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Abstract: Although previous studies have suggested a relationship between telomere shortening and
systemic sclerosis (SSc), the association between these two traits remains poorly understood. The
objective of this study was to assess the causal relationship between telomere length in leukocytes
(LTL) and SSc using the two-sample Mendelian randomization approach, with the genome-wide
association study data for both LTL and SSc. The results of inverse-variance weighted regression
(OR = 0.716 [95% CI 0.528–0.970], p = 0.031) and the Mendelian randomization pleiotropy residual
sum and outlier method (OR = 0.716 [95% CI 0.563–0.911], p = 0.035) indicate an association between
telomere length and SSc. Specifically, longer genetically predicted LTL is associated with a reduced
risk of SSc. Sensitivity tests highlight the significant roles of the variants rs10936599 and rs2736100
annotated to the TERC and TERT genes, respectively. Our findings suggest an influence of telomere
length in leukocytes on the development of SSc.

Keywords: systemic sclerosis; telomere length; mendelian randomization

1. Introduction

Systemic sclerosis (SSc) is an immune-mediated inflammatory disease (IMID) charac-
terized by vascular damage, chronic inflammation and fibrotic involvement of connective
tissues [1]. SSc patients can be classified as limited cutaneous SSc (lcSSc) or diffuse cuta-
neous SSc (dcSSc) based on the extension of skin fibrosis [2]. Similarly to other IMIDs, SSc is
a complex disease involving interplay of genetic, epigenetic and environmental factors [2].

Significant progress has been made in the genetic understanding of SSc in recent years
through extensive genome-wide association studies (GWAS) and Immunochip studies [3–5].
The majority of the robustly replicated SSc susceptibility loci are involved in innate or
adaptive immune system [6]. These studies, coupled with comprehensive expression
analyses, have underscored the involvement of leukocytes in SSc pathogenesis [3–9].

Telomeres are nucleoprotein structures located at chromosome ends that are implicated
in the preservation of genome integrity and stability [10]. These structures naturally
undergo telomere shortening (TS), a process linked to inflammation and cellular senescence,
both of which are implicated in the pathogenesis of SSc [2,11–14]. Of note, previous studies
evaluating telomere length in leukocytes (LTL) in SSc have been undertaken; however, the
findings have been inconsistent, and their significance regarding SSc pathogenesis remains
unclear [15–19].
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Mendelian randomization (MR) studies allow for exploring the potential causal rela-
tionship between a risk factor and a disease [20]. These studies employ single-nucleotide
polymorphisms (SNPs) as instrumental variables (IVs) and are based on the assumption
that SNPs are associated with the risk factor but not with the disease or a confounding
factor [20]. In recent years, MR studies have been conducted to overcome the limitations of
observational studies and to provide insights into the causal relationship between several
IMIDs and multiple exposures [21].

In the present study, we aimed to investigate the causal relationship between LTL and
SSc through an MR study.

2. Results

Seven IVs were used in our study based on their association with LTL [22]. This
information and their respective effect estimators for the SSc and SSc clinical subtypes are
shown in Table 1 and Table S1, respectively. The selected IVs were strong enough to avoid
weak bias, as indicated by the F-statistic value of 67.03 [23].

Table 1. Genetic associations of the selected instrumental variables with LTL and SSc.

LTL SSc

SNP CHR BP Gene Effect Allele Other Allele β p β p

rs11125529 2 54,475,866 ACYP2 C A −0.056 4.48 × 10−8 −0.021 0.478
rs10936599 3 169,492,101 TERC T C −0.097 2.54 × 10−31 0.051 0.043
rs7675998 4 164,007,820 NAF1 A G −0.074 4.35 × 10−16 −0.004 0.910
rs2736100 5 1,286,516 TERT A C −0.078 4.38 × 10−19 0.034 0.145
rs9420907 10 105,676,465 OBFC1 A C −0.069 6.90 × 10−11 −0.002 0.974
rs8105767 19 22,215,441 ZNF208 A G −0.048 1.11 × 10−9 0.039 0.297
rs755017 20 62,421,622 RTEL1 A G −0.062 6.71 × 10−9 0.025 0.450

BP: base pair position; CHR: chromosome; LTL: leukocyte telomere length; SSc: systemic sclerosis; β: size effect of
the association.

