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MULTIRESOLUTION APPROXIMATON AND CONSISTENT ESTIMATION OF 

A MULTIVARIATE DENSITY FUNCTION  

1.INTRODUCTION  

Density estimation is a central task in statistics that has utilised   parameter, 

semiparametric   and nonparametric   techniques (see for instance Silverman, 1986; Palacios-

González and García-Fernández, 2014 a, b and Beylkin et al., 2019). The method developed 

in this paper is based on the use of multiresolution analysis to approximate multivariate 

density functions. The multiresolution analysis structures (MRA) are useful tools to 

approximate functions as well as to build wavelets. As is shown in Palacios-González and 

García-Fernández (2014 a, b) any squared integrable density can be approximated by 

elements of the multiresolution structure. The cited authors defined a univariate 

multiresolution family of probability density functions (MR pdf) by mixing dilations and 

translations of the squared integrable function known as cubic box spline (see Hernández 

and Weiss, 1996, p. 44 and Mallat, 1999, p. 221). The scaling function, Cubic Box Spline, 

generates subspaces 𝑉𝑗 of the MR by means of non-orthonormal Riesz basis whose 

components are non-negative functions with compact support. The coefficients of the MR 

pdf are estimated by an algorithm based on frequency data count which is faster and easier 

to apply than the EM algorithm (see Palacios-González and García- Fernández, 2020).  

The estimation of multivariate densities has received a lot of attention lately mainly due to 

its wide application to different fields of knowledge (see for instance Kasahara and 

Shimotsu, 2014).  Some publications of the last decade on estimation of multivariate 

densities include Hunter and Levine (2015), Bonhomme et al. (2016), Bouzebda and Didi 

(2017); Li (2017); Zheng and Wu (2019); Luini, E and Arbenz, P. (2020) among others. Our 

approach provides an alternative tool to approximate and estimate multivariate square 

integrable densities. 

Specifically, the main contributions of this paper are: (i) to extend the use of 

multiresolution analysis structures to the multivariate case to approximate probability 

density functions; (ii) to define a consistent estimator for a multivariate multiresolution 

approximation of a multivariate pdf and (iii) to develop an algorithm to estimate the MMR 

pdf. To build the multivariate multiresolution analysis structures we utilize multivariate  
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Cubic Box Spline function (see Wojtaszczyk, 1997 p. 105 and Eckley, 2001 p. 26). The 

multiresolution approximation of the multivariate pdf is made over the 𝑉𝑗  spaces of the 

multivariate multiresolution structure (MMR).  For any MMR approximation of a 

multivariate pdf a consistent estimator is defined. To estimate the MMR pdf, we propose an 

algorithm based on a straightforward process of data frequency count (FDC algorithm). The 

complexity of the algorithm is manageable and, as the empirical illustrations will show, it is 

fast enough to be applied to the field of big data (see section 5).  

This paper is organized as follows. In section 2, the multivariate probability density 

functions are defined. Section 3 describes the approximation of a continuous multivariate 

density function. In section 4, a straightforward and consistent estimator of the density 

function is proposed. Section 5 develops an algorithm to estimate the MMR density. In 

addition, in this section the use of the Bayesian Information Criterium (BIC; Schwarz, 1978) 

to select the resolution level is described.  In section 6, the algorithm is applied to the 

simulation models one and five of Zheng and Wu (2020).  We estimate the processing time 

using different sample sizes. The ISEs for the joint and marginal distributions are also 

obtained. Section 7 shows an application to real data and section 8 concludes. 

  

2.MULTIVARIATE SCALING FUNCTION CUBIC BOX SPLINE AND 

MULTIVARIATE MULTIRESOLUTION PDF  

Let 𝜃 be a Cubic Box Spline function (see Hernández and Weiss, 1996 and Palacios-

González and García-Fernández 2014a). Function 𝜃  is a symmetric probability density 

function with expected value zero and support in the interval [−2,2].  Given 𝒙 =

 (𝑥1, 𝑥2, . . . 𝑥𝑞)  ∈  𝑅𝑞, the expression: 

Θ(𝒙) =  ∏ 𝜃(𝑥𝑖)

𝑞

𝑖=1

                                      (1) 

defines a Multivariate  Cubic Box Spline (MCBS) . Θ(𝒙) is the scaling function that allows 

us to build the Multivariate Multiresolution Analysis Structures used in this work (see 

Appendix A.1). Θ(𝒙)  is a multivariate probability density function with support in the 

hypercube  ∏ [−2,2]𝑞
𝑖=1 . 
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For each vector of integer numbers 𝐤 =  (𝑘1, 𝑘2, . . . , 𝑘𝑞)  ∈  𝑍𝑞  and each level of resolution 

𝑗 ∈ 𝑍, we consider the following linear transformations of the MCBS function: 

Λ𝑗,𝐤(𝐱) =  2𝑞𝑗 ∏ 𝜃(2𝑗𝑥𝑖  −  𝑘𝑖)

𝑞

𝑖=1

                            (2) 

 

These linear transformations are multivariate density functions with support in the 

hypercube:  

∏ [
𝑘𝑖 − 2

2𝑗
,
𝑘𝑖 + 2

2𝑗
]

𝑞

𝑖=1

.                           (3) 

2.1. PROBABILITY DENSITY FUNCTION IN A MULTIVARIATE 

MULTIRESOLUTION STRUCTURE 

For any level of resolution 𝑗 ∈  𝑍  a multivariate density function over a 

multiresolution structure is defined (see A.2 in appendix A): 

𝑓(𝒙) = ∑ 𝑐𝐤

𝑘∈𝑍𝑞

Λ𝑗,𝐤(𝐱)                              (4) 

where {𝑐𝐤}𝐤∈𝑍𝒒 is any set of real numbers that verifies the conditions 𝑐𝐤  ≥  0 ∀𝐤 ∈  𝑍𝑞 and  

∑  𝑐𝐤𝐤 ∈ 𝑍𝑞 = 1 (see Theorem A.3 and Corollary A.3.1). In short, we will say that any density 

function like (4) is a Multivariate Multiresolution (MMR) density. 

3. MMR APPROXIMATION OF A MULTIVARIATE PROBABILITY DENSITY 

FUNCTION 

3.1 DEFINITION (see appendix B) 

For all 𝑗 ∈  𝑍  and all  𝐤 =  (𝑘1, 𝑘2, . . . 𝑘𝑞) ∈  𝑍𝑞  the set 𝐷𝐤 
𝑗

=

∏ (
𝑘𝑖−0.5

2𝑗 ,
𝑘𝑖+0.5

2𝑗 ]𝑞
𝑖=1 ⊂ 𝑅𝑞 

is defined.  

Note that each set 𝐷𝐤 
𝑗

 is a hypercube of volume  
1

2𝑞𝑗  whose centre is the point 
𝐤 

2𝑗 . In 

addition, observe that the class of sets  {𝐷𝐤 
𝑗

}
𝐤 ∈ 𝑍𝑞 defines a partition of  𝑅𝑞 .  

3.2. DEFINITION (see Appendix B) 

Let 𝐗 be a q-dimensional random vector with probability density function 𝑓. For any 

level of resolution 𝑗, let {𝑐𝐤
𝑗
}

𝐤 ∈ 𝑍𝑞 be the sequence of real numbers built as follows: 
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𝑐𝐤
𝑗

= 𝑃(𝐗 ∈ 𝐷𝐤 
𝑗

) = ∫ 𝑓(𝐱)

⬚

𝐷𝐤 
𝑗

𝑑𝐱         (5) 

Using (5), the function 

𝑓𝑗(𝐱) = ∑ 𝑐𝐤
𝑗
Λ𝑗,𝒌(𝒙)

𝐤 ∈ 𝑍𝑞

      (6) 

is defined.  

