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Consider the Euclidean space R3 endowed with a canonical semi-symmetric non-
metric connection determined by a vector field C ∈ X(R3). We study surfaces when 
the sectional curvature with respect to this connection is constant. In case that the 
surface is cylindrical, we obtain full classification when the rulings are orthogonal 
or parallel to C. If the surface is rotational, we prove that the rotation axis is 
parallel to C and we classify all conical rotational surfaces with constant sectional 
curvature. Finally, for the particular case 1

2 of the sectional curvature, the existence 
of rotational surfaces orthogonally intersecting the rotation axis is also obtained.

© 2024 Elsevier Inc. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

Friedmann and Schouten introduced in 1924 the notion of a semi-symmetric connection in a Rieman-
nian manifold [5]. An affine connection ∇̃ in a Riemannian manifold (M̃, ̃g) is said to be semi-symmetric 
connection if there is a non-zero vector field C ∈ X(M̃) such that its torsion T satisfies the identity

T̃ (X,Y ) = g̃(C, Y )X − g̃(C, X)Y, X, Y ∈ X(M̃). (1)

If in addition ∇̃g̃ = 0, the connection ∇̃ is called a semi-symmetric metric connection [7]. Yano studied 
semi-symmetric metric connections with zero curvature and when the covariant derivative of the torsion 
tensor vanishes [15]. Submanifolds of Riemannian manifolds with semi-symmetric metric connections have 
been also investigated: without aiming a complete list, we refer to the readers to [8–11,13,14].
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If ∇̃g̃ �= 0, the connection is called semi-symmetric non-metric connection (snm-connection to abbreviate) 
[1,2]. In this case, there is a relation between ∇̃ and the Levi-Civita connection ∇̃0 of (M̃, ̃g), namely,

∇̃XY = ∇̃0
XY + g̃(C, Y )X, X, Y ∈ X(M̃). (2)

Such as it occurs for semi-symmetric metric connections, it is natural to study submanifolds of Riemannian 
manifolds endowed with a snm-connection ∇̃ [3].

Let M be a submanifold of M̃ . Denote by ∇ (resp. ∇0) the induced connection on M by ∇̃ (resp. ∇̃0). 
The Gauss formulas are given by

∇̃XY = ∇XY + h(X,Y ),

∇̃0
XY = ∇0

XY + h0(X,Y ),

for all X, Y ∈ X(M), where h is a (0, 2)-tensor field on M and h0 is the second fundamental form of M . It 
is known that h = h0 [2]. Hence that problems of extrinsic nature are the same one that for the Levi-Civita 
connection.

We consider intrinsic geometry of submanifolds. One of the main concepts in intrinsic Riemannian ge-
ometry is that of sectional curvature. It is natural to carry this concept for snm-connections. However, the 
sectional curvature of (M̃, ̃g) with respect to ∇̃ cannot be defined by the usual way as the Levi-Civita connec-
tion ∇̃0. This is because if R̃ is the curvature tensor of ∇̃, the quantity g̃(R̃(e1, e2)e2, e1), where {e1, e2} is an 
orthonormal basis of a plane section π in TpM̃ , depends on the basis {e1, e2}: see Sect. 2 for details. In con-
trast, the third author of this paper, jointly with I. Mihai, proved that g̃(R̃(e1, e2)e2, e1) + g̃(R̃(e2, e1)e1, e2)
is independent on the basis [12]. Then they introduced the following notion of sectional curvature for snm-
connections.

Definition 1.1. Let (M̃, ̃g) be a Riemannian manifold endowed with a snm-connection ∇̃. If π is a plane in 
TpM̃ with an orthonormal basis {e1, e2}, then the sectional curvature of π with respect to ∇̃ is defined by

K̃(π) = g̃(R̃(e1, e2)e2, e1) + g̃(R̃(e2, e1)e1, e2)
2 . (3)

Once we have the notion of sectional curvature, it is natural to ask for those submanifolds with constant 
sectional curvature. As for the Levi-Civita connection, this question is difficult to address in all its generality.

