
Data:
Preprint of the paper: M.J. Rodríguez-Sánchez, Z. Callejas, A. Ruíz-Zafra and
K. Benghazi, Combining Generative AI and PPTalk Service Specification for
Dynamic and Adaptive Task-Oriented Chatbots, Accepted for publication at the
22nd International Conference on Service-Oriented Computing (ICSOC 2024),
Tunisia.

Abstract:
In recent years, chatbots have become increasingly prevalent in various business
domains, providing services such as booking flights, making hotel reservations,
and scheduling appointments. These systems, known as task-oriented chatbots,
initiate a conversation to collect the necessary data and subsequently invoke a
specific web service to complete the task. Traditionally, they operate on the
basis of predefined rules or are trained with specific task data. While effective,
this approach is often rigid and lacks adaptability to the evolving peculiarities
of individual businesses. For instance, a chatbot designed for general restaurant
reservations will request common data such as the number of diners or reser-
vation time, but may fail to accommodate specific preferences such as terrace
seating, buffet options, or karaoke availability.

To address the limitations of traditional task-oriented chatbots, we propose
an innovative approach leveraging generative AI and a novel service specification
concept called PPTalk. This approach enables chatbots to dynamically intro-
duce business-specific elements into conversations, enhancing their adaptability
to the unique characteristics of each business. We have developed a proof of con-
cept to demonstrate the feasibility and effectiveness of our proposal, obtaining
highly positive results.

1 Introduction
The significance and integration of chatbots in businesses have seen substantial
growth in recent years. As users may interact with their own words, they break
the communication barriers between companies and their customers, enhancing
customer service and operational efficiency [3]. These systems support compa-
nies in offering services that are more easily accessible to a broader audience.

Task-oriented chatbots maintain a conversation aimed at fulfilling a partic-
ular task, such as booking a flight or making a reservation. Currently, these
systems can have dialogue flows configured during the design phase that are
either tailored to the specificities of the particular services or designed to pro-
vide a general conversation (e.g. for the common aspects related in booking a
flight, such as origin or destination). Both approaches have several limitations,
including the need for system developers to update the rules or models when
services change and the requirement to adapt the system when new function-
alities, possibly related to web services, are introduced [1]. Thus resulting in
intrinsically closed dialogue systems that cannot invoke services which are not
considered during the design phase. This limitation leads to a lack of scalability
and makes it impossible to add new functionalities without incurring signifi-
cant costs in terms of time and money. Moreover, the predefined dialogue flows

1



in these systems involve asking users the same questions in each interaction,
without adapting to the specific requirements of each business’s service. For
instance, consider a task-oriented conversational system designed for restaurant
bookings. Initially, the system is configured to handle reservations for specific
dates, times, and party sizes at a given restaurant. However, if the restaurant
introduces new dining experiences, such as private dining rooms or special event
bookings, the chatbot may not immediately support inquiries related to these
new offerings.

Recently, Large Language models (LLMs) have appeared as an alternative
to traditional rule and intent-based approaches. As they have been trained with
massive amounts of language data, they provide very advanced natural language
understanding and generation capabilities, which make them very fitted for
question answering and open-domain conversation tasks. However, their usage
to develop task-oriented chatbots is still not solved, as it requires that LLMs
circumscribe their conversational capabilities to particular domains and are able
to invoke specific services.

In this paper we focus on service capabilities to address these issues. Our
fundamental contributions are: (1) the definition of a new type of conversational
service specification, (2) the definition of a novel process for automatic dialogue
generation that invokes a conversational service, (3) a chatbot for restaurant
businesses as a proof-of-concept with very positive results.

On the one hand, we contribute the OpenAPI Specification (OAS) named
PPTalk, which is used to endow chatbots with the capability to engage in dy-
namic and adaptive slot-filling dialogues to obtain the necessary pieces of data
to invoke the services. On the other hand, we provide a process for the au-
tomatic generation of dialogues based on conversational services and LLMs.
Unlike state-of-the-art approaches, in our approach LLMs are not the chatbot
per se, but are used to improve the main phases involved during conversation:
understanding what the user wants to do (intent recognition, e.g., if they want
to book a table or cancel a reservation), identifying which parameters need to
be requested (e.g., the number of diners and the time), determining when a
necessary piece of information has been provided (entity recognition), manag-
ing the interaction to decide how to request them (slot-filling), and generating
system responses with as much variation as possible through natural language
generation.