3.3 LEMMA 

All 𝑓𝑗(𝐱) defined by (6) are MMR densities.  

Proof. For each q-dimensional random vector 𝐗 and all level of resolution 𝑗 ∈ 𝑍 ,  it is 

verified that 

 1 =  𝑃(𝐗 ∈ 𝑅𝑞)  =  ∑ 𝑃(𝐗 ∈ 𝐷𝐤 
𝑗

) = ∑ 𝑐𝐤
𝑗

𝐤 ∈ 𝑍𝑞𝐤 ∈ 𝑍𝑞 . Hence, the coefficients 𝑐𝐤
𝑗
, given by 

(5), are greater than or equal to 0 and add 1. Therefore, functions (6) are densities as those 

defined in section 2.1. 

3.4 DEFINITION 

The density functions {𝑓𝑗}
𝑗∈𝑍

, obtained according to (6), are called 𝑓  density 

approximations. Such denomination is based on Theorem 3.5.  

3.5. THEOREM 

It is verified that: lim
𝑗→∞

𝑓𝑗(𝐱) = 𝑓(𝐱) 

Proof. See B.5 and B.5.1 in appendix B. 

4.ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY FUNCTION 

In this section, a consistent estimator for any MMR approximation of a multivariate 

pdf for any continuous random variable with finite vector of means and finite variance and 

covariance matrix, is defined (Corollary C.1.2 in appendix C).  

This estimator is calculated easily and quickly for any level of resolution using 

frequencies count on the sets 𝑫𝐤
𝒋
 . 

Let  𝐱𝑡   𝑡 = 1,2, … , 𝑛  be a finite random sample derived from a 𝑞 -dimensional 

random vector 𝐗 with probability density function 𝑓. 

Let  𝑛𝐤  𝐤 ∈ 𝑍𝑞 be the number of elements of the sample that belongs to 𝐷𝐤
𝑗
. For any 

level of resolution  𝑗 ∈ 𝑍 and for all  𝐤 ∈ 𝑍𝑞   
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𝑐̂𝐤
𝑛,𝑗

=
𝑛𝐤

𝑛
                   (7) 

is defined. 

Finally, the estimator  

𝑓𝑛,𝑗(𝐱) = ∑ 𝑐̂𝐤
𝑛,𝑗

𝐤∈𝒁𝒒

 Λ𝑗,𝑘(𝐱)                 (8) 

is defined.  

Note that when each sample data belongs to a different 𝐷𝐤
𝑗
 and the frequency is equal 

to one in those 𝑛 sets and zero in the rest, there will be at most 𝑛 non-zero coefficients 𝑐̂𝐤
𝑛,𝑗

  

If for any 𝐷𝐤
𝑗
 the corresponding 𝑛𝐤 is greater than 1 then the number of non-zero 

coefficients 𝑐̂𝐤
𝑛,𝑗

 must be less than 𝑛 and the sum (8) always contains a finite number of 

nonzero addends. 

4.1 THEOREM 

For any level of resolution 𝑗 ∈ 𝑍 and all 𝐱 ∈ 𝑅𝑞 it is verified that (8) is a consistent 

estimator of (6). 

Proof.  See Lemma C1 and Corollary C.1.1 (appendix C). 

We want to highlight the importance of Theorems 3.5 and 4.2. On the one hand, all 

square integrable function, and consequently all 𝑓, has a good enough approximation, 𝑓𝑗  , in 

the space 𝑉𝑗   when the level of resolution rises conveniently. On the other hand, each 

approximation  𝑓𝑗(𝐱) of 𝑓(𝐱) has an estimator 𝑓𝑛,𝑗(𝐱) that is consistent.  Both results can be 

combined in the following Theorem. 

4.2. THEOREM 

lim
𝑗→∞

𝑓𝑛,𝑗(𝐱)
𝑝
→ lim

𝑗→∞
𝑓𝑗(𝐱) = 𝑓(𝐱) 

for almost all  𝒙 ∈ 𝑅𝑞. 

Proof. See C.2 in appendix C. 

The sequence of estimates, obtained from a succession of samples of increasing size, 

corresponds to a sequence of random variables with compact support1 that converges in law 

towards a variable whose distribution is indistinguishable from the sampled variable  

 

1 Any MMR function with a finite number of nonzero coefficients has compact support. 
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(Theorem C.2). This occurs when the distribution that generates the sample has compact 

support or its range is 𝑅𝑞  .    

5. A MULTIVARIATE FREQUENCY DATA COUNT ALGORITHM TO ESTIMATE A 

MMR DENSITY  

5.1. DEFINITION 

Given a level of resolution 𝑗, for all  𝑥 ∈ 𝑅 the values: 

𝑘(𝑥) = 𝑀𝑎𝑥{𝑘 ∈  𝑍 | 𝑘 ≤ 2𝑗𝑥}

𝑟(𝑥) = 2𝑗𝑥 − 𝑘(𝑥)
                           (9)   

are defined (see Palacios-Gonzalez and García-Fernández,2020). 

Observe that  𝑘(𝑥)  and 𝑟(𝑥)  depend on the level of resolution 𝑗 , although for 

convenience of notation, it will not appear explicitly. Note that  

𝑥 =
𝑘(𝑥) + 𝑟(𝑥)

2𝑗
     ∀𝑥 ∈ 𝑅      (10) 

and that ∀𝑥 ∈ 𝑅 it is verified 

𝑟(𝑥) = 0 ⇔ 𝑥 =
𝑘(𝑥)

2𝑗
 .    (11) 

5.2 LEMMA 

Let   𝐱 = (𝑥1, 𝑥2, . . . 𝑥𝑞) ∈ 𝑅𝑞 be arbitrary. For all 𝑖 = 1,2, . . . , 𝑞 

𝑘𝑖 = { 
𝑘(𝑥𝑖)                          𝑖𝑓 𝑟(𝑥𝑖) ≤ 0.5

𝑘(𝑥𝑖) + 1                  𝑖𝑓 𝑟(𝑥𝑖) > 0.5
             (12)  

and  𝐤 =  (𝑘1, 𝑘2, . . . 𝑘3), it is verified that  𝐱 ∈ 𝐷𝐤
𝑗  . 

Proof. See appendix D  

5.3 STEPS OF THE ALGORITHM  

To estimate the MMR density, according to (7) and (8), we propose the following 

frequency data count (FDC) algorithm. 

Let us consider a sample  𝐱1, 𝐱2, . . . , 𝐱𝑛  from a 𝑞 dimensional random vector 𝐗  and 

a level of resolution 𝑗 ∈  𝑍. We represent by  𝑥𝑡
𝑖  ∀𝑖 = 1,2, . . . , 𝑞  the i-th component of the 

sample element 𝐱𝑡 ∀𝑡 = 1,2, … , 𝑛. 
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FDC ALGORITHM 

Step 1. Define a matrix 𝐾𝐷𝑎𝑡𝑎 of dimension 𝑛 × 𝑞 to store the vector 𝐤 =  (𝑘1, 𝑘2, . . . , 𝑘𝑞) 

associated with each sample data according to Lemma 5.2; define a matrix, 𝑐𝑜𝑒𝑓1, of 

dimension 𝑛 × (𝑞 + 1) to count frequencies in 𝐾𝐷𝑎𝑡𝑎 , and define a matrix, 𝑈𝑠𝑎𝑑𝑜 , of 

dimension 𝑛 to control if each row of 𝐾𝐷𝑎𝑡𝑎 has been used in the count.  

