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Abstract

Objective: An association between thyroid function during pregnancy or infancy and neurodevelop-
ment in children has been demonstrated. We aimed to investigate whether newborn TSH
concentrations are related to subsequent neurocognitive development.
Design: We conducted a longitudinal study on 178 children from a general population birth cohort in
Granada (Spain) born in 2000–2002.
Methods: TSH concentrations were measured in umbilical cord blood, and cognitive functions were
assessed at 4 years of age using the McCarthy’s scales of children’s abilities (MSCA). Organochlorine
(OC) compound concentrations and the combined oestrogenicity (total effective xeno-oestrogenic
burden (TEXB)) were also determined in the placentae.
Results: Mean newborn TSH was 3.55 mU/l (rangeZ0.24–17 mU/l). In multivariate regression
analyses, adjusting for maternal and child characteristics, higher newborn TSH concentrations
showed a decrease of 3.51 and 3.15 points on the MSCA general cognitive and executive function
scores respectively and were associated with a higher risk of scoring below the 20th percentile (P20)
on the quantitative score (odds ratio (OR)Z2.64). Children with TSH in the upper quartile
(4.19–17.0 mU/l) were at higher risk of scoring !P20 on span memory (ORZ5.73), whereas
children with TSH in the second quartile (2.05–2.95 mU/l) were at lower risk of scoring !P20 on the
verbal scale (ORZ0.24). Neonatal TSH status was also associated with general cognitive and executive
function outcomes when controlling for prenatal exposure to OCs or placental TEXB.
Conclusions: Newborn thyroid hormone status expressed by TSH in cord blood may adversely affect
later cognitive function. A more thorough screening for neonatal thyroid deficiency is warranted.
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Introduction

Thyroid hormones (THs) are essential for the fetal and
postnatal human development and for the regulation
of neuropsychological function in children and adults
(1). THs regulate the processes of neurogenesis,
myelination, dendrite proliferation and synapse forma-
tion (2, 3). Although THs are required throughout
gestation, the fetal thyroid gland does not produce
its own TH in appreciable amounts until the third
trimester (4, 5). Accordingly, an increasing number of
epidemiological studies and case reports have strongly
supported the notion that impaired maternal thyroid
function during early gestation may result in poor fetal
neurodevelopment (6–10).

Iodine deficiency (ID), which compromises adequate
production and secretion of thyroxine (T4) by the
thyroid, remains the most frequent cause of maternal
ndocrinology
and fetal TH deficit and therefore of preventable mental
retardation (5). Over the past two decades, attention has
been drawn to the sub-optimal cognitive or behavioural
functioning (which may be sub-clinical) observed in
children born to mothers with even mild or moderate ID
(10–16) or the developmental implications for children
with slight neonatal elevations of TSH (17, 18). Thyroid
deficiency during the last two trimesters of pregnancy
and the first few months post delivery can also result in
mental and physical retardation and sometimes neuro-
logical deficits, a condition known as cretinism (19).
Neurological features are less severe in neonatal
hypothyroidism than in prenatal hypothyroidism,
although deficits in memory and intelligence quotient
may persist (2). Overall, few studies have addressed
whether subsequent development can be influenced by
moderate thyroid dysfunction in neonates or even by
variations within the normal range of TH levels.
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Recent studies indicate that exposure to certain
environmental contaminants may also interfere with
maternal thyroid status during pregnancy and with
thyroid function in newborns (20–26). Hence, it has
been speculated that some of the neurotoxic effects of
early exposure to the environmental chemicals may
result from thyroid disruption (27, 28). Nonetheless, the
influence of early exposure to endocrine disruptors (ED)
on thyroid function and therefore children’s neurode-
velopment remains to be elucidated.

