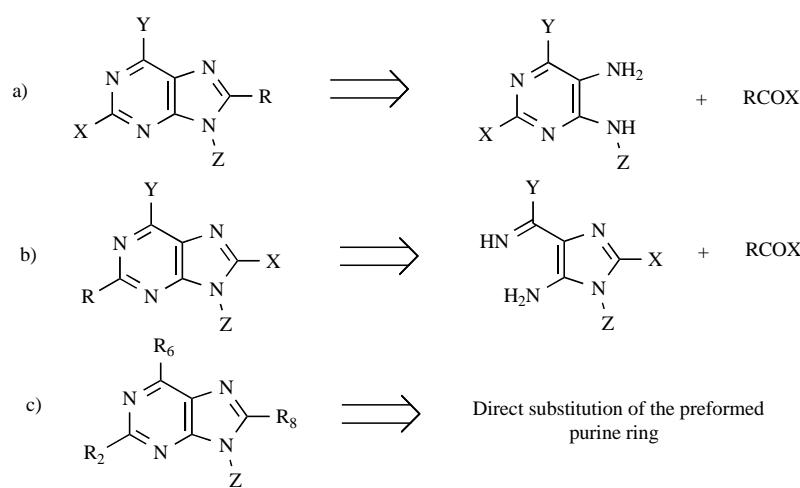


Synthesis of Purine Derivatives as Scaffolds for a Diversity of Biological Activities

A. Conejo-García, O. Cruz-López, V. Gómez-Pérez, F. Morales, M. E. García-Rubiño, M. Kimatrai, M. C. Núñez, J. M. Campos*

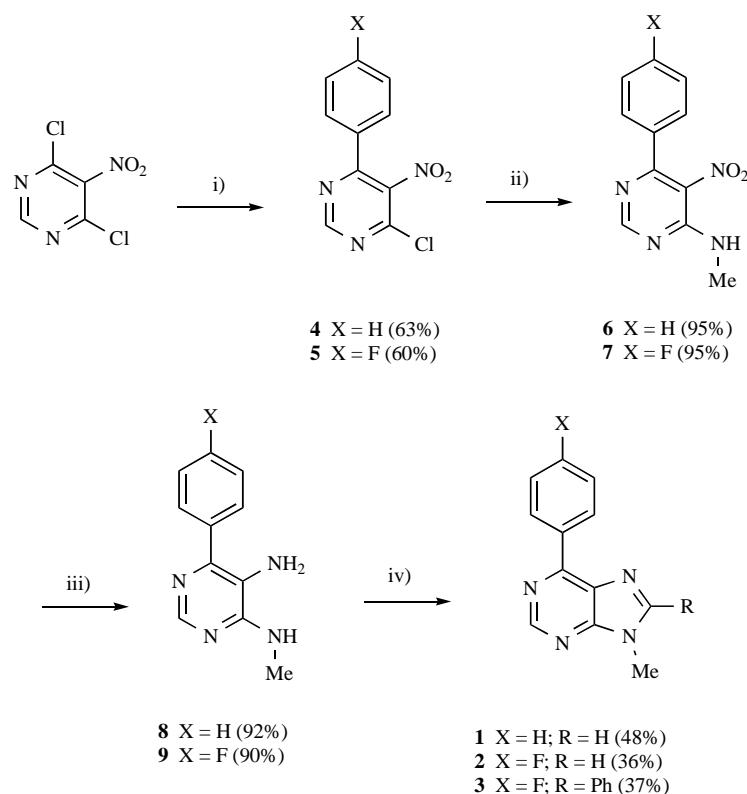
Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja s/n, 18071 Granada (Spain)

Abstract: The purine ring is undoubtedly among the most ubiquitous of all the heterocyclic compounds. This arises not only from the universal occurrence of adenine and guanine in DNA and RNA and of additional modified derivatives in the various tRNAs but also from the subsidiary uses of the ring system in a great number of biochemical systems. The development of new methods for metal-mediated coupling with aryl or heteroaryl halide substrates has expanded the range of synthetically accessible arylpurine derivatives. Aryl boronic acids have proved to be extremely available reagents for metal-mediated C-C and C-N coupling reactions. Coupling reactions resulting in C-C bond formation are catalyzed by palladium and nickel catalysts at positions C2, C6 and C8. The reactivity at C6 position has been demonstrated using fluoro-, chloro-, bromo-, iodo-, sulfanyl, sulfonyl, sulfonyloxy- and azole-substrates. The ease of obtaining the activated purine substrates is an important factor when selecting appropriate coupling conditions. Copper-mediated *N*-arylations occur at positions *N*7 and *N*9. These methods are also applicable using solid-supported purine substrates and provide convenient access to structurally unique derivatives with applications in drug discovery. Continuing advances in this field can be expected to result through improved mechanistic understanding and the development of new catalysts and ligands.


Keywords: Alkyl-purine derivatives, aryl-purine derivatives, cross-coupling, ferrocene-modified purines, fluorinated compounds, microwave, nucleosides, solid-phase synthesis.

1. INTRODUCTION

The purine ring system is undoubtedly among the most ubiquitous of all heterocyclic compounds. A great number of enzymes use purine bases. Furthermore, purines are also constituents of several cofactors (e.g., NADH, FAD, AcCoA, SAM, ATP, etc.) used by many important classes of enzymes (oxidoreductases, transferases, ligases, etc.). Therefore, most enzymes using nucleotide cofactors contain a purine (usually adenine) binding site. In recent years, modified structures both of natural and synthetic origin have been a rich source of biologically active materials. Purine bases, nucleosides and nucleotides have been the subject of extensive research and their structural modifications led to the discovery of thousands of biologically active compounds including many clinically used drugs. For instance, purine bases and their nucleosides constitute an important group of antineoplastic [1,2], antibiotic [3], and antitubercular agents [4]. Moreover, these compounds have found a wide


application as adenosine receptor ligands [5,6], antiparasitic agents [7], cyclin-dependent kinase inhibitors [8], antitumour [9], and antiviral compounds [10]. There are excellent reviews on purine derivatives, such as those of Rosemeyer [11], Hocek [12], and Legraverend [13]. Very recently, we have reviewed the mechanistic aspects of the thermal *N*9 → *N*7 isomerization of (6-substituted)-9-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)-9*H*-purines in solution [14]. The number of publications on purines is endless. It is difficult to write a comprehensive review on a subject as broad as this. Publications that appeared after 1999 are included in this review. We will try to concentrate on aspects that have not been dealt with in previous reviews. We apologize to all colleagues who have made significant contributions to the matter of this article and whose work is not cited here.

Three main synthetic approaches leading to purine derivatives are described in the literature (Fig. (1)): a) syntheses that start from

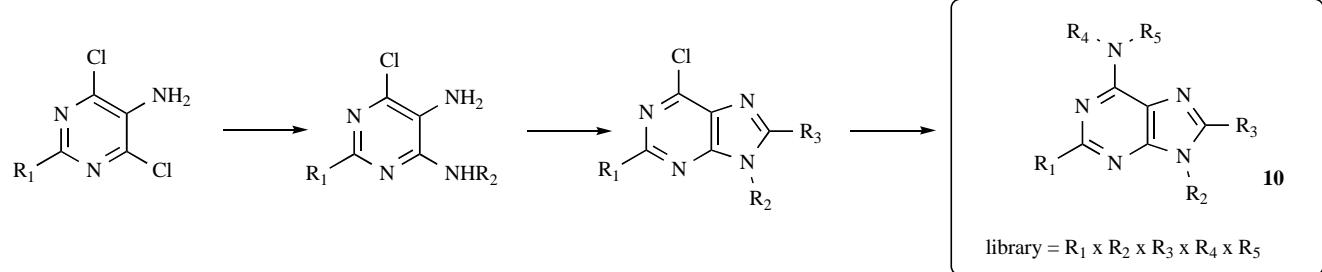
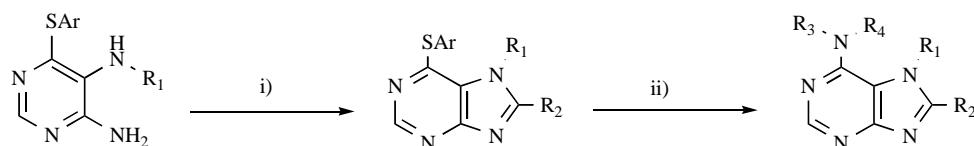


Fig. (1). Synthetic approaches to purine derivatives.

*Address correspondence to this author at the Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja s/n, 18071 Granada (Spain); Tel: +34 958 243848; Fax: +34 958 243845; E-mail: jmcampose@ugr.es

Scheme 1. Reagents and conditions: i) (p)-X-C₆H₄-B(OH)₂, Na₂CO₃, toluene, Pd(PPh₃)₄, 90 °C; ii) MeNH₂ 40% in H₂O, reflux; iii) Pd/C, H₂, 4 bars, rt; iv) R-C(OR')₃, EtOH, TsOH, reflux.

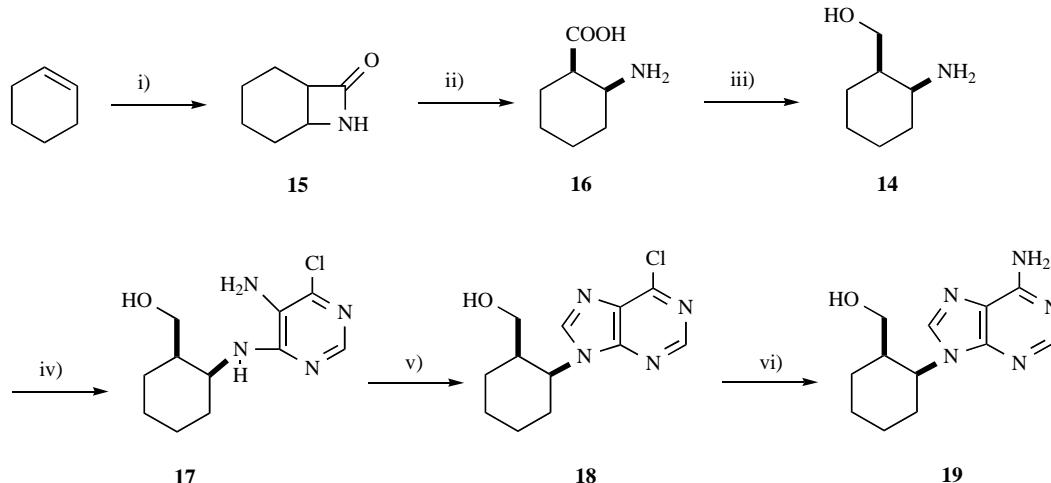
Scheme 2. Synthetic strategy of a 135-membered library of fully substituted purine analogues.


a substituted pyrimidine nucleus followed by imidazole ring construction [15,16]; b) preparations that start from the corresponding imidazole ring, and then construction of the pyrimidine nucleus (Fig. (1)) [17-20]; c) direct substitution of the preformed purine ring [21-25].

2. SYNTHESES STARTING FROM A SUBSTITUTED PYRIMIDINE NUCLEUS FOLLOWED BY THE IMIDAZOLE RING BUILDING

Laufer *et al.* [15] reported the syntheses of the 6-phenyl-substituted purines **1** and **2**, and the 6,8-diphenyl-substituted purine **3** as shown in Scheme 1. Suzuki coupling of benzeneboronic acid with 4,6-dichloro-5-nitropyrimidine [26] provided the arylpyrimidines **4** or **5**, which were treated with methylamine to deliver the 4-amino-5-nitro compounds **6** or **7**. Subsequent catalytic reduction of the 5-nitro group afforded the diamines **8** or **9**, which permitted the acid-catalyzed ring closure with the suitable ortho esters (ethyl orthoformate and ethyl orthobenzoate).

Although many methodologies have been developed for the synthesis of various trisubstituted purines, few examples exist for the synthesis of fully substituted purine analogues. Bai *et al.* [27] proposed an efficient strategy that leads to a 135-membered library in good yields and high purity of fully substituted purine analogues **10** (Scheme 2).


*N*9-Substituted purine derivatives are among the most commonly studied compounds, which is not too surprising since natural purine nucleosides are *N*9-substituted. Despite the abundance of work reported on purine derivatives, few studies report libraries of *N*7-substituted purine derivatives [28]. Traditionally, *N*7-substituted purines are made via alkylation reactions of purines, which often produce both *N*7- and *N*9-substituted purines as a mixture of regioisomers [29]. It has been recently reported that the cyclization reaction of 5-alkylamino-4-amino-6-arylthiopyrimidine **11** leads to the *N*7-substituted purines **12** regiospecifically, and the 6-arylthio group allows further elaboration of the *N*7-substituted purine system to produce a 40-member library of 6,7,8-substituted purines (Scheme 3) [30].

11

12

13

Scheme 3. Synthetic strategy of a 40-membered library of 6,7,8-trisubstituted purines. *Reagents:* i) R₂COOH or R₂CHO; ii) 1. m-CPBA; 2. R₃R₄NH.**Scheme 4.** *Reagents and conditions:* i) CSI, -78 °C, 43%; ii) HCl, 12 M, rt, 99%; iii) LiAlH₄, THF, reflux, 72 h, 55%; iv) 5-amino-4,6-dichloropyrimidine, Et₃N, n-BuOH, reflux, 24 h, 71%; v) CH(OEt)₃, 12 M HCl, reflux, 12 h, 71%; vi) NH₄OH, reflux, 4 h, 99%.

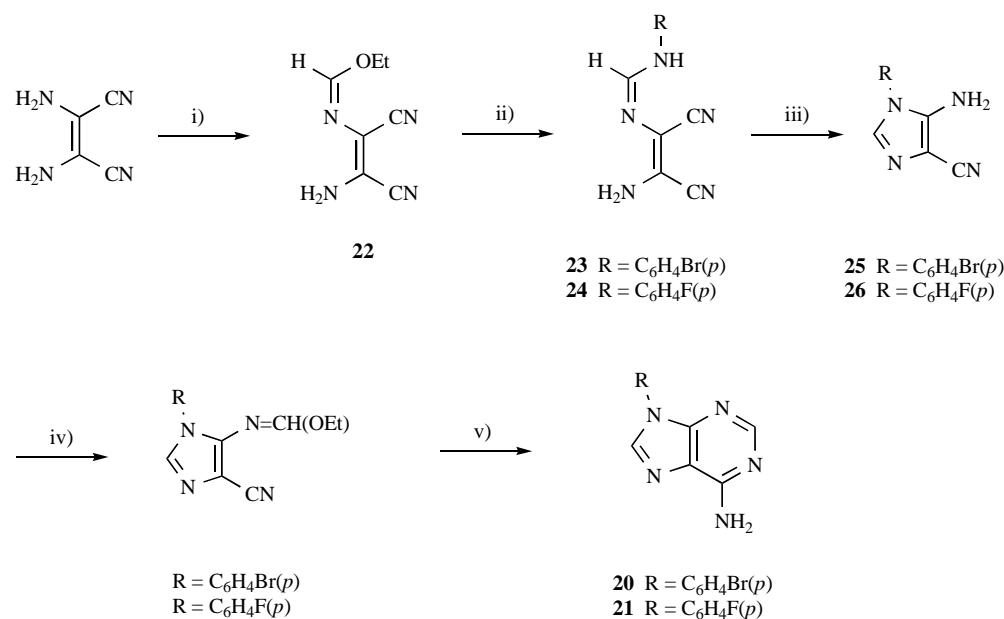
The final step shown in Scheme 3 is the introduction of two additional diversity points, R₃ and R₄, to the N7-substituted purines 12. The activation of a sulphide group at the 6-position of a purine toward nucleophilic substitutions has often been reported and applied to the preparation of purine libraries using either solution-phase [31] or solid-phase methodologies [32]. Therefore, m-CPBA oxidation of compounds 12 gives their corresponding 6-phenylsulfonyl purines in excellent yields and are sufficiently pure for the next reaction without further purification. Substitution of the 6-phenylsulfonyl group by various amines is achieved using an excess of primary or secondary amines in n-butanol at 100 °C in sealed tubes to give the final target N7-substituted purines 13 (Scheme 3).

Viña *et al.* [33] have reported novel cyclohexyl nucleosides, in which the purine base and the hydroxymethyl group have a 1,2-relationship. Following the route shown in Scheme 4, β-amino acid 16 was obtained by a [2 + 2] cycloaddition between cyclohexene and chlorosulfonyl isocyanate (CSI) followed by hydrolysis of the resulting lactam 15. The β-amino acid 16 was reduced with LiAlH₄ to afford 14 [34]. A sequence of three steps produces the target molecule 19: the condensation of 14 with 5-amino-4,6-dichloropyrimidine gives the substituted pyrimidine 17, the reaction of this product with ethyl orthoformate in an acidic medium produces 18 and finally, nucleophilic exchange of the 6-chloro atom affords the amino group (Scheme 4).