Thus, our proposal provides further control over the chatbot behaviour.
When LLMs are used to manage the interaction in a single step (generating
a direct system response for a user input), they constitute a black box; whereas
following our process, the conversational interaction between customers and the
business is more explainable and manageable.

The rest of the paper is structured as follows. Section 2 presents the re-
lated work, Section 3 describes our proposal for the dynamic generation of
task-oriented chatbots, Section 4 presents a proof-of-concept and the evalua-
tion conducted. Finally, Section 6 presents the conclusions and outlines future
work.

2 Related Work
Previous attempts to automate dialogue management using APIs to enhance the
scalability of conversational systems, such as in [9], have resulted in low-quality

2



dialogues and lack explicit integration into web services. With the emergence of
LLMs, chatbots are able to understand more complex inputs, producing more
sophisticated dialogues. For example, the ShoppingGPT [12] proposal demon-
strates the effective use of GPT models for enhancing product recommendations,
improving its ability to understand and respond to user input through multi-
turn dialogues. However, challenges include reliance on high-quality training
data and risks of generating unsafe or toxic content. Thus, there is a need to in-
vestigate approaches that allow to exploit the benefits of LLMs, while retaining
control over the generated responses, obtaining better results than traditional
pre-trained models like BERT [5].

A first step in this direction is to study prompting strategies to influence the
output generated by the model [4]. Creating effective and broadly applicable
prompt strategies is complex [14], the reported challenges include the difficulty
of choosing and formulating the right instructions to achieve the desired effects.
For example, [13] proposes a process to iteratively prototype prompts to enhance
user experience, while studies as [10] designs prompts or frameworks [7] [6] to
successfully satisfy NLU tasks, for example, slot-filling.

LLMs are best suited for open-domain conversations, adequately adapting
them to task-oriented or domain-specific scenarios is still an open research issue.
In [8] introduces a domain-specific language (DSL) based on YAML to define
task-oriented dialogue system modules, compiled into structured prompts. How-
ever, the DSL is specific to the proposal, requiring developer definition and not
utilizing existing business service specifications like OpenAPI, resulting in a
closed system with non-reusable modules.

The aim of our proposal is to address these open issues by focusing on ser-
vice capabilities and automated and dynamic dialogue generation based on the
services specification. The control over the responses provided by the chatbot,
as they are written by the service provider themselves, avoids sending inappro-
priate responses. Thanks to the use of LLMs as a tool to fulfill NLU tasks
such as slot filling or intent recognition, the aim is to achieve good output by
appropriately selecting the prompts to be used with the model.

3 Proposal for Dynamic Task-Oriented Chatbot
Generation

This section presents our approach for creating dynamic and adaptive task-
oriented chatbots. We introduce the Plug, Play, and Talk Service Specification,
our extended OAS for chatbots, and the process of automatic dialogue genera-
tion that builds the conversation using these specifications.

3.1 Extended OpenAPI Specification for Chatbots: Plug,
Play and Talk Service Specification

To seamlessly integrate services with chatbots, we have extended the OAS for
the proposed PPTalk services with the elements highlighted in blue in Figure
1.b). These elements are: 1) the Question concept, which contains the questions
the chatbot can ask to request a property or parameter, 2) the Tag concept,
which allows services to be classified into tags representing business characteris-
tics, 3) DataField, a conceptual abstraction that encapsulates all data elements

3



that are either passed to an endpoint method (Parameters) or required within
a request or response body (Properties), and 4) DiscriminativeParameter, nec-
essary parameters with a value property that defines a business characteristic.

A service consists of operations, which can be GET, POST, PUT, or DELETE.
For our purposes, we focus on GET and POST operations. GET operations in-
clude parameters that may be defined for internal service operations (Internal-
Parameter) or are provided by the user (UserInputParameter). A UserInput-
Parameter can be categorized as DiscriminativeParameter. POST operations
also contain schemas with properties that must be requested to the user.