In a previous study of a mother–child cohort, we
analysed the influence on neonatal TH status of
placental exposure to certain organochlorine (OC)
pesticides with known ED activity (C Freire, M J Lopez-
Espinosa, M F Fernández, J M Molina-Molina, R Prada
and N Olea, unpublished observations). In this study,
we examined the association of newborn TSH concen-
trations with cognition at 4 years of age in the same
cohort (in Granada, Southern Spain). We hypothesised
that infants with poorer thyroid status, manifested by
higher TSH levels, would have lower scores in
subsequent cognitive testing. This investigation is part
of the ‘Infancia y Medio Ambiente (Environment and
Childhood) (INMA) Project’, a prospective multicentre
study in Spain (29).
Materials and methods

Subject recruitment

From 2000 to 2002, 700 eligible mother–son pairs
registered at the San Cecilio University Hospital were
enrolled at delivery, establishing the INMA-Granada
cohort, with the initial aim of investigating chronic
exposure to ED and urogenital malformations in new-
born boys. Exclusion criteria were the maternal presence
of serious chronic disease, such as diabetes, hyperten-
sion or thyroid disease; a pregnancy complication that
could affect growth or development and a non-residence
in the hospital referral area (30). In 2005–2006, 220 of
the 700 boys aged 4 years and their mothers were
randomly invited to participate in the physical exami-
nation and cognitive testing (31, 32).

Approval by committee for human subjects A
written informed consent was obtained from parents
before the study, which was approved by the Ethics
Committee of the San Cecilio University Hospital, in
accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) for experiments
involving humans.

The study was approved by the Institutional Ethical
Committee of the Hospital, and signed informed consent
was also obtained from the women who agreed to
participate.
www.eje-online.org
TSH determination

TSH was measured in a cord blood sample spotted on a
filter paper (Schleicher & Schuell no. 2992), which is
routinely obtained at delivery for the screening
programme of neonatal congenital hypothyroidism
(33). TSH concentrations were determined by using
time-resolved sandwich fluoroimmunoassay (Auto-
DELFIA, Perkin Elmer/Wallac, Turku, Finland) at the
Centre for the Early Detection of Metabolopathies in
Neonates in San Juan de Dios Hospital (Granada,
Spain). The limit of detection (LD) was 0.01 mU/l. A
cord blood level R14 mU/l is established in the Centre’s
laboratory to trigger the protocol for the study and for
the confirmation of neonatal hypothyroidism.
Quantification of OC pesticides and
oestrogenicity in the placenta

Placentas were collected at delivery from the cohort,
and 17 OC pesticides (dichlorodiphenyltrichloroethane
(DDT) isomers and metabolites, endosulphan isomers
and metabolites, aldrin, endrin, dieldrin, lindane,
hexachlorobenzene, methoxychlor and mirex) were
extracted from tissue samples by a previously
described method, which was developed to separate
natural oestrogens (a fraction) from more lipophilic
xeno-oestrogens (b fraction) without destroying
either (34, 35).

OC pesticide concentration was determined in 308
randomly selected placenta samples by gas chromato-
graphy (GC) with electron-capture detection. The
compounds were confirmed by GC and mass spec-
trometry (30). The LD for the studied chemicals ranged
from 0.1 to 3.0 ng/ml. For levels below the LD, we
considered a value of half the LD.

The total effective xeno-oestrogenic burden (TEXB) of
the a fraction (a-TEXB) and the b fraction (b-TEXB) was
estimated in the placenta samples by using the E-Screen
bioassay (34, 35). The a-TEXB can be considered a
marker of the TEXB of environmental organohalo-
genated oestrogens (35). The LD of TEXB was defined as
the concentration needed to produce a significantly
different proliferative effect from that observed in the
control cells.
Cognitive testing

The neurocognitive evaluation of the children was
performed by two specifically trained psychologists in
the Paediatrics Department of our Hospital. Cognitive
and motor abilities were assessed using a Spanish
adaptation of the McCarthy scales of children’s abilities
(MSCA) (36), which gives standardised test scores for
five domains (quantitative, verbal, memory, perceptual
performance and motor). A general cognitive score,
which estimates global intellectual function, was
calculated by combining the verbal, perceptual
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performance and quantitative scores. A strict protocol
was applied to avoid inter-observer variability (37),
which was !5%. Psychologists involved in the
cognitive testing of the children were unaware of the
design sequence of the study.

At the same time as the children were evaluated, the
parents completed a self-reported questionnaire on
parent-to-infant attachment and another questionnaire
on mental health, considered as effect modifiers on
infant mental development (38). The parent-to-infant
attachment questionnaire consisted of 19 items that
assessed the emotional bond of affection experienced by
the parent towards the infant (39). The 12-item version
of the general mental health questionnaire was used to
identify psychological distress and short-term changes
in parental mental health.

