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ABSTRACT 

This paper introduces an approach to select the bandwidth or smoothing parameter 

in multiresolution (MR) density estimation and nonparametric density estimation. 

It is based on the evolution of the second, third and fourth central moments and the 

shape of the estimated densities for different bandwidths and resolution levels.  

The proposed method has been applied to density estimation by means of 

multiresolution densities as well as kernel density estimation (MRDE and KDE 

respectively). The results of the simulations and the empirical application 

demonstrate that the level of resolution resulting from the moments method 

performs better with multimodal densities than the Bayesian Information Criterion 

(BIC) for multiresolution densities estimation and the plug-in for kernel densities 

estimation. 

KEYWORDS: Multiresolution density estimation, kernel density estimation, 

bandwidth and level of resolution 

1.INTRODUCTION 

This paper develops a novel and straightforward approach to select the bandwidth 

or smoothing parameter in multiresolution models1 estimation and nonparametric density 

estimation. It is based on the moments and the shape of the estimated densities for 

different resolution levels and bandwidths. The method is applied to density estimation 

by means of multiresolution densities [MRDE; see 12, 13 14] as well as kernel functions 

[KDE; see for instance, 18, 5].  

Our choice of considering the moments for the selection of the smoothing parameter was 

guided by the observed changes in the shape of the estimated MRDE when the level of 

resolution, 𝑗 , varies. If the level of resolution is too low, the density is smooth but the 

bias is large. Conversely, a large 𝑗 leads to a rougher density but a small bias.  Similar 

results are observed2 when a density is fitted by the Kernel method. Let us suppose a 

bandwidth equals to ℎ = 2−𝑗 with 𝑗 ∈ 𝑍. If 𝑗 is too small then ℎ is too large and the result 

 
1 
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is a smooth and biased density. As 𝑗 increases ℎ decreases and the bias tends to diminish, 

but from a determined value of 𝑗, or its corresponding ℎ, an undesirable roughness 

appears. To solve the problem, we need to select a value of 𝑗 , or its corresponding 

smoothing parameter ℎ, so that the bias will be reasonably small without incurring an 

excessive roughness. 

In both methodologies, MRDE and KDE, the bias of the estimated density is 

shown clearly by its dispersion and shape, especially in the flattening of the fitted density. 

Or equivalently in an underestimation of the kurtosis that evolves towards more 

reasonable values as the resolution level 𝑗 increases. That is, the bias evolution is related 

to the central moments of order 2, 3 and 4 since they are used to compute dispersion, 

asymmetry and kurtosis. When the resolution level in the MRDE increases, or the 

smoothing parameter in the KDE decreases, the flattening and the dispersion tends to 

stabilize indicating that the bias is small. From a certain level of resolution, the roughness 

begins to increase indicating which value of 𝑗  or ℎ  should be selected. This value leads 

to a sufficiently smooth density with small bias. This is clearly shown in the graphs of 

sections 3, 4 and 5 that represent the evolution, as a function of 𝑗,  of the expected value, 

variance, and skewness and kurtosis coefficients for MRDE and KDE.   

The rest of the paper is organized as follows. Section 2 introduces the math 

expression to calculate the moments of a multiresolution density. Section 3 shows, by 

means of simulations, how to select the level of resolution using the moments of a MRDE. 

Section 4 extends the approach to the Kernel method. In both estimation methods, we use 

the Cubic Box Spline function defined in section 2.1. For the MRDE method, this is the 

scaling function generating the multiresolution analysis structure that contains the MRDE 

and their estimates. In the KDE method this function is used as the kernel. Section 5 

contains an application to real data and section 6 concludes. 

Finally, we want to point out that the MRDE is a technique devised for massive data. 

Therefore, everything that follows must be understood in a context of large sample sizes. 

2. MOMENTS CALCULATION FOR A MRDE 

This section shows the expressions of the central and non-central moments of a 

multiresolution density. The second, third and fourth central moments will be used to 

select the level of resolution of a MRDE. The math development is contained in the 

appendices A1-A6.  
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2.1. MULTIRESOLUTION DENSITIES 

Let 𝜃(𝑥) be a symmetric density with mean zero and compact support [−2, 2], 

known as Cubic Box Spline. It is given by   

𝜃(𝑥) =

{
  
 

  
 

0  𝑖𝑓  𝑥 ≤ −2

𝑝1(2 + 𝑥) 𝑖𝑓  −2 ≤ 𝑥 ≤ −1

𝑝2(2 + 𝑥) 𝑖𝑓 −1 ≤ 𝑥 ≤    0

𝑝2(2 − 𝑥) 𝑖𝑓     0 ≤ 𝑥 ≤   1

𝑝1(2 − 𝑥) 𝑖𝑓 1 ≤  𝑥 ≤   2
0 𝑖𝑓                𝑥 ≥   2

   , 

where: 

𝑝1(𝑥) =
𝑥3

6
  and where  𝑝2(𝑥) =

−𝑥3

2
+ 2𝑥2 − 2x +

2

3
  .             (1) 

Applying dilations and translations to the density 𝜃(𝑥), the densities 𝜆𝑗,𝑘(𝑥)  are built as 

follows [see 12]: 

𝜆𝑗,𝑘(𝑥) = 𝑠𝜃(𝑠𝑥 − 𝑘),      (2 ) 

where  𝑠 = 2𝑗. Note that  𝜆0,0(𝑥) ≡ 𝜃(𝑥). 

For each level of resolution 𝑗, the following MR densities: 

𝑓(𝑥) =∑𝑎𝑘
𝑘∈ℤ

𝜆𝑗,𝑘(𝑥),    (3) 

are defined.  

In expression (3) 𝑎𝑘 ≥ 0 ∀𝑘 ∈ ℤ and ∑ 𝑎𝑘𝑘∈ℤ = 1. By definition, all these 

functions belong to the 𝑉𝑗 space of the multiresolution analysis structure (MRA) defined 

by the scaling function 𝜃(𝑥) [see 7, 23, 11]. Any density of squared integrable, belonging 

to the space of Hilbert 𝐿2(ℝ), has an approximation in each 𝑉𝑗. 

In the definition of a multiresolution structure, dilations and translations of 𝜃 given by 

𝜃𝑗,𝑘(𝑥) = 𝑠1 2⁄ 𝜃(𝑠𝑥 − 𝑘) are used. It is obvious that 𝜆𝑗,𝑘(𝑥) = 𝑠1 2⁄ 𝜃𝑗,𝑘(𝑥) and using this 

notation the MR density defined by (3) can be rewritten as follows: 

𝑓(𝑥) =∑𝑎𝑘
𝑘∈ℤ

𝜆𝑗,𝑘(𝑥) = 𝑠
1 2⁄ ∑𝑎𝑘

𝑘∈ℤ

𝜃𝑗,𝑘(𝑥) . 

 

2.2 MOMENTS OF A RANDOM VARIABLE WITH MR DENSITY FUNCTION 

The central moment of order 𝑟 for a multiresolution (MR) density is calculated as 

follows: 

𝜇𝑓(𝑟) =
1

𝑠𝑟
∑(

𝑟
𝑖
) 𝜇0,0(𝑖)𝜇𝑎(𝑟 − 𝑖)

𝑟

𝑖=0

, 



5 

 

where   𝜇𝑎(𝑟 − 𝑖) = ∑ 𝑎𝑘(𝑘 − �̅�)
𝑟−𝑖

𝑘∈ℤ , �̅� = ∑ 𝑘 × 𝑎𝑘𝑘∈ℤ . By definition, the expression 

𝜇0,0(𝑟) = 𝜇𝜃(𝑟) is the moment of order  𝑟 of the density 𝜆0,0(𝑥) ≡ 𝜃(𝑥) (see appendices 

A1 and A2). That is: 

𝜇0,0(𝑟) = 𝜇𝜃(𝑟) = ∫(𝑥 − 0)𝑟𝜃(𝑥)𝑑𝑥

2

−2

= ∫𝑥𝑟𝜃(𝑥)𝑑𝑥

2

−2

≡ 𝑚𝜃(𝑟). 

