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Abstract: This paper proposes a deletion algorithm for the marginal problem in propositional logic.
The algorithm is based on the general Davis and Putnam deletion algorithm DP, expressed as a
bucket elimination algorithm, representing sets of clauses with the same set of variables employing a
Boolean array. The main contribution is the development of alternative procedures when deleting
a variable which allow more efficient computations. In particular, it takes advantage of the case in
which the variable to delete is determined by a subset of the rest of the variables. It also provides a
set of useful results and tools for reasoning with Boolean tables. The algorithms are implemented
using Python and the NumPy library. Experiments show that this procedure is feasible for intermediate
problems and for difficult problems from hard Bayesian networks cases.

Keywords: marginal problem; satisfiability problem; propositional logic; propagation algorithm;
calculus with potentials

MSC: 03-08

1. Introduction

The marginal problem consists of computing the consequences of a set of propositional
formulae in a reduced subset of variables. The basic algorithm to solve it has been the
so-called Davis and Putnam (DP) [1] deletion algorithm. This algorithm is a particular case
of the Shenoy–Shafer deletion algorithm [2,3] or the bucket elimination scheme [4,5]. The
problem of this algorithm is the space complexity (it tends to produce too many clauses of
large size). The time complexity is exponential in the tree-width of its connectivity graph [4].
The computations can be organized in a join tree [6] in the same way as probabilistic
computations in Bayesian networks [2,7]. However, in the case of propositional logic, we are
in a case of computation in an idempotent valuation system or valuation algebra [3,8], which
has some special features which can be exploited in order to build efficient algorithms.

This paper proposes new algorithms for the marginal problem by applying the Shenoy–
Shafer abstract framework [2], but it has some differences compared to the DP algorithm.
First, it represents sets of clauses as Boolean arrays. This is a semantic representation of the
set of true assignments satisfying a given set of clauses, i.e., a truth table. Boolean arrays
can be a very efficient representation of a large set of clauses, as the values on the array are
simple 0–1 values, though its size is exponential in the number of variables. We define the
basic operations and show that the set of Boolean arrays with these operations has the struc-
ture of an information algebra [3]. Secondly, we also give alternative deletion procedures
and a set of possible optimizations of the full procedure. In this sense, a very important
contribution is the study of the cases in which a variable is functionally determined by a set
of variables and the exploitation of this fact in the marginalization algorithms. The Boolean
array representation is especially appropriate for this improvement.
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The final result is a family of tools and algorithms that can solve moderate-sized
problems, even in cases where the associated connectivity graph has a large tree width
(more than 100), as is shown in the experiments.

A related problem is the satisfiability problem (SAT) [9], which consists of determining
if a set of propositional formulae is satisfiable, i.e., there is a true assignment such that
every formula becomes true. It is the first problem proven to be NP-complete [10]. This
implies that any NP problem can be efficiently reduced to it, and therefore, any good
algorithm to solve the SAT could also be used for such an NP problem. In fact, many
well-known problems are solved nowadays by encoding them as an SAT [11–13]. Cur-
rent approaches for SATs are mainly based on the Davis–Putnam–Logemann–Loveland
backtracking algorithm (DPLL) [14], and its successors, conflict-driven clause-learning
algorithms (CDCL) [15]. The SAT problem can be solved from the marginal problem, by
deleting all the variables (marginalizing over the empty set). The result is consistent if
and only if this marginalization is vacuous. However, the marginal problem can be used
without deleting all the variables for computing the marginal in a given set and it can be
used to compute all the solutions (configurations satisfying all the clauses) or to simulate in
the space of solutions, in the case of a satisfiable problem [6]. As is said in [5], the marginal
problem is a kind of knowledge compilation that can be useful in many other related
problems. Furthermore, in a recent survey of SAT-related problems [16], the following
was noted: “We see that DP responds to a more difficult problem than the simple problem
of satisfiability. Except for a few specific problems of small induced width, DP-60 never
really competed with the version of DP-62” (where DP-60 is what we have called DP
and DP-62 makes reference to DPLL). For this reason, the basic deletion algorithm has
received little attention in the literature. For example, in Knuth’s book [17], covering the
existing approaches for SAT, there is only a short reference to the DP approach, saying that
it works well for small problems, but that it can be very inefficient in the worst case. Our
paper will show that it is possible to solve large problems, even problems with a large tree
width. The initial DP algorithm was revisited in [4,5], but this approach was also based
on a clause representation and the main contributions were the determination of good
deletion sequences.

Another related problem is propositional model counting or #-SAT, consisting of com-
puting the number of models satisfying a given formula [18]. This is related to probabilistic
computations and it is known to be #P-complete. Similar deletion algorithms have been
applied; however, as is said in Gogate and Dechter [19], these algorithms are exponential
with the tree-width size. In this paper, we take advantage of using idempotent valuations
and develop a computation method that can solve some concrete cases, even if the tree
width is large, using representations that are not exponential with such a tree width.

We provide some experiments carried out with our Python 3.8.8 implementation
based on the NumPy library for representing arrays (the library together with data to
reproduce experiments are available as a Github repository at: https://github.com/
serafinmoral/SAT-solver (accessed on 16 May 2023)). In them, we show that it is pos-
sible to solve some moderate-sized problems, expanding the class of problems solved
by the existing deletion algorithms. The contribution is also significant because of the
possibilities it opens for future developments, as proposed in the last section of the pa-
per devoted to the conclusions and future work. We have also shown that it is possible
to solve the 0–1 problems associated with hard Bayesian networks inference problems.
The rest of the paper is organized as follows: in Section 2, the notation and the problem
specification are given; Section 3 is devoted to the table representation of sets of clauses,
the introduction of the basic operations (combination, marginalization, and conditioning),
and the study of their properties; Section 4 studies the basic deletion algorithm and the
alternative procedures, providing formal results of their main properties; in Section 5, a set
of additional tools for the deletion algorithm are given, and the final decision procedure
for the deletion algorithm is described; Section 6 is devoted to the experimental part; and
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Section 7 details the conclusions and future work. All the proofs of the results in the paper
are in Appendix A.

2. Problem Specification

Let V = {p, q, r, s, . . .} a finite set of variables or propositional symbols. A literal is
either a variable, p, (positive literal) or a negated variable ¬p (negative literal). A clause c
is a disjunction of literals, p ∨ ¬r ∨ s, which we will represent as a set c = {p,¬r, s}. If a
clause contains literals p and ¬p, then it will be called trivial or tautology. The set of all
non-trivial clauses defined for variables V is denoted as L(V).

Information will be given as a finite set of non-trivial clauses C. The set of variables ap-
pearing in clause c will be denoted by V(c). If C is a set of clauses, then
V(C) =

⋃
c∈C V(c).

A true assignment, t, is a mapping from V to {False, True}. A true assignment t
satisfies the set of clauses C when for each c ∈ C, there is a positive literal, p ∈ c, with
t(p) = True or a negative literal, ¬r ∈ c, with t(r) = False.

Two sets of clauses, C1 and C2, defined for the same set of variables V, will be consid-
ered logically equivalent, C1 ≡ C2, when for each true assignment t, we have that t satisfies
C1 if and only if t satisfies C2.

The basic syntactic operation with clauses is resolution: given two clauses c1 and c2
such that there is a variable r such that r ∈ c1 and ¬r ∈ c2, then the resolution of c1 and
c2 by r is the clause R(c1, c2, r) = (c1 \ {r}) ∪ (c2 \ {¬r}). A set of clauses C is said to be
complete under set of variables V if and only if for each c1, c2 ∈ C, if R(c1, c2, r) is not
trivial, then R(c1, c2, r) ∈ C and if c ∈ C and c ⊆ c′∈ L(V) (i.e., c′ is subsumend by c), and
then c′ ∈ C. Given a set of clauses, C, there is always a minimum set of clauses (in the
sense of inclusion) which contains C and is complete (the set obtained by adding to C all
the clauses obtained by resolution and subsumption). It will be denoted by C(C). It is clear
that two sets of clauses, C1 and C2, defined for the same set of variables V, are equivalent if
and only if C(C1) = C(C2)

A set of clauses C implies clause c if and only if c ∈ C(C) and this is denoted as C ` c.
It is well known that this is equivalent to the fact that any true assignment t satisfying C
also satisfies c. If C1 and C2 are two sets of clauses and for each c ∈ C2 we have that C1 ` c,
it can be said that C1 implies C2, which is denoted by C1 ` C2. This is equivalent to the fact
that any satisfying true assignment for C1 is also a true assignment for C2. It is also well
known that C1 and C2 are equivalent if and only if C1 ` C2 and C2 ` C1.

The satisfiability problem (SAT) consists of determining if for a given set of clauses
C there is a satisfying true assignment t for it. It is clear that if C is empty, then the
answer is positive, and if the empty clause belongs to C, the answer is negative. This is an
NP-complete problem [10], and therefore, hard to solve.

The algorithms in this paper will be based on the Davis–Putnam deletion algorithm [1].
The basic step of this algorithm is the deletion of a variable in a set of clauses C, denoted as
C−v. This operation is carried out with the following steps:

1. Compute C+
v = {c ∈ C : vs. ∈ c}

C−v = {c ∈ C | ¬vs. ∈ c}
C0

v = C \ (C+
v ∪ C−v )

2. The result is
C−v = {R(c, c′, v) : c ∈ C+

v , c′ ∈ C−v , R(c, c′, v) non trivial} ∪ C0
v .

An algorithm for SAT based on the deletion of variables is depicted in Algorithm 1. At
the end of the loop, as all the variables have been deleted, one of the two conditions (C = ∅
or ∅ ∈ C) must be satisfied. Its efficiency depends of the order of removing variables;
however, in general, this algorithm has the problem of producing too many clauses that are
large in size (number of literals).

It is also advisable to make some basic operations on C so that a simpler equivalent
set is obtained. For example, it is always good to remove subsumed clauses, i.e., if c, c′ ∈ C
and c ( c′, then remove c′ from C. Unit propagation is another important step. For that, we
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need the concept of restriction of a set of clauses C to a literal `, which is the set of clauses
that is equivalent to C under the condition that ` is true. It will be denoted as U(C, `) and
it is the set of clauses obtained from C by removing any clause containing ` and removing
¬` from the clauses containing ¬`. It is important to remark that the true assignments
satisfying U(C, `) are the same as those satisfying C with ` set to True.

Algorithm 1 David-Putnam deletion algorithm

Require: C, a set of clauses.
Ensure: sat, a logical value indicating whether C is satisfiable.