To further improve our understanding of the specific
functions associated with neonatal TSH, the MSCA
items were reorganised into the following new outcomes
for tasks highly associated with specific neurocognitive
functions: verbal memory (items 3 and 7II), working
memory (items 5 and 14II), memory span or short-term
memory (items 6, 7I and 14I), gross motor (items 9, 10
and 11), fine motor (items 12 and 13) and executive
function (items 2, 5, 6, 14II, 15, 17 and 18) (32, 37).
Covariates

The attending paediatrician and trained interviewers
gathered information at delivery and at the 4-year visit
respectively on maternal age, alcohol consumption and
cigarette smoking during pregnancy, reproductive
history, parity, pre-pregnancy body mass index (BMI),
duration of breastfeeding, maternal and paternal
education, marital status and area of residence (urban:
city of Granada; metropolitan: towns of O20 000
inhabitants in city residential belt; sub-urban: towns
of 10 000–20 000 inhabitants; rural: !10 000 inhabi-
tants). Information on gestational age and anthro-
pometric measurements at birth were obtained from
medical records. Covariates considered for inclusion
in the statistical analysis were expressed as shown
in Table 1.

Complete cognitive outcome data and information on
cord blood TSH concentration and covariates were
available for 178 subjects from the cohort (nZ220).
Information on the former and prenatal exposure to OCs
and TEXB in the placenta was available for a subset of
101 of the 178 children (57%) in this study. No
differences in any study characteristics were found
between this subset and the children without TSH
measurements (nZ42) (data not shown).
Statistical analysis

MSCA general cognitive, perceptual performance and
executive function scores were normally distributed and
were standardised to a mean of 100 points with an S.D.
of 15 to homogenise the scales. A cut-off point
corresponding to the 20th percentile (P20) was used
to categorise the outcomes with a non-normal distri-
bution. We used simple linear regression or ANOVA to
examine the relationship of covariates with general
cognitive scores.

TSH values were transformed into natural logarithms
(log transformed) to improve the normality. We used
adjusted general additive models (GAM) to evaluate the
linearity of the relationship between general cognitive
scores and TSH levels, comparing models with TSH in a
linear and a non-linear manner (a cubic smoothing
spline with 2–4 degrees of freedom) by means of
likelihood ratio tests (Fig. 1). Because no significant
improvement in the model was obtained with non-linear
models, we first treated TSH as a continuous variable. In
a second analysis, TSH was categorised into quartiles.

The strength of the unadjusted and adjusted associ-
ations between the outcome scores and TSH levels was
measured by calculating coefficients (b) and odds ratios
(ORs) for linear and logistic regression models. Variables
associated with the general cognitive score at a
significance level of P!0.20 in the bivariate analysis
or whose inclusion in the models changed TSH effect
estimates by O10% were considered confounders. All
multivariate models controlled for maternal age (R32
years) and gestational age (continuous), regardless of
their statistical significance. The potential confounding
of exposure to OC and TEXB levels in the placenta
was examined in a further regression analysis of
the association of TSH with general cognitive and
executive function outcomes. Concentrations of OCs
and TEXB values were categorised using the LD cut-off
points, except for p,p 0-dichlorodiphenyldichloroethylene
(p,p 0-DDE) (detected in R90% of the placenta
extracts), which was introduced as continuous (ng/g
of placenta). In all the cases, the level of significance
was P%0.05. STATA version 9.2 (STATA Corporation,
College Station, TX, USA) was used for the analyses.
Results

Mean (S.D., range) newborn TSH was 3.55 (2.54, 0.24–17)
mU/l, and only three newborns had a TSH level
above 14 mU/l (laboratory reference value). Repeated
measurement analyses confirmed the TSH levels of these
three babies, none of whom were diagnosed with thyroid
disorder. Mean (S.D.) infant birth weight was 3289 (487) g,
and gestational length was 39 (1.8) weeks; maternal age
at delivery was 31 (5) years, and pre-pregnancy BMI was
23.5 (4.0) kg/m2. Around 22% of women smoked during
pregnancy, 47% were primiparous, 85% breastfed the
child, 15% of mothers and 16% of fathers had university
education and 64% of the families lived in urban or
metropolitan settings. TSH concentrations were slightly
higher in infants with lower birth weight (by K0.66 mU/l
per kg; 95% confidence interval (CI)ZK1.4, 0.11;
www.eje-online.org
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Table 1 MSCA general cognitive scores by characteristics of the study population from the INMA-Granada
cohort, 2000–2006 (nZ178).