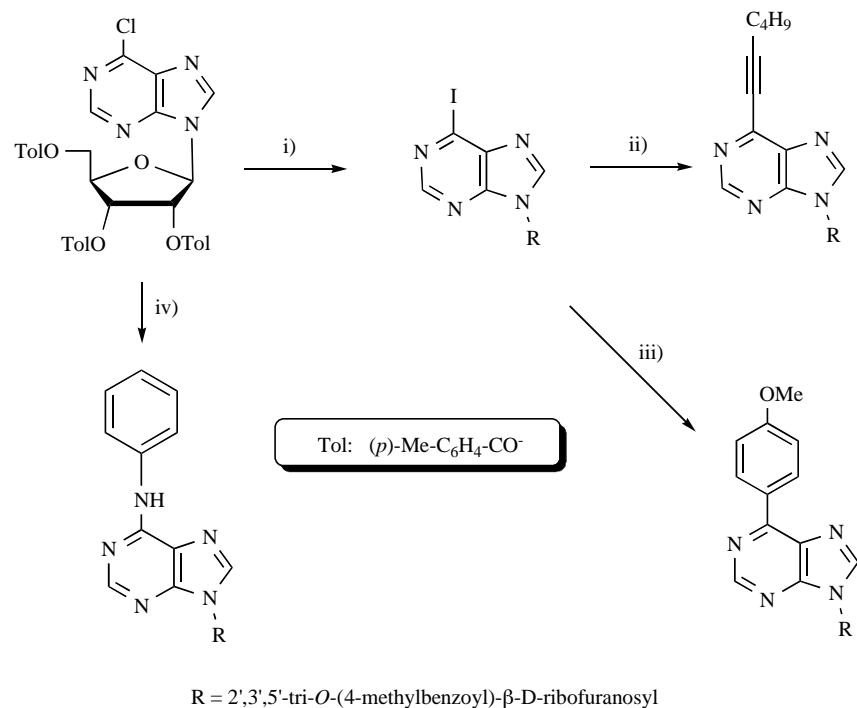
3. SYNTHESIS STARTING FROM A SUBSTITUTED IMIDAZOLE NUCLEUS FOLLOWED BY THE PYRIMIDINE BUILDING

As the purine ring system is a fusion of two aromatic heterocycles, pyrimidine and imidazole, another logical starting point for the preparation of the bicyclic system is an appropriately substituted

imidazole from which the second ring can be constructed by a cyclization process. 9-Phenyl-9*H*-purin-6-amines 20 and 21 have been recently prepared [35] via a multistep procedure from ethyl (Z)-N-(2-amino-1,2-dicyanovinyl)formimidate 22, by treatment with a phenylamine in a 1:1 molar ratio in ethanol in the presence of a catalytic amount of aniline hydrochloride to give the corresponding formamidines 23 and 24 [36,37]. Cyclization of the formamidines in the presence of an aqueous KOH solution provides the corresponding 5-amino-1-phenyl-1*H*-imidazole-4-carbonitriles 25 and 26 [38], which are readily converted to 20 and 21 by treatment with ethyl orthoformate and acetic anhydride (Ac₂O) followed by reaction with ammonia (Scheme 5).


Preparations of the purine ring from various imidazoles [39-45] are available.

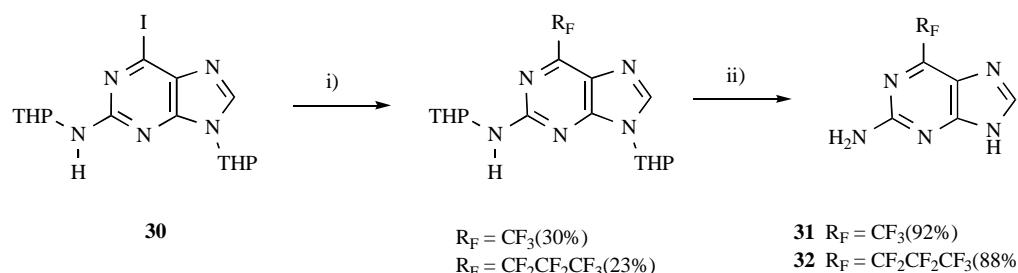
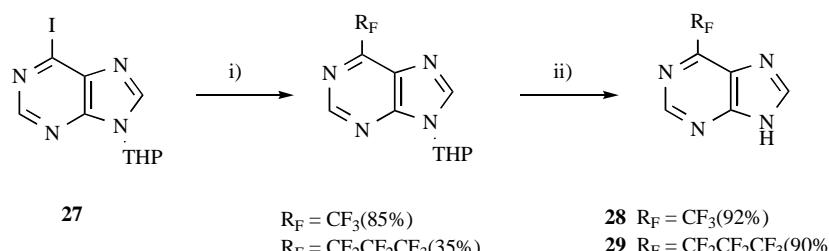
4. SYNTHESIS BY DIRECT SUBSTITUTION OF THE PRE-FORMED PURINE RING


4.1. Functionalization at 6-position

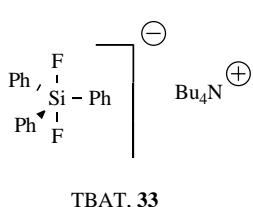
Advances in the synthesis of C6 modified purines have employed Sonogashira [46,47], Suzuki-Miyaura [48,49], and S_NAr [50] reactions, and the area of organometallic cross-coupling with purine nucleoside derivatives has been reviewed [12].

Highly efficient transformations of 6-chloropurine nucleoside and 2'-deoxynucleoside derivatives into their 6-iodo analogues via a trifluoroacetic (TFA)-catalyzed aromatic Finkelstein reaction at temperatures below -40 °C in methyl ethyl ketone (MEK) have been reported [51]. Robins *et al.* state that 6-iodo purines are efficient substrates for S_NAr, Sonogashira, and Suzuki-Miyaura reactions, in contrast with the 6-chloro analogues, and give high yields of C-C and C-N coupled products (Scheme 6) [51].

Scheme 5. Reagents and conditions: i) HC(OEt)₃, dioxane, Δ ; ii) RNH₂, PhNH₃⁺Cl⁻, rt, 3-4 h; iii) 1 M KOH (aq), rt; iv) HC(OEt)₃, Ac₂O, Δ ; v) NH₃, MeOH, Δ (67-83%).

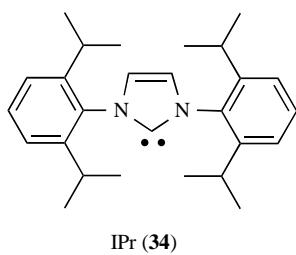



Scheme 6. Reagents and conditions: i) NaI, TFA, MEK, -50 to -40 °C (73%); ii) C₄H₉C≡CH, Pd(PPh₃)₄, CuI (92%); iii) (p)-MeOC₆H₄B(OH)₂, Pd(PPh₃)₄, K₂CO₃ (83%); iv) PhNH₂ (80%).


Keeping in mind that fluorinated analogues of natural compounds exert interesting biological activities [52], Hocek and Holý have described a CuI/KF-mediated perfluoroalkylation reaction of various 9-substituted 6-iodopurines **27** and **30** with trimethyl (trifluoromethyl)silane or heptafluoropropyl(trimethyl)silane to prepare the corresponding 6-(trifluoromethyl)- and 6-(heptafluoropropyl)purine derivatives (**28** and **29** and **31** and **32**, respectively) (Scheme 7) [53].

Tetrabutylammonium triphenyldifluorosilicate **33** {TBAT, (Fig. (2))} has been found to be a useful reagent for the conversion of 6-

chloropurine nucleosides to 6-fluoro purine derivatives. The 6-chloropurine nucleosides were reacted with trimethylamine to form quaternary trimethylammonium salts which were treated *in situ* with TBAT in DMF to effect conversion to the 6-fluoro derivatives in yields of 59-72% [54]. TBAT is an easily handled crystalline solid that has several advantages over tetrabutylammonium fluoride (TBAF) as a fluoride source; it is anhydrous, non-hygroscopic, soluble in most commonly used organic solvents, and less basic than TBAF [55].



Scheme 7. Synthesis of 6-perfluoroalkylpurines. *Reagents and conditions:* i) R_FSiMe_3 , KF, CuI, DMF, NMP, 60 °C, 20 h; ii) Dowex 50 (H^+), H_2O , reflux, 1 h.

Fig. (2). Structure of tetrabutylammonium triphenyldifluorosilicate (TBAT).

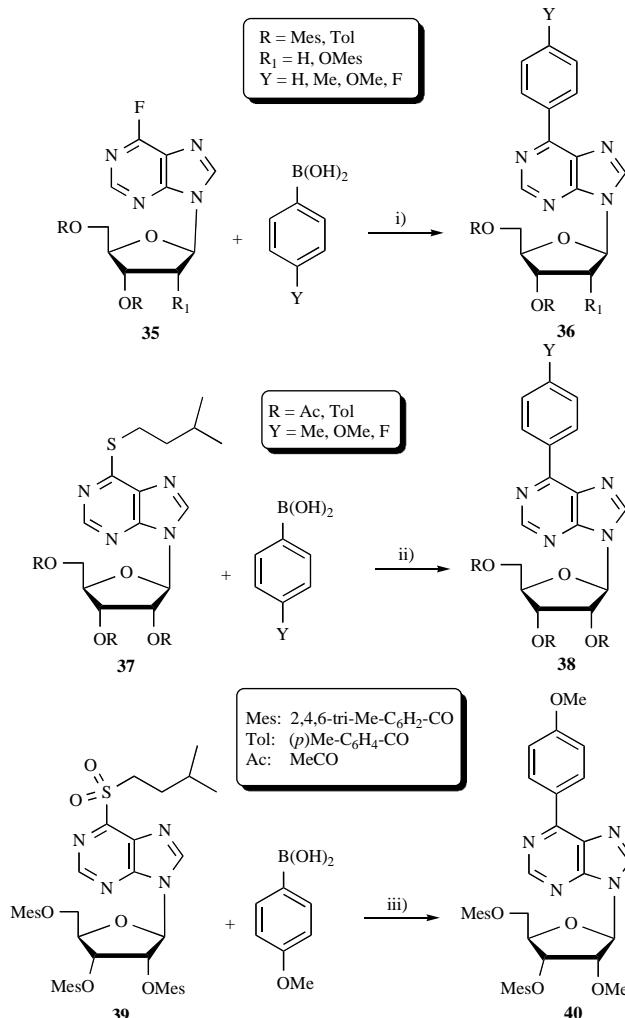
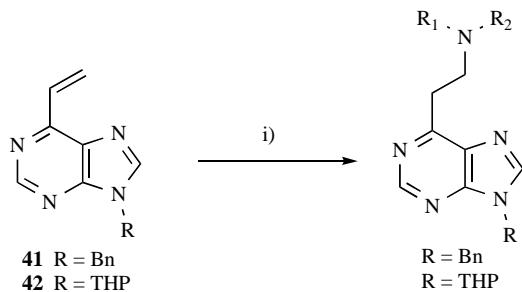

Robins and Liu [56, 57] have reported reactions involving the use of nickel- and palladium-based systems with the carbene 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene **34** {IPr, [Fig. (3)]}.

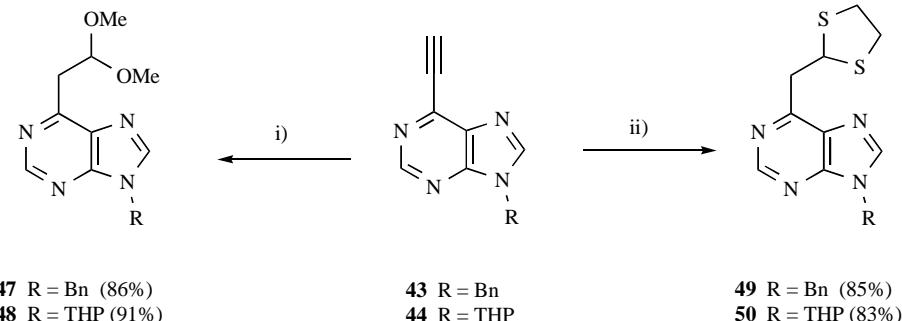
Fig. (3). Structure of the imidazolium-carbene ligand IPr.

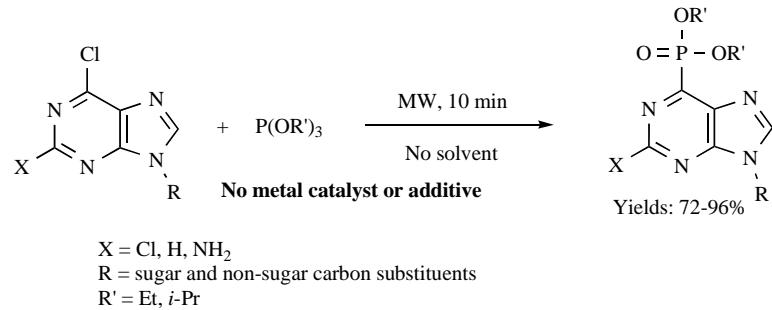
This imidazolium-carbene ligand catalyzes efficiently Suzuki cross-couplings of arylboronic acids and the 6-fluoropurine- **35**, the 6-[(3-methylbutyl)sulfanyl]- **37**, and the 6-[(3-methylbutyl) sulfonyl]purine nucleoside derivative **39** to give the corresponding 6-arylpurines **36**, **38** and **40**, respectively (Scheme 8) [56].


$\text{S}_\text{N}\text{Ar}$ reactions with 6-fluoro, chloro, bromo, iodo, and alkylsulfonyl)purine nucleosides and nitrogen, oxygen, and sulfur nucleophiles have been studied [57]. There is no global general rule that can be deduced. Nevertheless, the authors state the following: a) 6-fluoro-9-[2,3,5-tri-*O*-(2,4,6-trimethylbenzoyl)- β -D-ribofuranosyl]purine (compound **35**, R = Mes, R₁ = OMe, Scheme 8) is the most reactive substrate for $\text{S}_\text{N}\text{Ar}$ reactions among the four 6-halopurine analogues with an aliphatic amine, an arylamine plus TFA, and with oxygen and sulfur nucleophiles; b) however, 6-iodo-9-[2,3,5-tri-*O*-(2,4,6-trimethylbenzoyl)- β -D-ribofuranosyl]purine

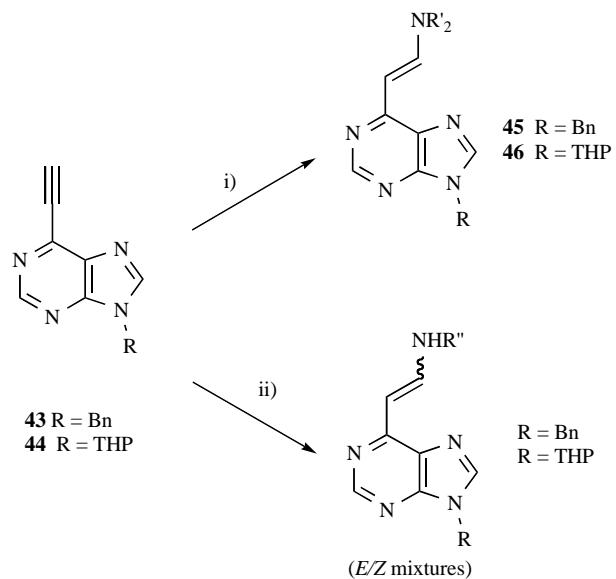
Scheme 8. *Reagents and conditions:* i) 10 mol% $\text{Ni}(\text{COD})_2$, 10 mol% IPr-HCl, K_3PO_4 /THF/60 °C, 3h (60-84%); ii) 10 mol% $\text{Pd}(\text{OAc})_2$, 10 mol% IPr-HCl, K_3PO_4 /toluene/90 °C, 8h (69-78%); iii) 10 mol% $\text{Pd}(\text{OAc})_2$, 10 mol% IPr-HCl, K_3PO_4 /THF/60 °C, 8h (81%).

[60] is the best substrate for the aromatic amine (autocatalysis by generated HI) in the absence of an external acid catalyst; and c) 6-(3-methylbutylsulfonyl)-9-[2,3,5-tri-*O*-(2,4,6-trimethylbenzoyl)- β -D-ribofuranosyl]purine **39** (Scheme 8) is even more reactive than its 6-iodopurine analogue with oxygen and sulfur nucleophiles [56].

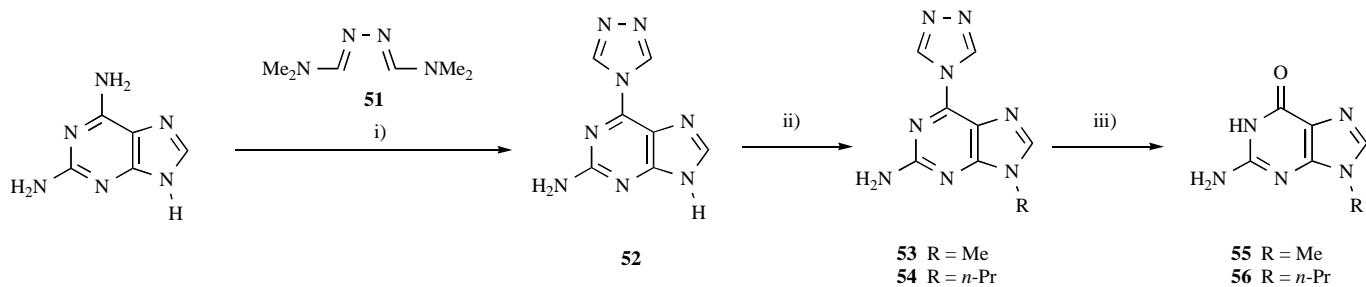

Purine is an electron-withdrawing substituent and, thus, vinylpurines easily undergo conjugate additions. Hocek *et al.* [58] first studied conjugate additions to 9-benzyl-6-vinylpurine **41** and 6-vinyl-9-(tetrahydropyran-2-yl)purine **42**, both of which are easily available [59] from the corresponding 6-chloropurines by a Stille cross-coupling with vinyl(tributyl)tin. A series of experiments with several amines was performed (Scheme 9).