Note that in the first 𝑞  columns of each line of the 𝑐𝑜𝑒𝑓1  there is a vector  𝐤 =

 (𝑘1, 𝑘2, . . . , 𝑘𝑞) of 𝐾𝐷𝑎𝑡𝑎, which is different from the rest. Column 𝑞 + 1  contains the 

number of times that vector 𝐤 is repeated in 𝐾𝐷𝑎𝑡𝑎. Consequently, unless all 𝐤 of 𝐾𝐷𝑎𝑡𝑎 

are different there will always be empty rows in 𝑐𝑜𝑒𝑓1.  

Step 2. For each 𝐱𝑡 from 𝑡 = 1 to 𝑛 and each 𝑖 = 1 to 𝑞 make (see (12)) 

    a) 𝑘 =  𝑖𝑛𝑡(2𝑗 × 𝑥𝑡
𝑖) 

    b) 𝑟 =  𝑥𝑡
𝑖  −  𝑘 

    c)  If  𝑟 >  0.5 then 𝐾𝐷𝑎𝑡𝑎(𝑡, 𝑖)  =  𝑘 + 1  else 

𝐾𝐷𝑎𝑡𝑎(𝑡, 𝑖)  =  𝑘 

Step 3. From  𝑡 =  1 to 𝑛 − 1, if 𝑈𝑠𝑎𝑑𝑜(𝑡)  =  0 make 

    a) ℎ = ℎ + 1 

    b) Copy row 𝑡 of  𝐾𝐷𝑎𝑡𝑎 in row ℎ of 𝑐𝑜𝑒𝑓1 

    c) 𝑐𝑜𝑒𝑓1(ℎ, 𝑞 + 1)  =  𝑐𝑜𝑒𝑓1(ℎ, 𝑞 + 1)  +  1 

    d) 𝑈𝑠𝑎𝑑𝑜(𝑡)  =  1 

e) From 𝑢 =  𝑡 + 1 to 𝑛, if 𝑈𝑠𝑎𝑑𝑜(𝑢) = 0 make 

e1) Compare row 𝑡 of 𝐾𝐷𝑎𝑡𝑎 with row 𝑢 of 𝐾𝐷𝑎𝑡𝑎 

e2) If both are equal, then 

e3) 𝑐𝑜𝑒𝑓1(ℎ, 𝑞 + 1) =  𝑐𝑜𝑒𝑓1(ℎ, 𝑞 + 1) +  1 

e4) 𝑈𝑠𝑎𝑑𝑜(𝑢)  =  1 

Step 4. If 𝑈𝑠𝑎𝑑𝑜 (𝑛) = 0 then make 

  a) ℎ = ℎ + 1 

  b) copy row 𝑛 of 𝐾𝐷𝑎𝑡𝑜𝑠 in row ℎ of 𝑐𝑜𝑒𝑓1 

  c) 𝑐𝑜𝑒𝑓1(ℎ, 𝑞 + 1)  =  𝑐𝑜𝑒𝑓1(ℎ, 𝑞 + 1)  +  1 
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Step 5. Define a 𝑐𝑜𝑒𝑓 matrix of dimension ℎ × (𝑞 + 1) to copy non-empty rows of 𝑐𝑜𝑒𝑓1 

in 𝑐𝑜𝑒𝑓. 

Step 6. Output of the estimated coefficients that are in 𝑐𝑜𝑒𝑓matrix 

Observe that this algorithm is 𝑂(𝑛 × 𝑀𝑎𝑥(𝑞, ℎ)) being normally 𝑞 ≪  𝑛, where  ℎ 

is the number of estimated coefficients (with non null frequency). Note that, without 

additional complications, the split and conquer method (Xueying and Minge, 2012) can be 

applied by splitting up the sample in 𝑝1  subsamples of size 𝑛1 equal to the integer2 part of 

𝑛 𝑝1⁄  that will be processed in parallel resulting in an algorithm 𝑂(𝑛1 × 𝑀𝑎𝑥(𝑞, ℎ)). If 𝑝1 

is high enough it will result in 𝑛1 × 𝑀𝑎𝑥(𝑞, ℎ) being a relatively low value. 

For instance, if  𝑛 = 𝑂(107) , 𝑞 = 𝑂(102)  and  ℎ = 𝑂(103) , 𝑝1 = 𝑂(103) 

then 𝑛1 = 𝑂(104) and the resulting algorithm will be 𝑂(106). In run time, this means that 

a sample with 10 million of individuals, with 100 data for each individual, could be 

processed in fractions of a second.  

5.4. SELECTION OF THE LEVEL OF RESOLUTION 

So far, the best level of resolution to obtain a good estimation has not been 

considered. We resolve this issue by employing the parsimony principle underlying in the 

Bayesian Information Criterium (BIC; Schwarz 1978). 

The greater the level of resolution, the more accurate the approximation of a 

probability density function by a MRA density is (see Theorem 3.5). Consequently, given a 

fixed sample of size 𝑛, the sample likelihood given by 𝑓𝑛,𝑗(𝐱) increases with the level of 

resolution 𝑗. But for every unit we increase the level of resolution, the number of non-zero 

coefficients 𝑐̂𝐤
𝑛,𝑗

 increases (it can be duplicated). 

For instance, if we want to estimate a density by means of a MRA function as defined 

in (8) we have to use a level of resolution that achieves a trade-off between the maximum 

likelihood of the sample and the number of non-null coefficients of the estimator. We solve 

this problem using the Bayesian Information Criterion of Schwarz (1978) that we enunciate 

as follows. 

 
2 Obviously, unless 𝑛 is a multiple of 𝑝1, the last subsample will contain less than  𝑛1 elements.  
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For any level of resolution 𝑗, let  𝑝𝑗  be the number of non-null values of the sequence 

of coefficients {𝑐̂𝐤
𝑛,𝑗

}
𝑘∈𝑍

 . Given a sample of size  𝑛,  the coefficients are obtained by 

expression (7). Let 𝐿𝑗 be the likelihood that the estimator (8) assigns to the sample. We select 

the level of resolution that minimizes  𝐵𝐼𝐶(𝑗) = −2𝑙𝑜𝑔𝐿𝑗 + 𝑝𝑗𝐿𝑛(𝑛). 

6. SIMULATION RESULTS  

We focus on models 1 and 5 used in the publication of Zheng and Wu (2020) to test 

our algorithm. These models are multivariate mixtures densities with independent marginal 

distributions. That is, given a 𝑝-dimensional random vector 𝐗 = (𝑥1, 𝑥2, … 𝑥𝑝) the density 

function is given by 𝑓(𝐱) = ∑ 𝜋𝑖𝑓𝑖(𝐱)𝑚
𝑖=1  where  𝜋𝑖 > 0 ∀𝑖 = 1,2, … 𝑚 and  ∑ 𝜋𝑖

𝑚
𝑖=1 = 1 

with 𝑓𝑖(𝐱) = ∏ 𝑓𝑖
𝑗
(𝑥𝑗)𝑝

𝑗=1 . In model 1, the random vector has dimension 𝑝 = 3, and the 

mixture has two components (𝑚 = 2) the first, is the product of three independent 𝑁(0, 1) 

and the second is the product of 𝑁(3, 1) , 𝑁(4, 1) and 𝑁(5, 1). The coefficients of the 

mixture are 𝜋1 = 0.60 and 𝜋2 = 0.4. 