3.1.1 Matching the PPtalk Specification and chatbot elements

Figure 1 shows with discontinuous lines how each element in the PPTalk spec-
ification metamodel (Figure 1.b) corresponds to elements in the chatbot meta-
model (Figure 1.a):

1. Intent → Operation: In a conversational system, intents represent the
user’s goals or desired actions, while operations in a web service specifi-
cation define the actions the backend service can perform. Formally, let
I be the set of user intents and O the set of operations defined in OAS.
We define a function IntToOp that maps each intent to a corresponding
operation based on their names or synonyms:

IntToOp : I → O (1)
such that

IntToOp(i) = o if match(name(i), name(o)) = true (2)
where name(x) returns the name of x, and match(a, b) is a function that
returns true if a and b are the same or synonyms.

2. Entity → DataField: In natural language processing systems and chat-
bots, entities (or slots) are pieces of information required to provide an
appropriate response. Similarly, in a web service specification, DataFields
represent the values passed to the endpoint method to execute a specific
operation, or define specific data points required in a request or response
body.
To perform the matching between entities and datafields, we define a func-
tion EntToD that is defined formally as follows: let E be the set of entities
and D the set of DataFields in the OAS:

EntToD : E → D (3)
such that

EntToD(e) = d if e ∈ entities(d) or match(e, d) = true (4)

The function match(e, d) identifies and extracts relevant information from
the input text that corresponds to a DataField d.
entities(d) is the set defined as follows:

entities(d) = {e ∈ E | match(e, d) = true} (5)

4



3. UserTag → Tag: In a conversational system, user tags can be concep-
tually understood as names or adjectives extracted from the user’s initial
input to identify their preferences, needs, or intentions. These tags help
the system understand and categorize user requirements effectively. Tags
within the OAS serve as descriptive labels that categorize different aspects
or features of services offered by an API.

Figure 1: Interconnection between both meta models

Formally, let T be the set of tags within the OAS and UT the set of user

5



Figure 2: Dialogue building with PPTalk services

tags. We define a function UserTagToTag:
UserTagToTag : UT → T ∪ {∅} (6)

such that

∀ut ∈ UT,UserTagToTag(ut) =
{
t if ∃t ∈ T where match(ut, t) = true
∅ otherwise

(7)
where match(ut, t) verifies if a user tag matches a tag in the OAS.

3.2 Dynamic Dialogue Building Process
The proposed chatbot building process, shown in Figure 2, dynamically gen-
erates and manages the dialogues from PPTalk service specifications following
the steps explained below. Some of the phases described (intent detection, slot
filling, dialogue enhancement, and question generation) involve prompting a
pre-trained LLM. To facilitate understanding, we illustrate each step with an
example in which the chatbot responds to the user’s input: “I want to eat in a
vegetarian restaurant in Granada.”. Table 1 lists the specific prompts that can
be used for this example.

3.2.1 Intent Recognition

When the chatbot receives a request to perform a task, it first detects the user’s
intent (in our example, the intent is BookRestaurant). To do so, it treats intent
detection as a classification problem, using the prompt specified in Table 1.
Once the intent is detected, we perform a string split to identify the verb in the

6



intent, aiming to find synonyms.

3.2.2 Initial Slot Filling

The slot filling task is performed using the initial user input and the LLM with
the prompt specified in Table 1. For the service selection task, it is necessary to
fill the discriminative parameters to make the selection as close as possible to the
user’s preferences. Once the service is selected and the parameter information is
retrieved (data fields required to complete a task and corresponding questions),
the system performs slot filling to execute that specific operation with the data
required by the selected service. Figure 3, highlighted in orange, shows how the
initial input fills the discriminative parameter [‘foodtype’: ‘vegetarian’] and the
selected service parameter [‘area’: ‘Granada’].

Figure 3: Initial and Interactive Slot Filling

3.2.3 Interactive Slot Filling

All questions are associated with a data field, which in turn is linked to an
entity required to perform an operation in the service. When a question or set
of questions is sent to the user, a question-response interaction is created. This
interaction fills the slots that could not be completed transparently using LLM
prompting, as shown in Figure 3 in green colour, allowing the user to perform
the slot filling task interactively.

7



Figure 4: Intent Recognition, Discriminative Slot Filling, and Service Selection
Processes

3.2.4 Service Selection

If several services correspond to the discriminative parameters (in the example,
several services correspond to restaurants with the same type of food and price
range), the system asks the user for their preferences based on other tags (e.g.
availability of terrace). This way, the chatbot can select the service that best
suits the user’s needs following the algorithm specified in Algorithm 1.

These three stages (intent recognition, discriminative slot filling and service
selection) are depicted in Figure 4.