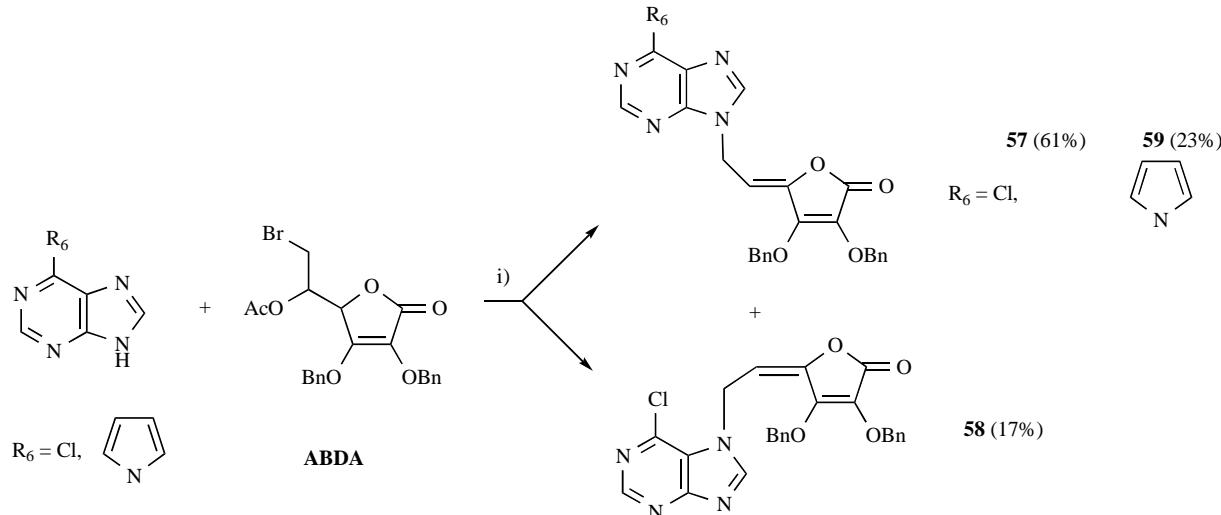

Scheme 9. Reagents and conditions: i) R_1R_2NH ($-NR_1R_2$ = piperidine, morpholine, dibutylamine, diethylamine, dimethylamine, cyclohexylamine, benzylamine, methylamine, NH_3 , THF or EtOH, rt (40-94%).

Analogous additions to 6-ethynylpurines **43** and **44** [58], which are easily available [60] by the Sonogashira cross-coupling of the corresponding 6-chloropurines and TMS-acetylene, followed by desilylation by methanolic ammonia. Secondary amines react slowly to give (*E*)-configured 9-benzylated enamines **45** and 9-THP-substituted enamines **46** in lower yields than **45** (Scheme 10).


On the other hand, the addition of two equivalents of alcohols and thiolates to 9-substituted 6-ethynylpurines gives acetals **47** and **48** and dithioacetals **49** and **50** (Scheme 11) [58-60].

Scheme 11. Addition of *O*- and *S*-nucleophiles to ethynylpurines **43** and **44**. Reagents and conditions: i) $NaOMe$, $MeOH$; ii) 1,2-ethanedithiol, NaH , THF .


Scheme 12. Synthesis of C6-phosphonated purine nucleosides under microwave irradiation by SNAr-Arbuzov reaction.


Scheme 10. Reagents and conditions: i) $R'2NH$ ($-NR'2$ = piperidine, morpholine, dibutylamine, diethylamine, dimethylamine) (45-97%); ii) $R''NH_2$ ($-NHR''$ = cyclohexylamine, benzylamine, methylamine) (76-94%).

Phosphonated azaheterocycles are an important class of compounds with high biological potential as conformationally restricted bioisosteres of amino acids [61]. Very recently, heterocycles bearing the phosphorus functionalities have been synthesized, which would serve in further functionalizations to produce molecular diversity and produce biologically active compounds [62].

Guo *et al.* [63] have reported C6-phosphonated purine nucleosides in excellent yields by the simple and catalyst-free S_NAr -Arbuzov reaction of trialkyl phosphate with 6-chloropurine nucleosides, including non-sugar carbon nucleosides (Scheme 12). Microwave irradiation leads to a dramatic reduction of reaction times and substantial increase of the yields.

Scheme 13. Reagents and conditions: i) DMF, 180 °C, 18 h (85%); ii) methyl iodide or 3-bromopropane, NaH, DMF, rt, 1 h (78% with MeI, and 93% with BrC_3H_7); iii) 1 N NaOH, 100 °C (67% of **55**, and 85% of **56**).

Scheme 14. Reagents and conditions: i) Et_3N /dry DMF, 70 °C, 11 h.

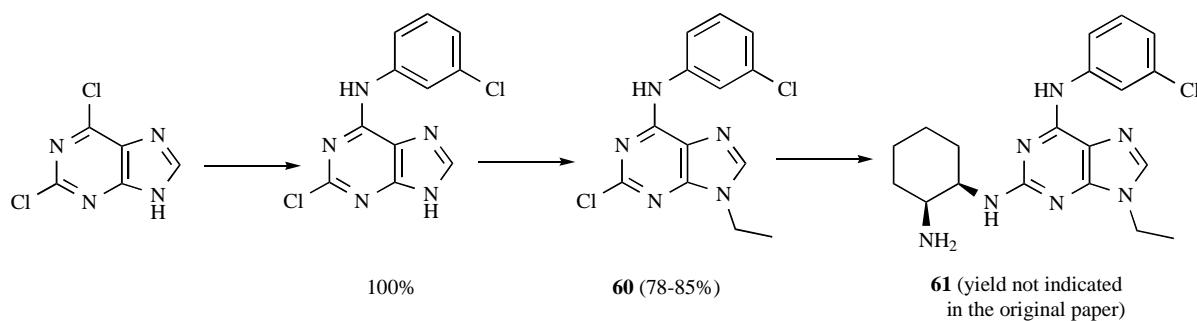
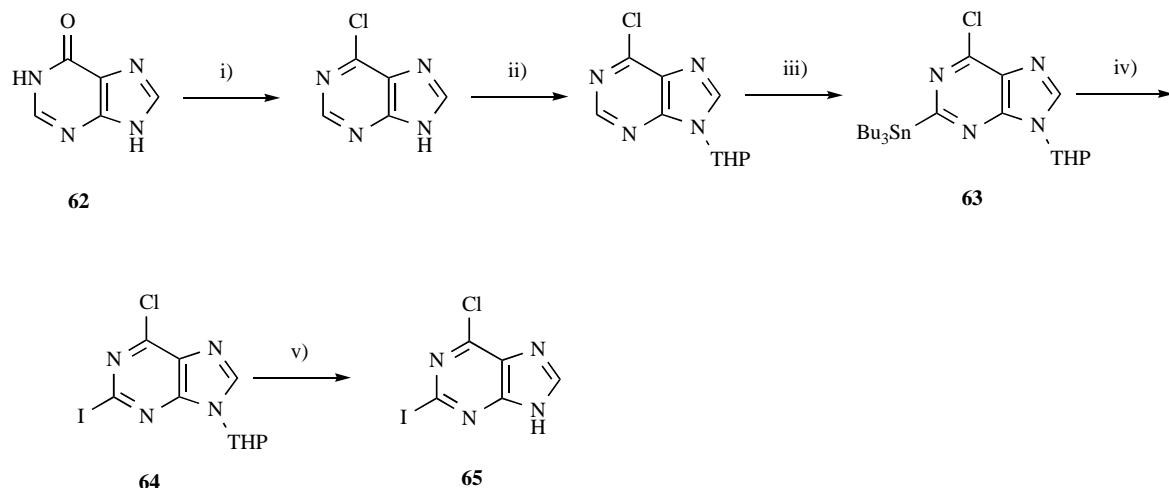
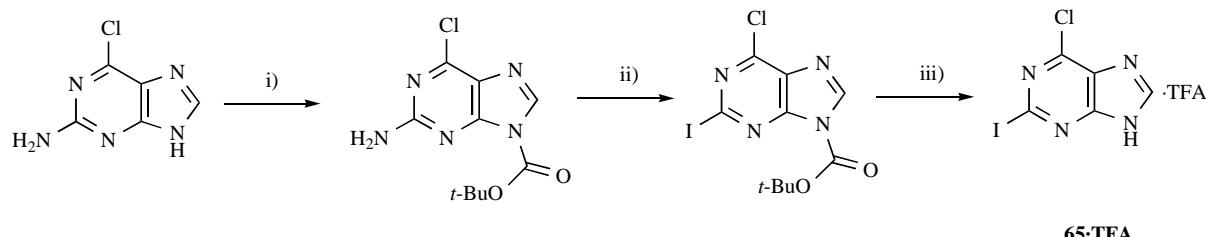
4.2. Functionalization at *N*7 and *N*9 Positions

2-Amino-6-(1,2,4-triazol-4-yl)purine **52**, prepared from 2,6-diaminopurine and 1,2-bis[(dimethylamino)methylene]hydrazine **51**, was regioselectively alkylated at position 9 to give **53** and **54**, and the subsequent alkaline hydrolysis afforded 9-alkylguanines **55** and **56** in high yield (Scheme 13) [64]. The selective alkylation at 9-position of 2-amino-6-(1,2,4-triazol-4-yl)purine **52** may be due to steric hindrance introduced by the triazole that precludes alkylation at 7-position [64].

The regioselective *N*9 arylation of purines employing arylboronic acids in the presence of Cu(II) acetate has been reported [65]. Later on, 6-(substituted-imidazol-1-yl)purines were used as versatile substrates for their regiospecific alkylation and glycosylation at *N*9 [66].

L-Ascorbic acid and its derivatives have been of manifold biological and pharmacological interest. Thus, some derivatives of L-ascorbic acid, e.g., 6-bromo-, 6-amino-, and *N,N*-dimethyl-6-amino-6-deoxy-L-ascorbic acid, have been found to inhibit the growth of certain human malignant tumour cell lines: cervical carcinoma (HeLa), laryngeal carcinoma (Hep2), and pancreatic carcinoma (MiaPaCa2) [67]. Searching for pharmacologically active molecules, Raić-Malić *et al.* [68] prepared new types of molecules containing purine moieties connected via an acyclic chain to 2,3-dibenzyl-4,5-didehydro-5,6-dideoxy-L-ascorbic acid.

Compounds **57-59** are obtained by the direct condensation of 6-chloropurine with 5-acetyl-6-bromo-2,3-dibenzyl-L-ascorbic acid (ABDA) [69,70] using a modified procedure for the preparation of purine and pyrimidine trihydroxyacyclonucleosides [71] (Scheme 1).




14). Reaction affords both *N*9 (**57**) and *N*7 (**58**) regioisomers in a ratio of 4:1. In contrast, reaction of 6-(*N*-pyrrolyl)purine with ABDA gives only the *N*9 isomer (**59**).

Compound **59** showed the most selective inhibitory activity against human Molt4/C8 and CEM/0 cell proliferation as compared to normal fibroblast Hef522 cell proliferation [68].

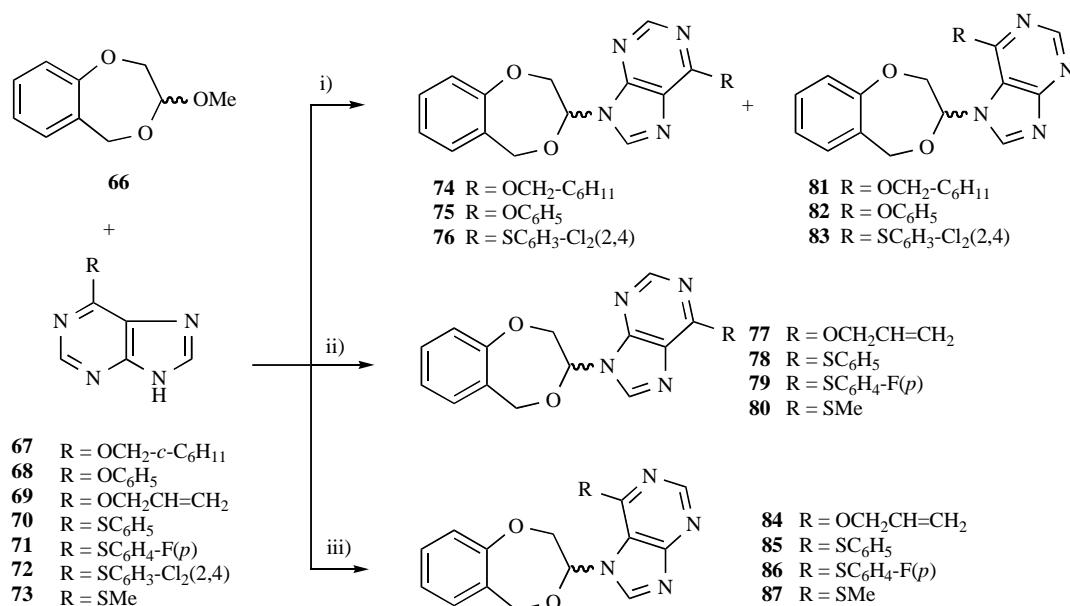
4.3. Synthesis of Disubstituted Purines

4.3.1. 2,6-Disubstituted Purines

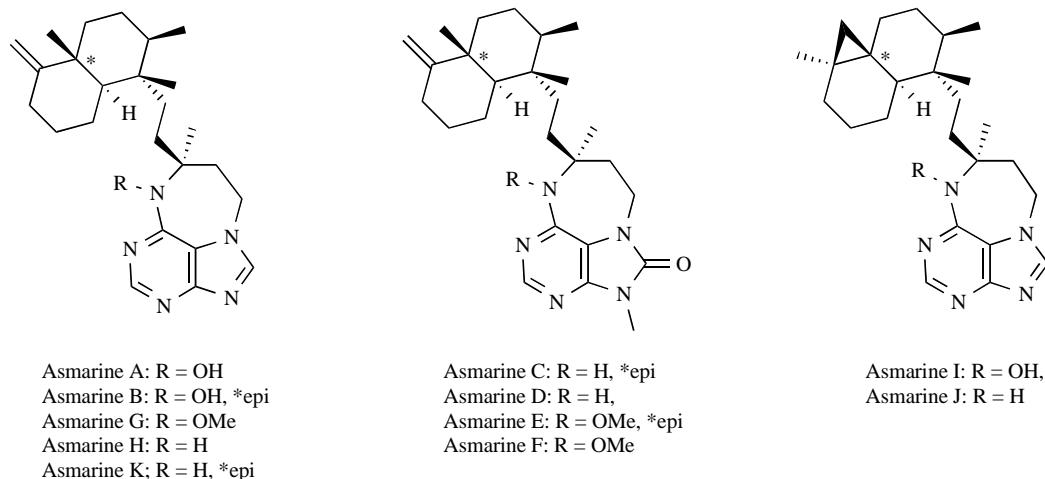
The introduction of substituents on the 2- and 6-position of purines is generally achieved via the nucleophilic displacement of 2,6-dihalogenated purine derivatives. The introduction of a nitro group at the 2-position by nitration with tetrabutylammonium nitrate (TBAN) and trifluoroacetic anhydride (TFAA) has been described [72]. The 2-nitro group greatly enhances the electrophilicity of the purine C6 position. The introduction of a trifluoromethyl group on purine C6 is greatly facilitated by the C2 nitro substituent. The reaction can be achieved at -20 °C, while other protocols need highly elevated temperature and catalysts [53]. The functionalization of C2 with nucleophiles is highly enhanced by the C6 CF₃-substituent. The introduction of nucleophiles can proceed at temperatures varying from 0 ° to 40 °C [73]. The N9 position is functionalized with different alkyl or arylalkyl groups via standard alkylation or Mitsunobu conditions [73]. After the introduction of a halogen (I, Br) substituent at position C8 of the purine system, these compounds can be further functionalized by adding nucleophiles. Palladium-catalyzed coupling procedures (Sonogashira, Stille, Suzuki, Buchwald-Hartwig) allow for a broad range of carbon and

Scheme 15. General synthesis of 2,6,9-trisubstituted purine derivatives.**Scheme 16.** Reagents and conditions: i) POCl_3 , DMA, 120 °C (86%); ii) dihydropyran, cat. TsOH , THF, 80 °C (68%); iii) LiTMP , THF, -78 °C, then Bu_3SnCl (100%); iv) I_2 , THF (95%); v) 0.1 equiv. CuCl_2 , aqueous EtOH (98%).**Scheme 17.** Reagents and conditions: i) Boc_2O , K_2CO_3 , DMF (87%); ii) CH_2I_2 , isoamyl nitrite, 4 Å molecular sieves, THF, 50 °C (37%); iii) TFA, CH_2Cl_2 (96%).

heteroatom nucleophiles that can be introduced at the 8-position of the halo-purines [73].


2,6-Dichloropurine is a commercially available, albeit expensive, starting material for the preparation of 2,6-diaminopurine analogues as shown on Scheme 15. Following the displacement of the 6-chloro substituent with *m*-chloroaniline and selective *N*9-alkylation with an alkyl iodide is carried out to give **60**. Finally, nucleophilic displacement at C2 is achievable at a higher temperature (150 °C) with *cis*-2-aminocyclohexylamine to produce **61** [74].

Due to the higher reactivity of the 2-iodide [75], milder conditions for the nucleophilic displacement with amines with respect to the 2-chloride of 2,6-dichloropurine are possible. Woollins *et al.* [76] have prepared 6-chloro-2-iodopurine **65** as a template for the preparation of purine cyclin-dependent kinase (CDK) inhibitors (Scheme 16).