In this paper, we consider that the ambient space is the 3-dimensional Euclidean space R3 endowed 
with the Euclidean metric 〈, 〉. The amount of snm-connections of R3 is given by the vector fields C in the 
definition (1) of a semi-symmetric connection. One of the simplest choices of snm-connections of R3 is that 
C is a canonical vector field. To be precise, let (x, y, z) be canonical coordinates of R3 and let {∂x, ∂y, ∂z}
be the corresponding basis of X(R3). In fact, if the vector field C is assumed to be canonical, namely 
C ∈ {∂x, ∂y, ∂z} then, after a change of coordinates of R3, C is a unit constant vector field.

Definition 1.2. A snm-connection ∇̃ on R3 is said to be canonical if C ∈ X(R3) is a unit constant vector 
field.

From now on, unless otherwise specified, we denote by C a unit constant vector field on R3.
Definitively, the problem that we study is the classification of surfaces with constant sectional curvature 

for a given canonical snm-connection ∇̃ of R3. A way to tackle this problem is to impose a certain geometric 
condition on the surface. A natural condition is that the surface is invariant by a one-parameter group of 
rigid motions. Denote by K the sectional curvature with respect to the induced connection on the surface 
from ∇̃. Assuming a certain invariance of the surface, it allows us to expect that the equation K = c can 
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be expressed as an ordinary differential equation, where, under mild conditions, the existence is assured. 
For example, we can assume that the surface is invariant by a group of translations or that the surface is 
invariant by a group of rotations. In the first case, the surface is called cylindrical and in the second one, 
rotational surface, or surface of revolution.

The organization of this paper is according to both types of surfaces. In Sect. 2 we prove an useful formula 
for computing the sectional curvature K of a surface in terms of that of R3 and the Gaussian and mean 
curvatures of the surface. We will show some explicit examples of computations of sectional curvatures.

Section 3 is devoted to cylindrical surfaces. A cylindrical surface can be parametrized by ψ(s, t) =
γ(s) + t�w, s ∈ I ⊂ R, t ∈ R, where �w ∈ R3 is a unitary vector and γ : I → R3 is a curve contained in a plane 
orthogonal to �w. The surface is invariant by the group of translations generated by �w. After computing 
the sectional curvature K in Theorem 3.1, in Corollary 3.2 we prove that any cylindrical surface whose 
rulings are parallel to C has constant sectional curvature K, being K = 1

2 . Another interesting case of 
cylindrical surfaces is that the rulings are orthogonal to C. We obtain a full classification of these cylindrical 
surfaces with K constant depending on the sign of K (Corollary 3.3). For the particular values K = 1/2
and K = −1/2, in Corollary 3.4 we obtain explicit parametrizations of the surfaces.

Rotational surfaces are invariant by rotations about an axis L of R3 and such surfaces with K constant 
will be studied in Sect. 4. It is worth to point out that there is not a priori relation between the axis L
and the vector field C that defines the canonical snm-connection. However, we prove in Theorem 4.1 that L
and C must be parallel. In Theorem 4.3, we classify all conical rotational surfaces with K constant proving 
that these surfaces are planes or circular cylinders. As a last observation, when K = 1

2 , in Theorem 4.5, the 
existence of rotational surfaces orthogonally intersecting the rotation axis is also obtained.

2. Preliminaries

Let (M̃, ̃g) be a Riemannian manifold of dimension ≥ 2 and let ∇̃ be an affine connection on M̃ . The 
torsion and curvature of ∇̃ are respectively a (1, 2)-tensor field T̃ and a (1, 3)-tensor field R̃ defined by

T̃ (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ],

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,

for X, Y, Z ∈ X(M̃). Let ∇̃ be a snm-connection on (M̃, ̃g) determined by a vector field C ∈ X(M̃). Using 
(2), there is also a relation between R̃ and the Riemannian curvature tensor R̃0 of ∇̃0 [1,12]. Indeed, for 
orthonormal vectors e1, e2 ∈ TpM̃ , p ∈ M̃ , we have

g̃(R̃(e1, e2)e2, e1) = g̃(R̃0(e1, e2)e2, e1) − e2(g̃(C, e2)) + g̃(C, ∇̃0
e2e2) + g̃(C, e2)2.