The calculus of  𝜇𝜃(𝑟) is in proposition 4 in appendix A1.  

Given a MR density  𝑓𝑗(𝑥) the non-central moment of order 𝑟 is defined by:   

𝑚𝑗(𝑟) = ∫ 𝑥𝑟𝑓𝑗(𝑥)𝑑𝑥

+∞

−∞

. 

It can be obtained as follows (see appendix A4): 

𝑚𝑗(𝑟) =∑𝑎𝑘
𝑘∈𝑍

𝑚𝜆𝑗,𝑘
(𝑟), 

where  𝑚𝜆𝑗,𝑘
(𝑟) = ∫ 𝑥𝑟𝜆𝑗,𝑘(𝑥)𝑑𝑥

+∞

−∞
=

1

𝑠𝑟
∑ (

𝑟
𝑖
)𝑚𝜃(𝑖)𝑘

𝑟−𝑖𝑟
𝑖=0 . 

2.3 ASYMPTOTIC PROPERTIES OF THE MOMENTS OF AN ESTIMATED MR 

DENSITY   

PROPOSITION 1 

Given a sample 𝑥𝑖   𝑖 = 1, 2, … , 𝑛 and an estimated MR density for that sample: 

𝑓𝑗(𝑥) =∑�̂�𝑘𝜆𝑗,𝑘(𝑥)

𝑘∈𝑍

, 

for  a value of 𝑗 large enough is verified: 

𝑓𝑗(𝑥) =
1

𝑛
∑𝜆𝑗,𝑘(𝑥𝑖)(𝑥)

𝑛

𝑖=1

 ,     

where 

𝑘(𝑥𝑖) = {
max
𝑡∈𝑍≤𝑠𝑥𝑖

𝑡 𝑖𝑓  𝑠𝑥𝑖 − max
𝑡∈𝑍≤𝑠𝑥𝑖

𝑡 ≤ 0.5

max
𝑡∈𝑍≤𝑠𝑥𝑖

𝑡 + 1 𝑖𝑓   𝑠𝑥𝑖 − max
𝑡∈𝑍≤𝑠𝑥𝑖

𝑡 > 0.5
  . 

Proof. See Appendix A6. 

PROPOSITION 2 

Let be 

�̂�𝑟(𝑗) = ∫ 𝑥𝑟𝑓𝑗(𝑥)

+∞

−∞

𝑑𝑥, 
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the non-central moment of the estimated MR density from the sample  𝑥𝑖   𝑖 = 1, 2, … , 𝑛.  

If  𝑗 converges to infinity, then �̂�𝑟(𝑗) converges to its sample counterpart. That is:  

lim
𝑗→∞

�̂�𝑟(𝑗) =
1

𝑛
∑𝑥𝑖

𝑟

𝑛

𝑖=1

 . 

Proof. See Appendix A6 

Since each central moment of order 𝑟 is a continuous (polynomic) function of the 

non-central moments of order less than or equal to 𝑟, we can state that as 𝑗 approaches to 

infinity the central moments of a MR density estimated using a sample of size 𝑛 also 

converge to the central moments of the sample. 

 

3. MOMENTS METHOD FOR SELECTING THE RESOLUTION LEVEL TO 

ESTIMATE A MR DENSITY 

In this section we introduce an alternative method to the Bayesian Information 

Criterion [17] to select the level of resolution in the estimation process of a MR density. 

It is based on the central moments of orders two, third, and four and the symmetry and 

kurtosis coefficients. When a MR density is estimated, if the resolution level is too low, 

the estimate is a smooth curve but it has excessive bias. Conversely, if the resolution level 

is too high the estimate bias is small but the roughness is large. In practice, the bias is 

mainly shown in an excessive dispersion and a flat density. Since the flattening can be 

measured by the Fisher coefficient, the evolution of the bias, as the resolution level 

increases, should be reflected in the gradual decrease of the central moment of order 2 

and the central moment of order 4. Based on these moments, we will choose an 

appropriate resolution level so that the bias will be acceptable and the roughness of the 

estimator will be not excessive.  

Since we are going to establish comparisons with the BIC criterion, let us 

introduce it briefly in the context of the MR densities.  Any estimation using a MR 

density, for a finite size sample 𝑛 and any resolution level 𝑗, can be considered a finite 

mixture of densities  𝜆𝑗,𝑘(𝑥)  (see section 2.1) with the form:  

𝑓𝑗(𝑥) =∑�̂�𝑘𝑖

𝑝

𝑖=1

𝜆𝑗,𝑘𝑖(𝑥) ,     ( 4) 

where �̂�𝑘𝑖 is the proportion of data within the interval (
𝑘𝑖−0.5

2𝑗
,
𝑘𝑖+0.5

2𝑗
].   
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Note that the expression (4), estimator of (3), has a finite number of addends while 

(3) has infinite addends. This is explained as follows. Depending on the level of 

resolution, two extreme situations can arise. Firstly, 𝑗 can be so small that the entire 

sample will be within a single interval(
𝑘−0.5

2𝑗
,
𝑘+0.5

2𝑗
]. In this case, there is only one 

coefficient  �̂�𝑘 distinct from zero and mixture (4) degenerates into a single addend. 

Secondly,  𝑗 can be so large that each observed value will be in a different interval existing 

as many �̂�𝑘𝑖 different from zero as different values are observed in the sample. That is, if  

𝑛 is the sample size and 𝑝  is the number of different values observed in the sample, then 

the number of addends in the mixture (4) is 𝑝  and  it is verified that  1 ≤ 𝑝 ≤ 𝑛. 

Obviously, 𝑝 = 𝑛 if all the sample values are different and each of them belongs to a 

single interval of the form3(
𝑘𝑖−0.5

2𝑗
,
𝑘𝑖+0.5

2𝑗
]   𝑘𝑖 ∈ 𝑍. 

Since mixture (4) contains 𝑝 position parameters 𝑘𝑖  𝑖 = 1,2, … , 𝑝 and 𝑝 mixture 

parameters �̂�𝑘𝑖  𝑖 = 1,2, … , 𝑝 there are 𝑚 = 2 ∗ 𝑝 parameters. We can optimize the 

number of parameters, which depends on 𝑗,  by using the BIC criterion [17]. That is, we 

will consider that the best value is that which minimizes the expression:   

𝐵𝐼𝐶(𝑗) = −2𝐿𝑜𝑔(�̂�𝑗) + 𝑚𝐿𝑜𝑔(𝑛), 

where  

�̂�𝑗 =∏𝑓𝑗(𝑥𝑖),

𝑛

𝑖=1

 

is the sample likelihood of 𝑓𝑗(𝑥).  

The proposed method based on the moments, is simpler and requires less process 

time than the BIC. However, both criteria complement and reinforce each other, as will 

be shown in the following simulations.  

To proceed, we have simulated a sample of size 10000 by using two generator 

models: a normal distribution and a mixture of double exponential distributions. We have 

fitted these generator models using MR densities for different levels of resolution in each 

case. Finally, we have calculated 𝐸𝑗[𝑋], 𝜇𝑗(2), 𝛾1 =
𝜇𝑗(3)

𝜇𝑗(2)
3
2

  (Fisher coefficient of 

skewness or asymmetry) and  𝛾2 =
𝜇𝑗(4)

𝜇𝑗(2)
2 − 3  (Fisher coefficient of kurtosis) to select an 

 
3 

𝑗
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appropriate 𝑗. In the supplemental material, we provide more details about the calculus 

and a macro to apply the developed methodology to the data generating models used in 

this paper. 