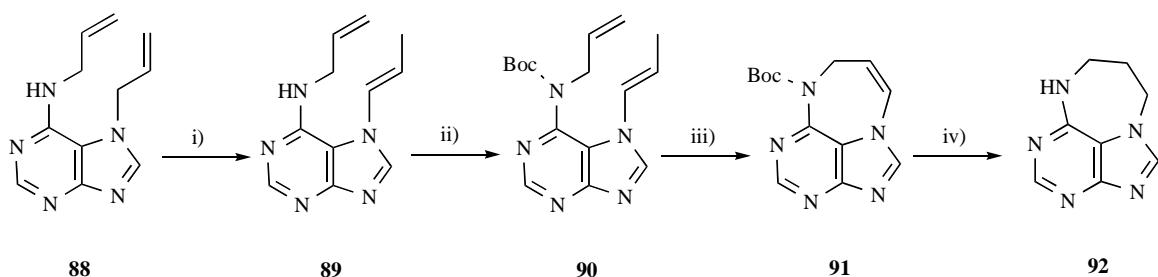
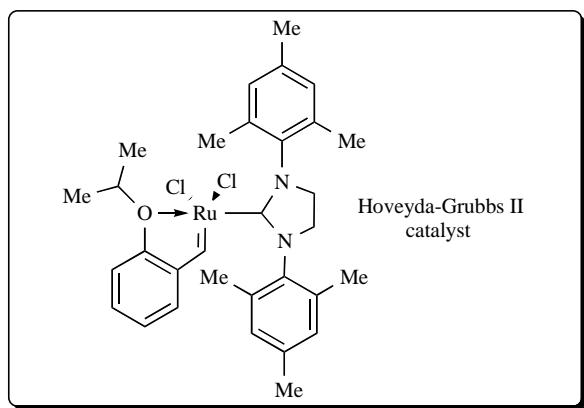

The most modern synthesis starts with hypoxanthine **62** and its most important step is the regiospecific lithiation-quenching process with the harpoon's base (lithium 2,2,6,6-tetramethylpiperidide,

LiTMP) and tributyltin chloride. The 2-stannulated purine **63** was subsequently reacted with iodine to afford the 2-iodo derivative **64** in high yield. Finally, refluxing the 9-THP purine **64** with 10 mol% of copper(II) dichloride in ethanol/water (95:5) [76] was a highly efficient deprotection. The molecular structures of the final dihalogenopurine **65** and its 9-protected precursor **64** were determined by single crystal X-ray diffraction. Nevertheless, the preparation of **64** was previously reported seven years before by Kato *et al.* [77] following the same lithiation-mediated stannylyl transfer process followed by 2-tributyl-stannylyl-iodine exchange. Legraverend *et al.* [78] stated that the presence of the THP protecting group was required in order to obtain the 2-stannylated purine intermediate in high yield. In this way the 6-chloro-2-iodopurine derivative **64** was obtained in high yield from inexpensive 6-chloropurine (in contrast to 2,6-dichloropurine which although frequently employed in purine synthesis [74,79-81], its cost is prohibitive).

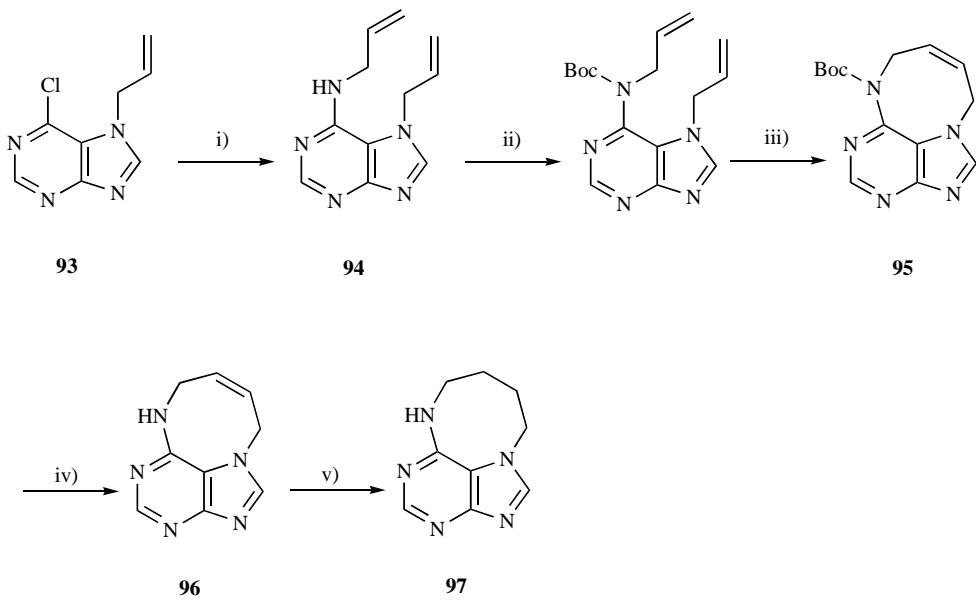
Alternately, Al-Obeidi *et al.* [82] reported the preparation of multi-gramme quantities of **65** in three steps from 2-amino-6-chloropurine (Scheme 17).

Scheme 18. Reagents and conditions: Purine bases (**67-73**), TMSCl, HMDS, SnCl₄, anhydrous MeCN. Methods i), ii) or iii): i) 45 °C, 24-72 °C (**74-76** and **81-83**, average yield: 20%); ii) MW, 130 °C, 5 min (**77-80**, average yield: 30%); iii) MW, 100 °C, 5 min (**84-87**, average yield: 28%).

Fig. (4). Structures of known asmarines.



4.3.2. 6,7 and 6,9-disubstituted Purines

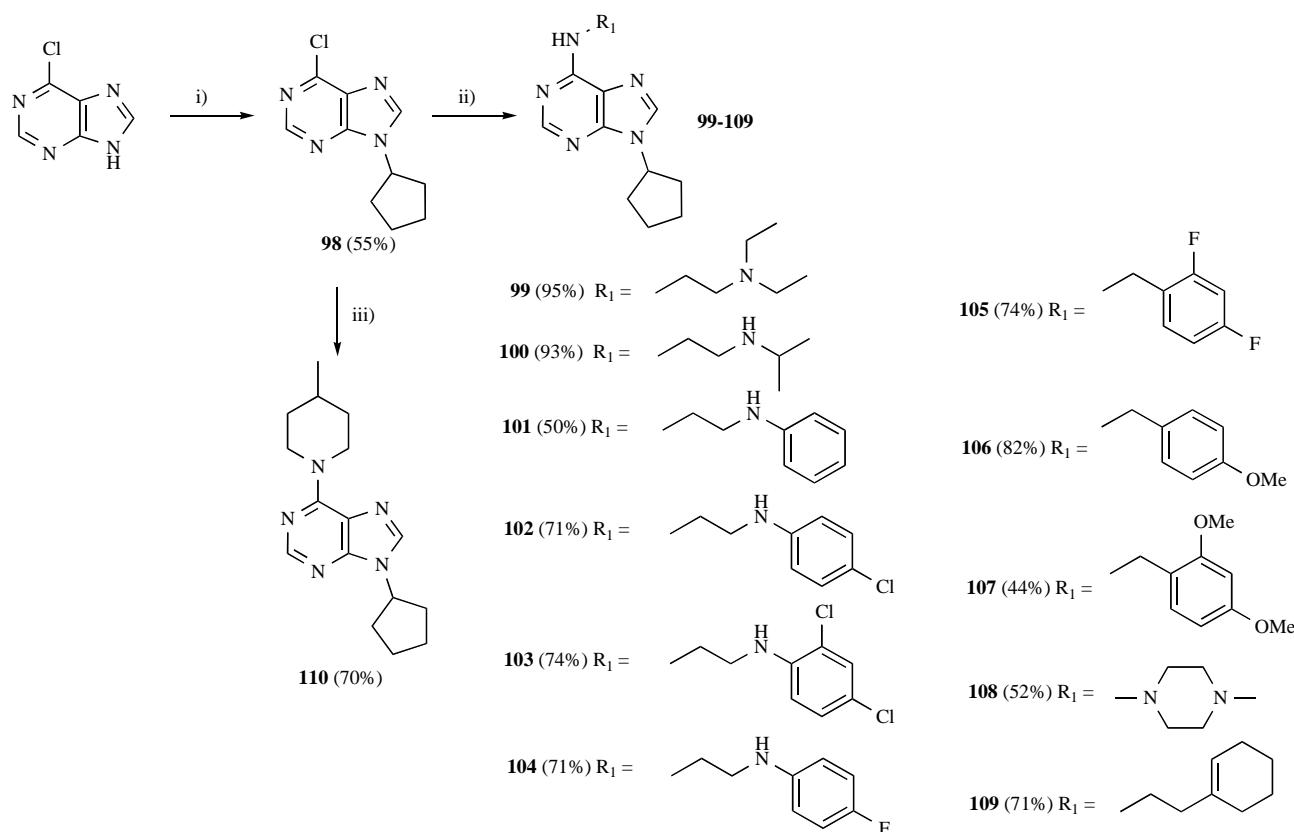
Campos *et al.* [83] have published extended studies on the synthesis and pharmacological evaluation of (*RS*)-6-substituted 7- or 9-(2,3-dihydro-5*H*-1,4-benzodioxepin-3-yl)-7*H*- or -9*H*-purines. The preparation of the target molecules **74-87** was achieved by the Vorbrüggen [84] one-pot condensation of the cyclic acetal **66** [85] and the purine bases **67-73** [15,86] using trimethylsilyl chloride (TMSCl), 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and tin(IV) chloride as Lewis acid in anhydrous acetonitrile. When the reaction was carried out at 45 °C for 24-72 hours (Scheme 18, method i)), the *N*9 and the *N*7 cyclic alkylated purine regioisomers (**74-76** and **81-83** respectively) were produced and separated by flash chromatography. As an alternative method the reaction mixture was microwave-irradiated at a temperature of 130 °C for 5 min. The most important feature is that only the *N*9 isomer was isolated in the reaction (Scheme 18, method ii)), **77-80**. Surprisingly and interestingly, when the microwave reaction was carried out at 100 °C, only the *N*7 isomers **84-87** were isolated (Scheme 18, method iii)). In short, the regiospecificity of this methodology can be controlled.


Depending on the temperature of the microwave activation only one of the isomers is obtained in better yield than the ones produced by conventional heating making the purification process easier. From a biological point of view, it must be highlighted that compounds **77** and **82** are more potent as apoptotic inductors against the MCF-7 human breast cancer cells (73.37 ± 0.12 % and 65.28 ± 1.92 %, respectively) than paclitaxel (Taxol®), which induced programmed cell death up to 43% of cell population [87]. This is a remarkable property because the demonstration of apoptosis in MCF-7 breast cancer cells by known apoptosis-inducing agents has proved to be difficult [83].

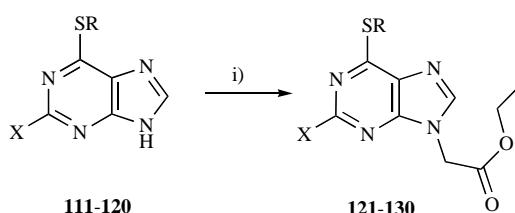
Asmarines are tetrahydro[1,4]diazepino[1,2,3-g,h]purine derivatives isolated from marine sponges (*Raspailia* sponges). Currently eleven asmarines [asmarine A-K, Fig. (4)] are known [88], and asmarines A and B are reported to possess significant cytotoxic activity against various human cancer cell lines [88a].

To date, no total synthesis of an asmarine has been published and a major challenge in any synthesis of these natural products will be the construction of the tetrahydropyridazine ring. In order to

Scheme 19. Reagents and conditions: i) K_2CO_3 , MeCN or $n\text{-BuOH}$, Δ (100%); ii) $(\text{Boc})_2\text{O}$, DMAP, MeCN (68%); iii) Hoveyda-Grubbs II, DCE, Δ (95%); iv) 1. H_2 , Pd/C, EtOAc, 2. HCl , MeOH (70%).



Scheme 20. Reagents and conditions: i) $\text{H}_2\text{NCH}_2\text{CH}=\text{CH}_2$, py, $100\text{ }^\circ\text{C}$ (93%); ii) $(\text{Boc})_2\text{O}$, DMAP, MeCN (65%); iii) Hoveyda-Grubbs II, DCE, Δ (73%); iv) HCl , MeOH (81%); v) H_2 , Pd/C, H_2SO_4 , MeOH (85%).


construct a seven-membered ring by ring-closing metathesis (RCM), a 7-alkenylpurine was needed, and when 7-allyl-6-allylaminopurine **88** was treated with base in refluxing acetonitrile, the double bond in the *N*7 substituent selectively migrated to give 7-propenylpurine **89** in quantitative yield. The Boc-protected 7-propenylpurine **90** was treated with refluxing 1,2-dichloroethane (DCE) for 1.5 h, in the presence of the Hoveyda-Grubbs II catalyst, and dihydropyrazinopurine **91** was formed (95% yield). Finally, tetrahydro[1,4]diazepino[1,2,3-*g,h*]purine **92** was available after

hydrogenation prior to the removal of the *N*-protecting group [89] (Scheme 19).

The synthesis of compound **97**, with an eight-membered ring was also tried by Gundersen and Vik [89]. It is known that 7-allyl-6-chloropurine **93** (Scheme 20) is readily available by regioselective *N*-alkylation of 6-chloropurine in the presence of a Co-complex [90]. 7-allyl-6-chloropurine **93** was reacted with allylamine to give **94**. The synthesis of eight-membered rings by RCM reactions has often been a challenge [91,92], even though there are examples of

Scheme 21. Reagents and conditions: i) cyclopentyl bromide, K_2CO_3 , DMF; ii) the appropriate amine, EtOH; iii) 4-methylpiperidine.

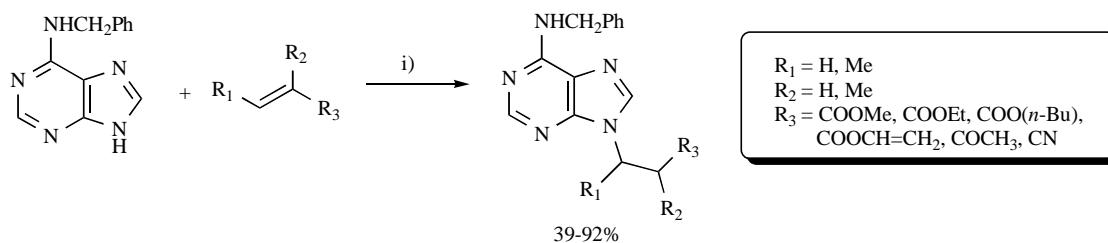
111, 121 $X = H, R = 1\text{-decyl}$ (36%)
 112, 122 $X = H, R = 1\text{-dodecyl}$ (22%)
 113, 123 $X = H, R = C_6H_4\text{-}4\text{-Cl}$ (37%)
 114, 124 $X = H, R = C_6H_4\text{-}3\text{-Me}$ (37%)
 115, 125 $X = H, R = C_6H_4\text{-}4\text{-Me}$ (90%)
 116, 126 $X = H, R = 2\text{-naphthyl}$ (15%)
 117, 127 $X = OH, R = CH_2C_6H_5$ (18%)
 118, 128 $X = OH, R = CH_2C_6H_3\text{-}2\text{-Cl-}6\text{-F}$ (8%)
 119, 129 $X = OH, R = CH_2C_6H_3\text{-}2\text{-Me-}3\text{-NO}_2$ (9%)
 120, 130 $X = OH, R = CH_2C_6H_4\text{-}2\text{-F}$ (9%)

Scheme 22. Reagents and conditions: i) ethyl bromoacetate, K_2CO_3 , DMAc.

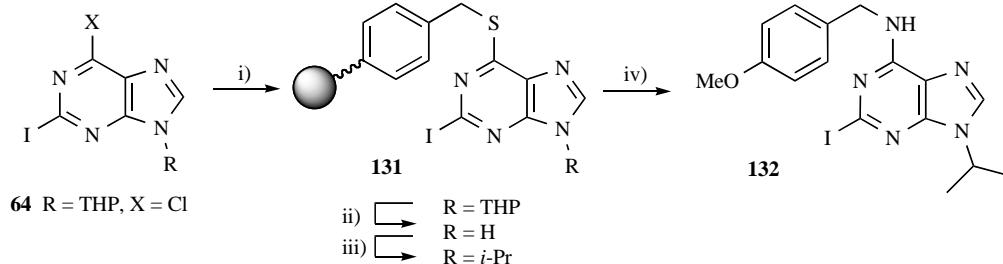
such rings formed in excellent yields by RCM [92d,93]. Furthermore, in the construction of azacyclooctenes by RCM, the yield is often highly dependent on the nature of the *N*-substituent [92,94]. Dihydridiazocinopurine **95** was isolated in 73% yield employing the Hoveyda-Grubbs II complex, the Boc group was readily removed and the double bond of **96** was hydrogenated at atmospheric pressure to afford **97**.

Tunçbilek *et al.* [95] have reported the synthesis and antimicrobial activity of several 6,9-disubstituted purines (Scheme 21).

Compounds **99-109** have been synthesized via *N*9 alkylation of 6-chloropurine with cyclopentyl bromide, and subsequent amination of 6-chloro-9-cyclopentylpurine **98** with substituted amines. The alkylation reaction occurred only at the *N*9 atom. Compound **110** was obtained by treating **98** with 4-methylpiperidine.


Compound **102** exhibits comparable antibacterial activity with that of the clinically used drug ciprofloxacin, and **104** displays better antifungal efficacy than that of the standard drug oxiconazole [95].