1: procedure DP(C)
2: V ← variables of C
3: for v ∈ V do
4: C ← C−v

5: if C = ∅ then
6: sat← True
7: Break
8: end if
9: if ∅ ∈ C then

10: sat← False
11: Break
12: end if
13: end for
14: return sat
15: end procedure

Unit propagation consists of transforming C containing a unit clause with a single
literal {`} ∈ C, into U(C, `) ∪ {{`}}. This operation is repeated for each literal ` appearing
in a unit clause c = {`} ∈ C.

If C is a set of clauses defined for variables V and V′ is a subset of V, then the marginal-
ization of C to V′ is the set of clauses C(C) ∩ L(V′), i.e., the set of all the clauses that are
defined for variables in V′ and are a consequence of the clauses in C. The marginalization to
V′ will be denoted as C−V\V′ making reference to the set of removed variables. The David
and Putnam algorithm has two main advantages against other satisfiability algorithms [5,6].
The first one is that the deletion algorithm is really an algorithm to compute the marginal
information and has many other utilities. Then, if the loop starting in step 3 of the algorithm
is applied for variables v ∈ V′, then the value of C will be equivalent to C−V′ . This is a
consequence of the fact that each step carries out a deletion of a variable v ∈ V′ and that
the set of clauses is a particular case of the Shenoy–Shafer axiomatic framework for local
computation [2,6].

3. Table Representation of Sets of Clauses

A set of clauses C defined for variables V can be represented by a table with a di-
mension for each variable v ∈ V. If v ∈ V, we consider the set Ωv = {¬v, v} and
ΩV = ∏v∈V Ωv, where ∏ stands for Cartesian product. An element from ΩV will be de-
noted in boldface v. The component v of vector v will be denoted as vv. If V′ ⊆ V,
the subvector of V′ components will be denoted by v−V\V′ , making reference to the
removed components.

A table T for variables V will be a mapping T : ΩV → {0, 1}. The set of variables of
table T will be denoted by V(T). A table T needs 2|V(T)| bits to be represented.

To simplify the notation, if a table T is defined for variables V and being V ⊆ V′,
v′ ∈ ΩV′ , we will assume that T(v′) = T(v′−V′\V), i.e., a table can be applied to a larger
frame than the actual frame in which it is defined, simply by ignoring the components not
in the set of variables for which it is defined.

The set of all tables defined for variables V will be denoted as TV .
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A set of clauses C is represented by a table T if T(v) = 1 if and only if the true
assignment given by tv(v) = True when vv = v and tv(v) = False when vv = ¬v
satisfies C. This is a semantic representation of the set of clauses C by determining the true
assignments satisfying all the clauses, i.e., a truth table.

To simplify the notation, we will consider that vector v and tv are equivalent, so that v
can also be called a true assignment, but in fact making reference to tv. Then, in the tables, a
true assignment will be a vector v, and this true assignment satisfies table T when T(v) = 1.
The set of true assignments satisfying a table T will be T(T) = {v ∈ ΩV(T) : T(v) = 1}.

The trivial table is the table Te with Te(v) = 1 for any v ∈ ΩV and the contradictory
table T0 is the table with T0(v) = 0 for any v ∈ ΩV . A trivial table represents the empty set
of clauses and a contradictory table; an unsatisfiable set of clauses.

Given C, a table T can be easily computed starting with a trivial table, and then for
each c ∈ C, we make T(v) = 0 for each v, such that for each literal ` ∈ c associated with
variable v, we have that vv 6= `, i.e., vv = v if ` = ¬v and vv = ¬v if ` = v.

Given a set of clauses C defined for variables V, the direct table representation is
unfeasible if the number of variables of V is not small, given that the table size is 2|V|,
where |V| is the cardinal of V. For this reason, to represent a set of clauses C, first, we will
partition the full set of clauses in small sets, C1, . . . , Ck, each one of them defined for a small
set of variables V1, . . . , Vk. Then, the set C will be represented by the set of tables T1, . . . , Tk,
where Ti is the table representing Ci.

In our experiments, the partition has been computed by the following steps:

1. Carry out unit propagation in C;
2. Group together clauses defined for the same set of variables, i.e., if V(c) = V(c′), then

c, c′ ∈ Ci;
3. Remove sets defined for non-maximal sets of variables, i.e., if Ci is such that there is

another set of variables Cj such that V(Ci) ⊂ V(Cj), then Cj is updated to Ci ∪ Cj and
Ci is removed.

This is a procedure that we have found reasonable, but it is not the only possible
one. We find that steps 1 and 2 are basic, but that there can be other alternative ways of
performing step 3. For example, joining into a set, Ci and Cj, if |Ci ∩ Cj| is not small and
|Ci ∪ Cj| is not too large, where large and small can be defined in terms of a couple of
parameters n1, n2 in each case.

There are three basic operations with tables:

• Combination. If T1 and T2 are tables, then its combination is the table T1 ⊗ T2 defined
for set of variables V = V(T1) ∪V(T2) and given by:

(T1 ⊗ T2)(v) = min{T1(v), T2(v)}.

When considering T1(v), it is important to notice that this value is T1(vV\V(T2)).
• Variable deletion. If T is a table and V′ ⊆ V(T), then table T−V′ is the table defined

for variables V′ and given by:

T−V′(v′) = max{T(v) : v ∈ ΩV , v−V′ = v′}.

T−V′ will also be called the marginalization of T to V(T) \V′. If V′ = {v}, then T−V′

will also be denoted as T−v.
• Conditioning. If T is a table and ` is a literal associated with v ∈ V(T), then the

conditioning of T to ` is the table U(T, `) defined for variables V′ = V(T) \ {v} and
given by:

U(T, `)(v′) = T(v′, `),

The conditioning operator can be extended to a partial true assignment: if T is a table,
V′ ⊆ V(T) and v′ is a true assignment for variables V′, then U(T, v′) is the table
defined for variables V′′ = V(T) \V′ and given by:
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U(T, v′)(v′′) = T(v′′, v′),

where v = (v′′, v′) is the vector in ΩV with v−V′ = v′′ and v−V′′ = v′.
We will assume that conditioning can be applied even if the variable v associated with
` is not in V(T). In this case, U(T, `) = T. Analogously, if V′ is not included in T(V)

and v′ ∈ ΩV′ , we consider that U(T, v′) = U(T, v′−V′\V(T)).

The following facts are immediate:

• If T1 and T2 are two tables associated with C1 and C2, respectively, then T1 ⊗ T2 is
associated with C1 ∪ C2.

• If table T is associated with C, then T−V′ is associated with C−V′ and U(T, `) is
associated with U(C, `).

We will now give an example, comparing the computations with clauses and tables.

Example 1. Assume that we have a set C of clauses given by:

{p, q,¬r}, {p,¬q, r}, {¬p, q, r}, {q, r,¬s}, {q,¬r, s}, {¬q, r, s}

Assume that we want to delete variable q. Then, we have to compute all the resolutions of clauses
containing q with clauses containing ¬q. After eliminating trivial clauses, the result is given by set
of clauses C−q:

{p, r,¬s}, {¬p, r, s}

Using a table representation, we can build a table T1 for the first three clauses and a table T2
for the last three ones with the following values:

(p, q, r) 1
(p, q,¬r) 0
(p,¬q, r) 0
(p,¬q,¬r) 1
(¬p, q, r) 0
(¬p, q,¬r) 1
(¬p,¬q, r) 1
(¬p,¬q,¬r) 1

,

(q, r, s) 1
(q, r,¬s) 0
(q,¬r, s) 0
(q,¬r,¬s) 1
(¬q, r, s) 0
(¬q, r,¬s) 1
(¬q,¬r, s) 1
(¬q,¬r,¬s) 1

The combination T1 ⊗ T2 will be the table defined for variables {p, q, r, s} and given by:

(p, q, r, s) 1
(p, q, r,¬s) 0
(p, q,¬r, s) 0
(p, q,¬r,¬s) 0
(p,¬q, r, s) 0
(p,¬q, r,¬s) 0
(p,¬q,¬r, s) 1
(p,¬q,¬r,¬s) 1
(¬p, q, r, s) 0
(¬p, q, r,¬s) 0
(¬p, q,¬r, s) 0
(¬p, q,¬r,¬s) 1
(¬p,¬q, r, s) 0
(¬p,¬q, r,¬s) 1
(¬p,¬q,¬r, s) 1
(¬p,¬q,¬r,¬s) 1
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If in this combination, variable q is deleted by marginalization, table (T1 ⊗ T2)
−q is obtained:

(p, r, s) 1
(p, r,¬s) 0
(p,¬r, s) 1
(p,¬r,¬s) 1
(¬p, r, s) 0
(¬p, r,¬s) 1
(¬p,¬r, s) 1
(¬p,¬r,¬s) 1

which is exactly the table associated with the two clauses in C−q.

The following properties show that tables satisfy the basic Shenoy–Shafer axioms, and
therefore, local computation is possible:

1. Combination is commutative and associate: T1 ⊗ T2 = T2 ⊗ T1, T1 ⊗ (T2 ⊗ T3) =
(T1 ⊗ T2)⊗ T3;

2. If V(T) = V and V1, V2 are two disjoint subsets of V, then V−(V1∪V2) =
(
V−V1

)−V2 ;

3. If V(T1) = V1 and V(T2) = V2, then (V1 ⊗V2)
−V2\V1 = V1 ⊗V−V2\V1

2 .

The tables also satisfy the idempotent property: if T is a table and V′ ⊆ V(T), then
T⊗ T−V′ = T. As a consequence of these properties, if we consider a set of variables V and
T =

⋃
V′⊆V TV′ , T is said to be information algebra [3,8]. It also has a neutral element, Te,

and a null element, T0.
In information algebra, it is always possible to define a partial order, which in this case

is the following: if T1 and T2 are tables defined for sets of variables V1 and V2, respectively,
then we say that T1 � T2 if and only if for each v ∈ ΩV1∪V2 , we have that T1(v) ≥ T2(v).
The intuitive idea is that T2 contains more or the same information than T1 (any true
assignment satisfying T2 will also satisfy T1).

The following properties of this relation are immediate:

1. If T is a table and V′ ⊆ V, then T−V′ � T;
2. If T1 and T2 are tables, then T1 � (T1 ⊗ T2);
3. If T1, T2, T3 are tables, then (T1 ⊗ T2) � T3 if and only if T1 � T3 and T2 � T3.