  In model 5, the random vector has dimension 𝑝 = 3  and 𝑚 = 3.  The three 

components of the mixture are the product of a Normal pdf, a double exponential pdf defined 

by 𝑓2
𝑗(𝑥2) =

1

2
𝑒−|𝑥2−𝜇2

𝑗
| and a pdf of a noncentral  𝑡  distribution with ten degrees of 

freedom. The first component is the product of a 𝑁(0, 1) a double exponential with   𝜇1
2 = 3 

and a 𝑡 with expected value 𝜇1
3 = 6. The second component is the product of a 𝑁(0, 1) a 

double exponential with 𝜇2
2 = 4 and a 𝑡 with expected value 𝜇2

3 = 5. The third is the product 

of a 𝑁(0, 1) a double exponential with 𝜇3
2 = 8 and a 𝑡 with expected value 𝜇3

3 = 10. The 

parameters of the mixture are (𝜋1, 𝜋2, 𝜋3) = (0.2, 0.3, 0.5). 

This means that the first marginal density of model 5 is the mixture of three 𝑁(0, 1)  

(three times the same distribution) which is obviously 𝑁(0, 1). The second marginal density 

is the mixture of three different double exponential densities and the third is the mixture of 

three noncentral 𝑡 densities (also different).  

Table 6.1 shows the computation time to estimate the coefficients 𝑐𝐤 of density (4) 

using the algorithm developed in section 5.2. The sample sizes are 𝑛 =500; 1,000; 2,000; 

and 10,000. 
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Table 6. 1. Processing time in seconds to estimate the joint pdf 

 
Sample Size 

Models 500 1,000 2,000 10,000 

1 0.0008 0.0015 0.0072 0.0140 

5 0.0009 0.0019 0.0017 0.0019 

 

Table 6.2 contains the root squared of the average ISE obtained using 100 samples of the 

marginal densities for each sample size.   

Table 6.2. √𝐼𝑆𝐸̅̅ ̅̅ ̅ 

√𝐼𝑆𝐸̅̅ ̅̅ ̅ Sample size 

Model Marginal 500 1000 2000 10000 

1 1 0.0434 0.0392 0.0328 0.0164 

5 1 0.0405 0.0275 0.0237 0.0227 

1 2 0.0450 0.0413 0.0339 0.0178 

5 2 0.0446 0.0353 0.0304 0.0250 

1 3 0.0453 0.0399 0.0327 0.0182 

5 3 0.0313 0.0248 0.0155 0.0096 

 

Figures 6.1, 6.2 and 6.3 show the marginal densities (gray colour) and their estimations 

(black colour) for 𝑛 = 10,000.  

Figure 6.1. Marginal density 1 and its estimation 
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Figure 6.2. Marginal density 2 and its estimation 

 

Figure 6.3. Marginal density 3 and its estimation 

 

Table 6.3 shows the √𝐼𝑆𝐸̅̅ ̅̅ ̅   for a random vector with 𝑝 = 3. The average ISE is obtained 

using 100 samples for each sample size of the joint densities of models 1 and 5.   

Table 6.3. √𝐼𝑆𝐸̅̅ ̅̅ ̅ 

√𝐼𝑆𝐸̅̅ ̅̅ ̅ Sample size 

 
500 1,000 2,000 10,0000 

Model 1 0.0358 0.0333 0.0327 0.0322 

Model 5 0.0218 0.0174 0.0145 0.0113 

 

Note that the running times are shorter than those provided by Zheng and Wu (2020). 

6.1 AN ALTERNATIVE TO EVALUATE THE QUALITY OF FIT OF A 

MULTIVARIATE DENSITY 

The multivariate numerical integration can be a laborious and time-consuming task 

and, in some instances, makes it difficult to calculate the ISE of the joint density due to the 
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course of dimensionality.  Moreover, the ISE could be less precise when the dimension of 

the space increases. To avoid this, we propose the following alternative to the ISE. We apply 

it to evaluate the goodness of fit of the joint fitted density of model 5.  

We make a scatter plot where the real values of the density are represented in the 

abscissa axis and in the estimations in the ordinate axis. The real values and the estimates of 

the density are obtained on a regular grid of points that covers the area of the three-

dimensional space containing most of the probability mass. In figures 6.1, 6.2 and 6.3 this 

area is the parallelepiped [−3, 3] × [−3, 11] × [2, 14] .  Each interval has been broken 

down into nine segments of equal length. In this way we obtain a grid with 1,000 point of 

the parallelepiped3. The values (𝑓(𝐱𝑖), 𝑓(𝐱𝑖))  𝑖 = 1,2, … ,1,000   are obtained on a grid of 

points of the three-dimensional space 𝐱𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3)  𝑖 = 1,2, … ,1,000, 

 𝑓 represents the density of the model 5 and 𝑓 is its estimation using a sample of size 10,000. 

The values (𝑓(𝐱𝑖), 𝑓(𝐱𝑖)) are shown in the scatter plot 6.4.  A perfect estimation of the 

density 𝑓 would produce a cloud of points located on the equation 𝑓 = 𝑓. 

Figure 6.4. Values (𝑓(𝐱𝑖), 𝑓(𝐱𝑖)) 

 

 
3 The partition in 9 segments of equal length is obtained by means of 10 equidistant points on the 

interval  [−3, 3]. Analogously, 10 equidistant points are obtained on the intervals  [−3, 11] and 

[2, 14]. The cartesian product of the three sets of 10 points provide a regular grid of 1,000 points  

on the parallelepiped [−3, 3] × [−3, 11] × [2, 14]. 
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The coefficient of determination of the fit should be higher as the quality of the 

estimates improves.  The previous figure contains the points cloud and 𝑓 = 1.0664𝑓 +

0,00005. The fit is made by least squares and the coefficient of determination is equal to 

𝑅2 = 0.8777. The heteroskedasticity is due to bias of the estimated highest values of the 

density.   

7. REAL DATA ILLUSTRATION 

In this section, the developed approach is applied to estimate the joint density of the 

variables: spending, wealth and income of households, that is 𝑧 =

𝑓(𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔, 𝑤𝑒𝑎𝑙𝑡ℎ, 𝑖𝑛𝑐𝑜𝑚𝑒) . 

As well as being illustrative, the empirical application also shows how the estimated 

multivariate densities provide a wider view of the economic position of households. The 

better the knowledge of the economic and financial situation of households, the more 

effective the economic policy will be. Therefore, the proposed methodology can contribute 

to a better design of redistributive policies, as well as having other applications. 

The sample data comes from the Spanish Survey of Household Finances (EFF) for 

the year 2014, which was conducted by the Bank of Spain (Banco de España, 2017). The 

EFF provides information on assets, debt income and spending. The sample size is 6,120 

households. Annual expenditure on non-durable goods (food and other) are expressed in ten 

thousand euros. Net wealth (gross wealth less debts) is expressed in million euros and 

household income is calculated as the sum of labor and no-labor incomes for all household 

members in 2013. It is expressed in hundred thousand euros.  

Table 1 shows the 10, 50 and 90th percentiles of each variable their mean and their standard 

deviation (SD). 