3.1. Normal distribution  

Table 3.1 and Figure 3.1 shows the values 𝐸𝑗[𝑋], 𝜇𝑗(2), 𝛾1   and 𝛾2 for a MR 

estimation of a 𝑁 (10,5) distribution. Each value is divided by its empirical or sample 

counterparts, which are computed    from the sample data without fitting any density.  

These indicators stabilize for 𝑗 = 0 (see Figure 3.1).  The BIC criterion provides the value 

𝑗 =  −1. Figure 3.2 displays the fitted densities (𝑓(𝑥)) for  𝑗 = −1 and 𝑗 = 0, and the 

data generator model (𝑁(10,5);   𝑓(𝑥)). 

Table 3.1. Ratios between MRDE moments and sample moments  

 

𝑗 E[X]  Variance Asymmetry Kurtosis 

-3 1.0014 2.0494 0.5553 1.987432 

-2 1.0058 1.2919 -0.6275 -3.905073 

-1 1.0011 1.0717 0.0905 -2.285609 

0 1.0000 1.0160 1.0618 1.212460 

1 0.9998 1.0033 1.0149 0.887280 

2 1.0000 1.0010 1.0179 1.072510 

3 1.0000 1.0006 0.9854 1.023095 

4 1.0000 1.0001 0.9973 0.985362 

 

Fig. 3.1. Ratios between MRDE moments and sample moments 
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Fig. 3.2 Estimated densities 𝑓(𝑥) for 𝑗 = −1, 𝑗 = 0 and data generator model 𝑓(𝑥)  

 

 

The estimate for 𝑗 = −1 is smooth but the bias is noticeable. For 𝑗 = 0 the bias 

almost disappears but there is a small roughness that may be acceptable. According to the 

BIC criterion, the optimum level of resolution is  𝑗 = −1. 

3.2. Mixture of double exponential distribution 

The density function of a double exponential distribution with parameters 𝜇 and 

𝜃 is given by: 

𝑓(𝑥) = 𝑒−
|𝑥−𝜇|
𝜃   ∀𝑥 ∈ ℝ. 
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In this illustration, the generator model will be a mixture of three densities of this 

type whose parameters are in Table 3.2. 

Table 3.2. Parameters of the double exponential distribution 

𝜇 𝜃 𝜋 

20 5 0.3 

30 6 0.5 

40 7 0.2 

 

Table 3.3 and Figure 3.3 display   the values of 𝐸𝑗[𝑋], 𝜇𝑗(2), 𝛾1 ,   𝛾2, divided by 

their empirical counterparts, using levels of resolution from  𝑗 = −3 to 𝑗 = 4.  As can be 

seen, stability is reached either when 𝑗 = −1 or 𝑗 = 0. Figure 3.4 shows the estimations, 

𝑓(𝑥)) for 𝑗 = −2, 𝑗 = −1, 𝑗 = 0, and the data generator model (mixture of double 

exponential, 𝑓(𝑥)). 

Table 3.3. Ratios between MRDE moments and sample moments 

 

𝑗 E[x]   Variance  Asymmetry  Kurtosis 

-3 1.00020842 1.23072002 0.64137168 0.56500524 

-2 1.0000844 1.05642867 0.92675066 0.90709002 

-1 1.00058047 1.0155786 0.97057506 0.97393645 

0 0.99986737 1.00355414 0.99758049 0.9933315 

1 0.99996728 1.000518 0.99559745 0.99654088 

2 0.99999484 1.00019494 1.00076368 1.00119058 

3 1.00000043 1.00001854 0.99983838 1.00028379 

4 1.00000388 1.00003893 0.99975579 0.99954511 
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Fig. 3.3 Ratios between MRDE moments and sample moments 

 

 

 

Fig. 3.4. Estimated densities 𝑓(𝑥) for 𝑗 = −2, 𝑗 = −1, 𝑗 = 0 and data generator model 

𝑓(𝑥)  

 

The mixture has three modes that are difficult to capture by the estimations4. This   

leads us to use higher resolution levels and rougher estimates to avoid the bias that such 

difficulty produces. Based on Figure 3.4, we would opt for 𝑗 = −1 discarding 𝑗 =  −2 

 
4 

 



12 

 

because of bias excess, and 𝑗 =  0 for roughness excess. In this example, certain 

difficulties are encountered in the BIC criterion. Due to the fact it is based on the principle 

of parsimony, it tends to give up the peaks and selects a smoother estimation. The level 

of resolution, according to the BIC is 𝑗 =  −2.  

4. MOMENTS AND SELECTION OF THE BANDWIDTH OF A KERNEL 

DENSITY 

Kernel density estimation (KDE) has become a common and useful tool for 

empirical studies.  The discussion on the selection of the bandwidth has given rise to 

numerous publications on the subject. Nonetheless, part of the scientific community that 

works in nonparametric statistics has accepted that it may not be a perfect procedure for 

selecting the optimal bandwidth. We will not give an overview of kernel estimation 

techniques since our main aim is to extend the use of the moments to 

the choice of bandwidth parameter. We refer readers to  [15, 2, 9, 6 ,24, 4, 10, 21]  for a 

review of the bandwidth selector techniques. 

4.1 MOMENTS OF A KERNEL DENSITY  

The Kernel estimator of a density for a sample 𝑥𝑖  𝑖 = 1,2, … , 𝑛 is given by: 

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑𝜃 (

𝑥 − 𝑥𝑖
ℎ

)

𝑛

𝑖=1

, 

where  ℎ  is the bandwidth or smoothing parameter and 𝜃 is the cubic box spline that we 

are going to use as the Kernel function. 

For this density, it is verified (see appendix A5): 

𝐸�̂�ℎ[𝑋] =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

, 

and 

𝜇�̂�ℎ(𝑟) =∑(
𝑟
𝑟
)ℎ𝑡𝑚𝜃(𝑡)

𝑟

𝑡=0

𝜇(𝑟 − 𝑡), 

where 𝑚𝜃(𝑡)  is the non-central moment of order 𝑡 of the density 𝜃 (see section 2 and the 

appendix A5) and  𝜇(𝑟 − 𝑡) is the central moment of order 𝑟 − 𝑡 for the sample. That is:  

𝜇(𝑟 − 𝑡) =
1

𝑛
∑(𝑥𝑖 − �̅�)

𝑡−𝑟 .

𝑛

𝑖=1
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4.2 SELECTION OF THE BANDWIDTH OF A KERNEL DENSITY BASED ON 

THE MOMENTS  

The Kernel estimator of a density for a sample 𝑥𝑖  𝑖 = 1,2, … , 𝑛 [5] is: 

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑𝐾(

𝑥 − 𝑥𝑖
ℎ

) ,

𝑛

𝑖=1

      (5) 

where 𝐾 is the kernel and ℎ is the so-called smoothing parameter. 

Let us assume that ℎ =
1

2𝑗
  where 𝑗 is an integer number. The kernel function that 

we are going to use is 𝜃, that is, the cubic box spline introduced in section 2.1. It is evident 

that (5) can be written as follows:  

𝑓ℎ(𝑥) =
2𝑗

𝑛
∑𝜃(2𝑗𝑥 − 2𝑗𝑥𝑖)

𝑛

𝑖=1

=
1

𝑛
∑2𝑗𝜃(2𝑗𝑥 − 2𝑗𝑥𝑖)

𝑛

𝑖=1

.      (6) 

Utilizing the multiresolution analysis notation, the expression (6) can rewrite as:  

𝑓ℎ(𝑥) =
1

𝑛
∑𝜆𝑗,2𝑗𝑥𝑖(𝑥).