The purine ring system is a key structural element of substrates and ligands of many biosynthetic, regulatory, and signal transduc-


tion proteins including cellular kinases, G proteins, and polymerases [96,97]. Very little work has been done to explore the potential of purine analogues as antitubercular agents. Nevertheless, syntheses of purine analogues possessing antitubercular activity have been published [98]. Reynolds *et al.* [99] carried out the synthesis of several 6-thioaryl/alkyl purines for screening against *Mycobacterium tuberculosis* (Mtb) and *Mycobacterium avium* complex (MAC) strains.

Compounds **111-130** are obtained by reactions of 6-chloropurine with the corresponding alkyl/aryl thiols in 2-propanol using potassium *tert*-butoxy after heating at 50 °C. The 2-hydroxy purine analogues **117-120** are prepared by the treatment of 6-thioxanthine with alkyl/benzyl halides in 0.1 N NaOH. To evaluate the effect of *N*9-substitution on inhibitory activity, *N*9-alkylation of a small number of active 6-thio-substituted purines was performed. The alkylation was carried out with ethyl bromoacetate in the presence of K_2CO_3 using DMAc (*N,N*-dimethylacetamide) as solvent and resulted in 6,9-disubstituted **121-126** and 2,6,9-trisubstituted **127-130** purine analogues (Scheme 22).

Compounds **121** and **122** exhibit antimycobacterial activity in the preliminary screening against Mtb H₃₇Rv [99].

Scheme 23. Reagents and conditions: i) 5 mg DA, 1 mL DMSO, 50 °C, 72 h.

Scheme 24. Reagents and conditions: i) Merrifield resin-SH, *t*-BuOK, DMF, 80 °C; ii) TFA (20 equiv) in CH_2Cl_2 , rt; iii) PPh_3 (1 equiv), DIAD 1 equiv, THF, -50 °C, *i*-PrOH (1 equiv); iv) 1. *m*-CPBA (2.2 equiv), CH_2Cl_2 , 20 °C; 2. *p*-MeOC₆H₄CH₂NH₂, THF, 65 °C (The yield for product **132** was in the 70-90% range).

Enzymes are efficient catalysts in organic and bioorganic synthesis. Lin *et al.* [100] have reported the regioselective Michael addition of purine derivatives to α,β -unsaturated carbonyl compounds catalyzed by D-aminoacylase (DA) in DMSO. This methodology was extended to diverse purine derivatives and a variety of α,β -unsaturated carbonyl compounds (Scheme 23) [100]. It is the first report on enzyme-catalyzed Michael addition for the preparation of purine derivatives.

4. SYNTHESIS OF 2,6,9-TRISUBSTITUTED PURINES

The basic tenet for the construction of 2,6,9-trisubstituted purine libraries is that the low reactivity of the C6-S bond provides the possibility to introduce a wide variety of functionality at the N9 and C2 positions prior the reaction at C6. Subsequent activation of the sulfur atom (oxidation, alkylation, etc.) then opens the way to concomitant introduction of a substituent (nucleophile) at C6 and cleavage of the trisubstituted purine product from the resin. In this sense, full advantage is taken of solid-phase synthesis to introduce functionality at all the centres of interest in the purine ring [32b].

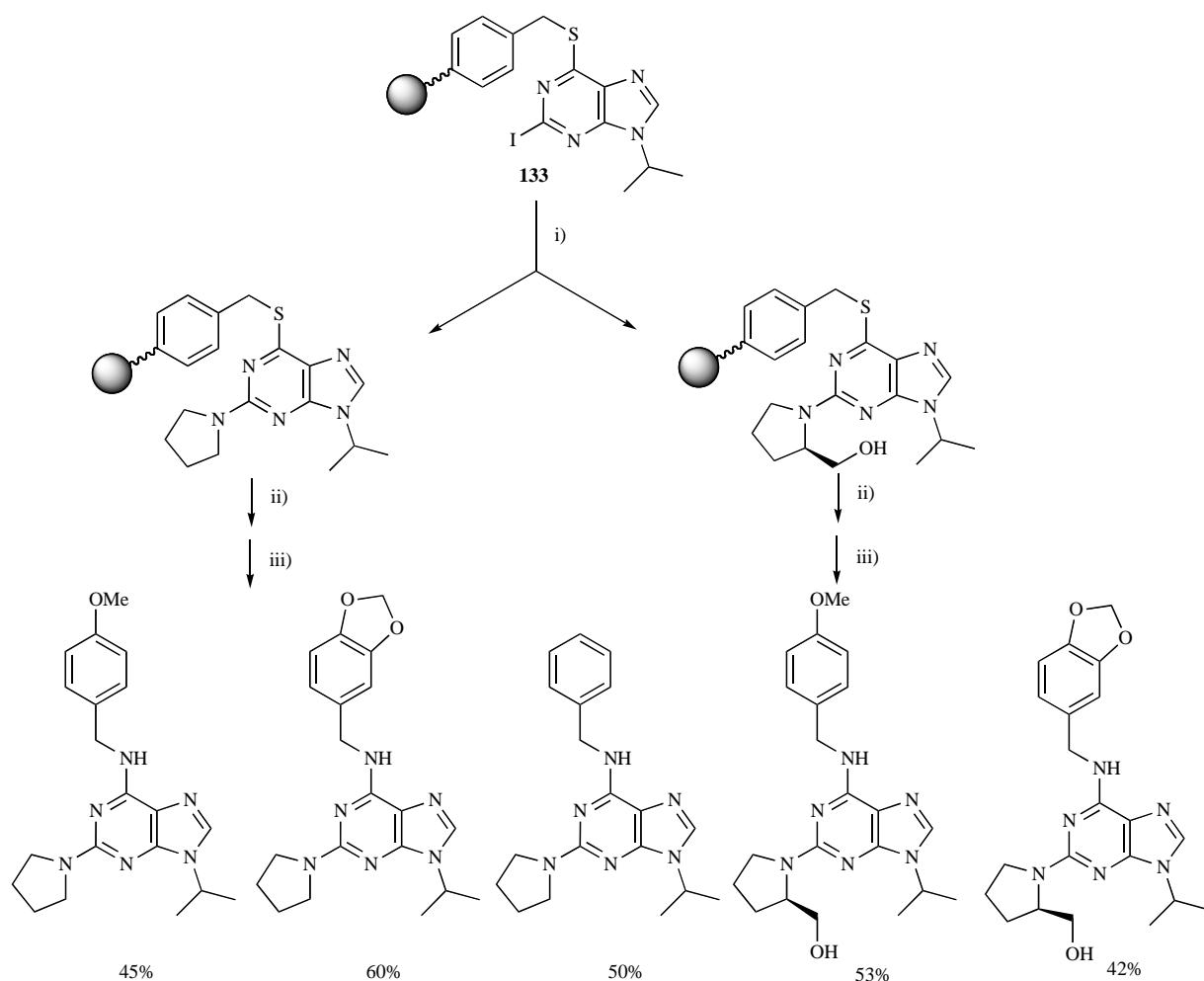
To prepare the resin bound purine **131** [78], the reaction of 6-chloropurine **64** with Merrifield-SH resin was carried out. The efficiency of the release of the purine form resin **131** was then evaluated following the two-step protocol developed in solution (*S*-oxidation/nucleophilic displacement). The yield for product **132** was in the 70-90% range (approximately 50% overall yield for loading and release operations) (Scheme 24).

A small library of 2,6,9-trisubstituted purines was prepared via solid-phase organic synthesis using the 6-thiopurine-bound Merrifield resin **133** (Scheme 25).

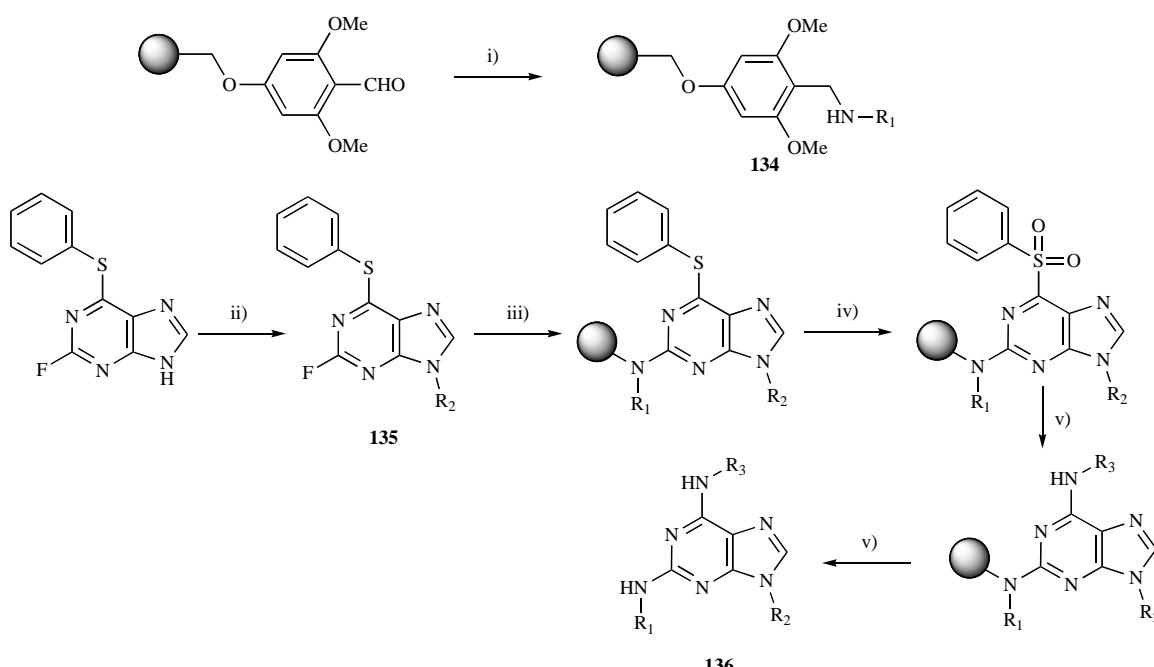
Schultz *et al.* [32a] have developed an approach for making combinatorial 2,6,9-trisubstituted purine libraries **136** by capturing an N9-substituted 2-fluoro-6-chloropurine at the C6 position via a thioether linkage; subsequently the polymer-bound purine intermediate was modified at the C2 position and followed by substitution at the C6 position with concomitant release (Scheme 26).

According to Lagraverend *et al.* [78] compound **137**, a versatile intermediate for the synthesis of 2,6,9-trisubstituted purines, was obtained from **64**. The 2-iodo purine derivative **137** was subjected

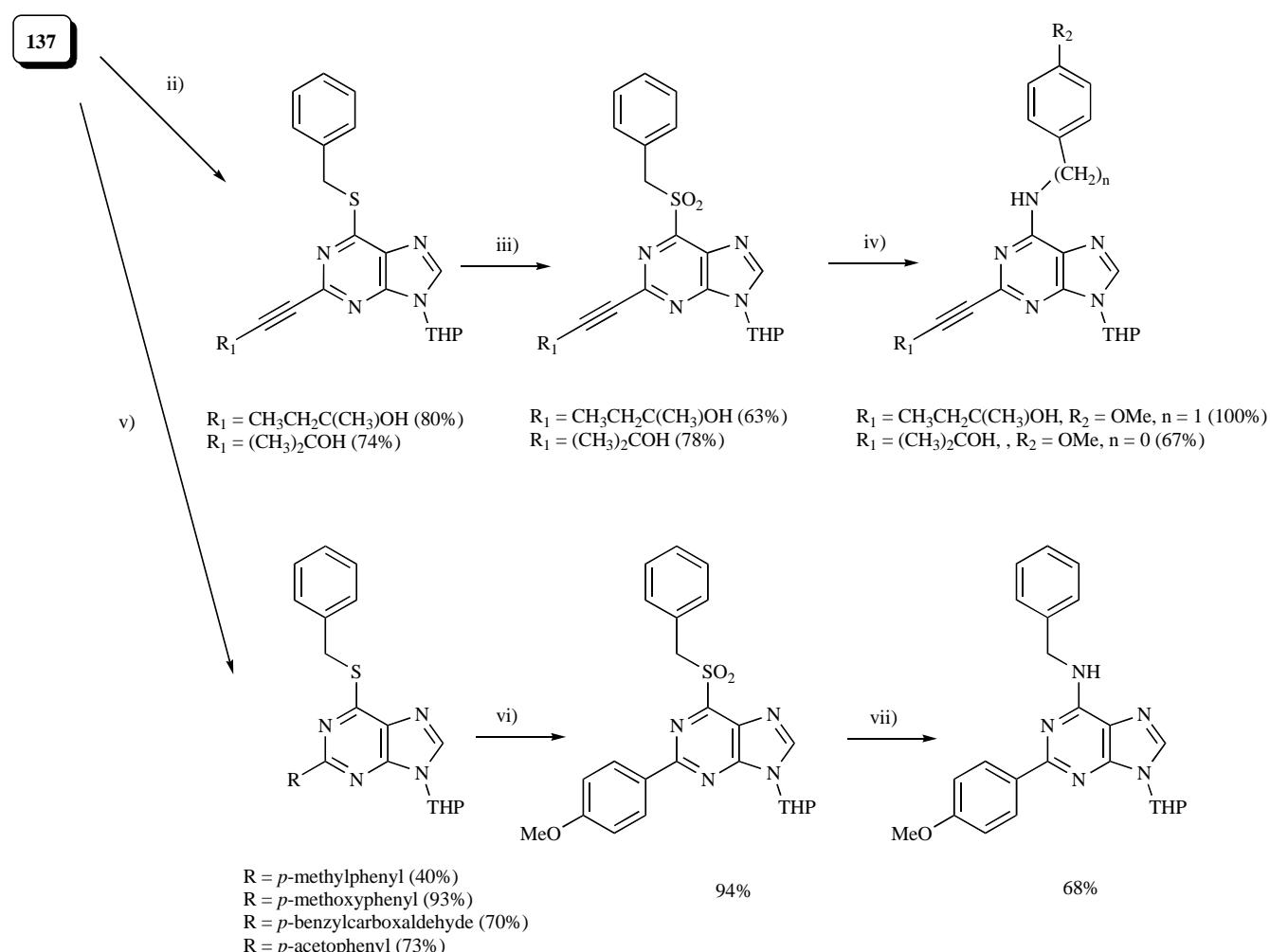
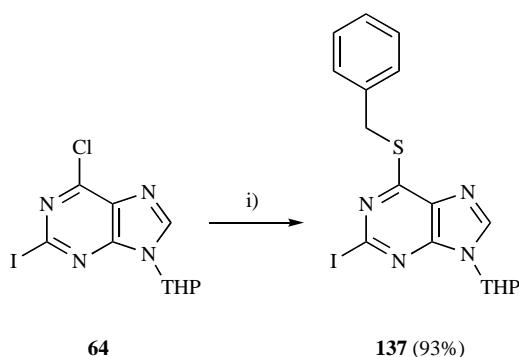
to Sonogashira cross-coupling reactions, with acetylene derivatives (Scheme 27). Finally, Pd(0) catalyzed Suzuki cross-coupling reactions of iodopurine **137** with boronic acids provided a further means for introducing aromatic substituents at C2 (Scheme 27).


In an attempt to discover a high-throughput method Al-Obeidi *et al.* [82] described a method for microwave-assisted solid-phase synthesis (MASS) of 2,6,9-trisubstituted purines.

Microwave-assisted S_N2Ar conditions were optimized using minivials to efficiently incorporate a diverse collection of sterically hindered and non-nucleophilic amines at the C2 position of the purine scaffold. These minivials permit the minimization of reaction times and dramatically increase yields of this S_N2Ar reaction by increasing reaction concentrations with limited amounts of scaffolds and reagents [101].


Metzler-Nolte and van Staveren [102] have reviewed the impressive development of ferrocene chemistry. Nevertheless, the first manuscript on ferrocene nucleoside derivatives is only about 18 years old [103]. The stability of the ferrocenyl group in aqueous, aerobic media, the accessibility of a large variety of derivatives, and its favourable electrochemical properties have made ferrocene and its derivatives very popular molecules for biological applications and for conjugation with biomolecules. Sonogashira coupling between ethynylferrocene **138** and 6-chloro-, 6-amino-8-bromo-, 2-chloro-6-amino- 9-benzylpurines **139-141** was reported, leading to the corresponding (ferrocenylethynyl)purines **142,144,146** [105]. Catalytic hydrogenation of these alkynes over Pd/C afforded their [2-(ferrocenyl)ethyl]purines **143,145,147** (Scheme 28)[104]. Starting materials **138** [105], **139** [106], **140** [107] and **141** [104] were prepared according to the literature procedures.