8



Table 1: Chatbot tasks and corresponding LLM prompts.
Chatbot Task LLM Prompt
Intent Recognition "You are a chatbot in the restaurant domain, and

your task is to determine the intent behind a
user’s input or query. Below is a list of intents
related to the restaurant domain: BookRestau-
rant, RestaurantInformation, FindRestaurant, Or-
derFood. Given the input ’I ’, determine the intent
of the user based on the provided intents, return
a JSON with only one. Consider that users often
want to make reservations when specifying a type
of restaurant."

Slot Filling "Forget the information provided in our previous
interactions. Provided the prompt: P, these previ-
ous inputs during the conversation: UserAnswers
and the API specification: PPTalkService, which
contains an endpoint called "Intent" with a list of
parameters, give me a JSON list with the slots and
the values that are given in the prompt directly. If
no value given, assign the value NULL. The key of
the dictionary is the parameter name and the value
is the parameter value."

Discriminative tags
question generation "Provide an informal question that can be answered

with yes or no to understand someone’s preference
regarding a parameter with this tag when selecting
a restaurant: "tagName""

Question improvement "Provided the question Question in the scope of
restaurant booking, give me only one alternative
question"

3.2.5 Question Retrieval

The OAS of the selected service returns the questions that must be asked to
the user to gather the information required for the specific service (for example,
[date, "On what date would you like to make the reservation", time, "At what
time would you like to reserve?", diners, "For how many people do you want
the reservation?"]).

9



Algorithm 1 Service Selection Algorithm
Input:
// Services with matching tags and number of coincidences.
tagServices: Dictionary<ServiceID, Float>
// Discriminative parameters
slots: Dictionary<String, String>
Output: selected_services: List<ServiceID>

1: max_value← max(tagServices.values())
2: max_keys← {key | tagServices[key] = max_value}
3: selected_services← []
4: //If there is a tie in the number of matches, the one that

best meets user preferences will be chosen.
5: if len(max_keys) > 1 then
6: for service_id in max_keys do
7: doc← restaurant_sv.find_one({”_id” : ObjectId(service_id)})
8: if doc and ’paths’ in doc then
9: params← doc[”paths”][”/bookrestaurant”][”get”][”parameters”]

10: for param in params do
11: if param[”name”] == ”pricerange” then
12: pricerange← param[”schema”][”value”]
13: else if param[”name”] == ”food” then
14: food← param[”schema”][”value”]
15: end if
16: end for
17: if pricerange == slots[”pricerange”] then
18: selected_services.append(service_id)
19: else if food == slots[”food”] then
20: selected_services.append(service_id)
21: end if
22: end if
23: end for
24: else
25: selected_services← [max_keys[0]]
26: end if
27: // If the selected services vector is empty, one service will

be chosen randomly.
28: if not selected_services then
29: selected_services← [random.choice(list(tagServices.keys()))]
30: end if
31: return selected_services

3.2.6 Question Enhancement

With the help of the LLM, the system detects slots that are already filled and
improves the questions for the slots that were not completed with the initial

10



input to avoid making unnecessary calls to the model and thus make the dialogue
less monotonous (for example, as an alternative to the question "On what date
would you like to make the reservation?" it suggests "What specific date would
you prefer for booking your reservation?").

3.2.7 Question Delivery

The updated set of questions is used to generate the system’s response, focusing
on slots that have not yet been completed (for example, [date, "What spe-
cific date would you prefer for booking your reservation?", time, "What specific
time would you prefer to make the reservation?", diners, "How many individ-
uals would you like the reservation to be made for?"]) This sequential process
ensures an organized and interactive dialogue between the conversational sys-
tem and the user. However, the system allows the user to provide values for
multiple slots in a single turn (for example, the input "I want a table for two for
tomorrow evening" would simultaneously fill the date, time, and diners slots),
thus facilitating interaction.

3.3 Dynamic Service Integration
In our approach, web services can be dynamically added to the chatbot during
its operation phase. The proposal includes a transformation mechanism through
which a standard OpenAPI specification can be converted into a PPTalk spec-
ification. Figure 5 illustrates the two ways by which a service provider can add
their specifications to the system: 1) uploading an existing OAS specification or
2) creating a new OAS specification. If the service has an OAS specification, it
can be uploded and will be prompted to provide the discriminative parameter
values and business tags through a simple form.