Two tables, T1 and T2, are said to be equivalent, T1 ≡ T2, if and only if T1 � T2 and
T2 � T1. If T1 and T2 are defined on V1 and V2, respectively, and T1

e and T2
e are the neutral

tables in TV2\V1
and TV1\V2

, respectively, we can immediately prove that T1 and T2 are
equivalent if and only if T1 ⊗ T1

e = T2 ⊗ T2
e . The multiplication by the neutral element is

necessary for tables to be defined for the same set of variables. If T1 and T2 are equivalent
and V(T1) = V(T2), then they are identical, i.e., T1 = T2. The quotient set of T under
this equivalence relation is called the domain-free valuation algebra associated with the
valuation algebra [3]. In the following, we will consider that we work with equivalent
classes of tables, and that a table can be changed into any equivalent one. All the neutral
tables Te defined in different sets of variables are equivalent. Furthermore, the contradictory
tables T0 are equivalent. As a consequence, we will not make reference to the set of variables
in which they are defined.

There is a disjunction operation [3,8] which can be defined on the set of tables: if T1
and T2 are tables, then its disjunction is the table T1 ⊕ T2 defined for the set of variables
V = V(T1) ∪V(T2) and given by:

(T1 ⊕ T2)(v) = max{T1(v), T2(v)}.
It is immediately clear that disjunction is commutative and associative. Furthermore,

that combination satisfies the distributive property with respect to disjunction and dis-
junction is also distributive with respect to the combination. In fact, we have the Boolean
information algebra from [3], being the complementary to T in the table Tc = 1− T.



Mathematics 2023, 11, 2748 8 of 28

We have some interesting properties relating disjunction with the basic table operations.

Proposition 1. If T is a table and v ∈ V(T), then T−v = U(T, v)⊕U(T,¬v).

Proof. See Proposition A1 in Appendix A.

Proposition 2. If T1 and T2 are tables and v ∈ V(T1)∩V(T2), then (T1 ⊕ T2)
−v = T−v

1 ⊕ T−v
2 .

Proof. See Proposition A2 in Appendix A.

4. Deletion Algorithm with Tables

We assume that we have some information represented by a set of tables:
H = {T1, . . . , Tk}. This set is intended to be a representation of the combination:
⊗(H) = T1 ⊗ · · · ⊗ Tk. As the size of the tables increases exponentially with the num-
ber of dimensions of the tables and V(⊗(H)) =

⋃k
i=1 V(Ti), then the representation by

a set can use much less space than the representation by a single table (except when the
tables are defined for the same set of variables, but this is never the case according to our
procedure to build the initial tables). V(⊗(H)) will be denoted as V(H). The total size
of the tables in H will be ∑T∈H 2|V(T)|. For example, if we have three tables defined for
variables {p1, p2}, {p2, p3, p4}, {p4, p5, p6}, the size of the tables will be 4 + 8 + 8 = 16, but
their combination will be defined for V(H) = {p1, p2, p3, p4, p5}, which corresponds to a
table of size 32.

If V = V(⊗(H)), vector v ∈ ΩV satisfies the set of tables H when Ti(v) = 1 for any
Ti ∈ H.

We will say that two sets, H1, H2, are equivalent if and only if ⊗(H1) is equivalent to
⊗(H2). We also say that H1 � H2 when ⊗(H1) � ⊗(H2).

The following properties are immediate:

• If H1 and H2 are equivalent, then H ∪ H1 will be equivalent to H ∪ H2;
• H1 � H2 if and only if {T} � H2 for any T ∈ H1;
• If H′ ⊆ H, then (H \ H′) ∪⊗(H′) is equivalent to H;
• If H′ � H, then H′ ∪ H is equivalent to H.

The set of true assignments of a set H will be the T(H) =
⋂

T∈H T(T), where the
intersection of two sets defined on different sets of indexes is defined as follows: if
R1 ⊆ ΩV1 , R2 ⊆ ΩV2 , then R1 ∩ R2 = {v ∈ ΩV1∪V2 : v−V2\V1 ∈ R1, v−V1\V2 ∈ R2}.

The operations with tables can be translated to set of tables, taking into account that
an operation on set H is really carried out on ⊗(H) and that equivalent tables represent the
same information. Some operations can be carried out in a simple way:

• The combination can be completed by a simple union:

H1 ⊗ H2 = H1 ∪ H2.

• The disjunction of sets of tables can be computed as follows:

H1 ⊕ H2 = {T1 ⊕ T2 : T1 ∈ H1, T2 ∈ H2}.

• The conditioning is the conditioning of its tables:

U(H, `) = {U(T, `) : T ∈ H}.

The deletion of variables is the more complex operation for sets of tables. In the
following, we describe several methods to carry out this operation.

The marginal problem is as follows: given a set of tables, H, and V′ ⊆ V(H), then
compute H′ such that ⊗(H′) is equivalent to ⊗(H)−V′ . This set will also be denoted as
H−V , considering that we are computing an element of the equivalence class.
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As tables satisfy the basic Shenoy–Shafer axioms, the marginalization can be com-
puted with basic Algorithm 2, which is very similar to Algorithm 1, but now expressed
as a marginalization algorithm and with information represented by tables. Procedure
MARGINALIZE0 (Hv) is very simple and it is depicted in Algorithm 3, where the condition
of T equivalent to T0 seems a bit artificial and unnecessary; it was included to show the
similarity with other variants of this operation that we will introduce. When implemented,
this test is also carried out, and when T is equivalent to T0, we return the contradictory
table which is defined for the empty set of variables and contains a single 0 value.

Algorithm 2 Deletion algorithm

Require: H, a set of tables.
Require: V′, a set of variables to remove.
Ensure: H′, a set of tables representing H−V′ .

1: procedure DELETION (H, V′)
2: for v ∈ V′ do
3: Hv ← tables T ∈ H such that v ∈ V(T)
4: (R1, R2)← MARGINALIZE0 (Hv ,v)
5: if R1 contains T0 then
6: return {T0}
7: else
8: H ← (H \ Hv) ∪ R1
9: end if

10: end for
11: return H
12: end procedure

This algorithm can be used to solve the satisfiability problem: if for function DELETION(H,
V′), V′ = V(H), then all the variables are removed and H will only contain tables defined
for the empty set of variables which have a single value. Taking into account that trivial
Te = 1 tables are not introduced, there are only two possibilities: H contains T0 and then the
problem is unsatisfiable or H = ∅ and the problem is satisfiable. However, the algorithm
can also be used to compute marginal information and to compile the information in initial
set H. This compilation is based on the following result.

Algorithm 3 Basic version of marginalize

Require: Hv, a set of tables containing variable v.
Require: v, the variable to remove
Ensure: R1, a set of tables representing H−v

v .
Ensure: R2, a set of tables containing v.

1: procedure MARGINALIZE0 (Hv,v)
2: T1 ← ⊗(Hv)
3: T2 ← T−v

1
4: if T2 is equivalent to Te then
5: R1 ← ∅
6: else
7: if T2 is equivalent to T0 then
8: R1 ← {T0}
9: else

10: R1 ← {T2}
11: end if
12: end if
13: R2 ← {T1}
14: return (R1, R2)
15: end procedure
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Proposition 3. In each application of MARGINALIZE0 (Hv), we have that Hv is equivalent to
R1 ∪ R2. Furthermore, if we bring H′ into the update set H, computed in Step 8 of Algorithm 2,
then H is equivalent to H′ ∪ R2.

Proof. See Proposition A3 in Appendix A.

As a consequence of this result, when applying the deletion algorithm, if we call R2[v]
to the R2 set which is obtained after removing variable v, we have that H is equivalent to
(
⋃

v∈V(H) R2[v]) ∪ H−V(H). It is important to remark that H−V(H) is the result of removing
all the variables, and then a table from this set is defined for the empty set of variables,
which is a number. There are two possibilities: first, if H is satisfiable, then all the tables
are 1 (Te) and can be removed, representing H−V(H) by the empty set. Second, if H is
unsatisfiable, H−V(H) will contain T0, and the full H is equivalent to it: {T0}. Let us call
this set R2[∅].

If H(V) = {v1, . . . , vk} and the variables are removed in this order: (v1, . . . , vk), then
we have that H−{v1,...,vi} is equivalent to (

⋃k
j=i+1 R2[vj]) ∪ R2[∅]. Therefore, H−{v1,...,vi} is

equivalent to H−{v1,...,vi+1} ∪ R2[vi+1]. In this way, we do not only compute the marginal in-
formation, but with sets R2[vi], we have the necessary information to recover in a backward
way the marginal sets: from the marginal in which all the variables are removed, R2[∅], to
the marginal in which no variable is removed, H. This fact can be useful, among other things
to obtain the true assignments satisfying all the tables, in case they are satisfiable. The fol-
lowing result provides a procedure to obtain the true assignments satisfying a set of tables
H computed from sets of tables {R2[vi]} obtained when applying a deletion algorithm.

Proposition 4. Assume a set of tables H and that Algorithm 2 is applied removing variables in
V(H) in order (v1, . . . , vk). Assume also that R2[∅] is equivalent to the empty set, i.e., the problem
is satisfiable; then, if Ti is the set of true assignments satisfying the set of tables H−{v1,...,vi} and T0
is the true assignments of H, then these sets can be computed in reverse order of i = 1, . . . , k in the
following way:

• Start with Ti = ∅;
• Make Tk equal to the set containing an empty vector v0 ∈ Ω∅;
• For each vi+1 ∈ Ti+1, compute Ti+1, which is the only table in U(R2[vi+1], vi+1), which is

a table defined only for variable vi+1, then this table is never equal to T0, and if v1
i and v2

i
are the true assignments obtained by extending vi+1 to variables {vi+1, . . . , vk} and given by
v1

i = (vi+1, vi+1), v2
i = (¬vi+1, vi+1), i.e., by considering vi+1 true and false, respectively,

then:

– if Ti+1 = Te, add v1
i and v2

i to Ti;
– if Ti+1(vi+1) = 1, Ti+1(¬vi+1) = 0, add v1

i to Ti;
– if Ti+1(vi+1) = 0, Ti+1(¬vi+1) = 1, add v2

i to Ti.

Proof. See Proposition A4 in Appendix A.

This result is the basic for algorithms to compute one solution, all the solutions, or
a random solution given a satisfiable set of clauses. It should start with a Tk, which is a
set containing an empty vector v0 ∈ Ω∅. The main difference in these algorithms is when
Ti+1 = Te. When computing one solution, we only pick v1

i or v2
i , when computing all the

solutions, both v1
i and v2

i are selected, and when computing a random solution, there is
a random selection of v1

i or v2
i . In the last case, an importance sampling algorithm in the

set of solutions is obtained: starting with a weight of 1.0, each time we have a random
selection, the weight must be multiplied by 2.0.
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In Algorithm 3, we have described the basic marginalization operation, which is the
same as the one applied to the general valuation-based systems [2]. However, Boolean tables
allow other alternative forms of marginalization. The first one is depicted in Algorithm 4
and determines that it is not necessary to combine all the tables in order to compute the
marginal. In fact, only pairwise combinations are necessary.