𝑛

𝑖=1

  (7) 

The estimator of a MRDE at the resolution level 𝑗 defined in (4) is: 

𝑓𝑗(𝑥) =∑�̂�𝑘𝑙

𝑝

𝑙=1

𝜆𝑗,𝑘𝑙(𝑥),       (8) 

where �̂�𝑘𝑙 =
𝑛𝑙

𝑛
 , 𝑛𝑙  is the number of sample values 𝑥𝑙 such that  𝑘𝑙 is the closest integer 

to  2𝑗𝑥𝑙. This allows us to write (8) as: 

𝑓𝑗(𝑥) =
1

𝑛
∑𝑛𝑙

𝑝

𝑙=1

𝜆𝑗,𝑘𝑙(𝑥).     (9) 

Assuming that 𝑘(𝑥𝑙) is the closest integer to 2𝑗𝑥𝑙  it is easy to understand that:    

𝑓𝑗(𝑥) =
1

𝑛
∑𝜆𝑗,𝑘(𝑥𝑖)(𝑥)

𝑛

𝑖=1

.    (10)       

Note that expressions (9) and (10) are equal.  We can obtain (10) from (9) by a 

frequency count on the values 𝑘(𝑥𝑖), 𝑖 = 1,2, … 𝑛. In (9)  𝑝 represents the number of 

values 𝑘(𝑥𝑖) found and 𝑛𝑙 , 𝑙 = 1,2, … 𝑝, is the number of repetitions observed for each of 

them. Therefore, we can write: 

𝑓𝑗(𝑥) =
1

𝑛
∑2𝑗𝜃 (2𝑗𝑥 − 𝑘(𝑥𝑖)) ,

𝑛

𝑖=1
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𝑓ℎ(𝑥) =
1

𝑛
∑2𝑗𝜃(2𝑗𝑥 − 2𝑗𝑥𝑖)

𝑛

𝑖=1

, 

Taking into account that by definition ⌊𝑘(𝑥𝑖) − 2
𝑗𝑥𝑖⌋ ≤ 0.5  for a 𝑗 sufficiently 

high both expressions must give very close results. 

To illustrate the selection of ℎ based on the moments, we have   simulated a sample 

of size 10000 from a N (10, 5). Figure 4.1 shows the MRDE and the KDE for  𝑗 = 0.  

Fig. 4.1 MRDE and KDE for 𝑗 = 0 

 

 

As can be seen in the Figure 4.1, both estimates are very similar and show a similar 

degree of roughness. This fact suggests to us that the moment method is suitable to select 

an appropriate ℎ when ℎ = 1 2𝑗⁄   with 𝑗 integer. Table 4.1 and Figure 4.2 show 𝐸𝑗[𝑋],

𝜇𝑗(2), 𝛾1  and    𝛾2 divided by their empirical counterparts for 𝑗 = −3,… , 1, 2, 3, 5. The 

moments have been calculated by the expression developed in this section using the fitted 

densities for the values of ℎ that correspond to the above 𝑗. The values of 𝑗 are on the 

abscissa axis. 

Table 4.1 Ratios between KDE moments and sample moments 

 

𝑗 E[x]   Variance  Asymmetry  Kurtosis  

-3 1 1.83770525 0.40140818 4.41595072 

-2 1 1.20942631 0.75184944 1.27816406 

-1 1 1.05235658 0.92630844 0.95204746 
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0 1 1.01308914 0.98068268 0.97763648 

1 1 1.00327229 0.99511157 0.99369833 

2 1 1.00081807 0.99877415 0.99837911 

3 1 1.00020452 0.9996933 0.99959192 

4 1 1.00005113 0.99992331 0.9998978 

5 1 1.00001278 0.99998083 0.99997444 

 

Fig. 4.2. Ratios between KDE moments and sample moments 

 

 

Note that the stability of both moments is reached when 𝑗 =  0 which is equivalent to 

ℎ =  1. Figure 4.3 displays the MR and the kernel estimations for 𝑗 = −1 and 𝑗 = 0. 
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Fig. 4.3 Estimated densities 𝑓(𝑥) for 𝑗 = −1, 𝑗 = 0 and data generator model 𝑓(𝑥)  

 

Note that 𝑗 is conveniently the same for both estimates and it can be obtained 

from the MR or kernel estimated moments. KDE and MRDE estimates are similar since 

both are good approximations of the same unknown density. 

In the following simulation, the generator model is a mixture of three double 

exponential distributions whose parameters are in Table 3.2. Table 4.2 and Figure 4.4 

display   the values of 𝐸𝑗[𝑋], 𝜇𝑗(2), 𝛾1 ,   𝛾2, divided by their empirical counterparts, 

using levels of resolution from  𝑗 = −3 to 𝑗 = 4.  As can be seen, stability is reached 

either when 𝑗 = −1 or 𝑗 = 0. Figure 4.5 shows the estimations, 𝑓(𝑥)) for 𝑗 = −1, 𝑗 = 0, 

and the data generator model (mixture of double exponential distributions, 𝑓(𝑥)). 

Table 4.2 Ratios between KDE  moments and sample moments 

𝑗 E[x]   Variance  Asymmetry Kurtosis  

-3 1.00020842 1.23072002 0.64137168 0.56500524 

-2 1.0000844 1.05642867 0.92675066 0.90709002 

-1 1.00058047 1.0155786 0.97057506 0.97393645 

0 0.99986737 1.00355414 0.99758049 0.9933315 

1 0.99996728 1.000518 0.99559745 0.99654088 

2 0.99999484 1.00019494 1.00076368 1.00119058 

3 1.00000043 1.00001854 0.99983838 1.00028379 

4 1.00000388 1.00003893 0.99975579 0.99954511 
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Fig. 4.4. Ratios between KDE moments and sample moments 

 

 

Fig. 4.5 Estimated densities 𝑓(𝑥) for 𝑗 = −1, 𝑗 = 0 and data generator model 𝑓(𝑥)  

 

 

An alternative way to compare KDE and MRDE is making 2𝑗 = 1 ℎ⁄  in (10). That 

is:  

𝑓𝑗(𝑥) =
1

𝑛
∑𝜆𝑗,𝑘(𝑥𝑖)(𝑥)

𝑛

𝑖=1

=
1

𝑛
∑2𝑗𝜃 (2𝑗𝑥 − 𝑘(𝑥𝑖))

𝑛

𝑖=1

=
1

𝑛ℎ
∑𝜃(

𝑥

ℎ
− 𝑘(𝑥𝑖))

𝑛

𝑖=1

=
1

𝑛ℎ
∑𝜃(

𝑥 − ℎ𝑘(𝑥𝑖)

ℎ
)

𝑛

𝑖=1

 .    (11) 

Observe that (5) and (11) are quite similar. Taking into account that by definition: 
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𝑘(𝑥𝑖) − 0.5 < 2𝑗𝑥𝑖 ≤ 𝑘(𝑥𝑖) + 0.5, 

and multiplying by  ℎ = 2−𝑗 the three terms of the above inequality we have: 

ℎ𝑘(𝑥𝑖) − ℎ0.5 < 𝑥𝑖 ≤ ℎ𝑘(𝑥𝑖) + ℎ0.5. 

The latter expression shows an increasing approximation between 𝑥𝑖 and  

ℎ𝑘(𝑥𝑖). Note that the amplitude of the previous interval is ℎ . 

lim
ℎ→0

ℎ𝑘(𝑥𝑖) = lim
𝑗→∞

𝑘(𝑥𝑖)

2𝑗
= 𝑥𝑖 . 