Table 7.1  

Percentile 

Expenditure 

(× 104 €) 

Net Wealth 

(× 106  €) 

Income 

(× 105 €) MMR pdf 

10 0.6000 0.0041 0.0942 1.6101 

50 1.2372 0.2389 0.3030 1.2201 

90 3.6000 2.4117 0.9839 0.0111 

Mean 1.7831 1.4080 0.5095 0.0516 
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SD 2.0124 9.2982 0.9090   

 

The joint density 𝑓(𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔, 𝑤𝑒𝑎𝑙𝑡ℎ, 𝑖𝑛𝑐𝑜𝑚𝑒) can be estimated on any triplet of 

values of them (for example, see the last column of Table 1 that shows the value of the three-

dimensional density function on each triplet of the values of the variables contained in 

columns 2-4) but its graphical representation is not possible since it is immersed in a four-

dimensional space. For this reason, we analyse the marginal densities of wealth and 

spending. In addition, we show the bi-dimensional conditional densities to the 10, 50 and 90 

percentiles of income variable (Figures 7.2 – 7.4). The percentiles are in Table 7.1.  

Figure 7.1. Wealth (y-axis) and Spending (x-axis) marginal density 

 

Figure 7.1 displays the marginal probability density function (z-axis: points in space lying 

above the origin) of the variable wealth (y -axis: points lying to the right of the origin) and 

spending (x-axis: points in the space lying back from the origin) without taking into account 

income. It is a multimodal density. The sequence of the different modes indicates a positive 

correlation between spending and wealth showing higher levels of spending as wealth 

increases. 
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Figure 7.2.  Wealth (y-axis) and Spending (x-axis) density conditioned by the 10th income 

percentile: 0.0942 (9,420 euros). 

 

Figure 7.2 shows 𝑓(𝑤𝑒𝑎𝑙𝑡ℎ, 𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔|𝑖𝑛𝑐𝑜𝑚𝑒 = 0.0942) (note that 0.0942 x 100,00 = 

9,420 euros.  It is almost unimodal, and we can observe that the higher the wealth of the 

household the greater its spending is. 

Figure 7.3 Wealth (y-axis) and Spending (x-axis) density conditioned by the 50th income 

percentile: 0.3030 (x 100,000=30,030 euros).  

 

The density shown in Figure 7.3 for the 50th income percentile presents higher dispersion 

for spending and wealth.  Figure 7.4. Wealth (y-axis) and Spending (x-axis) density 

conditioned by the 90th income percentile:  0.9839 (x 100,000 = 98,390 euros)  
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Figure 7.4 shows the same data as figure 7.3, but in a more marked way. For high incomes 

the wealth and spending capacity are more diverse.  In addition, it should be pointed out that 

there are few rich households in the sample4.  The estimated density is higher in Figure 7.4 

(between 0.17 and 0.18) while in Figure 7.2 the highest peak shows a density between7.3 

and 7.4. 

Figure 7.5. Regression function of spending on income and wealth  

 

Figure 7.5 represents the regression graph of the expected spending (z-axis) on income (y-

axis) and wealth (x-axis). An almost linear increase in spending can be observed when 

income increases to 0.432 (y-axis; 43,200 €) for any level of wealth. A smaller rise in 

expected spending is also observed when wealth increases at any level of income smaller 

than 0.432 (43,200 €). For higher incomes, a greater interaction between income and wealth 

is observed. When the household income is null, the annual spending goes from 7230 euros 

(0. 723 in z-axis) to 13,725 euros (1,3725 in z-axis) for households with higher wealth.   

 
4 Note that the z-axis scale is different for each figure. We have preferred to loss in comparability 

to improve the clarity of the figures.  
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Approximately, the average of both quantities corresponds to the autonomous level 

of consumption of the Keynes’ Theory of Consumption (Keynes, 1936), that is the intercept 

of the linear equation that explains consumption as a function of income (without 

considering wealth). In a model that also considers wealth; the autonomous level of 

consumption grows slightly with wealth as it has been indicated previously. 

8. CONCLUSIONS  

This paper introduces the multivariate multiresolution approximation to probability 

density functions and the estimation of these approximations. A new algorithm, based on a 

process of data frequency count (DFC algorithm), is developed. It provides a consistent 

estimation of the MMR densities for big data.  In the context of massive data, the quality of 

the estimations is almost equivalent to those obtained by the maximum likelihood. But the 

processing time is smaller.  In contrast, the processing time to maximize of the likelihood 

function, by means of optimization software or applying the EM algorithm, is higher when 

the number of variables is greater than three and the size of the sample is too big. For 

instance, we need several hours to estimate by maximum likelihood the coefficients of the 

multivariate MR density introduced in section 7 (we are not more explicit in this regard for 

reasons of space and because this is not the purpose of this article). The developed algorithm 

provides a good estimation of the coefficients of the density in 0.03 seconds using a sample 

of 16,299 data. After estimating the joint density, we can obtain the marginal densities, the 

conditional densities as well as the regression functions applying elemental rules of 

probability calculus5. (see section 7).  

To sum up, the MMR approximations of multivariate densities and the FDC 

algorithm are powerful statistical tools to estimate multivariate densities of continuous 

variables as for instance sales, time of using internet, consumption, etc. The empirical 

illustration shows the capacity of the proposed approach to provide a better understanding 

of the joint behaviour of the income, wealth and spending of the households. 

 

 

 

 
5 We will go deeper on these topics in future publications for space reasons.  
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APPENDIX  

A. PROBABILITY DENSITIES FUNCTIONS IN A MULTIRESOLUTION ANALYSIS 

STRUCTURE 

In this section we review the multivariate MRA structures defined by the Multivariate 

Scaling Function Θ(𝐱) = ∏ 𝜃(𝑥𝑖)
𝒒
𝒊=𝟏 , where  𝜃  is a function named cubic box spline.  

A.1.DILATIONS AND TRANSLATION OF A MULTIVARIATE SCALING FUNCTION 

Given a vector 𝐤 = (𝑘1, 𝑘2, … , 𝑘𝑞) ∈ 𝑍𝑞 , an integer value 𝑗 ∈  𝑍 and a multivariate scaling 

function Θ, dilation and translation of Θ are defined as follows: Θ𝑗,𝐤(𝐱) = ∏ 𝜃𝑗,𝑘𝑖
(𝑥𝑖)

𝑞
𝑖=1 =

∏ 2𝑗 2⁄ 𝜃(2𝑗𝑥𝑖 − 𝑘𝑖)𝑞
𝑖=1 . Similar to the unidimensional case (see for instance Palacios-

González and García-Fernández, 2020) we assign to each function  Θ𝑗,𝐤 a point of  𝑅𝑞  that is 

the translation center of  Θ. This point is:  
𝐤

2𝑗 = (
𝑘1

2𝑗 ,
𝑘2

2𝑗 , … ,
𝑘𝑞

2𝑗
). 

http://dimacs.rutgers.edu/TechnicalReports/TechReports/2012/2012-01.pdf
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The function Θ𝑗,𝐤 is symmetrical (in  𝑅𝑞+1) around the vertical axis that rises on such point. 

It takes non negative values and its support is  ∏ [
𝑘𝑖−2

2𝑗 ,
𝑘𝑖+2

2𝑗 ]𝑞
𝑖=1 .  

Moreover,  

∫ Θ𝑗,𝐤(𝐱)𝑑𝐱 = 2−𝑞𝑗 2⁄
⬚

𝑅𝑞

                  (𝐴. 1.1) 

Note that the set {(
𝐤

2𝑗
)}

𝐤∈𝑍𝑞
= {(

𝑘1

2𝑗 ,
𝑘2

2𝑗 , … ,
𝑘𝑞

2𝑗
)}

𝐤∈𝑍𝑞
 define a regular grid of points on 

𝑅𝑞   which is thicker the higher the level of resolution is. Moreover, the grid defined for a 

level of resolution  𝑗 is always contained within a grid with a higher level of resolution. 

A.2 A MRA STRUCTURE GENERATES ON 𝑅𝑞  BY A MULTIVARIATE SCALING 

FUNCTION Θ.  