Algorithm 4 Pairwise combination version of marginalize

Require: Hv, a set of tables containing variable v.
Require: v, the variable to remove
Ensure: R1, a set of tables representing H−v

v .
Ensure: R2, a set of tables containing v.

1: procedure MARGINALIZE1(Hv,v)
2: R1 = {(Ti ⊗ Tj)

−v : Ti, Tj ∈ Hv}
3: R2 ← Hv
4: if R1 contains T0 then
5: R1 ← {T0}
6: end if
7: Remove neutral tables Te from R1
8: return (R1, R2)
9: end procedure

The following proposition shows that R1 is also a set of tables representing H−v
v .

Proposition 5. If Hv is a set of tables containing variables v, then R1 computed in Algorithm 4
represents H−v

v .

Proof. See Proposition A5 in Appendix A.

Once this is proved, then we can replace MARGINALIZE0 by MARGINALIZE1 in the
deletion algorithm and everything works, even the method to compute the solutions given
in Proposition 4. The only difference is that now R2[vi+1] contains, in general, more than
one table, and when computing U(R2[vi+1], vi+1), we have to condition every table in
R2[vi+1], being the result a set of tables depending on variable vi+1. These tables are
combined to produce Ti+1.

The main difference between MARGINALIZE0 and MARGINALIZE1 is that the former
produces an unique table in R1 and R2, while the latter produces several tables in both sets,
but with smaller size. As the size of a table T is 2|V(T)|, in general, MARGINALIZE1 is more
efficient, but we have to take into account that the number of tables in R1 is quadratic in
relation with the number of tables in Hv and this fact should be taken into account.

However, there is another very important alternative marginalization when we have a
variable which is functionally dependent of other variables [20]. This happens very often,
especially in problems encoding circuits [21].

If T is a table and v ∈ V(T), we say that v is functionally determined in T if and
only if U(T, v)⊗U(T,¬v) is equivalent to T0. If V′ = V(T) \ {v}, this implies that for any
v′ ∈ ΩV′ we have that (U(T, v)⊗U(T,¬v))(v′) = 0, i.e., either U(T, v)(v′) = T(v′, v) =
U(T, v′)(v) = 0 or U(T,¬v)(v′) = T(v′,¬v) = U(T, v′)(¬v) = 0, i.e., for each v′, there is,
at most, one possible value for variable V, v or ¬v for which table T has a value of 1 (at
least, one of the values v or ¬v is impossible). This definition generalizes definition given
in terms of clauses in [20], which also requires that T−v is equivalent to the neutral element.

In the case that there is a table T ∈ Hv such that v is functionally determined on T,
then marginalization can be done as in Algorithm 5.

This marginalization is much more efficient, as the number of the tables in R1 is smaller
than in MARGINALIZE1. In fact, the number of tables in the problem does not increase: the
number of tables in R1 is always less or equal than the number of tables in Hv. We give an
example illustrating the benefits of using this marginalization.
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Algorithm 5 Marginalize with functional dependence

Require: Hv, a set of tables containing variable v.
Require: v, the variable to remove
Require: T a table in which v is functionally determined
Ensure: R1, a set of tables representing H−v

v .
Ensure: R2, a set of tables containing v.

1: procedure MARGINALIZE2 (Hv,v,T)
2: R1 = {(T ⊗ T′)−v : T′ ∈ Hv}
3: R2 ← {T}
4: if R1 contains T0 then
5: R1 ← {T0}
6: end if
7: Remove neutral tables Te from R1
8: return (R1, R2)
9: end procedure

Example 2. Assume that we are deleting variable p and that we have three tables:

T1(p, q), T2(p, r, s), T3(p, u, v).

If MARGINALIZE0 is applied, then we have to combine the three tables producing a table (T1⊗
T2 ⊗ T3)(p, q, r, s, u, v), which depends on six variables and has a size of 64. If MARGINALIZE1 is
applied, then we have to compute (T1 ⊗ T2)(p, q, r, s), (T1 ⊗ T3)(p, q, u, v), (T2 ⊗ T3)(p, r, s, u, v)
(the combination of a table by itself is not necessary, as this produces the same table which is included
in one of these combinations), i.e., we have more tables but of smaller size (16 + 16 + 32). However,
if it is known that p is determined by q in table T1, then, for MARGINALIZE2, only combinations
(T1⊗ T2)(p, q, r, s), (T1⊗ T3)(p, q, u, v) are necessary and the result is based on two tables of sizes
16+16, producing an important saving in space and computation. Please note that to finish the
marginalization step, variable p should be removed on the computed tables by marginalization, but
this step has been omitted in order to keep the notation simpler.

This marginalization is correct, as R1 is equivalent to H−v
v and Hv is equivalent to

R1 ∪ R2, as the following results shows.

Proposition 6. If (R1, R2) are the sets computed in MARGINALIZE2 and the initial conditions
required by the algorithm are satisfied; then, H−v

v is equivalent to R1 and Hv is equivalent to
R1 ∪ R2.

Proof. See Proposition A6 in Appendix A.

5. Additional Processing Steps and Marginalization Strategy

In this section, we introduce some additional steps which can be added to the basic
deletion algorithm to improve efficiency or to enlarge the family of problems that can
be solved.

5.1. Combining Tables

Many times we have in a problem two tables T1 and T2, such that V(T1) ⊆ V(T2).
We can substitute them by its combination T = T1 ⊗ T2 obtaining an equivalent problem.
Doing this can have potential advantages: it reduces the size of the problem specification,
as the size of T is the same than the size of T2, but it also increases the chances of having
a variable which is functionally dependent of the others. Remember that v is determined
in T when U(T, v)⊗U(T,¬v) = T0, so if T � T′, then v will be also determined in T′. We
can consider the procedure COMBINEINCLUDED(H) which compares the sets of variables
of each pair of tables T1, T2 ∈ H, and substitutes the pair by its combination when one set
is included in the other. One important point is the sets to which this procedure applies. In
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Algorithm 2, COMBINEINCLUDED(H) could be applied to the set H after each deletion of a
variable, to the set Hv, or to R1. Applying it to H could be very costly, as the number of
tables can be high and we have to compare all the pairs of tables. A similar effect can be
obtained by applying it to set Hv, which are the tables effectively used in each deletion step,
but which is of smaller size. It is also important to apply it to set R1, as it can significantly
reduce the number of tables, which can be high when MARGINALIZALIZE1 is used to delete
a variable.

In the case of Hv, we have already implemented a more aggressive combination
method, which combines two tables T1 and T2 when 2V(T1⊗T2) ≤ 2V(T1) + 2V(T2). This al-
ways happens when V(T1) ⊆ V(T2), but also when |V(T1)| = |V(T2)| and
V(T1) = V(T2) \ {u} ∪ {v}, i.e., tables are defined for the same variables, except for
variables u ∈ V(T2), v ∈ V(T1). We will call to this procedure GROUPTABLES(H), which
will be applied to Hv in the case of MARGINALIZE1 when the number of tables in H is
greater or equal is greater or equal than a given threshold, N.

Example 3. Assume three tables, i.e., T1 for variables p, q, T2 for variables q, r, and T3 for variables
p, r, that are given by:

(p, q) 1
(p,¬q) 0
(¬p, q) 1
(¬p,¬q) 1

,

(q, r) 0
(q,¬r) 1
(¬q, r) 1
(¬q,¬r) 1

,

(p, r) 1
(p,¬r) 1
(¬p, r) 0
(¬p,¬r) 1

If GROUPTABLES (H) is applied, then tables T1 and T2 are combined, as the result has a size
of 8 and the combined tables sizes are 4 + 4. Then, table T3 is also combined, as it is defined for a
set of variables included in the variables of the combination of T1 ⊗ T2. The result is that the three
tables are replaced by their combination, which is given by the following table:

(p, q, r) 0
(p, q,¬r) 1
(p,¬q, r) 0
(p,¬q,¬r) 0
(¬p, q, r) 0
(¬p, q,¬r) 1
(¬p,¬q, r) 0
(¬p,¬q,¬r) 1

Observe that this table is smaller than the sum of the sizes of the three combined tables. Further-
more, in the combination, we can observe that r is determined by (p, q), for which MARGINALIZE2
can be applied.

5.2. Unidimensional Arrays

Unidimensional arrays have a special consideration. If we are going to introduce in H
a table T and |V(T)| = 1, then there are three possibilities:

• T is equal to Te, the neutral element. In this case, the table is not introduced in H.
• T is equal to T0, the contradiction. In this case, the whole set is equivalent to {T0} and

all the other tables are removed from H. In fact, in our implementation, the equality
to T0 is checked for any table to be introduced to H, whatever its dimension is.

• In T, there is a value with value 0 and other with value 1. If ` is the literal with value 1,
this table is equivalent to the unit literal ` and we can carry out a unit propagation. This
is done by transforming any other table T′ ∈ H into U(T′, `) and finally introducing
table T. In our implementation, instead of introducing the table T, we keep a set of
unit literals, and each time another table is introduced in H, the conditioning to the
literals in this set is carried out.
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Example 4. Consider the table T′ about p, q given by:

(p, q) 1
(p,¬q) 0
(¬p, q) 1
(¬p,¬q) 1

If a table, T, with p is introduced with T(¬p) = 1, T(p) = 0, then we can transform table
T′ into U(T′,¬p), which is again an unidimensional table defined for q with U(T′,¬p)(q) = 1,
U(T′,¬p)(¬q) = 0. This table may produce further simplifications of tables containing variable q.

5.3. Splitting

The size of the tables in Hv is important when applying the deletion step: the smaller
the size, the faster this step can be completed. For that reason, we have implemented a
procedure to reduce this size. In order to do this, for each T ∈ Hv, Algorithm 6 is applied,
where MINIMIZE (T1,T2,T, V) is a procedure that tries to make T1 as smaller as possible (by
marginalization) under the condition that T = T1 ⊗ T2 and that variables in V cannot be
removed. The details of this minimizing algorithm can be found in Algorithm 7.

When this split is applied to any table T in Hv, each time T is split into T1, T2 with
|V(T1)| < |V(T)|, then T is changed to T1, T2 in H and to T1 in Hv. The general procedure
making this transformation is called SPLITG(Hv , H).

Algorithm 6 Splitting a table before deleting a variable

Require: T, a table containing variable v.
Require: v, the variable to remove
Ensure: T1, a table containing v.
Ensure: T2, a table not containing v.