Although the first term at the right hand-side is the sectional curvature of the plane section π = span{e1, e2}, 
the term at the left hand-side depends on the choice of the basis of π. Therefore, the value g̃(R̃(e1, e2)e2, e1)
does not stand for a sectional curvature. The quantity (3) was proposed in [12] as the definition of sectional 
curvature of π with respect to ∇̃ because it is independent on the basis in TpM̃ . In case that {e1, e2} is an 
arbitrary basis of π, it is immediate to see

K̃(π) = g̃(R̃(e1, e2)e2, e1) + g̃(R̃(e2, e1)e1, e2)
2(g̃(e1, e1)g̃(e2, e2) − g̃(e1, e2)2)

. (4)

From now on, suppose that M̃ is the Euclidean space R3. We compute the sectional curvature of a plane 
of R3.
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Proposition 2.1. Let ∇̃ be a canonical snm-connection on R3. If π is a plane of R3, then its sectional 
curvature is

K̃(π) = 〈�u,C〉2 + 〈�v,C〉2
2 ,

where {�u, �v} is an orthonormal basis of π. As a consequence, K̃(π) is constant with 0 ≤ K̃(π) ≤ 1
2 . 

Furthermore, K̃(π) = 0 (resp. K̃(π) = 1
2) if and only if π is perpendicular to C (resp. π is parallel to C).

Proof. Using (2) we compute

∇̃�u�u = 〈�u,C〉�u, ∇̃�u�v = 〈�v,C〉�u,

∇̃�v�u = 〈�u,C〉�v, ∇̃�v�v = 〈�v,C〉�v,

and

∇̃�u∇̃�v�v = 〈�v,C〉2�u, ∇̃�v∇̃�u�v = 〈�u,C〉〈�v,C〉�v,

∇̃�v∇̃�u�u = 〈�u,C〉2�v, ∇̃�u∇̃�v�u = 〈�u,C〉〈�v,C〉�u.

Also it is easy to see [�u, �v] = 0. Hence the curvature tensor R̃ is determined by

R̃(�u,�v)�v = 〈�v,C〉2�u− 〈�u,C〉〈�v,C〉�v,
R̃(�v, �u)�u = 〈�u,C〉2�v − 〈�u,C〉〈�v,C〉�u.

This gives the formula for K̃(π). The last statement is a consequence of this formula. �
Remark 2.2. The notion of scalar curvature at a point p ∈ R3 with respect to a snm-connection ∇̃ can be 
introduced in a similar manner as for the Levi-Civita connection. Let {�u, �v, �w} be an orthonormal basis of 
TpR3, p ∈ R3. The scalar curvature ρ with respect to ∇̃ is defined by

ρ(p) = K̃(�u,�v) + K̃(�u, �w) + K̃(�v, �w), p ∈ R3.

If ∇̃ is canonical, then by Proposition 2.1 the scalar curvature is constant, namely ρ(p) = 1, for every 
p ∈ R3.

We conclude this section establishing a relation between the sectional curvatures K and K̃ of a surface in 
R3 in terms of the Gaussian and the mean curvatures of the surface. Let M be an oriented surface immersed 
in R3 and N its unit normal vector field. Let also ∇̃ be a snm-connection on R3 determined by an arbitrary 
vector field C ∈ X(R3). We have the decomposition of C in its tangential and normal components with 
respect to M ,

C = C� + 〈C, N〉N.

If X, Y, Z, U ∈ X(M), then the Gauss equation with respect to ∇̃ is (see [2]):

〈R(X,Y )Z,U〉 = 〈R̃(X,Y )Z,U〉 − 〈h(X,Z), h(Y,U)〉 + 〈h(X,U), h(Y,Z)〉
+ 〈C, N〉 (〈h(X,Z), N〉〈Y,U〉 − 〈h(Y,Z), N〉〈X,U〉) .

(5)
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Proposition 2.3. Let M be an oriented surface in R3 and denote by G and H the Gaussian curvature and 
the mean curvature of M , respectively, with respect to the Levi-Civita connection. Then

K = K̃ + G− 〈C, N〉H. (6)

Moreover, if p ∈ M then there is an orthogonal basis {e1, e2} of TpM such that

〈R(e1, e2)e2, e1〉 = 〈R̃(e1, e2)e2, e1〉 + h11h22 − g11h22〈C, N〉,
〈R(e2, e1)e1, e2〉 = 〈R̃(e2, e1)e1, e2〉 + h11h22 − g22h11〈C, N〉,

(7)

where gij = 〈ei, ej〉 and hij are the coefficients of the second fundamental form h.