Any multivariate scaling function defines a MRA structure on 𝑅𝑞. The scaling function is 

used to build a sequence  {𝑉𝑗}
𝑗∈𝑍

 of functional linear spaces  𝑔: 𝑅𝑞 → 𝑅 that verify that  𝑉𝑗 ⊂

𝑉𝑗+1   ∀𝑗 ∈ 𝑍. 

Each linear space 𝑉𝑗 is generated by the Riesz basis (p. 44 in Hernández and Weiss (1996)) 

{Θ𝑗,𝐤}
𝐤∈𝑍𝑞. That is, 𝑉𝑗   is made up by functions with the following form: 

𝑓(𝐱) = ∑ 𝑏𝐤Θ𝑗,𝐤(𝐱)

𝐤∈𝑍𝑞

       ∀𝐱 ∈  𝑅𝑞                      (𝐴. 2.1) 

where 𝑏𝐤 ∈ 𝑅 ∀ 𝐤 ∈ 𝑍𝒒. 

This is the usual way in which functions are defined within the MRA structure. However, in 

the present work, two small notation changes will be made to facilitate the handling of the 

probability density functions. If we call 

  𝑎𝐤 = 2𝑞𝑗 2⁄ 𝑏𝐤           

Then, we can rewrite the function 𝑓 defined in (A.2.1) as follows: 

𝑓(𝐱) =
1

2𝑞𝑗 2⁄
∑ 𝑎𝐤Θ𝑗,𝐤𝐤∈𝑍𝑞 (𝐱)  (A.2.3) 

Writing 𝑐𝐤 =
𝑎𝐤

2𝑞𝑗
  and Λ𝑗,𝒌(𝒙)  =  ∏ 2𝑗𝜃(2𝑗𝑥𝑖  −  𝑘𝑖)𝑞

𝑖=1   we obtain a third expression 

equivalent to (A.2.1) and to (A.2.3).  That is, 𝑓(𝐱) = ∑ 𝑐𝐤Λ𝑗,𝐤(𝐱)𝐤∈𝑍𝑞 .  The latter expression 

(see 4) is the most used and it facilitates the proof of theorem 4.2. Expression (A.2.3) 

facilitates the proof of theorem enunciated in 3.5.  

A.3.THEOREM  
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Given a level of resolution  𝑗, any function 𝑓(𝐱),  obtained by means of (A.2.3) using a set 

of values 𝑎𝐤 such that  

𝑎𝐤 ≥ 0 𝐤 ∈ 𝑍𝑞      (A.3.1) 

and 

∑ 𝑎𝐤

𝐤∈𝑍𝑞

= 2𝑞𝑗                 (𝐴. 3.2) 

is a multivariate probability density function in the 𝑉𝑗   space of the MRA structure. 

Proof. On the one hand, it is evident that if (A.3.1) is true, then  𝑓(𝐱) =
1

2𝑞𝑗 2⁄
∑ 𝑎𝐤 Θ𝑗,𝐤(𝐱) ≥

0     ∀𝐱 ∈ 𝑅𝑞. On the other hand, given that  ∀𝐱 ∈ 𝑅𝑞   the series ∑ 𝑎𝐤 Θ𝑗,𝐤(𝐱) is absolutely 

convergent, we have that 

∫ 𝑓(𝐱)𝑑𝐱
⬚

𝑅𝑞

=
1

2𝑞𝑗 2⁄
∑ 𝑎𝐤

𝐤∈𝑍𝑞

∫ Θ𝑗,𝐤(𝐱)𝑑𝐱
⬚

𝑅𝑞

 . 

Considering (A.1.1) we can state that ∫ 𝑓(𝐱)𝑑𝐱 =
1

2𝑞𝑗

⬚

𝑅𝑞 ∑ 𝑎𝐤𝐤∈𝑍𝑞 . So, if (A.3.2) is true, then 

∫ 𝑓(𝐱)𝑑𝐱 = 1
⬚

𝑅𝑞  and consequently 𝑓 is a true density function. 

A.3.1. COLLORARY  

Any function (A.2.3) written as in (4) whose coefficients 𝑐𝐤 satisfy the conditions: 

 𝑐𝐤 ≥ 0  ∀𝐤 ∈ 𝑍𝑞 and ∑ 𝑐𝐤𝐤∈𝑍𝑞 = 1 is a probability density function. 

B. APPROXIMATION OF ONE DENSITY BY ANOTHER OF THE MULTIVARIATE 

STRUCTURE 

Given  𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑞)𝑅𝑞   the vectors 𝐤(𝐱) = (𝑘(𝑥1), 𝑘(𝑥2), … , 𝑘(𝑥𝑞))  and 𝐫(𝐱) =

(𝑟(𝑥1), 𝑟(𝑥2), … , 𝑟(𝑥𝑞)) are defined using (9). It is verified (see (9) y (10)) that 𝐫(𝐱) =

2𝑗𝐱 − 𝐤(𝐱) and 𝐱 =
𝐤(𝐱)+𝐫(𝐱)

2𝑗 . We assume that the operations above indicated are the sum 

and the difference of two vectors and the product of a scalar by a vector.  

Let us use the following notation:  𝐥 = (𝑙1, 𝑙2, … , 𝑙𝑞) ∈ 𝑍𝑞 , 𝐶1 = ∏ [0,1)𝑞
𝑖=1 , 𝐶2 = 𝑍𝑞 ∩

∏ [−2,2)𝑞
𝑖=1 , 𝐶2

0 = 𝑍𝑞 ∩ ∏ (−2,2)𝑞
𝑖=1 , 𝐶𝐱

𝑗
= ∏ [

𝑘(𝑥𝑖)

2𝑗 ,
𝑘(𝑥𝑖)+1

2𝑗 )𝑞
𝑖=1     ∀𝐱 ∈ 𝑅𝑞 and 𝐷𝐱

𝑗
=

∏ (
𝑘𝑖−0.5

2𝑗 ,
𝑘𝑖+0.5

2𝑗 ]𝑞
𝑖=1     ∀𝐤 ∈ 𝑍𝑞. 

B.1.LEMMA 
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For all  𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑞) ∈ 𝑅𝑞  it is verified that  
𝑘(𝑥𝑖)

2𝑗 ≤ 𝑥𝑖 <
𝑘(𝑥𝑖)+1

2𝑗      ∀𝑖 = 1,2, … , 𝑞 

and 0 ≤ 𝑟(𝑥𝑖) < 1   ∀𝑖 = 1,2, … , 𝑞  (see Palacios-González and García-Fernández, 2020).   

This allows us to affirm that  ∀𝑗 ∈ 𝑍 and ∀𝐱 ∈  𝑅𝑞 , 𝐱 ∈  𝐶𝐱
𝑗
 and  𝐫(𝐱) ∈ 𝐶1. 

B.1.1. COROLLARY 

For all  𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑞) ∈ 𝑅𝑞 it is verified that lim
𝑗→∞

𝑘(𝑥𝑖)

2𝑗 = 𝑥𝑖   ∀𝑖 = 1,2, … , 𝑞 (Palacios-

González and García-Fernández, 2020). Hence, we can affirm that lim
𝑗→∞

𝐤(𝐱)

2𝑗
= 𝐱 . As a 

consequence, we have the following corollary. 