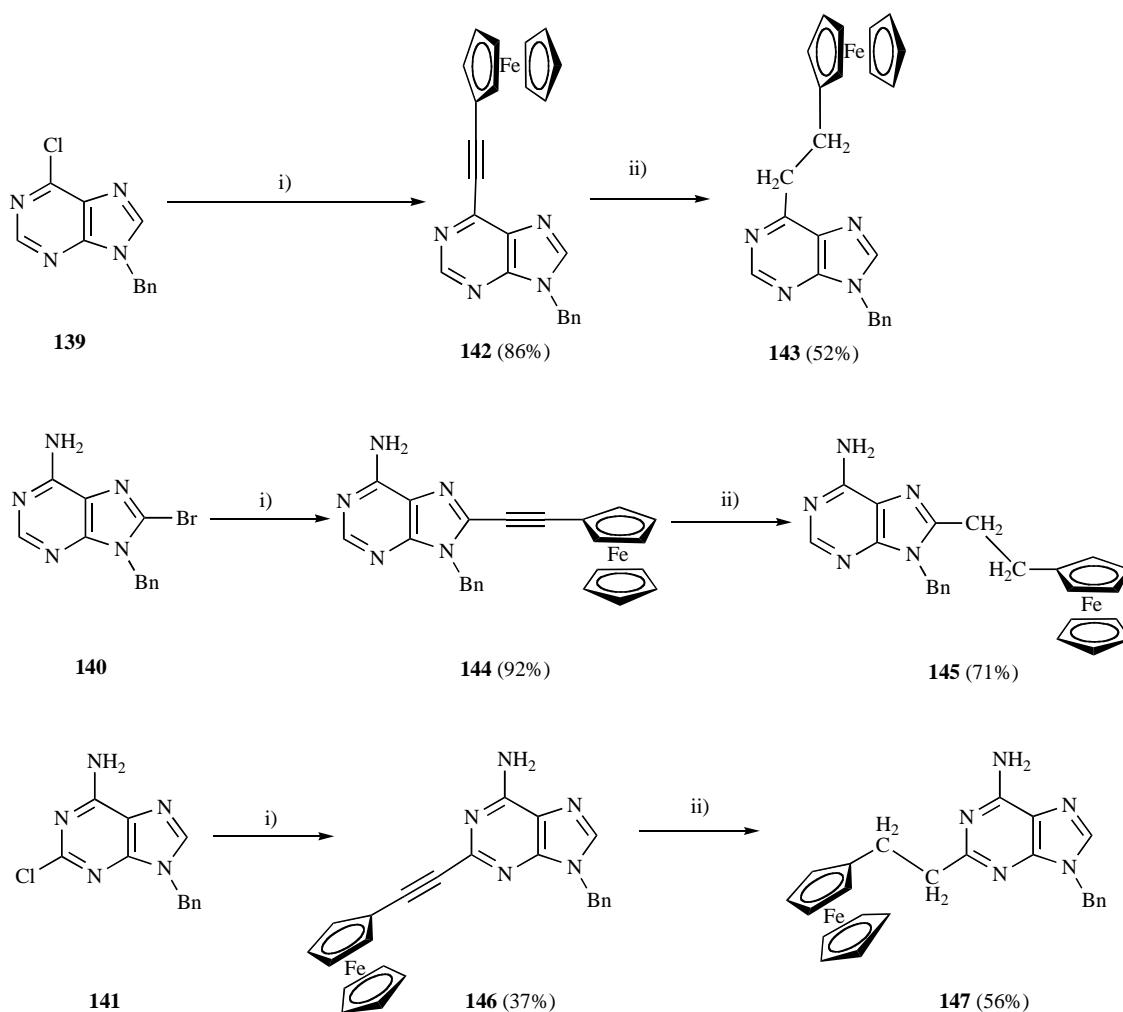
The authors claim that each of the three types of ferrocene-purine conjugates (linked via the C2, C6 or C8 purine atoms) has a distinct electrochemical response and thus such compounds may be used in investigations of the modes of binding of some purines to proteins or nucleic acids [104].



Liu *et al.* [108] have reported an expeditious and efficient method to prepare the 2,6,9-trisubstituted purines **148** in a two-pot reaction using microwave-assisted reactions. The following two aspects need to be highlighted: 1) 2-chloro-6,9-substituted purines

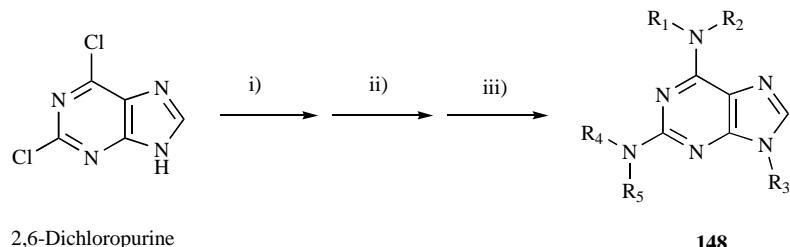
Scheme 25. Reagents and conditions: i) RR_1NH (5 equiv), $(n\text{-Pr})_3\text{N}$ (3 equiv), DMA, $80\text{ }^\circ\text{C}$, 24 h; ii) $m\text{-CPBA}$ (2.2 equiv), rt, 24 h; iii) RNH_2 , $65\text{ }^\circ\text{C}$, 24 h.

Scheme 26. Combinatorial libraries of 2,6,9-substituted purines. Reagents and conditions: i) R_1NH_2 , $\text{NaBH}(\text{OAc})_3$, 1% HOAc , THF; ii) 1.5 equiv of R_2OH , PPh_3 (1.8 equiv), DIAD (1.3 equiv), THF, rt; iii) **135** (0.5 equiv), DiEA (1.5 equiv), BuOH , $80\text{ }^\circ\text{C}$; iv) $m\text{-CPBA}$ (10 equiv), NaOH (1:1), 1,4-dioxane with 10% H_2O ; v) 2 equiv of R_3NH_2 , anhydrous dioxane, $80\text{ }^\circ\text{C}$; vi) CH_2Cl_2 , TFA, Me_2S , H_2O (45:45:5:5).

Scheme 27. Reagents and conditions: i) benzyl thiol, EtOH, 60 °C; ii) alkyne, $(\text{PPh}_3)_2\text{PdCl}_2$, CuI, Et₃N, THF; iii) *m*-CPBA, CH₂Cl₂, 0 °C or rt, ≤ 10 min; iv) RNH₂, rt or 80 °C; v) ArB(OH)₂, Pd(PPh₃)₄ (3 mol%), Na₂CO₃, DMF, Δ, 24 h; vi) *m*-CPBA, CH₂Cl₂, rt; vii) PhCH₂NH₂, *t*-BuOH, 60 °C.


were prepared via a one-pot two-step reaction, which involves a sequential S_NAr displacement of the C6 chloro substituent with various anilines and amines, followed by *N*-alkylation and *N*-arylation at the *N*9 position with different organic halides and boronic acids; 2) $NaBF_4$ catalysis supports a S_NAr substitution of the C2 chloro displacement with high product conversion (Scheme 29).

A novel and efficient method for the synthesis of 2-(6-purinyl)acetoacetate ethyl esters **149**, (purin-6-yl)acetates **150** and 6-methylpurines **151** has been recently published through nucleo-

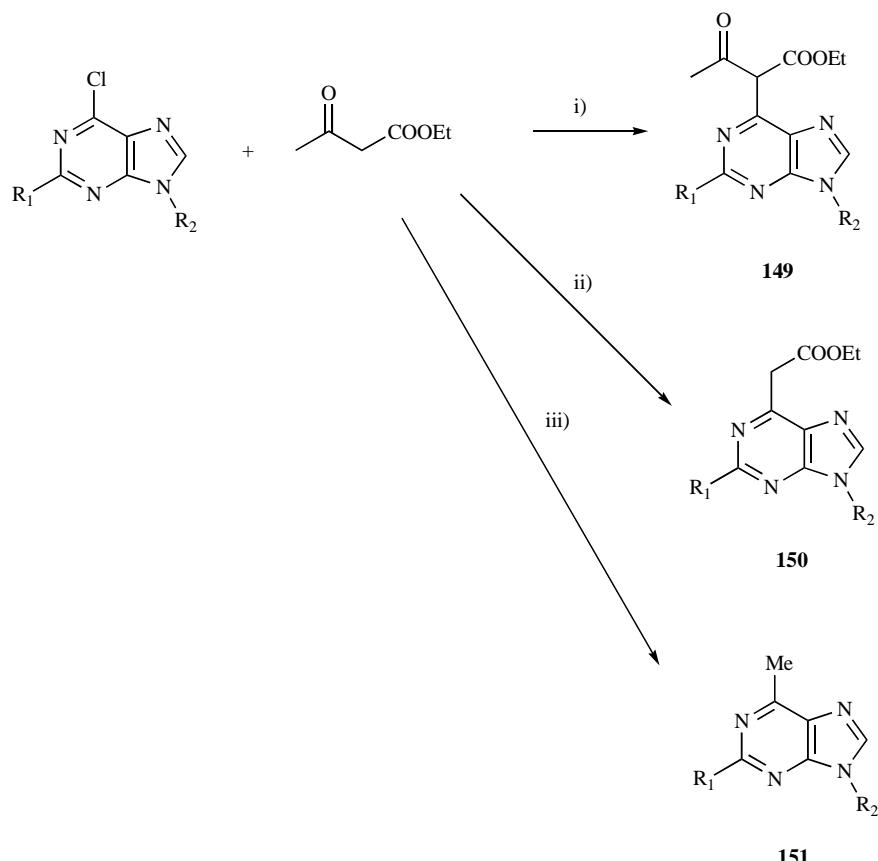

philic aromatic substitution of 6-halopurines and ethyl acetoacetate without catalyst (Scheme 30)[109]. Simplicity of this procedure, the absence of expensive catalysts and ligands, and generally satisfactory yields make this method particularly attractive.

5. SYNTHESIS OF 2,6,8,9-TETRA SUBSTITUTED PURINES

The purine core consisting of four points of structural diversity is a well-sought scaffold in combinatorial chemistry. Although most of the efforts have been focused on 2,6,9-, 6,8,9-, or 2,8,9-

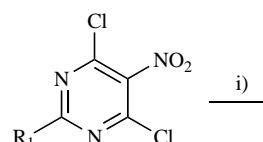
Scheme 28. Reagents and conditions: i) ethynylferrocene (138), CuI, $[\text{Pd}(\text{PPh}_3)_4]$, Et_3N , DMF; ii) H_2 , Pd/C.

Scheme 29. Reagents and conditions: i) aniline/amine, HOAc, dioxane, MW, 10 min; ii) halide/boronic acid, K_2CO_3 , DMF, MW, 10 min (17-94%); iii) aniline/amine, NaBF_4 , DMSO, MW, 5 min (13-99%).

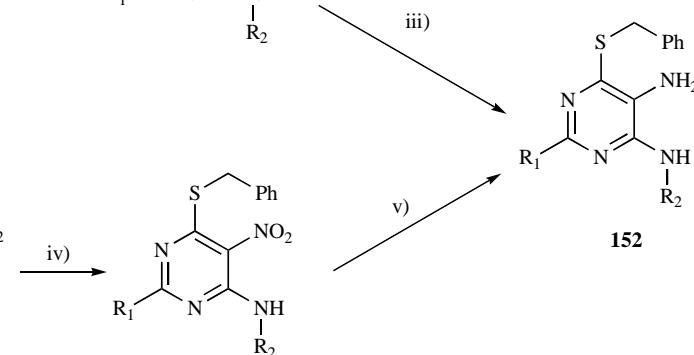
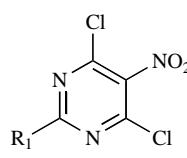

trisubstituted purines, syntheses of 2,6,8,9-tetrasubstituted purines are rare [27,110]. Bai *et al.* [31] have reported a parallel-solution phase 216-member library of fully substituted purines **155**, which should allow systematic exploration of all four positions of the purine ring (Scheme 31). This strategy is very similar to one previous published [27], with the only difference that the pathways illustrated in Scheme 31 take advantage of the fact that an alkylthio group RS- at the 6-position of purine is relatively reactive toward oxidation to yield its corresponding sulfone, which can be easily displaced by various amines.

Preparation of diaminopyrimidine **152** is depicted in Scheme 31. Compound **152** can be synthesized by either reduction of the nitro to amino group, followed by the substitution of a chlorine

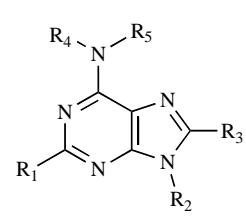
atom by an amine (reduction first), or the substitution of chlorine atoms, followed by reduction (substitution first). The diaminopyrimidine intermediate **152** was cyclized to construct the purine ring with a C8 substituent. Eventual oxidation of sulfone **153** to sulfone **154** and subsequent displacement by a primary or secondary amine provided the desired 2,6,8,9-tetrasubstituted purine analogues **155**.


6. CONCLUSION

The metal-mediated C-C and C-N coupling reaction of purines with boronic acids has been shown to be a powerful synthetic method for introducing aryl or heteroaryl substituents. Several different palladium catalyst-ligand combinations have been used for

Scheme 30. Reagents and conditions: i) Cs_2CO_3 , DMSO, 60°C (68-95%); ii) Cs_2CO_3 , DMSO, 80°C (23-85%); iii) Cs_2CO_3 , DMSO, 120°C (69-85%).


Reduction-first approach

Substitution-first approach

152

153

154

155

Scheme 31. Synthesis of a 216-member purine library. Reagents and conditions: i) Fe, HCl ; ii) $\text{R}_2\text{-NH}_2, \text{Et}_3\text{N}, n\text{-BuOH}, 100^\circ\text{C}$; iii) $\text{PhCH}_2\text{SH}, \text{Et}_3\text{N}, n\text{-BuOH}, 100^\circ\text{C}$; iv) R_2NH_2 , then PhCH_2SH , rt; v) $\text{Fe}, \text{NH}_4\text{Cl}$; vi) $\text{R}_3\text{-CHO}, \text{FeCl}_3/\text{SiO}_2$; vii) $m\text{-CPBA}, \text{CH}_2\text{Cl}_2$; viii) $\text{R}_4\text{R}_5\text{NH}$ (excess).

C-C coupling at the 6-position. This reactivity has been demonstrated using fluoro-, chloro-, bromo-, iodo-, sulfanyl, sulfonyl, and azole-substrates. Examples of combinatorial approaches employing coupling reactions with solid-supported purine substrates or parallel solution-phase approaches have also been reported. These methods provide convenient access to structurally unique arylpurine derivatives with applications in drug discovery and chemical biology. Although most of the efforts have been devoted to mono-, di-, and tri-substituted purines, preparation of fully substituted purines are very scarce.

This review has not included medicinal applications of purine derivatives, except a few scattered data that were indicated in the respective sections. Finally, we would like to point out that in recent years there has been an increasing number of papers published in high-impact journals written by authors who work in laboratories with less scientific tradition. This is very important for the evolution of Science in general, and for the synthetic development of modified purines in particular, since it makes their foundations more extensive and accordingly more reliable.

ACKNOWLEDGEMENTS

This study was supported by the Instituto de Salud Carlos III (Fondo de Investigación Sanitaria) through project no. PI070227. We strongly appreciate all the comments suggested by the referees.

ABBREVIATIONS

ABDA	=	5-acetyl-6-bromo-2,3-dibenzyl- L-ascorbic acid
Ac	=	acetyl
AcCoA	=	acetyl-coenzyme A
ATP	=	adenosine 5'-triphosphate
Boc	=	tert-butoxycarbonyl
Boc ₂ O	=	tert-butoxycarbonyl anhydride
CDK	=	cyclin-dependent kinase
CSI	=	chlorosulfonyl isocyanate
DA	=	D-aminoacylase
DCE	=	1,2-dichloroethane
DIAD	=	diisopropyl azodicarboxylate
DiEA	=	diethylamine
DMA	=	<i>N,N</i> -dimethylaniline
DMac	=	<i>N,N</i> -dimethylacetamide
DMF	=	<i>N,N</i> -dimethylformamide
DNA	=	deoxyribonucleic acid
FAD	=	flavin adenine dinucleotide
HMDS	=	1,1,1,3,3,3-hexamethyldisilazane
IPr	=	1,3-bis(2,6-diisopropylphenyl)imidazolin-2- ylidene
LiTMP	=	lithium 2,2,6,6-tetramethylpiperidide (harpoon's base)
<i>m</i> -CPBA	=	<i>meta</i> -chloroperoxybenzoic acid
MAC	=	<i>Mycobacterium avium</i> complex
MASS	=	microwave-assisted solid-phase synthesis
MEK	=	methyl ethyl ketone
Mes	=	2,4,6-trimethylbenzoyl
Mtb	=	<i>Mycobacterium tuberculosis</i>

MW	=	microwave
NADH	=	nicotinamide adenine dinucleotide
Ni(COD) ₂	=	bis(1,5-cyclooctadiene)nickel(0)
NMP	=	<i>N</i> -methylpyrrolidin-2-one
Ph	=	phenyl
py	=	pyridine
R _F	=	a perfluoroalkyl group
RNA	=	ribonucleic acid
rt	=	room temperature
SAM	=	5'- <i>S</i> -adenosyl methionine
S _N Ar	=	aromatic nucleophilic substitution
TBAF	=	tetrabutylammonium fluoride
TBAN	=	tetrabutylammonium nitrate and
TBAT	=	tetrabutylammonium triphenyldifluorosilicate
THF	=	tetrahydrofuran
THP	=	9-(tetrahydropyran-2-yl)-
TFA	=	trifluoroacetic acid
TFAA	=	trifluoroacetic anhydride
Tol	=	<i>p</i> -tolylbenzoyl
tRNA	=	transfer ribonucleic acid
Ts	=	tosyl = <i>p</i> -toluenesulfonyl
TMS	=	trimethylsilyl