Proof. Since the codimension of M in R3 is 1, it has trivially flat normal bundle. Let {e1, e2} be an 
orthogonal basis of TpM such that g12 = 0 and h0

12 = 0, where h0
ij are the coefficients of the second 

fundamental form of M with respect to the Levi-Civita connection: see [4, Props. 3.1 and 3.2]. Therefore 
we have h12 = 0 because h = h0. By the Gauss equation (5) we obtain (7). With respect to this basis, we 
have

G = h11h22

g11g22
, H = g22h11 + g11h22

2g11g22
.

Identity (6) is a consequence of (7) and formulas (4) for K and K̃. �
Remark 2.4. Identity (6) is satisfied for any vector field C ∈ X(R3). Notice also that K is invariant by 
translations of R3. This is because G and H do not change, as well as K̃, because a plane π is not affected 
by translations. However, rigid motions change the value of K̃ and, consequently, of K. This is because of 
the presence of the vector field C in (2) for computing the successive covariant derivatives.

Simple consequences of the relation (6) appear in the following result.

Corollary 2.5.

(1) For a plane, we have K = K̃. In particular, K ≥ 0 and equality holds if and only if the plane is 
orthogonal to the vector field C.

(2) For a cylindrical surface whose rulings are parallel to C, we have K = K̃.

Proof. It is immediate because for a plane we have G = H = 0, and for a cylindrical surface with rulings 
parallel to C we have G = 0 and 〈C, N〉 = 0. �

Thanks to this corollary we see that a plane and a cylindrical cylinder satisfy the equality K = K̃. In 
general, a surface satisfies K = K̃ if and only if G = 〈C, N〉H. In case that C is a canonical vector field, we 
construct such a surface as follows.

Example 2.6. Let C = ∂z. To find a surface satisfying G = 〈∂z, N〉H, we consider surfaces that are graphs 
of smooth functions z = u(x, y), where (x, y) ∈ Ω ⊂ R2. Then it is not difficult to find that the relation 
G = 〈N, ∂z〉H is written by

2(uxxuyy − u2
xy) = (1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy.
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Fig. 1. Graph of z = − log(cos(x) cos(y)).

We find solutions of this equation by the technique of separation of variables. Assuming u(x, y) = f(x) +g(y), 
for smooth functions f = f(x) and g = g(y), x ∈ I ⊂ R, y ∈ J ⊂ R, the above equation becomes

2f ′′g′′ = f ′′(1 + g′ 2) + g′′(1 + f ′ 2), (8)

for all x ∈ I, y ∈ J . Here a prime denotes the derivative with respect to each variable. A solution of Eq. 
(8) appears when f and g are linear functions, f ′′ = g′′ = 0 identically. Then M is a plane parallel to the 
xy-plane. We discard this case by assuming f ′′g′′ �= 0 on I × J . Dividing Eq. (8) by f ′′g′′, we obtain

2 − 1 + g′ 2

g′′
= 1 + f ′ 2

f ′′ .

Since the left hand-side depends only on the variable y and the right hand-side on the variable x, then we 
deduce the existence of the nonzero constant c such that

2 − 1 + g′ 2

g′′
= 1

c
= 1 + f ′ 2

f ′′ .

Notice that if c = 1/2, then 1 + g′ 2 = 0, which it is not possible. By solving these equations, we obtain, up 
to translations of x and y and suitable constants,

u(x, y) = −1
c

log cos(cx) − 2c− 1
c

log cos( cy

2c− 1).

See Fig. 1 for the particular case c = 1.

3. Cylindrical surfaces

Let M be a cylindrical surface in R3 whose rulings are parallel to �w, where �w ∈ R3, |�w| = 1. If γ = γ(s)
is the generating curve of M contained in a plane orthogonal to �w, then a parametrization of M is

ψ(s, t) = γ(s) + t�w, s ∈ I, t ∈ R. (9)

Without loss of generality, we suppose that γ is parametrized by arc-length. Let n be the unit normal vector 
of γ and let κ be the Frenet curvature of γ with γ′′ = κn. Since γ is contained in a plane orthogonal to 
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�w, consider the orientation on γ such that (γ′, �w, n) = 1, where (�a, �b, �c) stands for the determinant of the 
matrix formed by three vectors �a, �b, �c of R3.