Since none of the heterogeneity tests were significant, the inverse-variance weighted
(IVW) fixed-effects (FE) method was used for the three datasets analyzed (Tables 2 and 3).
In addition, MR-Egger showed no evidence of horizontal pleiotropy in any of the datasets,
and the MR pleiotropy residual sum and outlier (MR-PRESSO) method detected no outliers
(Tables 2 and 3).

Table 2. Association between genetically predicted LTL and risk of SSc.

MR Approach nSNP OR (95% CI) p p for
Heterogeneity

p for
Pleiotropy

Inverse-variance weighted FE 7 0.716 (0.528–0.970) 0.031 0.708 NA
Maximum likelihood 7 0.714 (0.525–0.970) 0.031 NA NA

MR Egger 7 0.397 (0.094–1.670) 0.263 0.686 0.448
Weighted median 7 0.642 (0.438–0.941) 0.023 NA NA
Weighted mode 7 0.625 (0.411–0.952) 0.071 NA NA

MR-PRESSO 7 0.716 (0.563–0.911) 0.035 NA NA

CI: confidence interval; FE: fixed effects; LTL: leukocyte telomere length; MR: mendelian randomization; NA: not
applicable; nSNP: number of single-nucleotide polymorphisms in the analysis; OR: odds ratio; PRESSO: pleiotropy
residual sum and outlier; SSc: systemic sclerosis.

Our results for IVW-FE show an association between genetically predicted longer LTL
and a reduced risk of SSc (OR = 0.716 [95% CI 0.528–0.970], p = 0.031). In addition, three
other MR methods, maximum likelihood, weighted median and MR-PRESSO, showed the
consistency of our results, with a significant association and the same direction of effect
(Table 2). Interestingly, even when weighted mode regression did not reach statistical
significance, the estimate was in the same direction as the other methods. MR-Egger regres-
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sion results were not statistically significant (OR = 0.397 [95% CI 0.094–1.670], p = 0.263).
Table 2 summarizes the MR results for LTL and SSc, indicating a negative relation between
genetically predicted telomere length and SSc. Regarding leave-one-out (LOO) sensitivity
analysis, we observed that individually removing two SNPs (rs10936599 and rs2736100)
from the analysis resulted in the loss of the significance, maintaining the direction of the
effect (p = 0.241 and p = 0.102, respectively; Table S2).

Table 3. Association between genetically predicted LTL and risk of SSc main clinical subtypes.

lcSSc dcSSc

MR
Approach nSNP OR (95% CI) p p for

Heterogeneity
p for

Pleiotropy OR (95% CI) p p for
Heterogeneity

p for
Pleiotropy

Inverse-
variance
weighted

FE

7 0.669
(0.468–0.956) 0.027 0.772 NA 0.771

(0.481–1.237) 0.281 0.847 NA

Maximum
likelihood 7 0.667

(0.466–0.957) 0.028 NA NA 0.770
(0.479–1.237) 0.280 NA NA

MR Egger 7 0.338
(0.062–1.845) 0.266 0.755 0.457 0.389

(0.042–3.646) 0.446 0.804 0.567

Weighted
median 7 0.605

(0.393–0.932) 0.023 NA NA 0.647
(0.360–1.163) 0.146 NA NA

Weighted
mode 7 0.574

(0.345–0.954) 0.076 NA NA 0.644
(0.329–1.262) 0.247 NA NA

MR-
PRESSO 7 0.669

(0.514–0.872) 0.025 NA NA 0.771
(0.562–1.058) 0.159 NA NA

CI: confidence interval; dcSSc: diffuse cutaneous systemic sclerosis; FE: fixed effects; lcSSc: limited cutaneous
systemic sclerosis; LTL: leukocyte telomere length; MR: mendelian randomization; NA: not applicable; nSNP:
number of single-nucleotide polymorphisms in the analysis; OR: odds ratio; PRESSO: pleiotropy residual sum
and outlier; SSc: systemic sclerosis.