Using LLM, questions are automatically generated for all parameters with
the prompt: “I am developing a chatbot that users can employ to Intent in the
domain Domain. Generate just a question without format that the chatbot can
use to ask the user for Parameter” These questions are included in the resulting
PPTalk specification.

If the service does not have an OAS specification, service providers can fill in
a form with the service characteristics. A valid OAS is automatically generated
through a user-friendly process that requires no prior knowledge, simplifying
the creation and integration of PPTalk specifications. The service provider can
transform this generated specification into PPTalk using the transformation
process.

4 Proof of Concept and Evaluation
To validate the feasibility and effectiveness of our approach, we have developed
a proof-of-concept system specifically focusing on a chatbot designed for restau-
rant bookings within a dynamic shopping mall environment, and conducted an
evaluation with simulated users.

Consider a scenario where a shopping mall has a spacious food court that
hosts a variety of restaurants, each with specific features that set them apart.
For instance, some restaurants offer all-you-can-eat buffets, others have karaoke
areas, and some have outdoor terraces.

11



Figure 5: PPtalk Specification addition to the system

Additionally, these restaurants have the ability to evolve and adapt, incor-
porating new services they did not previously offer. For example, a restaurant
might start offering live music to enhance the customer experience, or add a
drink service to complement their food offerings. Likewise, over time, new
restaurants may open and others may close.

To allow the chatbot to adapt to the specificities of each restaurant and
the possible changes introduced in their services, several applications have been
developed using Flask and GPT 3.5 as the pre-trained LLM: 1) a chatbot1
capable of engaging in a dialogue with users, using one of the PPTalk Specifi-
cations integrated into the system; 2) an application for transforming OAS into
PPTalk Specification and managing them2; 3) an API3 that enables the inser-
tion, editing, deletion, and retrieval of PPTalk specifications from our database,
facilitating the efficient management of these specifications.

We have tested this setting with three services4 that we have developed in
Python, and their specifications have been added to the MongoDB of our system,
where the PPTalk Specifications are stored. Although the services perform the
same action (booking), they are designed to be diverse; for example, two of
them allow the client to eat in the terrace, one of them allow pets and has
smoking area. Additionally, two of them offer vegetarian food to ensure correct
discrimination between them according to user preferences.

Figure 6 shows the example explained in section 3, implemented in an oper-
ational chatbot called Chat-PPT. In Figure 6a), the user types the initial input
‘I want to eat in a vegetarian restaurant’ and the system, upon detecting the
intent (BookRestaurant), requests the discriminative parameters that were not
collected in the first slot-filling task (in this case the price range). Discrimina-
tive parameters (type of food and price range) are used to perform the initial
filtering of services corresponding to the selected intent. In our setting, the
three services include the BookRestaurant operation, and thus correspond to
the user’s intent. However, only two of them support the selected combination
of type of food and price range. Figure 6b) shows how tag questions are asked
in order to select one of the two. The questions posed to the user ask about the

1https://github.com/mjesusrodriguez/chatbot_mono
2https://github.com/mjesusrodriguez/openapitopptalk
3https://github.com/mjesusrodriguez/pptalk
4https://github.com/mjesusrodriguez/bookrestaurant1, https://github.com/mjesusrodriguez/bookrestaurant2,

https://github.com/mjesusrodriguez/bookrestaurant3

12



properties each service has defined in its tags that may match additional user’s
needs or preferences. In this case the user wants to eat in a restaurant that has
smoking area, so the selected service will be the one shown in the image.

Once the service is selected, the parameters that were not filled in the second
slot-filling task, but are required to invoke the service (e.g. the number of
diners) are directly asked to the user in what we call Interactive Slot Filling as
shown in Figure 6c). This process uses the questions written in the service after
improving them with the LLM so that they are not posed verbatim as indicated
in the specification in every conversation.

Thus, until now we have demonstrated with the development of a functional
chatbot the applicability of our proposal, showcasing the adaptability of the
chatbot’s dialogues to the specificity of the services and also the possibility of
integrating new services or modifying existing ones during the chatbot’s opera-
tion time. To the best of our knowledge, our proposal is innovative and there is
no gold standard to compare it with.