Theorem 3.1. Let ∇̃ be a canonical snm-connection on R3. If M is a cylindrical surface parametrized by 
(9), then its sectional curvature K with respect to ∇̃ is

K = 1
2
(
〈�w,C〉2 + 〈γ′,C〉2 − κ〈n,C〉

)
. (10)

Proof. The tangent plane of M is spanned by an orthonormal basis {e1, e2}, where e1 = ψs = γ′ and 
e2 = ψt = �w. We know that the Gaussian curvature is G = 0. The Gauss map and the mean curvature of 
M are given by

N = γ′ × w, H = (γ′, w, γ′′)
2 = κ

2 .

We compute the covariant derivatives as follows

∇̃e1e1 = γ′′ + 〈γ′,C〉γ′, ∇̃e1e2 = 〈�w,C〉γ′,

∇̃e2e1 = 〈γ′,C〉�w, ∇̃e2e2 = 〈�w,C〉�w.

Because [e1, e2] = ∇̃0
e1e2 − ∇̃0

e2e1, we conclude that [e1, e2] = 0. We also compute

∇̃e1∇̃e2e2 = 〈�w,C〉2γ′,

∇̃e2∇̃e1e2 = 〈�w,C〉〈γ′,C〉�w,
∇̃e2∇̃e1e1 = (〈γ′′,C〉 + 〈γ′,C〉2)�w,
∇̃e1∇̃e2e1 = 〈γ′′,C〉�w + 〈γ′,C〉〈�w,C〉γ′,

and thus

K̃ = 1
2
(
〈�w,C〉2 + 〈γ′,C〉2

)
.

By (6) we find

K = 1
2
(
〈�w,C〉2 + 〈γ′,C〉2 − (γ′, �w,C)(γ′′, γ′, �w)

)
.

The result follows because γ′ × �w = n and γ′′ = κn. �
We distinguish two particular cases, when the rulings are parallel or orthogonal to the constant vector 

field C.

Corollary 3.2. Any cylindrical surface whose rulings are parallel to C has constant sectional curvature K =
1/2 with respect to a canonical snm-connection determined by C.

Suppose that the rulings are orthogonal to C. In the next result we are going to obtain explicit 
parametrizations of cylindrical surfaces with constant sectional curvature. Without loss of generality, we 
suppose that C = ∂z and �w = (0, 1, 0). Then γ is contained in the xz-plane, say γ(s) = (x(s), 0, z(s)), for 
smooth functions x, z : I → R. The case that M is a plane is particular. Any plane of R3 perpendicular to 
∂z can be viewed as a cylindrical surface with rulings orthogonal to ∂z. By Proposition 2.1, we know that 
its curvature K is constant with 0 ≤ K ≤ 1 . We discard this case.
2
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Fig. 2. Graphics of generating curves of Corollary 3.3: K = 1 (left), K = 0 (middle) and K = −1 (right).

Corollary 3.3. Let ∇̃ be the canonical snm-connection determined by ∂z and M be a non-planar cylindrical 
surface whose rulings are orthogonal to ∂z. If the sectional curvature K with respect to ∇̃ is constant, then 
the parametrization of the generating curve γ is

(1) Case K > 0, then γ(s) = (
∫ s

√
1 − 2K tanh2

(√
2Kt

)
dt, − log(cosh(

√
2Ks))).

(2) Case K = 0, then γ(s) = (± tan−1 (√s2 − 1
)
−

√
s2 − 1, − log(s)).

(3) Case K < 0, then γ(s) = (
∫ s

√
1 − 2K tan2 (√−2Kt

)
dt, − log(cos(

√
−2Ks)).

Proof. Since γ is parametrized by arc-length, we know x′ 2 + z′ 2 = 1 and γ′ = (x′, 0, z′). By the choice of 
orientation on γ given in Theorem 3.1, the normal vector is n = (−z′, 0, x′). Identity (10) is

z′′ = z′ 2 − 2K.

The solution of this equation depends on the sign of K. Up to an additive constant on the functions x and 
z as well as in the parameter s, which it is only a translation of the surface (Remark 2.4), we have

(1) K > 0; then z(s) = − log(cosh(
√

2Ks)).
(2) K = 0; then z(s) = − log(s).
(3) K < 0; then z(s) = − log(cos(

√
−2Ks)).