The MRDE and the KDE had been compared in terms of time needed to run their 

density function in [12]. Nonetheless, the previous simulations reveal some facts that are 

worth highlighting. The MR density is not a particular case of kernel density. On the one 

hand, when the multiresolution densities are estimated according to (4), the results are 

similar to a modified kernel in which each sample data 𝑥𝑖 is substituted in (5) by ℎ𝑘(𝑥𝑖)  

to obtain (6), with  ℎ = 2−𝑗. On the other hand, we cannot state that a kernel estimator is 

a multiresolution kernel estimator. We could make the kernel and the scaling function 

identical.  Also, we can equal both dilation factors by making ℎ = 2−𝑗.  But the kernel 

for ℎ = 2−𝑗 will be a density of the 𝑉𝑗 space of the multiresolution analysis structure only 

if the sample is of the form 𝑥𝑖 =
𝑘𝑖

2𝑗
  𝑖 = 1,2, . . , 𝑛, with 𝑘𝑖 ∈ 𝑍 ∀𝑖 = 1,2, …𝑛  and where 

𝑗 is a fixed integer determined by the sample. Any other estimation with a different ℎ will 

no longer be a function of the multiresolution structure.  

Despite the above comment, we have to point out that there is a well-developed 

theory about the generalized kernel estimators, developed from the wavelets and the 

multiresolution analysis structures (see for instance [22]). Broadly speaking, this 

methodology requires the mother wavelet or scaling function of the multiresolution 

analysis structure to generate orthogonal bases for the 𝑉𝑗 spaces of the MRA. This is not 

the case of the cubic box spline since it generates non orthogonal Riesz Bases. Going 

deeper into this aspect is an interesting question, but it is out of the scope of this work. 5. 

REAL DATA APPLICATION 

In this section, we apply the proposed method to the gross income of the Spanish 

households. The sample data comes from the Spanish Survey of Household Finances 

(EFF) for the year 2014, which was conducted by the Bank of Spain [1]. The EFF 

provides information on assets, debt, income and spending. The sample size is 6,120 

households. The household income is calculated as the sum of labor and non-labor 

incomes for all household members in 2013. It is expressed in hundred thousand euros.  
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Table 5.1 and Figure 5.1 show the evolution, according to 𝑗, of 𝐸𝑗[𝑋], 𝜇𝑗(2), 𝛾1,  and  

  𝛾2,  divided by their empirical counterpart for levels of resolution from 𝑗 = −13 to 𝑗 =

−6.  

Table 5.1 Ratios between MRDE moments and sample moments 

𝑗 E[X] Variance Asymmetry Kurtosis 

-13 0.99717924 1.01153181 0.98738403 0.98380212 

-12 0.9995666 1.00258459 0.99586171 0.99430889 

-11 0.99999127 1.00037759 0.9990044 0.99853096 

-10 1.00016918 0.99997439 0.99958258 0.99926656 

-9 0.99990519 1.00016536 0.99988219 0.99980877 

-8 0.99989802 0.99998004 1.0000367 1.00010499 

-7 0.99995971 0.99999305 1.00003152 1.0000789 

-6 0.99992814 1.00000293 0.9999922 0.99998317 

 

Fig. 5.1. Ratios between MRDE moments and sample moments 

 

 

According to the BIC criterion the optimum is 𝑗 = −13.  However, the moments 

stabilize for 𝑗 = −9 or 𝑗 = −8 (Figure 5.1). Let us focus on this difference by comparing 

the density estimates for the two resolution levels plotted in Figure 5.2. 
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Fig. 5.2 Estimated multiresolution density   for 𝑗 = −8 and 𝑗 = −13 

 

 

The density has a peak between 8000 and 9000 euros that cannot be captured 

accurately by using  𝑗 = −13. So, a higher level of resolution, 𝑗 = −8 or 𝑗 = −9, is 

needed. The bias for 𝑗 =  −13 is evident when the two densities are compared. The 

roughness for 𝑗 =  −8 is clearly appreciable. The BIC chooses the smoothness of the 

curve, which leads to a very skewed estimated density around the mode. A similar fact 

has been shown in section 3.2.   We have observed empirically that roughness has only a 

slight effect on the cumulative distribution function. Nonetheless, the bias has a 

remarkable impact on the concentration measurement producing an underestimation of 

the Gini index and the Lorenz curve. This is an important issue to be considered if we 

study distributional aspects of the distribution as concentration or inequality through the 

fitted density. At this point, it should be noted that the kernel method is frequently applied 

to study income distribution (see for instance [8,16,3,20]). Figures 5.3 and 5.4 plot the 

cumulative distribution functions and the Lorenz curves respectively. The cumulative 

distribution functions are similar except in the income interval [0, 10000]. This difference 

leads to an underestimation of the Gini index5 : for 𝑗 = −13 the index equals to 0.4338 

and for 𝑗 = −8 it is equals to 0.5131. It also affects the Lorenz curve (see figure 5.4) 

which is underestimated for 𝑗 = −13 . Therefore, the level of resolution 𝑗 =  −8 

 
5 Note that the values for the Gini coefficient can differ from other publications since our 

illustration is based on gross income instead of net income.   
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obtained by the method of moments is preferable to the value 𝑗 =  −13 selected by the 

BIC in the situations set out above. 

Fig. 5.3. Cumulative distribution functions                                   Fig. 5.4. Lorenz curves 

    

                    

 

Next, we repeat the estimation for kernel densities and compare the results. Table 

5.2 Figure 5.5 show the evolution, according to 𝑗, of 𝐸𝑗[𝑋], 𝜇𝑗(2), 𝛾1  and   𝛾2 divided 

by their sample counterpart for levels of resolution from 𝑗 = −13 to 𝑗 = −5.  

Table 5.2 Ratios between KDE moments and sample moments 

𝑗 ℎ =  1/2𝑗   E[X] Variance Asymmetry Kurtosis 

-13 8192 1 1.00759984 0.98870759 0.98497182 

-12 4096 1 1.00189996 0.99715681 0.99621088 

-11 2048 1 1.00047499 0.99928794 0.9990507 

-10 1024 1 1.00011875 0.99982191 0.99976255 

-9 512 1 1.00002969 0.99995547 0.99994063 

-8 256 1 1.00000742 0.99998887 0.99998516 

-7 128 1 1.00000186 0.99999722 0.99999629 

-6 64 1 1.00000046 0.9999993 0.99999907 

-5 32 1 1.00000012 0.99999983 0.99999977 
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Fig. 5.5 Ratios between KDE moments and sample moments 

 

The appropriate level of resolution according to the moments is  𝑗 = −10 or  𝑗 = −9. 

Fig. 5.6  Estimated kernel density  for 𝑗 = −9 and 𝑗 = −13 

 

 

The results are similar reinforcing the idea of applying the analysis performed on 

the MRDE. The level of resolution selected for the MRDE was  𝑗 = −9.   For the KDE 

we have opted for ℎ =
1

2−9
= 29 = 512 . The plug-in method to select the optimum  ℎ 

[19] provides the result ℎ = 459.277. This value corresponds to 𝑗 = −log2 459.277 =

−8.8432  which rounded to the nearest integer would give 𝑗 =  −9.   If we use the 

MRDE for 𝑗 = −13 the plug-in method provides the result ℎ = 3140.324. That is 

𝑗 = −log2 3140.324 = −11.6167 whose nearest integer is 𝑗 = −12.  This is less 
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conservative than the BIC but still conservative. In any case, the resulting 𝑗 is the same 

or it is very close to that used for the plugged MRDE.  