1: procedure SPLIT(T,v)
2: T2 ← T−v

3: T1 ← T
4: T1 ← MINIMIZE(T1,T2,T, {v})
5: return (T1, T2)
6: end procedure

Algorithm 7 Minimizing the splitting table

Require: T1, T2, T, tables such that T1 ⊗ T2 = T.
Require: V, a set of variables that can not be removed.
Ensure: M a table in which T1 is minimized.

1: procedure MINIMIZE(T1,T2, T, V)
2: if V(T1) \V = ∅ then
3: M← T1
4: return M
5: end if
6: Let v be an element from V(T1) \V
7: T3 ← T−v

1
8: if T3 ⊗ T2 = T then
9: return MINIMIZE(T3,T,T2, V ∪ {v})

10: else
11: return MINIMIZE(T1,T,T2, V ∪ {v})
12: end if
13: end procedure
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Example 5. Assume that in our set of tables, we have a table T with variables p, q, r given by:

(p, q, r) 1
(p, q,¬r) 0
(p,¬q, r) 0
(p,¬q,¬r) 0
(¬p, q, r) 1
(¬p, q,¬r) 0
(¬p,¬q, r) 1
(¬p,¬q,¬r) 1

If we want to remove variable r, then instead of using this table, we can try to split it into two
tables, one of them not depending on r. Then we first compute the marginal T2 = T−r, which is
given by:

(p, q) 1
(p,¬q) 0
(¬p, q) 1
(¬p,¬q) 1

Next, we minimize T conditioned to T2 obtaining in this case the following table T1:

(q, r) 1
(q,¬r) 0
(¬q, r) 1
(¬q,¬r) 1

In this way, we obtain the decomposition T = T1 ⊗ T2; we can change T in our set of tables by
the two tables T1, T2, and then, as T2 does not depend on r, when deleting this variable, only T1 has
to be considered, which has a lower dimension than the original table T, simplifying in this way the
deletion step.

5.4. Minimizing the Dependence Set

If we have the set of tables Hv and there is a table T ∈ Hv in which v is functionally
determined, then the deletion is, in general, quite efficient, but it also depends on the size of
T. If there is a table Tm that can be obtained from T by marginalization and v continues being
determined in Tm, then the result is also correct if we call MARGINALIZE2 (Hv,v,Tm). The
reason is very simple: as Tm is obtained by marginalization of a table in Hv, then Hv ∪ {Tm}
is equivalent to Hv and MARGINALIZE2 (Hv ∪ {Tm},v,Tm) produces a correct result. The
only difference between MARGINALIZE2 (Hv ∪ {Tm},v,Tm) and MARGINALIZE2 (Hv,v,Tm)
is that in the former, (Tm ⊗ Tm)−v is included. However, this table is less informative
than (T ⊗ Tm)−v, which is included in MARGINALIZE2 (Hv,v,Tm), and then the two results
are equivalent.

The algorithm we have applied to compute a table Tm with smaller size in which
there is functional dependence is depicted in Algorithm 8, initially with V = {v}. In it, we
assume that we have a function CHECKDETER(T,v) that determines when v is functionally
determined in T.
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Algorithm 8 Minimizing the dependence of a variable in a table

Require: T, a table.
Require: v, a variable which is determined in T.
Require: V, a set of variables which can not be deleted.
Ensure: Tm a marginal table in which v continues being determined.

1: procedure MINDEP(T,v, V)
2: if V(T) \V = ∅ then
3: Tm ← T
4: end if
5: Let v be an element from V(T) \V
6: T′ ← T−v

7: if CHECKDETER (T′ ,v) THEN
8: Tm ←MINDEP (T′ ,v, V ∪ {v})
9: ELSE

10: Tm ← MINDEP (T,v, V ∪ {v})
11: END IF
12: RETURN Tm
13: END PROCEDURE

Example 6. Assume a table T about variables p, q, r given by:

(p, q, r) 0
(p, q,¬r) 1
(p,¬q, r) 0
(p,¬q,¬r) 1
(¬p, q, r) 1
(¬p, q,¬r) 0
(¬p,¬q, r) 1
(¬p,¬q,¬r) 0

In this table, r is determined by (p, q), but if T−q is computed, the result is:

(p, r) 0
(p,¬r) 1
(¬p, r) 1
(¬p,¬r) 0

Furthermore, r is determined by p on it. MARGINALIZE2 is more efficient using this smaller
table instead of the original one.

5.5. Alternative Deletion Procedures

When applying MARGINALIZE0 (Hv ,v), table T = ⊗(Hv)−v is computed. In some
situations, it is possible that this table is of a small size, but MARGINALIZE1 (Hv ,v) or
MARGINALIZE2 (Hv ,v) are applied. In that case, instead of computing R1, an alternative
method is to compute the maximal sets of the tables from R1: M(R1) = Maximal{V(T′) :
T′ ∈ R1, V(T′)}, where Maximal is removed from a family of sets, which are strictly
included into another set of the family.

Observe that it is not necessary to actually compute the tables in R1, but only the sets
of variables associated with these tables.

Then, we can compute R′1 = {T−V(T)\B : B ∈ M(R1)}. When comparing R1 and R′1
we can observe the following facts:

• Each element from R1 is equal to T′ = (Ti ⊗ Tj)
−v, where Ti, Tj ∈ Hv or a combination

of several sets of this type, when COMBINEDINCLUDED has been applied. Then, there
will be another table T′′ ∈ R′1 defined for the same set of variables and computed
as T−V(T)\V(T′′). As T′′ is the result of marginalizing after combining all the tables,
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instead of combining only two tables, we have that T′ � T′′, and in some cases, the
tables are not equivalent.

• The whole sets of tables R1 and R′1 are equivalent. In fact, both are equivalent to
T = ⊗(Hv)−v. This is known for R1. For R′1, as any element from R′1 is a marginaliza-
tion of T, R′1 � {T}. On the other hand, as a consequence of the above point, R1 � R′1,
and as R1 is equivalent to T, we have that R′1 is also equivalent to {T}.
Computing R′1 by computing T and M(R1) and performing marginalizations has, in

general, a higher computational cost, but this may be lowered if T contains few variables;
moreover, on the positive side, we have more informative tables in R′1 and there are more
opportunities to find functional dependencies of variables in tables, which can improve the
efficiency of posterior deletion steps.

In our implementations this decision is taken by fixing a threshold K, and if |V(T)| ≤ K,
R′1 is computed. In other cases, R1 is computed. The versions of MARGINALIZE1 and
MARGINALIZE2 COMPUTING R′1 ARE CALLED MARGINALIZE1B AND MARGINALIZE2B,
respectively.

Example 7. Assume that we are going to delete p and that we have three tables T1, T2, T3, defined
for variables (p, q), (p, r), and (p, s), given by:

(p, q) 1
(p,¬q) 0
(¬p, q) 1
(¬p,¬q) 1

(p, r) 1
(p,¬r) 0
(¬p, r) 1
(¬p,¬r) 1

(p, s) 1
(p,¬s) 1
(¬p, s) 0
(¬p,¬s) 0

,

Assume that MARGINALIZE1 is applied and we are going to compute (T1 ⊗ T2)
−p, (T1 ⊗

T3)
−p, (T2 ⊗ T3)

−p, given by the following tables:

(q, r) 1
(q,¬r) 1
(¬q, r) 1
(¬q,¬r) 1

(q, s) 1
(q,¬s) 1
(¬q, s) 0
(¬q,¬s) 0

(r, s) 1
(r,¬s) 1
(¬r, s) 0
(¬r,¬s) 0

, (1)

Alternatively, we can compute (T1 ⊗ T2 ⊗ T3)
−{p,s}, (T1 ⊗ T2 ⊗ T3)

−{p,r}, (T1 ⊗ T2 ⊗
T3)
−{p,q}, which are defined for the same variables, obtaining:

(q, r) 1
(q,¬r) 1
(¬q, r) 1
(¬q,¬r) 0

(q, s) 1
(q,¬s) 1
(¬q, s) 0
(¬q,¬s) 0

(r, s) 1
(r,¬s) 1
(¬r, s) 0
(¬r,¬s) 0

(2)

The product of these three tables is equal to the product of the original tables in Equation (1).
However, individually, each one of them can be more informative (has more 0’s) than the correspond-
ing one in Equation (1). In this example, the first one has 0 assigned to (¬p,¬q) in Equation (2),
while this value was 1 in Equation (1). MARGINALIZE1B will compute the arrays in Equation (2).

5.6. The Final Global Marginalization Procedure

Now, we put everything together and describe the global marginalization procedure.
In Algorithm 9, we describe the algorithm MARGINALIZEG, which gives a set H, and the
variable v computes a set H′ equivalent to H−v and other set H′′, such that H is equivalent
to H′ ∪ H′′ . We assume that DETERMINED (Hv ,v) is a procedure that checks whether there
is a table in T ∈ Hv in which v is functionally determined. In that case, it returns MINDEP

(T, v, {v}). If this table does not exist, it returns the neutral element Te.
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The first thing is to test whether there is a functional dependence. In that case,
MARGINALIZE2 is applied, after minimizing the table with that dependence. If the size of
the global combination is lower than a given threshold, then the version B of the marginal-
ization is applied.

In another case, we have to choose between MARGINALIZE0 and MARGINALIZE1. For
that, we first compute M(R1), the set of maximal sets of the sets of variables of the tables
of R1 after applying MARGINALIZE1 and compare the size of the tables defined for these
sets with the size of the table obtained with the basic MARGINALIZE0, selecting the method
with a smaller final size of the tables. If MARGINALIZE1 is selected, then GROUPTABLES is
applied if the number of tables in Hv is greater than a given threshold N.

Algorithm 9 The final global marginalization algorithm

Require: H, a set of tables.
Require: v, the variable to remove
Require: W, a Boolean variable indicating the splitting procedure
Require: N, a threshold for grouping tables
Require: K, a threshold for the alternative deletion procedure
Ensure: H′, a set of tables representing H−v.
Ensure: H′′, a set of tables such that H is equivalent to H′ ∪ H′′.

1: procedure MARGINALIZEG(H,v)
2: Hv ← tables T ∈ H such that v ∈ V(T)
3: COMBINEINCLUDED (Hv)
4: if W then
5: SPLIT (Hv, H)
6: end if
7: T ← DETERMINED (Hv ,v)
8: if T 6= Te then
9: if S(⊗(Hv)) ≤ K then

10: (R1, R2)← MARGINALIZE2B (Hv,v,T)
11: else
12: (R1, R2)← MARGINALIZE2 (Hv,v,T)
13: end if
14: else
15: Q← M(R1) . Maximal sets of R1 after MARGINALIZE1
16: if S(⊗(Hv)−v) ≤ S(Q) then

Algorithm 9 Cont.

