques.

Very few exemplar methods exist currently. Complexity in integrating 
modalities into a unified backend. Generalization can be poorer than 
dedicated learned methods. Algorithms may present relocalization 
and loop closure errors in textureless scenarios. Considerably limited 
to producing sparse reconstructions due to their indirect modules.
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influence the work reported in this paper.
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