General cognitive scorea

Mean (S.D.) P value*

Child variables
Gestational age (weeks) (median) 39 – 0.05
Birth weight (g) (mean) 3289 – 0.17
Birth length (cm) (median) 51 – 0.04
Cord blood TSH (mU/l) (median) 2.95 – 0.52
Age at evaluation (months) (mean) 51 – 0.008
School term at evaluation (%) 0.002
3rd year, 3rd term 38.2 96.6 (15.2)
4th year, 1st term 29.8 99.1 (13.0)
4th year, 2nd or 3rd term 32.0 105.4 (13.5) –§

Area of residence at evaluation (%) 0.05
Rural 15.2 97.8 (15.2)
Sub-urban 20.8 96.8 (16.4)
Metropolitan 48.3 100.3 (13.3)
Urban 15.7 106.4 (13.0) –†

Maternal variables
Age at delivery (years) (median) 31 – 0.84
Parity (%) !0.001
0 46.6 105.3 (12.0)
1 38.8 95.5 (15.0) –§

R2 14.6 95.9 (15.1) –‡

Educational level (%) 0.03
Up to primary school 15.2 95.8 (15.6)
Secondary school 70.2 99.8 (13.7) –†

University 14.6 106.3 (15.4) –‡

Smoking during pregnancy (%) 0.74
No 77.5 100.3 (14.6)
Yes 22.5 99.5 (14.1)

Breastfeeding (%) 0.31
No 14.6 96.9 (16.3)
Yes 85.4 100.1 (14.1)

Mother-to-infant attachment score (mean)b 74.6 – 0.02
Maternal mental health score (median)c 10.0 – 0.67

Paternal variables
Educational level (%) !0.001
Up to primary school 20.8 96.5 (15.8)
Secondary school 63.5 100.1 (13.3)
University 15.7 105.4 (16.3) –†

Father-to-infant attachment score (mean)b 74.6 – 0.13
Paternal mental health score (median)c 9.1 – 0.44

*P value for simple linear regression or ANOVA. †P!0.05; ‡P!0.01; §P!0.001 for test of difference in means with the first
category as reference.
aMean of the general cognitive score is 100, with a S.D. of 15.
bA higher score indicates a closer bond of affection.
cA higher score indicates greater psychological distress.
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PZ0.09), and infants of fathers with university education
were substantially more likely to have lower TSH (by
K1.27 mU/l; 95% CIZK2.20, K0.34; PZ0.007) (data
not shown). Newborn TSH levels did not differ by maternal
age, gestational age, parity or other covariates. Mean
(S.D., range) age of the boys at psychological testing was
51 (2, 47–58) months, and their general cognitive score
was 100.1 (14.5, 56.9–131) points. This score was
significantly higher among older children, urban children,
those from primiparous mothers and those from parents
with university education, and it was positively associated
with gestational age, birth length and mother-to-infant
attachment score at 4 years of age (Table 1). Perceptual
www.eje-online.org
performance scores ranged between 53.1 and 135;
the range of the executive function was 58.3–133; verbal,
57.2–133 (22.5%, !P20); quantitative, 61.5–155
(23.6%, !P20); memory, 60.4–146 (19.7%, !P20);
motor, 45.7–131 (20.2%, !P20); span memory,
59.2–133 (15.7%, !P20); working memory, 76.8–159
(42.7%, !P20); verbal memory, 54.4–161 (29.2%,
!P20); gross motor, 69.2–137 (15.2%, !P20) and fine
motor, 52.8–134 (15.7%, !P20) (data not shown).

Table 2 shows the unadjusted associations between
the cord blood TSH levels and children’s cognitive test
scores. In accordance with our hypothesis, a higher TSH
was related to lower MSCA scores. The risk of scoring
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Figure 1 Cubic smoothing association between log-transformed
TSH levels and general cognitive scores (GCS) in multivariate
analysis.