17: (R1, R2)← MARGINALIZE0 (Hv,v)
18: else
19: if |Hv| ≥ N then
20: GROUPTABLES (Hv)
21: end if
22: if S(⊗(Hv)) ≤ K then
23: (R1, R2)← MARGINALIZE1B (Hv,v)
24: else
25: (R1, R2)← MARGINALIZE1 (Hv,v)
26: end if
27: end if
28: end if
29: COMBINEINCLUDED (R1)
30: H′ ← H \ Hv ∪ R1
31: H′′ ← R2
32: return (H′, H′′)
33: end procedure
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6. Experiments

Computations with tables have been implemented using Python and the NumPy li-
brary [22]. For the basic operations with tables (combination, marginalization, and condi-
tioning) we have taken as basis the implementation of the same operations in probabilistic
calculus in the pgmpy library [23]. An important fact about the deletion algorithm is the
order in which variables are chosen to be deleted. We have followed the usual heuristic of
selecting the variable v with a minimum number of variables in Hv, but with the exception
of the case in which v is not functionally determined in any table of Hv, but there is another
variable v′ that is determined in the table of Hv′ , and where |V(Hv′ | − |V(Hv)| ≤ 2. This is
done to have a preference for selecting variables in which we can apply MARGINALIZE2,
which is the most efficient deletion procedure. We have carried out three experiments.

In the first experiment, we tested the basic deletion algorithms in several SAT examples
imported from several repositories of benchmark problems for SAT, mainly from: Hoos
and Stützle [24], Junttila [25], Tsuji and Gelder [26], and Burkardt [27]. The main criterion
for selecting the cases has been that the size of the arrays does not surpass the maximum
array size of 32 that exists in the NumPy library. The characteristics of the examples can
be found in Table 1. We also provide the maximum cluster size (number of variables) of
a join tree built from the connectivity graph under the same ordering than used in our
deletion algorithm. We have selected the problems with the restrictions that they are not
too simple (a maximum cluster size of at least 15) and that the deletion algorithm can be
applied, taking into account that the number of dimensions of a table in NumPy is limited to
32, i.e., it is required that for each table T, we have that |V(T)| ≤ 32.

Table 1. Benchmark problems used in the experiments.

Benchmark Variables Clauses Max Cluster Size Sol

SATHolV42C133.cnf 42 133 28 SAT

SATPlanV48C261.cnf 48 261 21 SAT

UNSATaimV50C80.cnf 50 80 16 UNSAT

UNSATaimV50C100.cnf 50 100 31 UNSAT

UNSATTmTbV112C245.cnf 112 245 18 UNSAT

SATTmTbV140C301.cnf 140 301 25 SAT

SATV300C1016.cnf 300 1010 28 SAT

aes_32_1_keyfind_1.cnf 300 1016 28 SAT

SATCircuitosV416C1136.cnf 416 1136 27 SAT

UNSATBFCircuitosV421C1000.cnf 421 1000 21 UNSAT

SATBFCircuitosV423C1010.cnf 423 1010 21 SAT

UNSATBFCircuitosV424C1031.cnf 424 1031 23 UNSAT

UNSATBFCircuitosV428C1037.cnf 428 1037 23 UNSAT

UNSATCircuitosV607C1808.cnf 607 1808 35 UNSAT

SATBFCircuitosV837C2169.cnf 837 2169 20 SAT

SATBFCircuitosV837C2169_2.cnf 837 2169 22 SAT

SATBFCircuitosV843C2286.cnf 843 2286 29 SAT

UNSATBFCircuitosV864C2790.cnf 864 2790 74 UNSAT

UNSATBFCircuitosV864C2790_2.cnf 864 2790 66 UNSAT

UNSATBFCircuitosV865C2783.cnf 865 2783 69 UNSAT

UNSATBFCircuitosV865C2783_2.cnf 865 2783 74 UNSAT

UNSATBFCircuitosV865C2784.cnf 865 2784 63 UNSAT
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Table 1. Cont.

Benchmark Variables Clauses Max Cluster Size Sol

UNSATBFCircuitosV985C2324.cnf 985 2324 25 UNSAT

UNSATCircuitosV986C2315.cnf 986 2315 24 UNSAT

UNSATBFCircuitosV1040C3668_2.cnf 1040 3668 70 UNSAT

UNSATBFCircuitosV1040C3668.cnf 1040 3668 103 UNSAT

SATBFCircuitosV1207C2940.cnf 1207 2940 41 SAT

UNSATBFCircuitosV1339C3249.cnf 1339 3249 29 UNSAT

UNSATCircuitosV1355C3296.cnf 1355 3296 30 UNSAT

UNSATCircuitosV1359C3321.cnf 1359 3321 30 UNSAT

UNSATV1359C3321.cnf 1359 3321 30 UNSAT

UNSATBFCircuitosV1363C3361.cnf 1363 3361 31 UNSAT

UNSATBFCircuitosV1363C3361_2.cnf 1363 3361 27 UNSAT

UNSATBFCircuitosV1365C3369.cnf 1365 3369 27 UNSAT

UNSATBFCircuitosV1371C3383.cnf 1371 3383 31 UNSAT

UNSATBFCircuitosV1371C3383_2.cnf 1371 3383 26 UNSAT

UNSATBFCircuitosV1371C3401.cnf 1371 3401 30 UNSAT

UNSATBFCircuitosV1373C3391.cnf 1373 3391 33 UNSAT

UNSATBFCircuitosV1379C3417.cnf 1379 3417 26 UNSAT

UNSATBFCircuitosV1379C3417_2.cnf 1379 3417 33 UNSAT

UNSATBFCircuitosV1379C3423.cnf 1379 3423 29 UNSAT

UNSATBFCircuitosV1387C3439.cnf 1387 3439 27 UNSAT

UNSATBFCircuitosV1387C3439_2.cnf 1387 3439 27 UNSAT

UNSATBFCircuitosV1389C3440.cnf 1389 3440 26 UNSAT

UNSATBFCircuitosV1389C3440_2.cnf 1389 3440 25 UNSAT

UNSATCircuitosV1393C3434.cnf 1393 3434 26 UNSAT

UNSATBFCircuitosV1407C3496.cnf 1407 3496 26 UNSAT

UNSATBFCircuitosV1423C3609.cnf 1423 3609 38 UNSAT

UNSATBFCircuitosV1488C3859.cnf 1488 3859 21 UNSAT

SATCircuitosV1501C3575.cnf 1501 3575 26 SAT

SATCircuitosV2013C4795.cnf 2013 4795 29 SAT

UNSATCircuitosV2177C6768.cnf 2177 6768 65 UNSAT

UNSATCircuitosV2180C6778.cnf 2180 6778 70 UNSAT

We have applied the deletion algorithm with the general deletion step of Algorithm 9.
In it, we have considered a value of N = 30 for grouping tables when pairwise marginal-
ization is applied. We have tested two variants of the algorithm W = True and W = False
to test whether splitting is a good idea and a set of values of K = 5, 10, 15, 20, 25, 30.

First, we can observe that, in general, the problems are solved fast, with an average of
less than 1 min for all the parameters settings.

With a non-parametric Friedman test, the differences between the different com-
binations of K and W are significant (p-value = 0.001149). The averages of times as a
functions of K are depicted in Figure 1 for the case W = False (the case W = True is very
similar). We can see that the time increases as a function of K, but being more or less
constant for K = 10, 15, 20. This increasing pattern does not always occur. For example, in
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aes_32_1_keyfind_1.cnf, the times with W = False can be seen in Figure 2. In that case, it
is possible to see that the optimal K is 15. The extra work of computing the global table
is compensated by the presence of more zeros in the resulting tables, which speed up the
consecutive deletions.

Figure 1. Average time as a function of K.

Figure 2. Time as a function of K in aes_32_1_keyfind_1.cnf.

We have carried out a post hoc Conoven–Friedman test (without correction for mul-
tiple tests). The resulting p-values for pairwise comparisons can be seen in Table 2. A ‘Y’
means that W = True and an ‘N’ means that W = False. First, we can observe that there
are never significant differences with the use of SPLIT. There are significant differences of
K = 25 with the cases in which K = 5, 10, especially if SPLIT is not applied. In this case,
the computation of large tables does not compensate for the presence of more zeros. The
comparison of K = 20 is only significant with K = 5. Again, the significance is higher with
no SPLIT. K = 15 with SPLIT shows no significant difference with any smaller value of K.
There is only one small significance (with α = 0.05) if split is not applied.

To compare with previous versions of the DP algorithm, we have also implemented
the basic Algorithm 2, as in [5], including a step for unit propagation (each time a unit
clause is found, unit propagation is carried out). As this algorithm is less efficient, we have
given it a limit of 600 s to solve each problem to avoid very long running times in some
of the problems. For example, case aes_32_1_keyfind_1.cnf was not solved even with 2 h
of running time. A total of 12 problems could not be solved within this time limit (600 s),
and the average time was 168.08 s. This average is much larger than the worst case in
our algorithms, even taking into account that the running time was limited to 600 s. A
non-parametric Wilcoxon test was not significant. This is due to the fact that this approach
was usually faster in the simpler problems.

In the second experiment, we consider four sets of clauses with 504, 708, 912, and
1116 variables and 1840, 2664, 3488, and 4312 clauses, respectively. Our exact algorithms
were not able to solve these cases. However, we have computed the number of variables
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which have been deleted without surpassing a maximum table size of 25, for each combi-
nation of K and W = True (the results were the same for W = False). We can observe that
there is a tendency to delete, in an exact way, more variables when K increases, though this
is not always true in each particular problem (Table 3).

Table 2. Results of the post hoc Conoven–Friedman test.

K05N K05Y K10N K10Y K15N K15Y K20N K20Y K25N K25Y

K05N 1.000000 1.000000 0.319196 0.974352 0.012449 0.403390 0.003590 0.007856 0.006494 0.067368

K05Y 1.000000 1.000000 0.319196 0.974352 0.012449 0.403390 0.003590 0.007856 0.006494 0.067368

K10N 0.319196 0.319196 1.000000 0.303853 0.131254 0.872292 0.054216 0.095066 0.083050 0.403390

K10Y 0.974352 0.974352 0.303853 1.000000 0.011374 0.385562 0.003242 0.007146 0.005897 0.062719

K15N 0.012449 0.012449 0.131254 0.011374 1.000000 0.095066 0.676013 0.872292 0.821945 0.499687

K15Y 0.403390 0.403390 0.872292 0.385562 0.095066 1.000000 0.037087 0.067368 0.058339 0.319196

K20N 0.003590 0.003590 0.054216 0.003242 0.676013 0.037087 1.000000 0.797032 0.847040 0.274662

K20Y 0.007856 0.007856 0.095066 0.007146 0.872292 0.067368 0.797032 1.000000 0.948731 0.403390

K25N 0.006494 0.006494 0.083050 0.005897 0.821945 0.058339 0.847040 0.948731 1.000000 0.368225

K25Y 0.067368 0.067368 0.403390 0.062719 0.499687 0.319196 0.274662 0.403390 0.368225 1.000000

Table 3. Number of deleted variables.