The result follows from the identity x′ 2 + z′ 2 = 1. �

In Fig. 2 we depict some graphics of the generating curves for different values of K. Notice that the 
domain of γ is not R in general because the root that appears in the integrals that define the x-coordinate 
of γ. For example, if K = 0, then s ∈ [1, ∞).

It is worth to consider the cases K = 1/2 and K = −1/2. In such a case, the integrals of Corollary 3.3
can be explicitly solved.

Corollary 3.4. Let ∇̃ be the canonical snm-connection determined by ∂z, M a non-planar cylindrical surface 
whose rulings are orthogonal to ∂z, and K the sectional curvature of M with respect to ∇̃.

(1) If K = 1
2 , then γ(s) = (tan−1(sinh(s)), − log cosh(s)).

(2) If K = −1
2 , then γ(s) = (

√
2 sin−1 (√2 sin(s)

)
− cot−1

(√
cot(s)2 − 1

)
, − log cos(s)).

For K = 1/2, the curve γ in (1) is called grim reaper. The usual parametrization of the grim reaper is 
y(x) = − log(cos(x)) in the (x, y)-plane R2. This is deduced immediately by letting x = tan−1(sinh(s)). 
The grim reaper is a remarkable curve in the theory of curve-shortening flow [6].
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4. Rotational surfaces

In this section we study rotational surfaces with constant sectional curvature. A first problem is the 
relation between the axis L of the surface and the vector field C that defines the canonical snm-connection. 
As we said in Introduction, there is no a priori a relation between both. However, we prove that they must 
be parallel.

Theorem 4.1. Let ∇̃ be a canonical snm-connection on R3 determined by the vector field C and M be a 
rotational surface in R3 about an axis L. If M has constant sectional curvature K, then either M is any 
plane and K ≥ 0 or L is parallel to C.

Proof. After a change of coordinates in R3, we can suppose that the axis L of M is the z-axis. Let C =
a∂x + b∂y + c∂z, for a, b, c ∈ R. Let also γ : I ⊂ R → R3 be the generating curve of M which we can assume 
that it is contained in the xz-plane, namely,

γ(s) = (x(s), 0, z(s)), s ∈ I ⊂ R.

We also assume that γ is parametrized by arc-length, that is, x′ 2 + z′ 2 = 1. Let κ = x′z′′ − z′x′′ be its 
Frenet curvature with respect to the induced Levi-Civita connection ∇̃0. A parametrization of M is

ψ(s, t) = (x(s) cos t, x(s) sin t, z(s)), s ∈ I, t ∈ R.

For the computation of K, we calculate all terms of (6). The tangent plane of M is spanned by {e1, e2} =
{ψs, ψt}, where

e1 = (x′ cos t, x′ sin t, z′),

e2 = (−x sin t, x cos t, 0).

The coefficients of the first fundamental form are g11 = 1, g12 = 0 and g22 = x2. The unit normal vector of 
M is

N = (−z′ cos t,−z′ sin t, x′).

Then it is immediate

〈C, N〉 = −az′ cos t− bz′ sin t + cx′,

H = 1
2x (z′ + xκ),

G = z′κ

x
.

(11)

We now calculate K̃. For this we employ the definition (3) taking into account that now the denominator is 
2(g11g22 − g2

12) = 2x2. We begin computing the covariant derivatives ∇̃eiej , 1 ≤ i, j ≤ 2. From (3), we have

∇̃e1e1 = ψss + 〈C, e1〉e1,

∇̃e1e2 = ψst + 〈C, e2〉e1,

∇̃e2e1 = ψst + 〈C, e1〉e2,

∇̃e2e2 = ψtt + 〈C, e2〉e2.
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Similarly, the covariant derivatives of second order are calculated. We obtain

∇̃e1∇̃e2e2 = (∇̃e2e2)s + 〈C, ∇̃e2e2〉e1,

∇̃e2∇̃e1e2 = (∇̃e1e2)t + 〈C, ∇̃e1e2〉e2,

∇̃e2∇̃e1e1 = (∇̃e1e1)t + 〈C, ∇̃e1e1〉e2,

∇̃e1∇̃e2e1 = (∇̃e2e1)s + 〈C, ∇̃e2e1〉e1.