B.1.2. COROLLARY   

For all 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑞) ∈ 𝑅𝑞  it is verified that lim
𝑗→∞

𝑟(𝑥𝑖) = 0   ∀ 𝑖 = 1,2, … , 𝑞  (see 

Palacios-González and García-Fernández, 2020). As a consequence: 

lim
𝑗→∞

𝐫(𝐱) = (0,0, … ,0)   (B.1.1) 

B.2. LEMMA 

For all  𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑞) ∈ 𝑅𝑞 and all  𝐥 = (𝑙1, 𝑙2, … , 𝑙𝑞) ∈ 𝑍𝑞  it is verified  

𝜃𝑗,𝑘(𝑥𝑖)−𝑙𝑖
(𝑥) = 2𝑗 2⁄ 𝜃(𝑟(𝑥𝑖) + 𝑙𝑖)    ∀𝑗, 𝑙𝑖  ∈ 𝑍 𝑎𝑛𝑑  ∀𝑖 = 1,2, . . , 𝑞  (see Palacios-González 

and García-Fernández, 2020).   This allows us to write  Θ𝑗,𝐤−𝐥(𝐱) = 2𝑞𝑗 2⁄ Θ(𝐫(𝐱) + 𝐥). 

B.2.1. COROLLARY 

For all  𝑥 ∈ 𝑅 and all  𝑙 ∈ 𝑍, it is verified that if  𝑟(𝑥) > 0 then   𝜃𝑗,𝑘(𝑥)−𝑙(𝑥) ≠ 0 ⇔ −2 ≤

𝑙 ≤ 1 and if 𝑟(𝑥) =  0 then,  𝜃𝑗,𝑘(𝑥)−𝑙(𝑥) ≠ 0 ⇔ −1 ≤ 𝑙 ≤ 1 (see Palacios-González and 

García-Fernández, 2020). As a consequence:  

Θ𝑗,𝐤−𝐥(𝐱) ≠ 0 ⇔ 𝐥 ∈ 𝐶2     (B.1.2)  

That is, if and only if  −2 ≤ 𝑙𝑖 ≤ 1    ∀𝑖 = 1,2, … , 𝑞.  In the particular case in which  𝐫(𝐱)  =

 𝟎 we can state that  Θ𝑗,𝐤−𝐥(𝐱) ≠ 0 ⇔ 𝐥 ∈ 𝐶2
0. That is, if and only if  −1 ≤ 𝑙𝑖 ≤ 1    ∀𝑖 =

1,2, … , 𝑞. 

B.3.LEMMA 

It is verified ∑ 𝜃(𝑙 + 𝑟) = 1     ∀𝑟 | 0 ≤ 𝑟 < 11
𝑙=−2  (see Palacios-González and García-

Fernández, 2020). As a consequence, for all  𝐫 ∈ 𝐶1 we can state: 

∑ Θ(1 + 𝐫) = 1

𝐥∈𝐶2

   (B. 3.1) 
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Proof.  

∑ Θ(1 + 𝐫) = ∑ ∑ … ∑ 𝜃(1 + 𝑟1)𝜃(1 + 𝑟2)

1

𝑙𝑞=−2

1

𝑙2=−2

1

𝑙1=−2𝐥∈𝐶2

… 𝜃(1 + 𝑟𝑞) = 

 

( ∑ 𝜃(1 + 𝑟1)

1

𝑙1=−2

) ( ∑ 𝜃(1 + 𝑟2)

1

𝑙2=−2

) … ( ∑ 𝜃(1 + 𝑟𝑞)

1

𝑙𝑞=−2

) = 1 × 1 × … × 1 = 1 

B.4.PROPOSITION  

Let 𝑓(𝐱) be a function as that defined in (A.2.3). For any level of resolution 𝑗, for all 𝒙 ∈ 𝑅𝑞  

, it is held that  

𝑓(𝐱) = ∑ 𝑎𝐤(𝐱)−𝐥Θ(𝐫(𝐱)

𝐥∈𝐶2

+ 𝐥)                           (B. 4.1) 

If 𝒓(𝒙) = 𝟎 we can write (B.4.1) more accurately as 𝑓(𝐱) = ∑ 𝑎𝐤(𝐱)−𝐥Θ(𝐥)𝐥∈𝐶2
0 . 

Proof. It is evident that making a change of origin to the point 𝐤(𝐱) in 𝑍𝑞, the function  𝑓(𝐱) 

,(A.2.3), can be rewritten as:  

𝑓(𝐱) =
1

2𝑞𝑗 2⁄
∑ 𝑎𝐤(𝐱)−𝐥Θ𝑗,𝐤(𝐱)−𝐥

𝐥∈𝑍𝑞

(𝐱)          (B. 4.2) 

Taking into consideration lemma B.2 and expression (B.1.2) the proposition is true. This 

means that locally, on each real value 𝐱, the function  𝑓(𝐱) will be calculated by a linear 

convex combination with a finite number of addends between 3𝑞  and 4𝑞, depending on the 

number of non-null components of vector 𝐫(𝐱). 

Note that the function (B.4.2) can be rewritten as follows: 

𝑓(𝐱) = ∑ 𝑐𝐤(𝐱)−𝐥Λ𝑗,𝐤(𝐱)−𝐥

𝐥∈𝐶2

(𝐱)          (B. 4.3) 

B.5.THEOREM 

Let 𝐗 be a continuous random vector. Let 𝑎𝐤
𝑗

= 2𝑞𝑗𝑃(𝐗 ∈ 𝐷𝐤
𝒋
) and let {𝑓𝑗}

𝑗∈𝑍
 be a sequence 

of functions generated according (A.2.3). It is verified that  

lim
𝑗→∞

𝑓𝑗 (𝐱) = 𝑓(𝐱) ∀𝐱 ∈ 𝑅      (B.5.1) 
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Proof. Taking into account corollary B.1.1 and considering that the volume of  𝐷𝐤
𝑗
  is 

𝑉𝑜𝑙(𝐷𝐤
𝑗
) =

1

2𝑞𝑗  for all   𝐤 ∈ 𝑍𝑞 , we have that lim  𝑎𝐤
𝑗

𝑗→∞

= lim
𝑗→∞

P(𝐗∈𝐷𝐤
𝑗

)

𝑉𝑜𝑙(𝐷𝐤
𝑗

)
 .         

Expression  
P(𝐗∈𝐷𝐤

𝑗
)

𝑉𝑜𝑙(𝐷
𝐤
𝑗

)
  represents the mean density by volume unit in the hypercube 𝐷𝐤

𝑗
 . If  

𝑗 → ∞ then, the volume of  𝐷𝐤
𝑗
 converges to zero, the hypercube converges to the point 𝐱 

and the quotient is the probability density function of 𝐱 . This allows us to affirm that ∀𝐱 ∈

𝑅𝑞  lim 𝑎𝐤
𝑗

𝑗→∞

= lim
𝑗→∞

P(𝐗∈𝐷𝐤
𝑗

)

𝑉𝑜𝑙(𝐷𝐤
𝑗

)
= 𝑓(𝐱) . Considering that (see corollary B.1.1) lim

𝑗→∞

𝐤(𝐱)−𝐥

2𝑗
=

lim
𝑗→∞

𝐤(𝐱)

2𝑗 = 𝐱   ∀𝐱 ∈ 𝑅𝑞   ∀𝐥 ∈ 𝑍𝑞 , we can state that  lim 𝑎𝐤(𝐱)−𝐥
𝑗

𝑗→∞

= 𝑓(𝐱) and according to 

proposition B.4: 

lim
𝑗→∞

𝑓𝑗 (𝐱) = ∑ lim
𝑗→∞

𝑎𝐤(𝐱)−𝐥
𝑗

lim
𝑗→∞

Θ

𝐥∈𝐶2

(𝐫(𝐱) + 𝐥) = 𝑓(𝐱) ∑ lim
𝑗→∞

Θ(𝐫(𝐱) + 𝐢) 

𝐥∈𝐶2

(B. 5.2) 

Given that  Θ is a continuous function lim
𝑗→∞

Θ(𝐫(𝐱) + 𝐥) = Θ ( lim
𝑗→∞

𝐫(𝐱) + 𝐥) = Θ(𝐥). Hence, 

considering (B.3.1) we have that  ∑ lim
𝑗→∞

Θ(𝐫(𝐱) + 𝐥) = 𝐥∈𝐶2
∑ Θ(𝐥) = 1𝐥∈C2

0 . Finally, 

substituting in (B.5.2), we obtain expression (B.5.1). 