Lastly, we investigated the specific associations for LTL with the two main clinical
subtypes of the disease. Our results show a significant association between genetically
predicted longer LTL and a decreased risk of lcSSc for IVW-FE with an OR of 0.669 [95%
CI 0.468–0.956] and a p-value of 0.027. In addition, the maximum likelihood, weighted
median and MR-PRESSO methods were also statistically significant (Table 3). In contrast,
the results in dcSSc showed no statistically significant association with LTL for any of
the MR methods applied (IVW-FE: OR = 0.771 [95% CI 0.481–1.237], p = 0.281; Table 3).
Noteworthy, LOO sensitivity analysis results for lcSSc revealed the loss of significance for
the same two SNPs as observed for the complete SSc dataset, rs10936599 p = 0.234 and
rs2736100 p = 0.081 (Table S3).

3. Discussion

In the current study, we investigated the possible causal relationship of LTL with the
risk of SSc, and its main clinical subtypes, using the MR methodology and the largest SSc
GWAS in Europeans [3]. Our primary findings show a significant association between
genetically predicted longer LTL and a reduced risk of SSc, shedding light on the direction
of influence between these two traits.

Previous observational studies in LTL in SSc reached conflicting results [15–17]. How-
ever, the largest and most recent study described a higher proportion of patients with SSc
with shorter telomeres compared to controls [15]. Consistent with this observation, our
data indicate that genetically predicted longer LTLs are associated with a reduced risk of
SSc (IVW-FE: OR = 0.716 [95% CI 0.528–0.970], p = 0.031; Table 2). Furthermore, owing
to the methodology applied, our study provides evidence that LTL influences the risk
of developing SSc rather than the disease progression affecting LTL. These results align
with the data reported in a MR study for LTL performed for an IMID primarily affecting
the skin, psoriasis [24], and another connective tissue disease, rheumatoid arthritis [25].
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However, our results significantly contrast with the results of a similar study in systemic
lupus erythematosus [26]. These discrepancies may be explained by the high complexity of
connective tissue disorders.

Regarding the relationship of LTL with the main clinical subtypes, we observed a
significant association between LTL and lcSSc, whereas the analysis for dcSSc did not
reach statistical significance (Table 3). This observation may be attributed to variations in
statistical power between clinical subtypes, as shown in Table S4. Several studies have
analyzed LTL in lcSSc and dcSSc, yielding conflicting results [15,18,19] that may be related
to the different sample sizes, normal telomere length (TL) reference or methods used to
measure TL. These inconsistencies underscore the necessity for further and larger studies
to understand LTL in lcSSc and dcSSc.

In examining the sensitivity analyses, we found that two SNPs (rs10936599 and
rs2736100) were the primary contributors to the obtained results. Interestingly, these
SNPs and their corresponding annotated genes, TERC and TERT, were associated with
idiopathic forms of interstitial lung disease [27,28]. Moreover, it is worth nothing that
telomere shortening is an established risk factor for idiopathic pulmonary fibrosis [14,24]
and has also been associated with different pulmonary features in SSc patients [15,18].
Taking the above into consideration, the contribution of LTL to SSc seems to be especially
relevant in the severe pulmonary affection of the disease. Unfortunately, the clinical data
regarding pulmonary affection in our large GWAS cohort are limited, and we could not
evaluate this in the present study.

Our results underscore the potential involvement of LTL in SSc development. How-
ever, the mechanism by which LTL affects SSc remains unknown. In this context, we
hypothesize some potential pathways. First, short TL could contribute to the dysregulation
of the immune system by affecting T-cell numbers and receptor diversity [28]. Notably,
CD28-negative T cells that have a proinflammatory profile with alternative receptors, cy-
tolytic properties and shorter TL [13] have been reported to be increased in the blood and
skin of SSc patients [29]. Additionally, several studies have related short TL and telomere
dysfunction with increased proinflammatory cytokines [30–32], which could contribute to
the immune imbalance of the disease. Furthermore, the presence of autoantibodies against
a telomere-related protein (TERF1) in some SSc patients and its association with shorter
LTL [33] highlight the interplay between telomeres and immune response.