Obviously, [e1, e2] = 0. The curvature R̃ is

R̃(e1, e2, e2, e1) = 〈(∇̃e2e2)s − (∇̃e1e2)t, e1〉 + 〈C, ∇̃e2e2〉
= x2(b cos t− a sin t)2,

R̃(e2, e1, e1, e2) = 〈(∇̃e1e1)t − (∇̃e2e1)s, e2〉 + x2〈C, ∇̃e1e1〉

= x2 (x′(a cos t + b sin t) + cz′)2 .

This gives

K̃ = R̃(e1, e2, e2, e1) + R̃(e2, e1, e1, e2)
2x2

=1
2
(
(b cos t− a sin t)2 + (x′(a cos t + b sin t) + cz′)2

)
.

Finally, using (6), we obtain

K = 1
2
(
(b cos t− a sin t)2 + (x′(a cos t + b sin t) + cz′)2

)
+ G− (cx′ − z′(a cos t + b sin t))H.

The above expression can be written as a polynomial equation of type

2∑
n=0

(An(s) cos(nt) + Bn(s) sin(nt)) = 0.

Since the functions {cos(nt), sin(nt)}, 0 ≤ n ≤ 2, are linearly independent, then all coefficients An must 
vanish identically. The computation of these coefficients yields

A2 = (b2 − a2)z′ 2

4 ,

B2 = −1
2abz

′ 2,

A1 = az′(H + cx′),

B1 = bz′(H + cx′),

A0 = 1
4
(
a2 + b2 + 2c2

)
z′ 2 + 1

2
(
a2 + b2

)
x′ 2 − cHx′ −K + G.

From A2 = 0 and B2 = 0, we have the following discussion of cases.
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(1) Case z′ = 0 identically. Then z is a constant function and this implies that M is a horizontal plane. In 
particular, x′ 2 = 1. Without loss of generality, we suppose x(s) = s. Since G = H = 0, equation A0 = 0
is simply

K = 1
2(a2 + b2).

This proves the result in this case.
(2) Case z′(s) �= 0 at some value s. Then z′ �= 0 around s and A2 = B2 = 0 implies a = b = 0. Thus 

C = ±∂z and this proves that C is parallel to the z-axis, which it is the rotation axis of M . �
Once proved Theorem 4.1, we can suppose that the vector field C is ∂z and M is a rotational surface 

about the z-axis. Following the proof of the same theorem, all coefficients An and Bn, 1 ≤ n ≤ 2 are trivially 
0 except A0 which gives

K = z′ 2

2 + G− x′H.

Using the value of G and H given in (11), the above equation respesents the expression of K of a rotational 
surface in terms of its generating curve, namely,

K = 1
2x ((2z′ − xx′)κ + z′(xz′ − x′)). (12)

We study when the parentheses of the right hand-side of (12) are 0 identically.

Proposition 4.2. If K is constant in (12), then the functions 2z′−xx′ and xz′−x′ cannot vanish identically 
in I.

Proof. (1) Case 2z′ − xx′ = 0. Then neither x′ nor z′ can vanish identically. From (12), we have

x′ 2 = 8K
x2 − 2 .

Since x′ 2 + z′ 2 = 1, then

x′ 2 = 4
4 + x2 .

Combining both equations, we get 8K + (2K − 1)x2 + 2 = 0, then x is a constant function, which it is 
a contradiction.

(2) Case xz′ − x′ = 0. Since z′ = x′/x, then κ = −x′ 3

x2 . Thus (12) is

2Kx2 = x′ 4(x− 2).

On the other hand, it follows x′ 2 + z′ 2 = 1 that

x′ 2 = x2

1 + x2 .

Combining both equations we obtain that x = x(s) is a constant function. From xz′ − x′ = 0, we have 
that z is also constant, which it is a contradiction by regularity of γ. �
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In the following two results we study the case when the generating curve γ of M has constant curvature 
κ, that is, γ is a straight-line and a circle. First, suppose that γ is a straight-line. This implies that M is a 
conical rotational surface.

Theorem 4.3. Let ∇̃ be a canonical snm-connection and M be a rotational surface about the z-axis. Assume 
that the sectional curvature K of M with respect to ∇̃ is constant. If the generating curve of M is a 
straight-line, then either M is a circular cylinder and K = 1/2, or M is a horizontal plane and K = 0.