Nevertheless, to contribute additional evaluation results, we also underwent
an evaluation of the quality of the dialogues generated to show that the chat-
bot does not ask unnecessary or redundant questions, and that the number of
conversation turns is well balanced to identify the users’ preferences but at the
same time allow an efficient access to services that does not require a lengthy
dialogue.

In order to do so, we have developed an automatic method to generate
conversations with a simulated user. This is a widely used method in the con-
versational systems domain in order to optimise the evaluation processes and
obtain a comprehensive number of interactions.

This method exploits the pre-trained BERT model presented in [2] that is
finetuned for question-answering. This model is adjusted with question-answer
data to enhance its performance in extracting answers from a given context or
paragraph. In our case, for each conversation, we select as context a random
task from the CamRest676 dataset [11], a well-recognized dataset for evaluat-
ing task-oriented dialogue systems in restaurant booking domain. Each task in
this corpus represents a user objective (e.g. making a reservation at a restau-
rant with a particular price range). Then, an initial user input is generated to
match the context following a variety of scenarios, from more informative inputs
providing several entities to more concise phrases that lack important pieces of
information.

To generate a response to specific booking questions, such as the phone num-
ber, number of diners, or the date and time of the reservation, rules have been
established for the simulated user to provide an appropriate answer. Follow-
ing this method, we have generated fifty conversations between the proposed
chatbot and the simulated user.

For each conversation, we record the entire dialogue, the number of turns,
the result of the slot-filling task at the end of the dialogue, and the selected
PPTalk service for the conversation. Our proposal allows the user to express
complex queries that can fill multiple slots in a single turn. For this reason, we
have also recorded the number of slots filled with the user’s initial prompt, so
there will be no need to request this information later.

13



Figure 6: Chat-PPT chatbot with the PPTalk Specification

Table 2 highlights the system’s effectiveness in simulated dialogues. The low
incidence of unnecessary questions and the absence of redundant queries demon-
strate efficient slot-filling with minimal turns (6 to 10), suitable for gathering
essential booking details. In the first turn, users fill 30.01% of the slots, enhanc-
ing dialogue efficiency. This is partly due to the CamRest676 dataset’s context,
which does not include specific booking details such as the day or time. The
number of slots varies per service, customized for each owner. The F1 score,
calculated with the help of a human that fills the slots properly, shows balanced
precision and recall, with an F1 score of 78% in correctly identifying instances.

14



Table 2: Summary of dialogue system evaluation results
Evaluated Aspect Result
Average incidence of unnecessary questions 0.28
Redundancy in questions None
Average number of turns per conversation 6.06
Percentage of slots filled initially by the user 30.01%
F1 Score 0.78

5 Conclusions
We have presented a novel approach to build dynamic and adaptive task-oriented
chatbots combining PPTalk services specification and generative AI.

The PPTalk OpenAPI specification enhances traditional OpenAPI by adding
elements like user questions and tags, which facilitate dynamic dialogue gener-
ation, as service providers can easily modify services and their elements and
chatbots can adapt immediately to such changes. This method allows gener-
ating conversations in operation time based on PPTalk specifications, tailoring
interactions to user needs and preferences, thereby improving user experience
and system efficacy. We also contribute an implementation in the restaurant
domain that demonstrates the practicality and effectiveness of our approach,
showcasing its scalability and adaptability.

The integration of generative AI with the PPTalk service specification marks
a significant advancement in the development of task-oriented chatbots, over-
coming many limitations of both traditional rule and intent based systems
and one-step extreme-to-extreme LLM based conversations. By exploiting pre-
trained LLMs in several steps of the dialogue management process, our ap-
proach enables the creation of dynamic and adaptive conversational agents that
can seamlessly incorporate new services without extensive reprogramming or
retraining, while providing more control over the interactions generated.

Future work will focus on extending the application of PPTalk specifications
to other domains, fine-tuning LLMs for specific tasks, verifying client-provided
data for type and range accuracy, and transitioning to a microservices-based
architecture to further improve scalability and flexibility.