B.5.1. COROLLARY 

Remember that if 𝑐𝐤
𝑗

=
𝑎𝐤

𝑗

2𝑞𝑗 = 𝑃(𝐗 ∈ 𝐷𝐤
𝑗
)  then the functions 𝑓𝑗(𝐱)  can be rewritten as: 

𝑓𝑗(𝐱) = ∑ 𝑐𝐤
𝑗
Λ𝑗,𝐤(𝒙)𝐤 ∈ 𝑍𝑞 = ∑ 𝑐𝐤

𝑗
Λ𝑗,𝐤(𝐱)−𝐥𝐥∈𝐶2

(𝐱) which is the form used in (6). It is obvious 

that with this equivalent notation the theorem remains true. That is,  lim
𝑗→∞

𝑓𝑗(𝐱) = 𝑓(𝐱)  ∀ 𝐱 ∈

𝑅. For this reason, it is stated in 3.4 that the densities 𝑓𝑗 are approximations of the density 𝑓. 

C. CONSISTENT ESTIMATION OF A MULTIVARIATE DENSITY   

Let X be a 𝑞 dimensional random vector with a finite vector of means and finite variance 

covariance matrix.  Let 𝐴 = (𝐗 ∈ ∏ (𝑐𝑖
𝑞
𝑖=1 , 𝑑𝑖]) be an event where 𝑐𝑖, 𝑑𝑖  ∈ 𝑅 and where   

𝑐𝑖 <  𝑑𝑖   for all 𝑖 = 1,2, … , 𝑞.  Let 𝑃(𝐴) = 𝑃(𝐗 ∈ ∏ (𝑐𝑖
𝑞
𝑖=1 , 𝑑𝑖])  be the probability of 𝐴. 

For the sample  𝐱1, 𝐱2, … , 𝐱𝑛  of X, let  𝑓𝑟
𝑛(𝐴) =

⋕(𝐱𝑡 𝑡=1,2,…,𝑛|  𝐱𝑡∈∏ (𝑐𝑖,𝑑𝑖])
𝑝
𝑖=1

𝑛
  be the relative 

frequency of event 𝐴 . It has been obtained by means of the corresponding count of 
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frequencies in the sample.  Given a sequence of samples of increasing size 𝑛, from a random 

variable 𝑋 , it is verified that  lim
𝑛→∞

𝑃(|𝑓𝑛
𝑟(𝐴) − 𝑃(𝐴)| > 𝜖) = 0  ∀𝜖 > 0 . This result is 

known as the Bernouilli law of big numbers (see Pollard, 2003). It states that the relative 

frequency of any event converges in probability to the probability of such event. It is usually 

written as  𝑓𝑟
𝑛(𝐴)

𝑝
→ 𝑃(𝐴). 

C.1.LEMMA   

Taking into account the definitions of  𝑐𝐤
𝑗
 (see 5) and  𝑐̂𝐤

𝑛,𝑗
 (see 7) and the Bernouilli law of 

big numbers, we can affirm that for any level of resolution 𝑗 ∈ 𝑍 (see 3.2 and 4) it is verified 

that  𝑐̂𝐤
𝑛,𝑗

 
𝑝
→ 𝑐𝐤

𝑗
. 

C.1.1. COROLLARY 

For all  𝑗 ∈ 𝑍, 𝑓𝑛,𝑗(𝐱) is a consistent estimator of 𝑓𝑗 (𝐱). That is, it is verified 

𝑓𝑛,𝑗(𝐱)
𝑝
→ 𝑓𝑗 (𝐱)    ∀𝐱 ∈  𝑅𝑞. 

Proof. As a consequence of Lemma C.1 and expression B.4.3, on each point 𝐱 ∈  𝑅𝑞: 

𝑓𝑛,𝑗(𝐱) = ∑ 𝑐̂𝐤(𝐱)−𝐥
𝑛,𝑗

Λ𝑗,𝐤(𝐱)−𝐥

𝐥∈𝐶2

(𝐱)      
𝑝
→   ∑ 𝑐𝐤

𝑗
Λ𝑗,𝐤(𝐱)−𝐥

𝐥∈𝐶2

(𝐱)=𝑓𝑗 (𝐱) 

Theorem B.5 and Corollary C.1.1 lead directly to enunciate the following theorem of 

consistent approximation of any continuous multivariate density function with finite vector 

of means and finite variance covariance matrix. 

C.2. THEOREM 

For all  𝐱 ∈  𝑅𝑞  it is verified that 

lim
𝑗→∞

𝑓𝑛,𝑗(𝐱)
𝑝
→ lim

𝑗→∞
𝑓𝑗 (𝐱) = 𝑓(𝐱). 

APPENDIX D 

Proof of Lemma 5.2 

It is evident (see Palacios-González and García-Fernández, 2020), that for all  𝑥𝑖 ∈ 𝑅 it is 

verified that if 𝑟(𝑥𝑖) ≤ 0.5   then 𝑥𝑖 =
𝑘(𝑥𝑖)+𝑟(𝑥𝑖)

2𝑗 ≤
𝑘(𝑥𝑖)+0.5

2𝑗  and hence 6  𝑥 ∈

(
𝑘(𝑥𝑖)−0.5

2𝑗 ,
𝑘(𝑥𝑖)+0.5

2𝑗 ] ,  which is the interval centered in 
𝑘(𝑥𝑖)

2𝑗 .  If 𝑟(𝑥𝑖) > 0.5  then 𝑥𝑖 =

 
6 Note that 0 ≤ 𝑟(𝑥𝑖) < 1 



 

 

27 

 

𝑘(𝑥𝑖)+𝑟(𝑥𝑖)

2𝑗 >
𝑘(𝑥𝑖)+0.5

2𝑗 =
(𝑘(𝑥𝑖)+1)−0.5

2𝑗   and consequently, 𝑥 ∈ (
(𝑘(𝑥𝑖)+1)−0.5

2𝑗 ,
(𝑘(𝑥𝑖)+1)+0.5

2𝑗 ] 

which is the interval centered in 
𝑘(𝑥𝑖)+1

2𝑗 .  As a consequence, if  

𝑘𝑖 = { 
𝑘(𝑥𝑖)                          𝑖𝑓 𝑟(𝑥𝑖) ≤ 0.5

𝑘(𝑥𝑖) + 1                  𝑖𝑓 𝑟(𝑥𝑖) > 0.5
  

it is obvious that each component 𝑥𝑖  of vector 𝐱  belongs to the interval (
𝑘𝑖−0.5

2𝑗
,

𝑘𝑖+0.5

2𝑗
]. 

Hence,  

𝐱 = (𝑥1, 𝑥2, . . . 𝑥𝑞) ∈ ∏ (
𝑘𝑖−0.5

2𝑗
,

𝑘𝑖+0.5

2𝑗
]𝑞

𝑖=1 = 𝐷𝐤
𝑗
. 

 