Newborn TSH and cognitive development 905EUROPEAN JOURNAL OF ENDOCRINOLOGY (2010) 163
!P20 on the quantitative scale was greater in children
with higher TSH levels (ORZ2.25; 95% CIZ1.20, 4.25;
PZ0.01), but no significant association was found with
any MSCA outcome score in crude analyses. By contrast,
multivariate models adjusted for maternal and child
characteristics showed an association between elevated
newborn TSH levels as a continuous measure and poorer
child functioning in general cognitive, executive func-
tion and quantitative areas (Table 3). Thus, higher TSH
predicted lower child general cognitive score (by K3.52;
95% CIZK6.81, K0.23; PZ0.04) and executive
function score (by K3.15; 95% CIZK6.66, K0.19;
PZ0.05), and infants with higher cord blood TSH were
more likely to score !P20 on the quantitative scale
(ORZ2.64; 95% CIZ1.16, 5.54; PZ0.02). These
Table 2 Crude coefficients and odds ratios (95% con
blood TSH levels and MSCA outcomes, INMA-Gran

MSCA outcomes at 4 years of age

General cognitive (b)
Verbal (OR)
Perceptual performance (b)
Quantitative (OR)
Memory (OR)
Span (OR)
Verbal memory (OR)
Working memory (OR)

Motor skills (OR)
Fine motor skills (OR)
Gross motor skills (OR)

Executive function (b)

OR, logistic regression odds ratio; b, linear regression coeffi
percentile (reference group OP20). Normal distributed data
aEach row represents a model adjusted for child’s age and
bLog-transformed TSH levels.
associations with the general cognitive and the quan-
titative outcomes were also observed when TSH status
quartiles were considered. Lower test scores (general
cognitive, K5.42; 95% CIZK11.30, K0.61; PZ0.05;
quantitative, ORZ4.92; 95% CIZ1.30, 16.47;
PZ0.02) were found for children with newborn TSH
concentrations in the upper quartile (O4.19 mU/l)
versus the first quartile (!2.05 mU/l), and the risk of
delayed span memory function (!P20) was higher
for children with newborn TSH in the upper quartile
(ORZ5.73; 95% CIZ0.72, 24.67; PZ0.03). Interest-
ingly, newborn TSH in the second quartile had a positive
effect on verbal scores (risk for scores !P20Z0.24) in
comparison with children with TSH in the lower quartile.
Figure 1 depicts the GAM for the relationship between
TSH concentrations and general cognitive scores,
showing a positive linear trend.

With the exception of p,p 0-DDE, detected in 92.1% of
the placenta samples and with a mean (S.D.) concen-
tration of 3.09 (6.50) ng/g placenta, the percentage
detection of OC pesticides was !90% (nZ101), ranging
from 24.8% (dieldrin) to 84.2% (lindane) (data not
shown). The TEXB of the a and b fractions were above
the LD in 67.3 and 83.2% of the placenta extracts
respectively. Table 4 shows that the negative associ-
ations of cord blood TSH status with the general
cognitive score (by K6.34; 95% CIZK12.32, K0.36;
PZ0.04) and executive function score (by K7.85; 95%
CIZK14.04, K1.67; PZ0.009) were also present
after simultaneous adjustment for prenatal exposure to
the 17 OCs measured. After controlling for TEXB, the
association remained significant for the general cogni-
tive score (by K5.35, 95% CIZK10.24, K0.45;
PZ0.03) and was marginally significant for executive
function score (by K5.05; 95% CIZK10.27, 0.18;
PZ0.06). However, contrary to expectations, the
magnitude of the effect of TSH on cognitive functions
was strengthened after adjustment for prenatal OC
exposure (change in regression coefficient O10%).
fidence intervals) for the association between cord
ada cohort, 2000–2006 (nZ178)a.

TSH (mU/l)b P value

K1.71 (K4.90, 1.49) 0.29
1.11 (0.62, 1.99) 0.72

K0.04 (K3.30, 3.22) 0.98
2.26 (1.20, 4.25) 0.01
1.17 (0.63, 2.16) 0.61
1.19 (0.61, 2.31) 0.62
1.40 (0.82, 2.39) 0.22
1.55 (0.95, 2.55) 0.08
0.71 (0.39, 1.29) 0.26
1.12 (0.57, 2.18) 0.75
1.19 (0.58, 2.44) 0.63

K1.62 (K4.79, 1.56) 0.32

cient. For ORs, the cut-off points correspond to the 20th
are standardised (mean: 100; S.D.: 15).

school term and psychologist administering the test.

www.eje-online.org
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Table 3 Adjusted regression coefficients and odds ratios (95% confidence intervals) for the effect of cord blood TSH levels (mU/l) on MSCA
outcomes, INMA-Granada cohort, 2000–2006 (nZ178)a.