Acknowledgments
This publication is part of the R&D&I project GOMINOLA supported by
the Spanish Ministry of Science and Innovation (PID2020-118112RB-C21 and
PID2020-118112RB-C22), financed by MCIN/AEI/10.13039/501100011033)

References
[1] Brabra, H., Báez, M., Benatallah, B., Gaaloul, W., Bouguelia, S.,

Zamanirad, S.: Dialogue management in conversational systems: A
review of approaches, challenges, and opportunities. IEEE Transac-

15



tions on Cognitive and Developmental Systems 14(3), 783–798 (2022).
https://doi.org/10.1109/TCDS.2021.3086565

[2] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

[3] Følstad, A., Brandtzæg, P.B.: Chatbots and the new world of hci. interac-
tions 24(4), 38–42 (2017)

[4] Hou, Y., Tamoto, H., Miyashita, H.: " my agent understands me better":
Integrating dynamic human-like memory recall and consolidation in llm-
based agents. In: Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems. pp. 1–7 (2024)

[5] Labruna, T., Brenna, S., Magnini, B.: Dynamic task-oriented dia-
logue: A comparative study of llama-2 and bert in slot value gener-
ation. In: Falk, N., Papi, S., Zhang, M. (eds.) Proceedings of the
18th Conference of the European Chapter of the Association for Com-
putational Linguistics: Student Research Workshop. pp. 358–368. Asso-
ciation for Computational Linguistics, St. Julian’s, Malta (Mar 2024),
https://aclanthology.org/2024.eacl-srw.29

[6] Labruna, T., Magnini, B.: Addressing domain changes in task-
oriented conversational agents through dialogue adaptation. In:
Bassignana, E., Lindemann, M., Petit, A. (eds.) Proceedings of
the 17th Conference of the European Chapter of the Association
for Computational Linguistics: Student Research Workshop. pp.
149–158. Association for Computational Linguistics, Dubrovnik,
Croatia (May 2023). https://doi.org/10.18653/v1/2023.eacl-srw.16,
https://aclanthology.org/2023.eacl-srw.16

[7] Mok, J., Kachuee, M., Dai, S., Ray, S., Taghavi, T., Yoon, S.: Llm-based
frameworks for api argument filling in task-oriented conversational systems.
arXiv preprint arXiv:2407.12016 (2024)

[8] Sánchez Cuadrado, J., Pérez-Soler, S., Guerra, E., De Lara,
J.: Automating the development of task-oriented llm-based chat-
bots. In: Proceedings of the 6th ACM Conference on Conversa-
tional User Interfaces. CUI ’24, Association for Computing Machinery,
New York, NY, USA (2024). https://doi.org/10.1145/3640794.3665538,
https://doi.org/10.1145/3640794.3665538

[9] Vaziri, M., Mandel, L., Shinnar, A., Siméon, J., Hirzel, M.: Generating
chat bots from web api specifications. In: Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. p. 44–57. Onward! 2017, Asso-
ciation for Computing Machinery, New York, NY, USA (2017)

[10] Wei, J., Kim, S., Jung, H., Kim, Y.H.: Leveraging large lan-
guage models to power chatbots for collecting user self-reported
data. Proc. ACM Hum.-Comput. Interact. 8(CSCW1) (apr 2024).
https://doi.org/10.1145/3637364, https://doi.org/10.1145/3637364

16



[11] Wen, T.H., Vandyke, D., Mrkšić, N., Gašić, M., Rojas-Barahona, L.M.,
Su, P.H., Ultes, S., Young, S.: A network-based end-to-end trainable task-
oriented dialogue system. In: Lapata, M., Blunsom, P., Koller, A. (eds.)
Proceedings of the 15th Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Volume 1, Long Papers. pp. 438–449.
Association for Computational Linguistics, Valencia, Spain (Apr 2017),
https://aclanthology.org/E17-1042

[12] Yu, R., Guan, Y., Zhan, Y.: Shoppinggpt: A gpt-based prod-
uct recommendation dialogue system. pp. 501–509 (08 2023).
https://doi.org/10.1109/PRML59573.2023.10348314

[13] Zamfirescu-Pereira, J., Wei, H., Xiao, A., Gu, K., Jung, G., Lee, M.G.,
Hartmann, B., Yang, Q.: Herding ai cats: Lessons from designing a chatbot
by prompting gpt-3. In: Proceedings of the 2023 ACM Designing Interac-
tive Systems Conference. pp. 2206–2220 (2023)

[14] Zamfirescu-Pereira, J., Wong, R.Y., Hartmann, B., Yang, Q.: Why
johnny can’t prompt: How non-ai experts try (and fail) to design llm
prompts. In: Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. CHI ’23, Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3544548.3581388,
https://doi.org/10.1145/3544548.3581388

17