K05 K10 K15 K20 K25

aes_32_2_keyfind_1.cnf 412 421 421 417 430

aes_32_3_keyfind_1.cnf 570 580 580 576 576

aes_32_4_keyfind_1.cnf 726 716 716 734 732

aes_32_5_keyfind_1.cnf 873 864 865 882 880

TOTAL 2581 2581 2582 2609 2618

As a summary of the first two experiments, we find that the use of K = 5 with SPLIT is
the best option, but we leave open the possibility of using higher values of K, especially in
difficult problems.

The third experiment identifies a situation in which marginalization algorithms can be
applied. For that, we consider the Bayesian networks used in the UAI 2022 competition
(see https://uaicompetition.github.io/uci-2022/ (accessed on 10 May 2023)). We discarded
the networks in which all the values in the conditional probability tables are non-zero (five
networks) and the networks in which there were non-binary variables (three networks).
This makes a total of 96 networks used in the partition function and the marginal probability
competitions. The characteristics of these networks can be seen in Table 4, where nv is the
number of variables, ne is the number of observed nodes, mcs is the maximum cluster size
(in a deletion algorithm with the original probability tables), and p0 is the percentage of
0 values in the original conditional probability tables. We can observe that the percentage
of 0 values is very high in all the networks. We have to take into account that, being
conditional probability tables for binary variables, at least 0.5 of the values are different
from 0 (for each 0 value, there is another value equal to 1). Thus, in some networks with
0.455 values that are 0, this implies that only 0.002% of the values are different from 0 and 1.
With these networks, we have solved the associated propositional problem. This problem
is defined by transforming each conditional probability table T into a logical table T′ in
such a way that T′(v) = 0 if T(v) = 0.0 and T′(v) = 1, otherwise. If a variable v has been
observed, then a unitary logical table is added with value 1 in the observed value and 0 in
the unobserved one.

https://uaicompetition.github.io/uci-2022/
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Then, we have applied our basic algorithm with K = 20 and SPLIT. All the problems
were solved with an average time of 20.54 s (minimum of 0.035 s and maximum of 542.367 s).
It is important to remark that most of the problems, 59 out of 96, were solved in less than
1 s, and almost all of them, 82 out of 96, were solved within a time limit of 10 s.

Table 4. Benchmarks used in Experiment 3.

Benchmark nv ne mcs p0 Benchmark nv ne mcs p0

Promedus_11 461 8 32 0.358 mastermind_04_08_03-0014 1418 48 24 0.491

Promedus_12 534 3 26 0.366 mastermind_04_08_03-0015 1418 48 24 0.491

Promedus_13 894 4 11 0.325 mastermind_04_08_04-0001 2616 36 39 0.494

Promedus_14 414 9 37 0.363 mastermind_04_08_04-0002 2616 36 39 0.494

Promedus_15 385 4 14 0.369 mastermind_04_08_04-0003 2616 36 39 0.494

Promedus_16 715 5 19 0.302 mastermind_04_08_04-0004 2616 36 39 0.494

Promedus_17 916 9 29 0.307 mastermind_04_08_04-0005 2616 36 39 0.494

Promedus_18 374 8 39 0.369 mastermind_05_08_03-0001 1616 27 28 0.490

Promedus_19 624 7 28 0.347 mastermind_05_08_03-0002 1616 27 28 0.490

Promedus_20 546 6 23 0.350 mastermind_05_08_03-0003 1616 27 28 0.490

Promedus_21 473 3 13 0.370 mastermind_05_08_03-0004 1616 27 28 0.490

Promedus_22 400 3 15 0.3339 mastermind_05_08_03-0009 1616 63 35 0.490

Promedus_23 674 9 28 0.320 mastermind_06_08_03-0002 1814 27 33 0.489

Promedus_24 200 4 5 0.294 mastermind_06_08_03-0003 1814 27 33 0.489

Promedus_25 1005 7 27 0.312 mastermind_06_08_03-0005 1814 27 33 0.489

Promedus_26 614 6 4 0.298 mastermind_06_08_03-0009 1814 83 41 0.489

Promedus_27 410 5 22 0.357 mastermind_10_08_03-0008 2606 769 57 0.486

Promedus_28 463 7 19 0.350 mastermind_10_08_03-0009 2606 404 56 0.486

Promedus_29 434 8 5 0.301 or_chain_4.fg 700 9 44 0.348

Promedus_30 306 13 7 0.298 or_chain_12.fg 468 11 42 0.361

Promedus_31 466 2 14 0.370 or_chain_15.fg 656 11 39 0.347

Promedus_32 511 2 13 0.329 or_chain_53.fg 741 13 45 0.348

Promedus_33 378 2 6 0.303 or_chain_61.fg 1028 7 46 0.336

Promedus_34 415 3 22 0.361 or_chain_64.fg 460 9 38 0.358

Promedus_35 467 2 14 0.371 or_chain_90.fg 512 9 42 0.357

Promedus_36 467 2 14 0.371 or_chain_102.fg 860 11 45 0.325

Promedus_37 1039 4 27 0.330 or_chain_106.fg 695 10 41 0.344

Promedus_38 668 5 36 0.353 or_chain_107.fg 631 11 50 0.349

BN_31 1156 120 66 0.448 or_chain_128.fg 648 11 54 0.352

fs-07 1225 1120 36 0.440 or_chain_132.fg 723 13 43 0.344

mastermind_03_08_04-0000 2288 0 31 0.495 or_chain_138.fg 702 11 40 0.350

mastermind_03_08_04-0001 2288 36 31 0.495 or_chain_140.fg 1268 8 43 0.331

mastermind_03_08_04-0002 2288 36 31 0.495 or_chain_149.fg 629 10 38 0.352

mastermind_03_08_04-0003 2288 36 31 0.495 or_chain_150.fg 928 6 38 0.347

mastermind_03_08_04-0007 2288 245 33 0.495 or_chain_153.fg 710 9 35 0.347

mastermind_03_08_04-0008 2288 355 32 0.495 or_chain_155.fg 542 11 42 0.356

mastermind_03_08_04-0010 2288 142 32 0.495 or_chain_161.fg 794 8 46 0.350

mastermind_03_08_04-0012 2288 64 31 0.495 or_chain_188.fg 1061 11 38 0.308

mastermind_03_08_04-0013 2288 64 31 0.495 or_chain_209.fg 859 10 38 0.341

mastermind_03_08_04-0014 2288 64 31 0.495 or_chain_242.fg 613 10 43 0.360
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Table 4. Cont.

Benchmark nv ne mcs p0 Benchmark nv ne mcs p0

mastermind_03_08_04-0015 2288 64 31 0.495 blockmap_10_01-0009 5650 1078 56 0.499

mastermind_03_08_05-0001 3692 45 41 0.496 blockmap_10_02-0009 6252 1159 56 0.499

mastermind_03_08_05-0003 3692 45 39 0.496 blockmap_10_03-0009 6848 1844 60 0.499

mastermind_03_08_05-0009 3692 785 42 0.496 blockmap_10_03-0010 6848 1610 59 0.499

mastermind_04_08_03-0000 1418 0 24 0.491 blockmap_15_01-0008 16,497 6193 69 0.499

mastermind_04_08_03-0011 1418 48 24 0.491 blockmap_15_02-0008 17,649 5959 81 0.499

mastermind_04_08_03-0012 1418 48 24 0.491 blockmap_15_03-0010 18,787 6273 73 0.499

mastermind_04_08_03-0013 1418 48 24 0.491 blockmap_20_01-0009 39,297 15,222 105 0.499

We have also applied the DP algorithm (Algorithm 2) to the equivalent set of clauses
of the different problems. The average time was 200.736 s, but we need to take into account
that there was a time limit of 2000 s and that nine problems were not solved within this
time limit. The average, after taking into account the full resolution of these nine problems,
would have been higher. This shows that our method was able of solving more problems
and with less time, especially for difficult cases.

It is important to remark that the result of the deletion algorithms can be used
to develop Monte Carlo algorithms to obtain compatible configurations according to
Proposition 4, without rejecting any configuration due to a 0 probability. This is important
for the development of approximate algorithms and it is not feasible with classical SAT
algorithms deciding the satisfiability of the case and providing one satisfying assignment.

7. Conclusions and Future Work

In this paper, we have proposed a new procedure which can be applied to solve the
marginalization problem in propositional logic based on the use of Boolean arrays. The
experiments show that it is possible to solve, in an exact way, moderate-sized problems
(even with thousands of variables and a tree width of more than 100). The method is
based on a classical deletion algorithm but with some improvements based on the special
characteristics of Boolean arrays. We have provided a full set of tools for working and
operating with these arrays, allowing us to apply the Shenoy–Shafer abstract framework [2].
We have studied different methods for carrying out the deletion of a variable. Of special
interest is the deletion of a variable when its value is functionally determined from the
values of the other variables. Previous experiments with deletion algorithms [4,5] reported
experiments in general problems, with up to 25 variables. They have also reported experi-
ments with other problems, called ‘chain problems’, that were randomly generated in such
a way that the tree width was bounded by 5, while we have been able of solving problems
with a tree width of 103. We have shown that we have been able to expand the class of
problems that can be solved with the deletion algorithm, as the previous versions were
unable of solving the more difficult problems in our experiments. Some problems which
could be solved in seconds with our approach could not be solved in hours with former
basic deletion algorithm. This opens a new set of possibilities for algorithms to solve the
marginal problem.

For the future, this framework opens a wide range of possible developments:

• To optimize the deletion strategy by selecting the most appropriate method depending
on the characteristics of the tables in Hv.

• To improve the methods for decomposing a large table T as a product of smaller tables,
which can be more useful. Of special interest is also to obtain tables of low dimensions,
even if T is not decomposed as its product. The extreme case is a table of dimension 1,
which always simplifies the problem (if different from the neutral element).
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• To combine the clause representation and the table representation, as we have found
that the basic clause representation was able of solving faster the simpler problems.

• To organize computations in a join tree with a local computation algorithm [2,6].
• To develop approximate algorithms. For example, the mini-bucket elimination algo-

rithm [28] is a general framework for approximate algorithms based on partitioning
the set Hv before carrying out the combination of all the tables. In this case, we can
have more opportunities based on the fact that potentials are idempotent and the
alternative marginalization procedures we have provided.