TSH quartiles

MSCA outcomes at
4 years of age Continuous TSHb 2.05–2.95 2.96–4.18 4.19–17.0

General cognitive (b) K3.52 (K6.81, K0.23)* K0.36 (K6.29, 5.67) K3.03 (K8.78, 2.74) K5.42 (K11.30, K0.61)*
Verbal (OR) 1.48 (0.66, 3.30) 0.24 (0.05, 1.05)* 0.55 (0.15, 2.05) 1.48 (0.38, 5.39)
Perceptual performance (b) K1.41 (K4.87, 1.91) K1.12 (K7.28, 4.99) K4.04 (K9.99, 1.84) K2.17 (K8.31, 3.92)
Quantitative (OR) 2.64 (1.16, 5.54)† 1.21 (0.31, 4.25) 1.28 (0.32, 4.73) 4.92 (1.30, 16.47)†

Memory (OR) 1.61 (0.60, 3.80) 0.83 (0.13, 3.60) 0.92 (0.18, 3.74) 3.51 (0.65, 15.26)
Span (OR) 1.51 (0.52, 3.94) 0.53 (0.07, 3.23) 0.32 (0.05, 2.50) 5.73 (0.72, 24.67)*
Verbal memory (OR) 1.72 (0.86, 3.41) 0.69 (0.21, 2.29) 1.22 (0.39, 3.71) 1.98 (0.62, 6.30)
Working memory (OR) 1.35 (0.76, 2.49) 1.03 (0.35, 2.93) 1.34 (0.50, 3.77) 1.47 (0.54, 4.27)

Motor skills (OR) 0.65 (0.32, 1.47) 0.39 (0.11, 1.87) 0.42 (0.13, 1.73) 0.80 (0.24, 3.10)
Fine motor skills (OR) 1.48 (0.63, 3.66) 1.68 (0.35, 9.12) 2.14 (0.54, 9.28) 2.31 (0.53, 11.39)
Gross motor skills (OR) 0.69 (0.26, 1.99) 4.27 (0.69, 28.84) 0.24 (0.02, 2.55) 2.49 (0.44, 16.67)

Executive function (b) K3.15 (K6.66, K0.19)* K0.30 (K6.51, 5.96) K3.37 (K9.46, 2.56) K4.29 (K10.56, 1.86)

OR, logistic regression odds ratio; b, linear regression coefficient. For ORs, the cut-off points correspond to the 20th percentile (reference group OP20).
*P!0.05; †P!0.01. Normal distributed data are standardised (mean: 100; S.D.: 15).
aEach row represents two models: one using continuous TSH and the other using TSH quartiles. All models are adjusted for birth length, gestational age,
maternal age, parity, breastfeeding, maternal and paternal education, mother-to infant attachment, child’s age and school term and psychologist administering
the test.
bLog-transformed TSH levels.
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Discussion

This study of 178 children in Southern Spain born with
normal thyroid function yielded evidence of an
association between neonatal TSH and the cognitive
development of children at 4 years of age, supporting
our study hypothesis. Thus, MSCA general cognitive,
quantitative and executive function scores appeared to
be impaired by higher TSH cord blood levels. Limited
data are available on the effect of newborn thyroid
status on neurodevelopment, and most reports of
associations have described the influence of thyroid
status during pregnancy, specifically in relation to
reduced T4 levels (5). In addition, infants of fathers
with university education had lower TSH, suggesting
that neonatal thyroid status may be affected by social
conditions. Paternal education and cord blood TSH
levels contributed to predict cognitive performance at
4 years of age, consistent with the findings in research
on ID that maternal education has a protective role in
infant development (40).
Table 4 Regression coefficients (95% confidence interval) f
general cognitive score and executive function score, adju
combined oestrogenicity (TEXB) in a sub-sample of 101 chi

MSCA outcomes at
4 years of age TSH (mU/l)

General cognitive K5.51 (K10.54, K0.48)*
Executive function K5.20 (K10.50, K0.11)*

*P!0.05; †P!0.01. MSCA outcome data are standardised (Mean: 1
aEach row represents three models of the association between log
outcomes, adjusted for birth length, gestational age, maternal age,
to-infant attachment, child’s age and school term and psychologist a
bAdditionally adjusted for placental concentration of 17 OC (RLD, e
cAdditionally adjusted for the combined xeno-oestrogenic effect of
samples (RLD).