REFERENCES

- [1] Bobek, M.; Bloch, A.; Parthasarathy, R.; Whistler, R.L. Synthesis and biological activity of 5-fluoro-4'-thiouridine and some related nucleosides. *J. Med. Chem.*, **1975**, *18*, 784-787.
- [2] Ototani, N.; Whistler, R.L. Preparation and antitumor activity of 4'-thio analogs of 2,2'-anhydro-1-beta-D-arabinofuranosylcytosine. *J. Med. Chem.*, **1974**, *17*, 535-537.
- [3] Bobek, M.; Whistler, R.L.; Bloch, A. Synthesis and biological activity of pyrazines and pyrazine ribonucleosides as pyrimidine analogs. *J. Med. Chem.*, **1972**, *15*, 168-171.
- [4] Nie, A.; Wang, J.; Huang, Z. Microwave-assisted solution-phase parallel synthesis of 2,4,6-trisubstituted pyrimidines. *J. Comb. Chem.*, **2006**, *8*, 646-648.
- [5] Fredholm, B.B.; IJzerman, A. P.; Jacobson, K.A.; Klotz, K.N. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. *J. Pharmacol. Rev.*, **2001**, *53*, 527-552.
- [6] Bressi, J.C.; Verlinde, C.L.M.J.; Aronov, A.M.; Shaw, M.L.; Shin, S.S.; Nguyen, L.N.; Suresh, S.; Buckner, F.S.; Van Voorhis, W.C.; Kuntz, I.D.; Hol, W.G.J.; Gelb, M.H. Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design. *J. Med. Chem.*, **2001**, *44*, 2080-2093.
- [7] Harmse, L.; Gray, N.; Schultz, P.; Leclerc, S.; Meijer, D.C.; Havli, I. Structure-activity relationships and inhibitory effects of various purine derivatives on the *in vitro* growth of *Plasmodium falciparum*. *Biochem. Pharmacol.*, **2001**, *62*, 341-348.
- [8] Meijer, L.; Raymond, E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. *Acc. Chem. Res.*, **2003**, *36*, 417-425.
- [9] Bonnet, P.A.; Robins, R.K. Modulation of leukocyte genetic expression by novel purine nucleoside analogues. A new approach to antitumor and antiviral agents. *J. Med. Chem.*, **1993**, *36*, 635-653.
- [10] Chen, X.; Kern, E.R.; Drach, J.C.; Gullen, E.; Cheng, Y.C.; Zemicka, J. Structure-activity relationships of (*S,Z*)-2-aminopurine methylenecyclopropane analogues of nucleosides. Variation of purine-6 substituents and activity against herpesviruses and hepatitis B virus. *J. Med. Chem.*, **2003**, *46*, 1531-1537.
- [11] Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. *Chem. Biodivers.*, **2004**, *1*, 361-401.
- [12] Hocek, M. Syntheses of Purines Bearing Carbon Substituents in Positions 2, 6 or 8 by Metal- or Organometal-Mediated C-C Bond-Forming Reactions. *Eur. J. Org. Chem.*, **2003**, 245-254.
- [13] Legraverend, M. Recent advances in the synthesis of purine derivatives and their precursors. *Tetrahedron*, **2008**, *64*, 8585-8603.
- [14] Gallo, M.A.; Espinosa, A.; Campos, J.M. Thermal *N*-9' → *N*-7' Isomerization of (6'-Substituted)-9-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)-9H-

Purines in Solution: Mechanistic Aspects. *Mini-Rev. Org. Chem.*, **2008**, *5*, 128-133.

[15] Laufer, S.A.; Domeyer, D.M.; Scior, T.R.F.; Albrecht, W.; Hauser, D.R.J. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors. *J. Med. Chem.*, **2005**, *48*, 710-722.

[16] Kelley, J.L.; Sokoro, F.E. 9-(2-Fluorobenzyl)-6-(methylamino)-9H-purine hydrochloride. Synthesis and anticonvulsant activity. *J. Med. Chem.*, **1986**, *29*, 1133-1134.

[17] Mackenzie, G.; Wilson, H.A.; Shaw, G.; Ewing, D. Purines, pyrimidines, and imidazoles. Part 64. Alkylation and acylation of some aminoimidazoles related to intermediates in purine nucleotide de novo and thiamine biosynthesis. *J. Chem. Soc. Perkin Trans. 1*, **1988**, *9*, 2541-2546.

[18] Cusack, N.J.; Shaw, G.; Logemann, F.I. Purines, pyrimidines, and imidazoles. Part 54. Interconversion of some intermediates in the de novo biosynthesis of purine nucleotides. *J. Chem. Soc. Perkin Trans. 1*, **1980**, *10*, 2316-2321.

[19] Thomas, H.J.; Avery, L.N.; Brockman, R.W.; Montgomery, J.A. 5-Amino-4-(diazoacetyl)-1-beta-D-ribofuranosylimidazole, a new antileukemic agent. *J. Med. Chem.*, **1987**, *30*, 431-434.

[20] Imai, K.; Marumoto, R.; Kobayashi, K.; Yoshioka, Y.; Toda, J.; Honjo, M. Synthesis of compounds related to inosine 5'-phosphate and their flavor enhancing activity. IV. 2-Substituted inosine 5'-phosphates. *Chem. Pharm. Bull.*, **1971**, *19*, 576-586.

[21] Bourguignon, J.-J.; Désaubry, L.; Raboisson, P.; Wermuth, C.G.; Lugnier, C. 9-Benzyladenines: potent and selective cAMP phosphodiesterase inhibitors. *J. Med. Chem.*, **1997**, *40*, 1768-1770.

[22] Kelley, J.L.; Linn, J.A.; Selway, J.W.T. Synthesis and structure-activity relationships of 2-substituted-6-(dimethylamino)-9-(4-methylbenzyl)-9H-purines with antirhinovirus activity. *J. Med. Chem.*, **1989**, *30*, 218-224.

[23] Montgomery, J.A.; Temple, C. Synthesis of Potential Anticancer Agents. XXVI. The Alkylation of 6-Chloropurine. *J. Am. Chem. Soc.*, **1961**, *83*, 630-635.

[24] Pérez-Pérez, M.-J.; Rozenki, J.; Busson, R.; Herdwijn, P. Application of the Mitsunobu-Type Condensation Reaction to the Synthesis of Phosphonate Derivatives of Cyclohexenyl and Cyclohexanyl Nucleosides. *J. Org. Chem.*, **1995**, *60*, 1531-1537.

[25] Ciapetti, P.; Soccolini, F.; Taddei, M. Synthesis of *N*-Fmoc- α -amino acids carrying the four DNA nucleobases in the side chain. *Tetrahedron*, **1997**, *53*, 1167-1179.

[26] Boon, W.R.; Jones, W.G.M.; Ramage, G.R. Pteridines. I. An unambiguous synthesis of 7,8-dihydro-6-hydroxypyridines. *J. Chem. Soc.*, **1951**, *96*-102.

[27] Yang, J.; Dang, Q.; Liu, J.; Wei, Z.; Wu, J.; Bai, X. Preparation of a fully substituted purine library. *J. Comb. Chem.*, **2005**, *7*, 474-482.

[28] a) Gaulon, C.; Dijkstra, H.; Springer, C. *Synthesis*, **2005**, *13*, 2227; b) Fu, H.; Lam, Y. Traceless solid-phase synthesis of *N*1, *N*7-disubstituted purines. *J. Comb. Chem.*, **2005**, *7*, 734-738.

[29] Geen, G.; Grinter, T.; Kincey, P.; Jarvest, R. The effect of the c-6 substituent on the regioselectivity of *n*-alkylation of 2-aminopurines. *Tetrahedron*, **1990**, *46*, 6903-6914.

[30] Liu, J.; Dang, Q.; Wei, Z.; Shi, F.; Bai, X. An efficient and regiospecific strategy to *N*7-substituted purines and its application to a library of trisubstituted purines. *J. Comb. Chem.*, **2006**, *8*, 410-416.

[31] Liu, J.; Dang, Q.; Wei, Z.; Zhang, H.; Bai, X. Parallel solution-phase synthesis of a 2,6,8,9-tetrasubstituted purine library via a sulfur intermediate. *J. Comb. Chem.*, **2005**, *7*, 627-636.

[32] a) Ding, S.; Gray, N.S.; Ding, Q.; Wu, X.; Schultz, P.G. Resin-capture and release strategy toward combinatorial libraries of 2,6,9-substituted purines. *J. Comb. Chem.*, **2002**, *4*, 183-186; b) Brun, V.; Legraverend, M.; Grierson, D.S. Cyclin-dependent kinase (CDK) inhibitors: development of a general strategy for the construction of 2,6,9-trisubstituted purine libraries. Part 1. *Tetrahedron Lett.*, **2001**, *42*, 8161-8164; c) Brun, V.; Legraverend, M.; Grierson, D.S. Cyclin-dependent kinase (CDK) inhibitors: development of a general strategy for the construction of 2,6,9-trisubstituted purine libraries. Part 2. *Tetrahedron Lett.*, **2001**, *42*, 8165-8167; d) Brun, V.; Legraverend, M.; Grierson, D.S. Cyclin-dependent kinase (CDK) inhibitors: development of a general strategy for the construction of 2,6,9-trisubstituted purine libraries. Part 3. *Tetrahedron Lett.*, **2001**, *42*, 8169-8171.

[33] Viña, D.; Santana, L.; Uriarte, E.; Terán, C. 1,2-Disubstituted cyclohexane nucleosides: comparative study for the synthesis of *cis* and *trans* adenosine analogues. *Tetrahedron*, **2005**, *61*, 473-476.

[34] Viña, D.; Santana, L.; Uriarte, E.; Quezada, E.; Valencia, L. Synthesis of 1-[2-(Hydroxymethyl)cyclohexyl]pyrimidine Analogues of Nucleosides: A Comparative Study. *Synthesis*, **2004**, *15*, 2517-2522.

[35] Yahyazadeh, A.; Habibi, F. Synthesis and characterization of 9-phenyl-9H-purin-6-amines from 5-amino-1-phenyl-1H-imidazole-4-carbonitriles. *E-J. Chem.*, **2007**, *4*, 372-375.

[36] Al-Azmi, A.; Elassar, A.A.; Abdel-Zaher, A.; Booth, B.L. The chemistry of diaminomaleonitrile and its utility in heterocyclic synthesis. *Tetrahedron*, **2003**, *59*, 2749-2763.

[37] Al-Azini, A.; Booth, B.L.; Carpenter, R.A.; Carvalho, A.; Marrelec, E.; Pritchard, R.G.; Proença, M.F.J.R.P. Facile synthesis of 6-cyano-9-substituted-9H-purines and their ring expansion to 8-(arylamino)-4-imino-3-methylpyrimidino[5,4-*d*]pyrimidines. *J. Chem. Soc. Perkin 1*, **2001**, *2532*-2537.

[38] Yahyazadeh, A.; Pourrostam, B.; Rabiee, M. Synthesis of 9-benzyl-6-aminopurines from 5-amino-1-benzyl-4-cyanoimidazoles. *Bull. Korean Chem. Soc.*, **2003**, *24*, 1723-1724.

[39] Correia, C.; Carvalho, M.A.; Proença, M.F. Synthesis and *in vitro* activity of 6-amino-2,9-diarylpurines for *Mycobacterium tuberculosis*. *Tetrahedron*, **2009**, *65*, 6903-6911.

[40] Alves, M.J.; Carvalho, M.A.; Carvalho, S.; Dias, A.M.; Fernandes, F.H.; Proença, M.F. A New Approach to the Synthesis of *N,N*-Dialkyladenine Derivatives. *Eur. J. Org. Chem.*, **2007**, *4881*-4887.

[41] Dias, A.M.; Vila-Chã, S.; Cabral, I.; Proença, M.F. A versatile synthetic approach for isoguanine derivatives. *Synlett*, **2007**, *8*, 1231-1233.

[42] Dias, A.M.; Cabral, I.; Vila-Chã, A.S.; Costa, D.S.; Proença, M.F. The Synthesis of 6-Amidino-2-oxopurines Revisited: New Evidence for the Reactions Mechanism. *Eur. J. Org. Chem.*, **2007**, *1925*-1934.

[43] Carvalho, M.A.; Zaki, M.E.A.; Álvares, Y.; Proença, M.F.; Booth, B.L. Synthesis of novel 6-enaminopurines. *Org. Biomol. Chem.*, **2004**, *2*, 2340-2345.

[44] Booth, B.L.; Dias, A.M.; Proença, M.F.; Zaki, M.E.A. The Reactions of Diaminomaleonitrile with Isocyanates and Either Aldehydes or Ketones Revisited. *J. Org. Chem.*, **2001**, *66*, 8436-8441.

[45] Booth, B.L.; Cabral, I.M.; Dias, A.M.; Freitas, A.P.; Matos Beja, A.M.; Proença, M.F.; Ramos Silva, M. A new and efficient approach to the synthesis of 6-amidino-2-oxopurines. *J. Chem. Soc., Perkin Trans 1*, **2001**, *1241*-1251.

[46] Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.; Nomoto, R.; Miyasaka, T.; Watanabe, Y.; Abiru, T. Nucleosides and nucleotides. 103. 2-Alkynyladenosines: a novel class of selective adenosine A2 receptor agonists with potent antihypertensive effects. *J. Med. Chem.*, **1992**, *35*, 241-252.

[47] Volpini, R.; Costanzi, S.; Lamberti, C.; Taffi, S.; Vittori, S.; Klotz, K.-N.; Cristalli, G. *N*(6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A(3) receptor and a starting point for searching A(2B) ligands. *J. Med. Chem.*, **2002**, *45*, 3271-3279.

[48] Hocek, M.; Holý, A.; Votruba, I.; Dvoráková, H. Synthesis and cytostatic activity of substituted 6-phenylpurine bases and nucleosides: application of the Suzuki-Miyaura cross-coupling reactions of 6-chloropurine derivatives with phenylboronic acids. *J. Med. Chem.*, **2000**, *43*, 1817-1825.

[49] Lakshman, M.K.; Hilmer, J.H.; Martin, J.Q.; Keeler, J.C.; Dinh, Y.Q.V.; Ngassa, F.N.; Russon, L.M. Palladium Catalysis for the Synthesis of Hydrophobic C-6 and C-2 Aryl 2'-Deoxynucleosides. Comparison of C-C versus C-N Bond Formation as well as C-6 versus C-2 Reactivity. *J. Am. Chem. Soc.*, **2001**, *123*, 7779-7787.

[50] Vélez, E.A.; Beal, P.A. 6-Bromopurine Nucleosides as Reagents for Nucleoside Analogue Synthesis. *J. Org. Chem.*, **2001**, *66*, 8592-8598.

[51] Liu, J.; Janeba, Z.; Robins, M.J. *S*_NAr Iodination of 6-Chloropurine Nucleosides: Aromatic Finkelstein Reactions at Temperatures Below -40 °C. *Org. Lett.*, **2004**, *6*, 2917-2919.

[52] Resnati, G. Synthesis of chiral and bioactive fluoroorganic compounds. *Tetrahedron*, **1993**, *49*, 9385-9445.

[53] Hocek, M.; Holý, A. Perfluoroalkylation of 6-iodopurines by trimethyl[perfluoroalkyl]silanes. Synthesis of 6-(perfluoroalkyl)purine bases, nucleosides and acyclic nucleotide analogs. *Collect. Czech. Chem. Commun.*, **1999**, *64*, 229-241.

[54] Gurvich, V.; Kim, H.-Y.; Hodge, R.P.; Harris, C.M.; Harris, Th.M. Utilization of Tetrabutylammonium Triphenylidifluorosilicate (TBAT) In The Synthesis of 6-Fluoropurine Nucleosides. *Nucleosides & Nucleotides*, **1999**, *18*, 2327-2333.

[55] Pilcher, A.S.; DeShong, P. Utilization of Tetrabutylammonium Triphenylidifluorosilicate as a Fluoride Source for Silicon-Carbon Bond Cleavage. *J. Org. Chem.*, **1996**, *61*, 6901-6905.

[56] Liu, J.; Robins, M.J. Fluoro, Alkylsulfanyl, and Alkylsulfonyl Leaving Groups in Suzuki Cross-Coupling Reactions of Purine 2'-Deoxynucleosides and Nucleosides. *Org. Lett.*, **2005**, *7*, 1149-1151.

[57] Liu, J.; Robins, M.J. *S*_NAr Displacements with 6-(Fluoro, Chloro, Bromo, Iodo, and Alkylsulfonyl)purine Nucleosides: Synthesis, Kinetics, and Mechanism. *J. Am. Chem. Soc.*, **2007**, *129*, 5962-5968.

[58] Kuchaf, M.; Radek, P.; Votruba, I.; Hocek, M. Synthesis of Purines Bearing Functionalized C-Substituents by the Conjugate Addition of Nucleophiles to 6-Vinylpurines and 6-Ethynylpurines. *Eur. J. Org. Chem.*, **2006**, *5083*-5098.

[59] Överas, A.T.; Bakkestuen, A.K.; Gundersen, L.-L.; Rise, F. Addition of nucleophiles to 6-vinylpurines. *Acta Chem. Scand.*, **1997**, *51*, 1116-1124.

[60] Hocek, M.; Starý, I.; Stará, I.G.; Dvoráková, H. Covalent analogues of DNA base-pairs and triplets IV⁺. Synthesis of trisubstituted benzenes bearing purine and/or pyrimidine rings by cyclotrimerization of 6-ethynylpurines and/or 5-ethynyl-1,3-dimethyluracil. *Collect. Czech. Chem. Commun.*, **2002**, *67*, 1223-1235.

[61] Moonen, K.; Laureyn, I.; Stevens, C.V. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity. *Chem. Rev.*, **2004**, *104*, 6177-6216.