Generalizing, if we use an estimated MR for a given 𝑗 as plugged density, the plug-

in method provides a value of  ℎ equal to  −log2ℎ whose nearest integer is the value of 𝑗 

utilized to estimate the MRDE. It is faster and easier to use the method of the moment for 

KDE and determine the ℎ =
1

2𝑗
 that we will use in the estimation. If we want more 

conservative results, regarding the smoothness of the fit, we can reduce the value of 𝑗 by 

one or two units, paying special attention to the increasing bias. 

6. CONCLUSIONS  

This paper introduces an approach to select the bandwidth or smoothing parameter 

in semiparametric and nonparametric density estimation. It is based on the evolution of 

the expected value, the variance, the symmetry and kurtosis coefficients of the estimated 

densities for different bandwidths. Using these values, divided by their empirical 

counterpart, we select a resolution level so that the bias will be acceptable and the 

roughness of the estimator will be not excessive.  

This method has been applied to the density estimation by means of 

multiresolution densities as well as Kernel density estimation. In this way, we have 

expanded the available criteria to smoothing parameter selection.  

The results of the simulations and the empirical application indicate that the level 

of resolution resulting from the moments method is more flexible to fit a multimodal 

distribution than those resulting from the BIC for MRDE and the plug-in for KDE. The 

BIC chooses the smoothness of the curve which leads to a skewed estimated density 

around the modes. The method of the moments attributes more importance to the use of 

higher resolution levels and hence rougher estimates to avoid the bias that the fitting 

produces. This procedure is recommended to analyse some distributional aspects such as 

the concentration of income. As it has been shown in the empirical application, the bias 

can produce an underestimation of the concentration of the distribution. 
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APPENDICES 

A.1 CENTRAL AND NON-CENTRAL MOMENTS OF THE CUBIC BOX SPLINE 

DENSITY  

The density function 𝜃 has an expected value equal to zero. Hence the central and non-

central moments are equal. It is also symmetric and consequently, the odd order moments 

are null.  

PROPOSITION  3 

Given  𝑝1(𝑥) and  𝑝2(𝑥)  defined by (1), it is proved by polynomial integration that: 

𝑄1(𝑥, 𝑟) = ∫𝑥
𝑟 𝑝1(2 + 𝑥)𝑑𝑥 =

1

6
[
𝑥𝑟+4

𝑟 + 4
+
6𝑥𝑟+3

𝑟 + 3
+
12𝑥𝑟+2

𝑟 + 2
+
8𝑥𝑟+1

𝑟 + 1
]. 

Analogously: 

𝑄(𝑥, 𝑟) = ∫𝑥𝑟𝑝2(𝑥)𝑑𝑥 =
−𝑥𝑟+4

2(𝑟 + 4)
+
2𝑥𝑟+3

𝑟 + 3
−
2𝑥𝑟+2

𝑟 + 2
+

2𝑥𝑟+1

3(𝑟 + 1)
, 

and  

𝑄2(𝑥, 𝑟) = ∫𝑥
𝑟 𝑝2(2 + 𝑥)𝑑𝑥 =∑(

𝑟
𝑖
) 2𝑟−𝑖𝑄(2 + 𝑥. 𝑖)

𝑟

𝑖=0

. 

PROPOSITION  4 

The non-central and central moments of order 𝑟 for 𝜃 are6 zero if 𝑟 is odd. If 𝑟 is even 

then:   

𝜇𝜃(𝑟) ≡ 𝑚𝜃(𝑟) = 2{𝑄1(−1, 𝑟) − 𝑄1(2, 𝑟) + 𝑄2(0, 𝑟) − 𝑄2(1, 𝑟)}. 

Proof. Let us assume that  𝑟 is even. In this case: 

 
6 The expected value of the density is zero and the central and non-central moments are equal.  
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𝜇𝜃(𝑟) = 𝐸𝜃[𝑥
𝑟] = ∫𝑥𝑟𝜃(𝑥)𝑑𝑥

2

−2

= 2 ∫𝑥𝑟𝜃(𝑥)𝑑𝑥

0

−2

= 2{ ∫ 𝑥𝑟𝑝1(2 + 𝑥)𝑑𝑥

−1

−2

+ ∫𝑥𝑟𝑝2(2 + 𝑥)𝑑𝑥

0

−1

}. 

Given that 𝜃 is a symmetric density with expected value zero, all the central and non-

central moments are equal and also the moments with 𝑟 odd are zero.  

Taking into account proposition 1, we can assert that, if  𝑟 is even, then:  

𝜇𝜃(𝑟) = 2{𝑄1(−1, 𝑟) − 𝑄1(2, 𝑟) + 𝑄2(0, 𝑟) − 𝑄2(1, 𝑟)}. 

A.2 CENTRAL MOMENTS OF THE DENSITIES 𝜆𝑗,𝑘(𝑥) 

PROPOSITION 5 

It is verified that: 

𝐸𝜆𝑗.𝑘[𝑥] =
𝑘

𝑠
  .         (12) 

Proof. Let us consider: 

𝐸𝜆𝑗,𝑘[𝑥] = ∫ 𝑥
+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥 = ∫ 𝑥𝑠
+∞

−∞

𝜃(𝑠𝑥 − 𝑘)𝑑𝑥.       (13) 

Making the change of variable 𝑦 = 𝑠𝑥 − 𝑘 in (13) we have: 

𝐸𝜆𝑗,𝑘[𝑥] = ∫
𝑦 + 𝑘

𝑠

+∞

−∞

𝑠𝜃(𝑦)
𝑑𝑦

𝑠
=
1

𝑠
∫ 𝑦
+∞

−∞

𝜃(𝑦)𝑑𝑦 +
𝑘

𝑠
∫ 𝜃(𝑦)𝑑𝑦
+∞

−∞

, 

but  ∫ 𝑦
+∞

−∞
𝜃(𝑦)𝑑𝑦 = 0 y ∫ 𝜃(𝑦)𝑑𝑦

+∞

−∞
= 1. 

Hence the proposition is true.  

PROPOSITION  6 

Let  

𝜇𝑗,𝑘(𝑟) = ∫ (𝑥 −
𝑘

𝑠
)
𝑟+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥, 

be the central moment of order 𝑟 of 𝜆𝑗,𝑘(𝑥). It is verified that: 

𝜇𝑗,𝑘(𝑟) =
𝜇0,0(𝑟)

𝑠𝑟
, 

where 𝜇0,0(𝑟) = 𝜇𝜃(𝑟) is, by definition, the moment of order  𝑟 of the density 𝜆0,0(𝑥) ≡

𝜃(𝑥) (see proposition 4). 

Proof. 
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𝜇𝑗,𝑘(𝑟) = ∫ (𝑥 −
𝑘

𝑠
)
𝑟+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥 = ∫ (
𝑠𝑥 − 𝑘

𝑠
)
𝑟+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥

=
1

𝑠𝑟
∫ (𝑠𝑥 − 𝑘)𝑟𝑠𝜃(𝑠𝑥 − 𝑘)𝑑𝑥
+∞

−∞

.       (14) 

Making the change 𝑦 = 𝑠𝑥 − 𝑘 in the integral (14) we have: 

𝜇𝑗,𝑘(𝑟) =
1

𝑠𝑟
∫ 𝑦𝑟𝜃(𝑦)𝑑𝑦
+∞

−∞

=
𝜇0,0(𝑟)

𝑠𝑟
. 

A.3 CENTRAL MOMENTS OF A MR DENSITY 

PROPOSITION 7 

Let us consider a MR density as that given by (3). It is verified that: 

𝐸𝑓[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥

+∞

−∞

=∑𝑎𝑘
𝑘∈ℤ

𝑘

𝑠
=
�̅�

𝑠
, 

where: 

�̅� = ∑𝑎𝑘
𝑘∈ℤ

× 𝑘. 