www.eje-online.org
The relationship between TH or TSH and cognitive
function has mainly been studied in children with
congenital hypothyroidism, children of mothers with
low TH concentrations during pregnancy or children
living in ID areas (41). A number of case–control studies
have reported associations between decreased maternal
or neonatal T4 and/or triiodothyronine (T3) levels and
poorer neurodevelopment in children born to mothers
with hypothyroxinaemia during pregnancy or in
ex-preterm infants, among others (11, 12, 42, 43).
Detected neurocognitive deficits include attention
deficits (11, 43), reduced mental and motor develop-
ment scores (12, 42, 43), impaired intelligence and
language skills and difficulties in school performance at
later ages (11). Interestingly, a cross-sectional analysis
of 334 healthy children from two general population
cohorts at 4 years of age (from Menorca and Ribera
d’Ebre; INMA study) found an association between
higher serum TSH levels (2.43–5.01 mU/l) and delayed
general cognitive, quantitative, memory, verbal and
or the effect of cord blood TSH levels (mU/l) on the MSCA
sted for the placental organochlorine (OC) pesticide and
ldren from the INMA-Granada cohort, 2000–2006a.

OC pesticidesb a-TEXBCb-TEXBc

K6.34 (K12.32, K0.36)* K5.35 (K10.24, K0.45)*
K7.85 (K14.04, K1.67)† K5.05 (K10.27, 0.18)

00; S.D.: 15).
-transformed TSH concentrations and MSCA normal-distributed
parity, breastfeeding, maternal and paternal education, mother-

dministering the test.
xcepting for p,p0-DDE, which was introduced as continuous).
the a fraction (a-TEXB) and the b fraction (b-TEXB) of placenta
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perceptual performance MSCA outcomes (44), consist-
ent with the present findings.

By contrast, other authors reported that higher
newborn T4 was unexpectedly associated with lower
scores on the visual recognition memory test at the age
of 6 months but not with scores for verbal abilities,
intelligence or visual motor abilities at the age of 3 years
(45). Another study observed no neurological impair-
ment in infants aged !1 year born to mothers with
elevated TSH during pregnancy (46). Furthermore,
neonatal T4 levels were not associated with the risk of a
heterogeneous group of developmental diagnoses in
5–12-year-old children, including attention deficit
disorder, autism spectrum disorder, behavioural
disorder, cognitive disorder, developmental delay,
emotional disorder, learning disability and speech/
language disorder (47). A recent case–control study in
Southern Spain observed a superior psychometric and
behavioural development among children whose
mothers had received iodine supplementation compared
with the children of non-supplemented mothers; cord
blood TSH was significantly higher in infants of
supplemented mothers (16). A study of Sicilian children
reported that a mild to moderate ID was associated with a
reduced IQ and attention deficit hyperactivity disorder
(13). Finally, increases in the risk of delay in gross and
fine motor coordination and socialisation in 18-month
infants were found to result from a period of isolated
hypothyroxinaemia in pregnant women from a coastal
region in Spain with mild ID (15).

The timing of TH action is crucial for neurodevelop-
ment, and the effects of TH status may therefore differ
among pregnant women, neonates and children. In the
neonatal and postnatal periods, neurological develop-
ment still depends on THs, whose supplies to the brain are
entirely derived from the child and are critical for
continuing maturation (6). It has been demonstrated
that THs during early pregnancy influence later child
development, although the neurological effects of THs
may be less severe in neonates. This study demonstrated
that higher newborn TSH levels within a normal
reference range were related to lower intelligence, as
measured by the general cognitive score, and to
impairment of higher psychological processes (executive
function) at the age of 4 years. These findings support the
view that moderate alterations in neonatal thyroid status
may play a role in subsequent neurodevelopment. Even
subtle cognitive delays at this age may lead to sub-clinical
but permanent decreases in IQ and to long-lasting effects
on educational and social development (48). Hence, they
should be considered clinically relevant, since early
identification of sub-optimal cognitive functioning is
necessary to adopt preventive measures.