[62] a) Muruganathan, R.; Mobin, S.M.; Namboothiri, I.N.N. *Org. Lett.*, **2007**, *9*, 1125; b) Alen, J.; Dobrzanska, L.; De Borggraeve, W.M.; Compernolle, F. Synthesis of 2(1*H*)-Pyrazinone Phosphonates via an Arbuzov-type Reaction. *J. Org. Chem.*, **2007**, *72*, 1055-1057; c) Al Quntar, A.A.A.; Srivastava, H.K.; Srebnik, M.; Melman, A.; Ta-Shma, R.; Shurki, A. Formation of Diethyl 2-Amino-1-cyclopentenylphosphonates: A Simple Synthesis with a Unique Mechanism. *J. Org. Chem.*, **2007**, *72*, 4932-4935; d) Moriguchi, T.,

Yanagi, T.; Kunimori, M.; Wada, T.; Sekine, M. Synthesis and Properties of Aminoacylamido-AMP: Chemical Optimization for the Construction of an *N*-Acyl Phosphoramidate Linkage. *J. Org. Chem.*, **2000**, *65*, 8229-8238.

[63] Qu, G.-R.; Xia, R.; Yang, X.-N.; Li, J.-G.; Wang, D.-Ch.; Guo, H.-M. Synthesis of Novel C6-Phosphonated Purine Nucleosides under Microwave Irradiation by SNAr-Arbuzov Reaction. *J. Org. Chem.*, **2008**, *73*, 2416-2419.

[64] Alarcón, K.; Martelli, A.; Demeunynck, M.; Lhomme, J. 2-Amino-6-(1,2,4-triazol-4-yl)-purine: a useful intermediate in the synthesis of 9-alkylguanines. *Tetrahedron Lett.*, **2000**, *41*, 7211-7215.

[65] Bakkestuen, A.K.; Gundersen, L.-L. Regioselective *N*-9 arylation of purines employing arylboronic acids in the presence of Cu(II). *Tetrahedron Lett.*, **2003**, *44*, 3359-3362.

[66] Zhong, M.; Nowak, I.; Cannon, J.F.; Robins, M.J. Structure and Synthesis of 6-(Substituted-imidazol-1-yl)purines: Versatile Substrates for Regiospecific Alkylation and Glycosylation at N9. *J. Org. Chem.*, **2006**, *71*, 4216-4221.

[67] Kralj, M.; Kojić-Prodić, B.; Banić, Z.; Grdiša, M.; Vela, V.; Šuković, B.; Pavelić, K. Synthesis, structural characterization and cytotoxic effect of 6-amino-6-deoxy-*L*-ascorbic acid derivatives. *Eur. J. Med. Chem.*, **1996**, *31*, 23-35.

[68] Raić-Malić, S.; Hergold-Brundić, A.; Nagl, A.; Grdiša, M.; Pavelić, K.; De Clerq, E.D.; Mintas, M. Novel pyrimidine and purine derivatives of *L*-ascorbic acid: synthesis and biological evaluation. *J. Med. Chem.*, **1999**, *42*, 2673-2678.

[69] Dallaker, F.; Sanders, J. L-Ascorbic acid derivatives, I. Preparation and properties of O₂O₃-ethanediy- and O₂O₃-dibenzyl-L-ascorbic acids. *Chemiker-Zeitung*, **1985**, *109*, 197-202.

[70] Dallaker, F.; Sanders, J. Derivatives of L-ascorbic acid. 2. Preparation of deoxy-L-ascorbic acid. *Chemiker-Zeitung*, **1985**, *109*, 277-280.

[71] Ogilvie, K.K.; Proba, Z.A. Synthesis of Purine and Pyrimidine Trihydroxy-cyclonucleosides. *Nucleosides Nucleotides*, **1984**, *3*, 537-547.

[72] Deghati, P.Y.F.; Wanner, M.J.; Koomen, G.-J. Regioselective nitration of purine nucleosides: synthesis of 2-nitroadenosine and 2-nitroinosine. *Tetrahedron Lett.*, **2000**, *41*, 1291-1295.

[73] Koch, M.; Den Hartog, J.A.J.; Koomen, G.-J.; Wanner, M.J.; Feenstra, R.W. WO Patent 2006027365 A1 20060316, **2006**; *Chem. Abstr.*, **2006**, *144*, 292979.

[74] Imbach, P.; Capraro, H.G.; Furet, P.; Mett, H.; Meyer, T.; Zimmermann, J. 2,6,9-trisubstituted purines: optimization towards highly potent and selective CDK1 inhibitors. *Bioorg. Med. Chem. Lett.*, **1999**, *9*, 91-96.

[75] Nair, V.; Sallis, T.B. Copper mediated reactions in nucleoside synthesis. *Tetrahedron Lett.*, **1990**, *31*, 807-811.

[76] Taddei, D.; Kilian, P.; Slawin, A.M.Z.; Woollins, J.D. Synthesis and full characterisation of 6-chloro-2-iodopurine, a template for the functionalisation of purines. *Org. Biomol. Chem.*, **2004**, *2*, 665-670.

[77] Kato, K.; Hayakawa, H.; Tanaka, H.; Kumamoto, H.; Shindo, S.; Shuto, S.; Miyasaka, T. A New Entry to 2-Substituted Purine Nucleosides Based on Lithiation-Mediated Stannyli Transfer of 6-Chloropurine Nucleosides. *J. Org. Chem.*, **1997**, *62*, 6833-6841.

[78] Brun, V.; Legraverend, M.; Grierson, D.S. Traceless solid-phase synthesis of 2,6,9-trisubstituted purines from resin bound 6-thiopurines. *Tetrahedron*, **2002**, *58*, 7911-7923.

[79] Kim, H.O.; Schinazi, R.F.; Shanmuganathan, K.; Jeong, L.S.; Beach, J.W.; Nampalli, S.; Cannon, D.L.; Chu, C.K. L-beta-(2S,4S)- and L-alpha-(2S,4R)-dioxolanyl nucleosides as potential anti-HIV agents: asymmetric synthesis and structure-activity relationships. *J. Med. Chem.*, **1993**, *36*, 519-528.

[80] Fiorini, M.T.; Abell, C. Solution-phase synthesis of 2,6,9-trisubstituted purines. *Tetrahedron Lett.*, **1998**, *39*, 1827-1830.

[81] Din, S.; Gray, N.S.; Wu, X.; Ding, Q.; Schultz, P.G. A Combinatorial Scaffold Approach toward Kinase-Directed Heterocycle Libraries. *J. Am. Chem. Soc.*, **2002**, *124*, 1594-1596.

[82] Austin, R.E.; Okonya, J.F.; Bond, D.R.S.; Al-Obeidi, F. Microwave-assisted solid-phase synthesis (MASS) of 2,6,9-trisubstituted purines. *Tetrahedron Lett.*, **2002**, *43*, 6169-6171.

[83] Conejo-García, A.; Núñez, M.C.; Marchal, J.A.; Rodríguez-Serrano, F.; Aránega, A.; Gallo, M.A.; Espinosa, A.; Campos, J.M. Regioselective Microwave-Assisted Synthesis and Cytotoxic Activity against Human Breast Cancer Cells of (RS)-6-Substituted-7- or 9-(2,3-Dihydro-5H-1,4-Benzodioxepin-3-yl)-7H- or -9H-Purines. *Eur. J. Med. Chem.*, **2008**, *43*, 1742-1748.

[84] Vorbrüggen, B.; Bennua, B. Nucleoside syntheses. XXV. A new simplified nucleoside synthesis. *Chem. Ber.*, **1981**, *114*, 1279-1286.

[85] Saniger, E.; Campos, J.M.; Entrena, A.; Marchal, J.A.; Suárez, I.; Aránega, A.; Choquésillo, Nícolas, J.; Gallo, M.A.; Espinosa, A. Medium Benzene-fused Oxacycles with the 5-Fluorouracil Moiety: Synthesis, Antiproliferative Activities and Apoptosis Induction in Breast Cancer Cells. *Tetrahedron*, **2003**, *59*, 5457-5467.

[86] Griffin, R.J.; Calvert, A.H.; Curtin, N.J.; Newell, D.R.; Golding, B.T.; Endicott, J.A.; Noble, M.E.; Boyle, F.T.; Jewsbury, P.J. G.B. Patent 9,902,162, **1998**; *Chem. Abstr.*, **1999**, *130*, 139576.

[87] Saunders, D.E.; Lawrence, W.D.; Christensen, C.; Wappler, N.L.; Ruan, H.; Deppe, G. Paclitaxel-induced apoptosis in MCF-7 breast-cancer cells. *Int. J. Cancer*, **1997**, *70*, 214-220.

[88] a) Yosief, T.; Rudi, A.; Stein, Z.; Golberg, I.; Gravalos, G.M.D.; Schleyer, M.; Kashman, Y. Asmarines A-C; Three novel cytotoxic metabolites from the marine sponge *Raspailia* sp. *Tetrahedron Lett.*, **1998**, *39*, 3323-3326; b) Yosief, T.; Rudi, A.; Kashman, Y. Asmarines A-F; Novel Cytotoxic Compounds from the Marine Sponge *Raspailia* Species. *J. Nat. Prod.*, **2000**, *63*, 299-304; c) Rudi, A.; Shalom, H.; Schleyer, M.; Banayahu, Y.; Kashman, Y. Asmarines G and H and Barekol, Three New Compounds from the Marine Sponge *Raspailia* sp. *J. Nat. Prod.*, **2004**, *67*, 106-109; d) Rudi, A.; Aknin, M.; Gaydoy, E.; Kashman, Y. Asmarines I, J, and K and Nosyberkol: Four New Compounds from the Marine Sponge *Raspailia* sp. *J. Nat. Prod.*, **2004**, *67*, 1932-1935.

[89] Vik, A.; Gundersen, L.-L. Synthetic studies directed towards asmarines; construction of the tetrahydrodiazepinopurine moiety by ring closing metathesis. *Tetrahedron Lett.*, **2007**, *48*, 1931-1934.

[90] Dalby, C.; Bleasdale, C.; Clegg, W.; Elsegood, M.R.J.; Golding, B.T.; Griffin, R.J. Regiospecific Alkylation of 6-Chloropurine and 2,6-Dichloropurine at *N*7 by Transient Protection of *N*3/*N*9 by Methylcobaloxime. *Angew. Chem. Int. Ed. Engl.*, **1993**, *32*, 1696-1697.

[91] Phillips, A.J.; Abell, A.D. Ring-Closing Metathesis of Nitrogen-Containing Compounds: Applications to Heterocycles, Alkaloids, and Peptidomimetics. *Aldrichim. Acta*, **1999**, *32*, 75-89.

[92] a) Miller, S.J.; Kim, S.-H.; Chen, Z.-R.; Grubbs, R.H. Catalytic Ring-Closing Metathesis of Dienes: Application to the Synthesis of Eight-Membered Rings. *J. Am. Chem. Soc.*, **1995**, *117*, 2108-2109; b) Kirkland, T.A.; Grubbs, R.H. Effects of Olefin Substitution on the Ring-Closing Metathesis of Dienes. *J. Org. Chem.*, **1997**, *62*, 7310-7318; c) Martin, S.F.; Humphrey, J.M.; Ali, A.; Hillier, M. Enantioselective Total Syntheses of Ircinal A and Related Manzamine Alkaloids. *J. Am. Chem. Soc.*, **1999**, *121*, 866-867; d) Rodríguez, J.R.; Castedo, L.; Mascareñas, J.L. An Expedited Route to Eight- and Nine-Membered Carbocycles Based on a RCM-Ring Fragmentation Strategy. *Org. Lett.*, **2000**, *2*, 3209-3212.

[93] White, J.D.; Hrnčiar, P.; Yokochi, A.F.T. Tandem Ring-Closing Metathesis Transannular Cyclization as a Route to Hydroxylated Pyrrolizidines. Asymmetric Synthesis of (+)-Australine. *J. Am. Chem. Soc.*, **1998**, *120*, 7359-7360.

[94] Rutjes, F.P.J.T.; Schoemaker, H.E. Ruthenium-catalyzed ring closing olefin metathesis of non-natural α -amino acids. Ruthenium-catalyzed ring closing olefin metathesis of non-natural α -amino acids. *Tetrahedron Lett.*, **1997**, *38*, 677-680.

[95] Tunçbilek, M.; Ateş-Algöz, Z.; Atlantar, N.; Karayel, A.; Özbeş, S. Synthesis and antimicrobial evaluation of some new substituted purine derivatives. *Bioorg. Med. Chem.*, **2009**, *17*, 1693-1700.

[96] Jacobson, K.A.; Daly, J.W.; Manganiello, V. *Purines in cellular signaling: Targets for new drugs*; Springer: New York, **1990**.

[97] a) Norbory, C.; Nurse, P. Animal cell cycles and their control. *Annu. Rev. Biochem.*, **1992**, *61*, 441-470; b) Morgan, D. Cyclin-dependent kinases: engines, clocks, and microprocessors. *Annu. Rev. Cell Dev. Biol.*, **1997**, *13*, 261-291; c) Hengst, L.; Reed, S.I. Inhibitors of the Cip/Kip family. *Curr. Topics Microbiol. Immunol.*, **1998**, *227*, 25-41.

[98] a) Bakkestuen, A.K.; Gundersen, L.-L.; Langli, G.; Liu, F.; Nolsoe, J.M. 9-Benzylpurines with inhibitory activity against *Mycobacterium tuberculosis*. *Bioorg. Med. Chem. Lett.*, **2000**, *10*, 1207-1210; b) Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Antimycobacterial activity of 9-sulfonylated/sulfenylated-6-mercaptopurine derivatives. *Bioorg. Med. Chem. Lett.*, **2001**, *11*, 1675-1678; c) Gundersen, L.-L.; Nissen-Meyer, J.N.; Spilsberg, B. Synthesis and antimycobacterial activity of 6-arylpurines: the requirements for the N-9 substituent in active antimycobacterial purines. *J. Med. Chem.*, **2002**, *45*, 1383-1386.

[99] Pathak, A.K.; Pathak, V.; Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Antimycobacterial agents. I. Thio analogues of purine. *J. Med. Chem.*, **2004**, *47*, 273-276.

[100] Wang, J.-L.; Xu, J.-M.; Lv, D.-S.; Lin, X.-F. Promiscuous enzyme-catalyzed regioselective Michael addition of purine derivatives to α,β -unsaturated carbonyl compounds in organic solvent. *Tetrahedron*, **2009**, *65*, 2531-2536.

[101] Takvorian, A.G.; Combs, A.P. Microwave-assisted organic synthesis using miniivials to optimize and expedite the synthesis of diverse purine libraries. *J. Comb. Chem.*, **2004**, *6*, 171-174.

[102] van Staveren, D.; Metzler-Nolte, N. Bioorganometallic Chemistry of Ferrocene. *Chem. Rev.*, **2004**, *104*, 5931-5986.

[103] Meunier, P.; Quattara, L.; Gautheron, B.; Tirouflet, J.; Camboli, D.; Besançon, J.; Boulay, F. Synthèse, caractérisation et propriétés cytotoxiques des premiers 'métaffoléconucléosides'. *Eur. J. Med. Chem.*, **1991**, *26*, 351-362.

[104] Hocek, M.; Štěpnička, P.; Ludvík, J.; Císařová, I.; Votruba, I.; Řehá, D.; Hobza, P. Ferrocene-Modified Purines as Potential Electrochemical Markers: Synthesis, Crystal Structures, Electrochemistry and Cytostatic Activity of (Ferrocenylethynyl)- and (Ferrocenylethyl)purines. *Chem. Eur. J.*, **2004**, *10*, 2058-2066.

[105] Rosenblum, M.; Brawn, N.; Papenmeier, J.; Applebaum, M. Synthesis of ferrocenylacetlenes. *J. Organomet. Chem.*, **1996**, *6*, 173-180.

[106] Gundersen, L.-L.; Bakkestuen, A.K.; Aasen, A.J.; Øveras, H.; Rise, F. 6-Halopurines in palladium-catalyzed coupling with organotin and organozinc reagents. *Tetrahedron*, **1994**, *50*, 9743-9756.

[107] Havelková, M.; Dvořák, D.; Hocek, M. The Suzuki-Miyaura Cross-Coupling Reactions of 2-, 6- or 8-Halopurines with Boronic Acids Leading to 2-, 6- or 8-Aryl- and -Alkenylpurine Derivatives. *Synthesis*, **2001**, 1704-1710.

[108] Huang, H.; Liu, H.; Chen, K.; Jiang, H. Microwave-assisted rapid synthesis of 2,6,9-substituted purines. *J. Comb. Chem.*, **2007**, *9*, 197-199.

[109] Qu, G.-R.; Mao, Z.-J.; Niu, H.-Y.; Wang, D.-Ch.; Xia, Ch.; Guo, H.-M. Straightforward and Highly Efficient Catalyst-Free One-Step Synthesis of 2-(Purin-6-yl)acetoacetic Acid Ethyl Esters, (Purin-6-yl)acetates, and 6-Methylpurines through S_NAr-Based Reactions of 6-Halopurines with Ethyl Acetoacetate. *Org. Lett.*, **2009**, *11*, 1745-1748.

[110] a) Hammarstrom, L.G.J.; Smith, D.B.; Talamas, F.X.; Labadie, S.S.; Krauss, N.E. Utility of 4,6-dichloro-2-(methylthio)-5-nitropyrimidine. An efficient

solid-phase synthesis of olomoucine. *Tetrahedron Lett.*, **2002**, *43*, 8071-8073; b) Hammarstrom, L.G.J.; Meyer, M.E.; Smith, D.B.; Talamas, F.X. Utility of 4,6-dichloro-2-(methylthio)-5-nitropyrimidine. Part 2: Solution phase synthesis of tetrasubstituted purines. *Tetrahedron Lett.*, **2003**, *44*, 8361-8363.

Received: 12 August, 2009

Revised: 09 April, 2010

Accepted: 05 May, 2010