Proof. It is trivial taking into account (3).  

PROPOSITION 8 

It is verified that the central moment of order 𝑟 of the MR density given by (3) is: 

𝜇𝑓(𝑟) =
1

𝑠𝑟
∑(

𝑟
𝑖
) 𝜇0,0(𝑖)𝜇𝑎(𝑟 − 𝑖)

𝑟

𝑖=0

, 

where  𝜇𝑎(𝑟 − 𝑖) = ∑ 𝑎𝑘(𝑘 − �̅�)
𝑟−𝑖

𝑘∈ℤ  and where 𝜇0,0(𝑖) = 𝜇𝜃(𝑖)  is calculated 

according to proposition 4.  

Proof.  Let:  

𝜇𝑓(𝑟) = ∫ (𝑥 −
�̅�

𝑠
)

𝑟+∞

−∞

𝑓(𝑥)𝑑𝑥 =∑𝑎𝑘
𝑘∈ℤ

∫ (𝑥 −
𝑘

𝑠

̅
)

𝑟+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥.          (15) 

However, 

∫ (𝑥 −
𝑘

𝑠

̅
)

𝑟+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥 = ∫ (𝑥 −
𝑘

𝑠
+
𝑘

𝑠
−
𝑘

𝑠

̅
)

𝑟+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥 .         (16) 

Considering that:  

(𝑥 −
𝑘

𝑠
+
𝑘

𝑠
−
𝑘

𝑥

̅
)

𝑟

=
1

𝑠𝑟
∑(

𝑟
𝑖
) (𝑘 − �̅�)

𝑟−𝑖
(𝑠𝑥 − 𝑘)𝑟 ,

𝑟

𝑖=0

 

and substituting in (14) we have: 
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∫ (𝑥 −
�̅�

𝑦
)

𝑟+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥 =
1

𝑠𝑟
∑(

𝑟
𝑖
) (𝑘 − �̅�)

𝑟−𝑖
𝑟

𝑖=0

∫ (𝑠𝑥 − 𝑥)𝑖𝑠𝜃(𝑠𝑥 − 𝑘)𝑑𝑥
+∞

−∞

. 

But making 𝑦 = 𝑠𝑥 − 𝑘 we obtain: 

∫ (𝑠𝑥 − 𝑥)𝑖𝑠𝜃(𝑠𝑥 − 𝑘)
+∞

−∞

= ∫ (𝑦)𝑖𝜃(𝑦)𝑑𝑦
+∞

−∞

= 𝜇𝜃(𝑖) ≡ 𝜇0.0(𝑖). 

It is verified:  

∫ (𝑥 − �̅�)
𝑟

+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥 =
1

𝑠𝑟
∑(

𝑟
𝑖
) (𝑘 − �̅�)

𝑟−𝑖
𝑟

𝑖=0

𝜇0,0(𝑖). 

Substituting   in (15) we have: 

𝜇𝑓(𝑟) =∑𝑎𝑘
𝑘∈ℤ

 
1

𝑠𝑟
∑(

𝑟
𝑖
) (𝑘 − �̅�)

𝑟−𝑖
𝑟

𝑖=0

𝜇0,0(𝑖) =  
1

𝑠𝑟
∑(

𝑟
𝑖
)

𝑟

𝑖=0

𝜇0,0(𝑖) ∑𝑎𝑘
𝑘∈ℤ

 (𝑘 − �̅�)
𝑟−𝑖

=
1

𝑠𝑟
∑(

𝑟
𝑖
) 𝜇0,0(𝑖)𝜇𝑎(𝑟 − 𝑖)

𝑟

𝑖=0

,  

as we want to prove.  

A.4 NON-CENTRAL MOMENTS OF A MR DENSITY 

PROPOSITION 9 

Taking into account (3) is trivial to prove that: 

𝑚𝑗(𝑟) =∑𝑎𝑘
𝑘∈𝑍

𝑚𝜆𝑗,𝑘
(𝑟), 

where 

𝑚𝜆𝑗,𝑘
(𝑟) = ∫ 𝑥𝑟𝜆𝑗,𝑘(𝑥)𝑑𝑥

+∞

−∞

. 

PROPOSITION 10 

 It is verified: 

𝑚𝜆𝑗,𝑘
(𝑟) = ∑(

𝑟
ℎ
)

𝑟

ℎ=0

𝑚𝜃(𝑟)𝑘
ℎ−𝑟  

where 𝑚𝜃(𝑟) = 𝜇𝜃(𝑟). They are defined and calculated in Proposition 4.  

Proof. 

𝑚𝜆𝑗,𝑘
(𝑟) = ∫ 𝑥𝑟𝜆𝑗,𝑘(𝑥)𝑑𝑥

+∞

−∞

= ∫ 𝑥𝑟𝑠𝜃(𝑠𝑥 − 𝑘)𝑑𝑥

+∞

−∞

 .        (17) 

Making the change of variable 𝑦 = 𝑠𝑥 − 𝑘 in (17) it is obtained: 
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1

𝑠𝑟
∫ (𝑦 + 𝑘)𝑟𝜃(𝑦)𝑑𝑦

+∞

−∞

.       (18) 

Taking into account that:  

(𝑦 + 𝑘)𝑟 =∑(
𝑟
ℎ
)

𝑟

ℎ=0

𝑦𝑟𝑘ℎ−𝑟 ,      (19) 

and substituting (19) in (18), the proof of the proposition is evident (see proposition 4). 

A5. CENTRAL MOMENTS OF A KERNEL DENSITY 

PROPOSITION 11 

It is verified : 

𝐸�̂�ℎ[𝑋] = ∫ 𝑥𝑓ℎ(𝑥)𝑑𝑥

+∞

−∞

=
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

= �̅� . 

Proof. Let 

∫ 𝑥𝑓ℎ(𝑥)𝑑𝑥

+∞

−∞

= ∫ 𝑥
1

𝑛ℎ
∑𝜃 (

𝑥 − 𝑥𝑖
ℎ

)

𝑛

𝑖=1

𝑑𝑥

+∞

−∞

=
1

𝑛ℎ
∑ ∫ 𝑥

+∞

−∞

𝜃 (
𝑥 − 𝑥𝑖
ℎ

)

𝑛

𝑖=1

𝑑𝑥 .    (20) 

Making the change of variable 𝑦 =
𝑥−𝑥𝑖

ℎ
  in the integral (20) we have: 

∫ 𝑥

+∞

−∞

𝜃 (
𝑥 − 𝑥𝑖
ℎ

)𝑑𝑥 = ℎ ∫ (ℎ𝑦 + 𝑥𝑖)

+∞

−∞

𝜃(𝑦)𝑑𝑦

= ℎ2 ∫ 𝑦𝜃(𝑦)𝑑𝑦

+∞

−∞

+ ℎ𝑥𝑖 ∫ 𝜃(𝑦)𝑑𝑦

+∞

−∞

.  (21) 

But  ∫ 𝑦𝜃(𝑦)𝑑𝑦
+∞

−∞
= 0 and  ∫ 𝜃(𝑦)𝑑𝑦

+∞

−∞
= 1 so (21) equals  ℎ𝑥𝑖  and substituting in 

(20) we have: 

𝐸�̂�ℎ[𝑋] =
1

𝑛ℎ
∑ℎ𝑥𝑖

𝑛

𝑖=1

=
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

= �̅� .     