The study limitations include the fact that only boys
were studied; the non-assessment of behavioural or
psychopathological outcomes such as attention deficit,
social or emotional disorders, which have also been
associated with early thyroid status (15, 43, 44) and the
absence of measurements of newborn T4, T3 or thyroid
axis hormones other than TSH, which would have
yielded complete information on the newborn’s thyroid
regulatory system. In fact, recent studies have reported
the unexpected finding of a positive correlation between
TSH and free T4 levels in cord blood correlate (14, 49),
suggesting that TSH elevations should not necessarily
be interpreted as indicating a potentially harmful effect
on the child. There is a progressive modulation of the set
point for T4 negative feedback regulation of TSH
secretion in infants, which implies that TSH production
is overstimulated during gestation, decreasing from
postnatal age of around 2 weeks (49). Owing to this
decline in TSH levels over the first days of life, newborns
with elevated TSH should be evaluated for congenital
hypothyroidism with repeat TSH and free T4 measure-
ments. However, it is recognised that TSH measurement
offers higher sensitivity to detect thyroid dysfunction in
comparison with T4 or T3 testing, since subtle
alterations in T4 or T3 within the normal reference
range may result in an amplified alteration of TSH (50).
The study strengths include the longitudinal design,
the considerable number of covariates considered (e.g.
breastfeeding and parental attachment) and, most
importantly, the fact that we examined the association
between TSH and neurodevelopment in typically
developing children from the general population. In
addition, this is the first report to evaluate the potential
confounding effect of prenatal exposure to a wide range
of ED, environmental chemicals and their combined
oestrogenic effect on the association under study.

To date, epidemiological studies have described
associations of early exposure to OC compounds with
TH levels (20–26) and with neurodevelopment impair-
ment (51–53). However, a consistent influence on
thyroid status and neurodevelopment of many OC
compounds at environmental background levels has
not been established yet. Humans may be exposed to
mixtures of these and numerous other compounds,
hampering the prediction of effects on TH levels. We have
previously demonstrated the ubiquity of exposure to OC
xeno-oestrogens in the INMA-Granada cohort (54). In
this study, prenatal exposure to 17 OC pesticides or the
xeno-oestrogenic burden in the placentas were observed
to modify the impact of neonatal TSH on neurodevelop-
ment, in agreement with the suspected capacity of OCs
to interfere with the thyroid system (20–26).

In conclusion, this study of a birth cohort in Southern
Spain revealed an impaired mental development at 4
years of age in children with higher neonatal TSH levels
compared with children with lower neonatal TSH levels
within the normal reference range. These findings
indicate that a more thorough screening for neonatal
thyroid deficiency is required to prevent long-term
developmental effects. Further research is warranted
into the influence on neurodevelopment of marginally
altered TSH concentrations in newborns and into
www.eje-online.org
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causal relationships between ED, environmental
chemicals and TH status.
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lez-Romero S, Anarte MT & Soriguer F. Effect of iodine prophylaxis
during pregnancy on neurocognitive development of children
during the first two years of life. Journal of Clinical Endocrinology and
Metabolism 2009 94 3234–3241. (doi:10.1210/jc.2008-2652)

17 Oakley GA, Muir T, Ray M, Girdwood RWA, Kennedy R &
Donaldson MDC. Increased incidence of congenital malformations
in children with transient thyroid-stimulating hormone elevation
on neonatal screening. Journal of Pediatrics 1998 132 726–730.
(doi:10.1016/S0022-3476(98)70369-5)

18 Simpson J, Williams FL, Delahunty C, vanToor H, Wu SY,
Ogston SA, Visser TJ, Hume R & Scottish Preterm Thyroid
Group . Serum thyroid hormones in preterm infants and
relationships to indices of severity of intercurrent illness.
Journal of Clinical Endocrinology and Metabolism 2005 90
1271–1279. (doi:10.1210/jc.2004-2091)

19 Anderson GW. Thyroid hormones and the brain. Frontiers in
Neuroendocrinology 2001 22 1–17. (doi:10.1006/frne.2000.0208)

20 Chevrier J, Eskenazi B, Holland N, Bradman A & Barr DB. Effects of
exposure to polychlorinated biphenyls and organochlorine
pesticides on thyroid function during pregnancy. Americam
Journal of Epidemiology 2008 168 298–310. (doi:10.1093/aje/
kwn136)

21 Wang SL, Su PH, Jong SB, Guo YL, Chou WL & Päpke O. In utero
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