• To combine approximate and exact computations. An approximate computation can
be the basis to obtain small informative tables, which can be useful to speed up an
exact algorithm.

• To develop a backtracking algorithm, taking as a basis the array representation.
• To approximate inference in Bayesian networks is NP-hard, especially when there are

extreme probabilities [29]. Approximate algorithms, such as likelihood weighting [30]
or penniless propagation [31], could take advantage of a previous and fast propagation
of 0–1 values with the procedures proposed in this paper. Experiment 3 has already
shown that our algorithms can propagate 0–1 values very fast in hard problems (from
the UAI 2022 competition).

• The special role of potentials representing functional dependence could also be studied
in the general framework of Information Algebras [32] and applied to other problems
which are particular cases, such as constraint satisfaction [33].

• To consider the easy deletion of some variables in an SAT problem as a preprocessing
step in SAT problems [34] that could be used as a simplification procedure.
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Appendix A. Proofs

Proposition A1. If T is a table and v ∈ V(T), then T−v = U(T, v)⊕U(T,¬v).

Proof. The result is immediate, since if W = V(T) \ {v}, we have that:
T−v(w) = max{T(w, v), T(w,¬v)} = max{U(T, v)(w), U(T,¬v)(w)} = (U(T, v)⊕

U(T,¬v))(w).

Proposition A2. If T1 and T2 are tables and v ∈ V(T1) ∩ V(T2), then (T1 ⊕ T2)
−v =

T−v
1 ⊕ T−v

2 .

Proof. The proof is immediate taking into account that being W = (V(T1) ∪V(T2)) \ {v},
we have:

T−v
1 ⊕ T−v

2 (w) = max{T−v
1 (w), T−v

2 (w)} =
max{max{T1(w, v), T1(w,¬v)}, max{T2(w, v), T2(w,¬v)}} =
max{max{T1(w, v), T2(w, v)}, max{T1(w,¬v), T2(w,¬v)}} =
max{T1 ⊕ T2(w, v), T1 ⊕ T2(w,¬v)} = (T1 ⊕ T2)

−v(w).

https://github.com/serafinmoral/SAT-solver
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Proposition A3. In each application of MARGINALIZE0(Hv), we have that Hv is equivalent to
R1 ∪ R2. Furthermore, if we call H′ to the update set H computed in Step 8 of Algorithm 2, then H
is equivalent to H′ ∪ R2.

Proof. R2 is the combination of all the tables in Hv, and therefore, it is equivalent to it. R1 is
the marginalization of T1, which is the combination of tables in Hv, and therefore, it is less
informative than Hv. The union of a set equivalent to Hv and a set that is less informative
than Hv produces a set which is equivalent to Hv.

For the second part, H′ = (H \ Hv)∪ R1; therefore, H′ ∪ R2 = (((H \ Hv)∪ R2)∪ R1).
If we remove from H a set of tables (Hv) and replace them by its combination (R2), then we
obtain a set which is equivalent to the original set H. On the other hand, R1 only contains a
table which is less informative than H, and therefore, if we add it, we obtain a set which is
equivalent to H.

Proposition A4. Assume a set of tables H and that Algorithm 2 is applied removing variables in
V(H) in order (v1, . . . , vk). Assume also that R2[∅] is equivalent to the empty set, i.e., the problem
is satisfiable; then, if Ti is the set of true assignments satisfying set of tables H−{v1,...,vi} and T0 is
the true assignments of H, then these sets can be computed in reverse order of i = 1, . . . , k in the
following way:

• Start with Ti = ∅.
• Make Tk equal to the set containing an empty vector v0 ∈ Ω∅.
• For each vi+1 ∈ Ti+1, compute Ti+1, the only table in U(R2[vi+1], vi+1), which is a ta-

ble defined only for variable vi+1. Then, this table is never equal to T0, and if v1
i and

v2
i are the true assignments obtained by extending vi+1 to variables {vi+1, . . . , vk} and

given by v1
i = (vi+1, vi+1), v2

i = (¬vi+1, vi+1), i.e., by considering vi+1 true and false,
respectively, then:

– if Ti+1 = Te, add v1
i and v2

i to Ti.
– if Ti+1(vi+1) = 1, Ti+1(¬vi+1) = 0, add v1

i to Ti.
– if Ti+1(vi+1) = 0, Ti+1(¬vi+1) = 1, add v2

i to Ti.

Proof. We have that H−{v1,...,vi+1} is equivalent to (H−{v1,...,vi})−vi+1 , which is equivalent
to U(H−{v1,...,vi}), vi+1) ⊕U(H−{v1,...,vi}),¬vi+1); then, we have that vi+1 ∈ Ti+1 if and
only if

vi+1 ∈ (T(U(H−{v1,...,vi}), vi+1)) ∪ T(U(H−{v1,...,vi}),¬vi+1))).
Therefore, we have that:
Ti+1 = {v−vi+1

i : vi ∈ Ti}.
Now, we take into account that H−{v1,...,vi} is equivalent to H−{v1,...,vi+1} ∪ R2[vi+1],

and then vi ∈ T(H−{v1,...,vi+1} ∪ R2[vi+1]) if and only if this assignment satisfies both
H−{v1,...,vi+1} and R2[vi+1].

To satisfy H−{v1,...,vi+1}, the condition is that there is vi+1 ∈ Ti+1 such that v−vi+1
i = vi+1,

i.e., that vi = v1
i or vi = v2

i for vi+1 ∈ Ti+1.
To satisfy, R2[vi+1], we have that if T is the only table in R2[vi+1], we have that

T(v1
i ) = 1 when U(T, vi+1)(vi+1) = 1, i.e., Ti+1(vi+1) = 1 and T(v2

i ) = 1 when
U(T, vi+1)(¬vi+1) = 1, i.e., Ti+1(¬vi+1) = 1. Furthermore, these are the conditions that
are checked to introduce v1

i and/or v2
i in Ti.

Ti can never be equal to T0, since for any vi+1 ∈ Ti+1, we must have that either v1
i or

v2
i is in Ti.

Proposition A5. If Hv is a set of tables containing variables v, then R1 computed in Algorithm 4
represents H−v

v .

Proof. We have to prove that R1 represents ⊗(Hv)−v.
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Each table (Ti ⊗ Tj)
−v ∈ R1 is such that Ti ⊗ Tj � ⊗(Hv), and therefore, (Ti ⊗ Tj)

−v �
(⊗(Hv))−v. Then, R1 � {(⊗(Hv))−v}.

On the other hand:

(⊗(Hv))
−v = U(⊗(Hv), v)⊕U(⊗(Hv),¬v)

Thus, if v′ ∈ ΩV(Hv)\{v}, we have that if ⊗(Hv))−v(v′) = 0, then for ` = v and l = ¬v,
U(⊗(Hv), `)) = 0 and ⊗(U(Hv, `))(v′) = 0. Since:

⊗(U(Hv, `))(v′) = min
Ti∈Hv

U(Ti, `)(v′),

we have that for ` = v, there is Ti ∈ Hv with U(Ti, v)(v′) = 0, and for ` = ¬v, there
is Tj ∈ Hv with U(Tj,¬v)(v′) = 0. Since U(Ti, v)(v′) ≥ (U(Ti, v) ⊗ U(Tj, v))(v′) and
U(Tj, v)(v′) ≥ (U(Ti, v)⊗U(Tj, v))(v′), then U(Ti ⊗ Tj, v) = 0 and U(Ti ⊗ Tj,¬v) = 0.

Since (Ti ⊗ Tj)
−v = U(Ti ⊗ Tj|v)⊕U(Ti ⊗ Tj|¬v), we also have (Ti ⊗ Tj)

−v(v′) = 0,
and, taking into account that (Ti ⊗ Tj)

−v ∈ R1, we have that ⊗(R1)(v′) = 0.
We have proved that if (⊗(Hv))−v(v′) = 0, then we have that ⊗(R1)(v′) = 0,

and as a consequence, (⊗(Hv))−v � ⊗(R1), and we have the other inequality and
the equivalence.

Proposition A6. If (R1, R2) are the sets computed in MARGINALIZE2 and the initial conditions
required by the algorithm are satisfied, then H−v

v is equivalent to R1 and Hv is equivalent to
R1 ∪ R2.

Proof. To prove that H−v
v is equivalent to R1, we only has to prove that for any Ti, Tj ∈ Hv,

then (Ti ⊗ Tj)
−v � (T ⊗ Ti)

−v ⊗ (T ⊗ Ti)
−v. We have:

(T ⊗ Ti)
−v ⊗ (T ⊗ Ti)

−v =

(U(T ⊗ Ti, v)⊕U(T ⊗ Ti,¬v))⊗ (U(T ⊗ Tj, v)⊕U(T ⊗ Tj,¬v)) =

(U(T ⊗ Ti, v)⊗U(T ⊗ Tj, v))⊕ (U(T ⊗ Ti,¬v)⊗U(T ⊗ Tj,¬v)),

where the last inequality comes from the fact that (U(T ⊗ Ti, v)⊗ (T ⊗ Tj,¬v)) is more
informative than (U(T, v)⊗ (T,¬v)), which is equivalent to T0, and then (U(T⊗ Ti, v)⊗
(T ⊗ Tj,¬v)) is also equivalent to T0 and can be removed from a disjunction.

Thus, if R′1 is the set of tables computed with MARGINALIZE1, then R′1 is less informa-
tive than R1. On the other hand, since R1 ⊆ R′1, then R1 is less informative than R′1 and the
two sets are equivalent.

Now, we have to prove that R1 ∪ R2 is equivalent to Hv. R1 ∪ R2 is less informative
than Hv as R1 and R2 are contained in the sets R′1, R′2, computed with MARGINALIZE1.

Consider V′ = V(Hu) \ {v}. If ⊗(Hv)(v′, `) = 0, where ` = v or ` = ¬v, we can have
the following situations:

• If ⊗(Hv)(v′,¬`) is also 0, then ⊗(Hv)−v(v′) = 0 and then ⊗(R1)(v′) = ⊗(R1)
(v′, `) = 0.

• If ⊗(Hv)(v′,¬`) = 1, we have that T(v′,¬`) = 1 as T is an element from Hv, and
given that T determines v, we must have T(v′, `) = 0, and as T is the only element
from R2, obviously, ⊗(R2)(v′, `) = 0.

As a consequence if ⊗(Hv)(v′, `) = 0, we always have ⊗(R1 ∪ R2)(v′, `) = 0, and
R1 ∪ R2 is also more informative than Hv, which are, finally, shown to be equivalent.
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