PROPOSITION 12 

It is verified: 

𝜇�̂�ℎ(𝑟) =∑(
𝑟
𝑟
)ℎ𝑡𝑚𝜃(𝑡)

𝑟

𝑡=0

𝑚(𝑟 − 𝑡). 

where 𝑚𝜃(𝑡)  is the non-central moment of order 𝑡 of density  𝜃 . It is obtained following 

section 2 in the appendix. The expression 𝜇(𝑟 − 𝑡) is the sample central moment of order 

𝑟 − 𝑡 . That is:  
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𝜇(𝑟 − 𝑡) =
1

𝑛
∑(𝑥𝑖 − �̅�)

𝑡−𝑟

𝑛

𝑖=1

 . 

Proof. 

𝜇�̂�ℎ(𝑟) = ∫ (𝑥 − �̅�)𝑟𝑓ℎ(𝑥)𝑑𝑥

+∞

−∞

         (22) 

That is: 

𝜇�̂�ℎ(𝑟) =
1

𝑛ℎ
∑ ∫ (𝑥 − �̅�)𝑟𝜃 (

𝑥 − 𝑥𝑖
ℎ

) 𝑑𝑥

+∞

−∞

𝑛

𝑖=1

.    (23) 

 

Making the change of variable 𝑦 =
𝑥−𝑥𝑖

ℎ
  in (23) we have: 

∫ (𝑥 − �̅�)𝑟𝜃 (
𝑥 − 𝑥𝑖
ℎ

)𝑑𝑥

+∞

−∞

= ℎ ∫ (ℎ𝑦 + 𝑥𝑖 − �̅�)
𝑟𝜃(𝑦)𝑑𝑦

+∞

−∞

 .   (24) 

But 

(ℎ𝑦 + 𝑥𝑖 − �̅�)
𝑟 =∑(

𝑟
𝑡
) ℎ𝑡𝑦𝑡(𝑥𝑖 − �̅�)

𝑟−𝑡

𝑟

𝑡=0

. 

Substituting in (24) we have: 

ℎ ∫ (𝑥 − �̅�)𝑟𝜃 (
𝑥 − 𝑥𝑖
ℎ

) 𝑑𝑥

+∞

−∞

=∑(
𝑟
𝑡
) ℎ𝑡+1𝑚𝜃(𝑡)(𝑥𝑖 − �̅�)

𝑟−𝑡

𝑟

𝑡=0

 . 

Substituting the latter expression in (23) we obtain: 

𝜇�̂�ℎ(𝑟) =
1

𝑛ℎ
∑∑(

𝑟
𝑡
) ℎ𝑡+1𝑚𝜃(𝑡)(𝑥𝑖 − �̅�)

𝑟−𝑡

𝑟

𝑡=0

𝑛

𝑖=1

=∑(
𝑟
𝑡
) ℎ𝑡𝑚𝜃(𝑡)

𝑟

𝑡=0

1

𝑛
∑(𝑥𝑖 − �̅�)

𝑟−𝑡

𝑛

𝑖=1

 . 

Naming  

𝜇(𝑟 − 𝑡) =
1

𝑛
∑(𝑥𝑖 − �̅�)

𝑟−𝑡,

𝑛

𝑖=1

 

the proposition is proven.   

A.6. ASYMPTOTIC PROPERTIES OF THE MR MOMENTS  

Proof of Proposition 1. 

By definition (see [12,13]): 

�̂�𝑘 =
1

𝑛
𝐶𝑎𝑟𝑑 { 𝑥𝑖 𝑖 = 1, 2, … , 𝑛 |  𝑥𝑖 ∈ [

𝑘 − 2

2𝑗
,
𝑘 + 2

2𝑗
) }. 

It is evident that  𝑥𝑖 ∈ [
𝑘−2

2𝑗
,
𝑘+2

2𝑗
) if and only if  𝑘 = 𝑘(𝑥𝑖). 



32 

 

Moreover, the intervals: 

[
𝑘 − 2

2𝑗
,
𝑘 + 2

2𝑗
), 

have center  
𝑘

2𝑗
 and radius  

1

2𝑗−1
 , so for 𝑗 large enough the previous intervals will have a 

radius so small that each sample element,  𝑥𝑖,  belongs to a different interval. In this case, 

the coefficients greater than zero are those associated with intervals that contain a sample 

element, that is: 

�̂�𝑘(𝑥𝑖) =
1

𝑛
  𝑖 = 1, 2, … , 𝑛 . 

Hence the proposition is true.  

Proof of Proposition 2. 

�̂�𝑟 = ∫ 𝑥𝑟𝑓𝑗(𝑥)

+∞

−∞

𝑑𝑥 = ∫ 𝑥𝑟∑�̂�𝑘𝜆𝑗,𝑘(𝑥)

𝑘∈𝑍

+∞

−∞

𝑑𝑥 =∑�̂�𝑘 ∫ 𝑥𝑟
+∞

−∞

𝜆𝑗,𝑘(𝑥)𝑑𝑥

𝑘∈𝑍

.  

For a  𝑗 large enough, according to proposition 1, we have: 

�̂�𝑘 = {
0 𝑖𝑓 𝑘 ≠ 𝑘(𝑥𝑖) ∀𝑖 = 1, 2, … , 𝑛
1

𝑛
𝑖𝑓 𝑘 = 𝑘(𝑥𝑖) ∀𝑖 = 1, 2, … , 𝑛

   , 

which allows us to write:  

�̂�𝑟 =
1

𝑛
∑ ∫ 𝑥𝑟

+∞

−∞

𝜆𝑗,𝑘(𝑥𝑖)(𝑥)𝑑𝑥

𝑛

𝑖=1

.       (25) 

However, 

∫ 𝑥𝑟
+∞

−∞

𝜆𝑗,𝑘(𝑥𝑖)(𝑥)𝑑𝑥 = ∫ 𝑥𝑟
+2

−2

𝑠𝜃(𝑠𝑥 − 𝑘(𝑥𝑖))𝑑𝑥,          (26) 

with  𝑠 = 2𝑗 . 

If we make  the change of variable 𝑦 = 𝑠𝑥 − 𝑘(𝑥𝑖) in (25), we have: 

∫ 𝑥𝑟
+2

−2

𝑠𝜃(𝑠𝑥 − 𝑘(𝑥𝑖))𝑑𝑥 = ∫ (
𝑦 + 𝑘(𝑥𝑖)

𝑠
)

𝑟+2

−2

𝜃(𝑦)𝑑𝑦 .        (27) 

If  𝑗 tends to infinite, we have:  

lim
𝑗→∞

𝑦

𝑠
= 0                  lim

𝑗→∞

𝑘(𝑥𝑖)

𝑠
= 𝑥𝑖   .     (28) 

The first equality in (28) is trivially true and the second is also true since by definition: 

𝑥𝑖 ∈ [
𝑘(𝑥𝑖) − 2

𝑠
,
𝑘(𝑥𝑖) − 2

𝑠
), 
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and when  𝑗 tends to infinity, the radius of the interval converges to zero and its center is 

the point  
𝑘(𝑥𝑖)

𝑠
 .  

Assuming that (28) is true we can write: 

lim
𝑗→∞

∫ (
𝑦 + 𝑘(𝑥𝑖)

𝑠
)

𝑟+2

−2

𝜃(𝑦)𝑑𝑦 = ∫ (𝑥𝑖)
𝑟

+2

−2

𝜃(𝑦)𝑑𝑦 = 𝑥𝑖
𝑟 ∫ 𝜃(𝑦)𝑑𝑦

+2

−2

= 𝑥𝑖
𝑟 .      (29) 

Wherewith, under (25) and (29), we have: 

lim
𝑗→∞

�̂�𝑟 =
1

𝑛
∑𝑥𝑖

𝑟 .

𝑛

𝑖=1

 

That is, the non-central moments of the estimated MRDE converge to the non-central 

moments of the sample.  

 

 

 