Proof. We follow the notation of Theorem 4.1. Since γ is parametrized by arc-length, then there is a real 
number θ ∈ R such that γ can be written as

γ(s) = (c1, c2) + (cos θ, sin θ)s, c1, c2 ∈ R.

Equation (12) is now

2K(s cos θ + c1) − sin2 θ(s cos θ + c1) + sin θ cos θ = 0.

This is a polynomial equation on s, so all coefficients must vanish. Therefore

(2K − sin2 θ) cos θ = 0,

(2K − sin2 θ)c1 + sin θ cos θ = 0.

(1) Case cos θ = 0. Then γ(s) = (c1, ±s +c2). In particular c1 > 0. This implies that M is a circular cylinder 
of radius √c1. The second equation gives K = 1/2.

(2) Case cos θ �= 0. Then 2K− sin2 θ = 0 and the second equation gives sin θ = 0. Thus γ(s) = (±s + c1, c2)
and M is a horizontal plane of equation z = c2. Here K = 0. �

Finally, we suppose that γ is a circle. This implies that M is torus of revolution or a rotational ovaloid.

Theorem 4.4. Let ∇̃ be a canonical snm-connection and M be a rotational surface about the z-axis. Assume 
that the sectional curvature K of M with respect to ∇̃ is constant. Then the generating curve of M cannot 
be a circle.

Proof. By contradiction, suppose that γ is a circle of radius r > 0. A parametrization of γ is

γ(s) = (c1, c2) + r (cos(s/r), sin(s/r)) .

Substituting into (12), we obtain

2K(c1 + r cos(s/r)) − 1
r

(2 cos(s/r) + (c1 + r cos(s/r)) sin(s/r))

− cos(s/r) ((c1 + r cos(s/r)) cos(s/r) + sin(s/r)) = 0.

This equation writes as

3∑
n=0

(An cos(s/r) + Bn sin(s/r)) = 0,

where An and Bn are real constants. Since all An and Bn must 0, a computation gives A3 = − r
3 , obtaining 

a contradiction. �
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The study of solutions of (12) is difficult to do in all its generality and Theorems 4.3 and 4.4 are the first 
results. An interesting value for K is 1/2 because this is the curvature of a circular cylinder (for any radius) 
and that of a plane parallel to ∂z. If K = 1/2, then Eq. (12) is

κ = x′(x + z′)
2z′ − xx′ . (13)

An interesting question is if this equation has a solution for curves starting orthogonally from the rotation 
axis. If s = 0 is the time where γ intersects the z-axis, then we need x(0) = 0 and z′(0) = 0. However, the 
left hand-side of (13) is not defined at s = 0. This implies that existence of such solutions is not assured. 
We prove that these solutions, indeed, exist.

Theorem 4.5. There exist rotational surfaces with constant sectional curvature K = 1/2 intersecting orthog-
onally the rotation axis.

Proof. For our convenience, we work assuming that γ is locally a graph z = z(x). Then

x′(s) = 1√
1 + z′(x)2

, z′(s) = z′(x)√
1 + z′(x)2

, κ = z′′(x)
(1 + z′(x)2)3/2

.

Then (13) becomes

z′′

(1 + z′ 2)3/2
= x

√
1 + z′ 2 + z′

(2z′ − x)
√

1 + z′ 2
,

or equivalently,

(2z′ − x) z′′

(1 + z′ 2)3/2
= x

√
1 + z′ 2 + z′√

1 + z′ 2
.

This equation also writes as

d

dx

(
(2z′ − x) z′√

1 + z′ 2

)
= d

dx
(2
√

1 + z′ 2 + x2

2 ).

Thus there is an integration constant c ∈ R such that

(2z′ − x) z′√
1 + z′ 2

= 2
√

1 + z′ 2 + x2

2 + c.

If γ intersects orthogonally the z-axis, then we have z′(0) = 0. This gives c = −2, obtaining a first integration 
of (12), namely,

(2z′ − x) z′√
1 + z′ 2

= 2(
√

1 + z′ 2 − 1) + x2

2 .

Squaring both sides of this equation, we get

(4x2 − (x2 − 4)2)z′ 2 + 16xz′ + 16 − (x2 − 4)2 = 0.

By standard theory of existence of ODE, this equation has a solution with initial value z′(0) = 0, proving 
the result. �
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