4. Materials and Methods

To determine the possible causal relationship between LTL and SSc and its main clinical
subtypes, lcSSc and dcSSc, we carried out a two-sample MR (2SMR) study (Figure 1). This
approach allows the use of two non-overlapping datasets, one for the exposure and another
for the outcome, to determine the causal relationship between them [34].

4.1. Genetic Data Sources and IV Selection

Genetic association data for seven non-palindromic independent SNPs, associated
at genome-wide significance level (p < 5 × 10−8) with LTL, were obtained from a GWAS
meta-analysis comprising 37,684 European-descent individuals [22]. Summary statistics
from the largest SSc GWAS in Europeans (9095 patients with SSc and 17,584 controls) [3]
were used to extract the association estimates for the outcome. A summary of these SNPs
as IVs and their size effect on both LTL and SSc can be found in Table 1. In addition,
association data specific for lcSSc and dcSSc were also used (Table S1). The sample size of
the cohort and the clinical subtypes are shown in Table S5.

To ensure the adequacy of the IVs, Phenoscanner [35,36] and LDtrait [37,38] were used
to verify the absence of a direct association of the IVs with the outcome. The strength of the
selected IVs was evaluated using the F statistic, with an F value greater than 10 indicating
sufficient strength to avoid weak bias [23]. Furthermore, we calculated the statistical power
of our analysis following the methodology of Brion et al. [39].
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Figure 1. Framework of the 2SMR study for leukocyte telomere length and systemic sclerosis. The 
2SMR approach utilizes data from two independent GWAS and employs SNPs as instrumental var-
iables. The selected SNPs are associated with the exposure, influence the outcome only through the 
exposure and should not be associated with any confounder. Parts of the figure were drawn by 
using and modifying pictures from Servier Medical Art. Servier Medical Art by Servier is licensed 
under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/li-
censes/by/3.0/), accessed on 26 September 2023. 2SMR: two-sample Mendelian randomization; 
GWAS: genome-wide association studies; IV: instrumental variable; SNP: single-nucleotide poly-
morphism. 
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is based on the direct maximization of the likelihood and provides more accurate confi-
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Figure 1. Framework of the 2SMR study for leukocyte telomere length and systemic sclerosis.
The 2SMR approach utilizes data from two independent GWAS and employs SNPs as instrumental
variables. The selected SNPs are associated with the exposure, influence the outcome only through the
exposure and should not be associated with any confounder. Parts of the figure were drawn by using
and modifying pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under
a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/
by/3.0/), accessed on 26 September 2023. 2SMR: two-sample Mendelian randomization; GWAS:
genome-wide association studies; IV: instrumental variable; SNP: single-nucleotide polymorphism.

4.2. MR Analysis

MR analyses were performed using the 2SMR approach with the R package “TwoSam-
pleMR” [34], and a significant association was determined at a p < 0.05. The IVW, the
maximum likelihood, the MR-Egger and the MR-PRESSO methods were selected for
the analysis.

The IVW method combines the effects of all the IVs and, by assuming the validity or
invalidity of all the SNPs, sets the global pleiotropy to zero [34]. The selection between
IVW FE or random effects was determined by the p-value of the heterogeneity test, where a
p > 0.05 indicated the use of the fixed-effects model. The maximum likelihood approach is
based on the direct maximization of the likelihood and provides more accurate confidence
intervals than the IVW when there is some uncertainty in the genetic associations [40].
We also employed MR-Egger regression, as it has the capacity to estimate causality using
weak or invalid IVs and to provide an estimation of the pleiotropy [41]. MR-PRESSO
was implemented due to its capability to detect outliers and to provide an outlier-free
estimate [42]. Additionally, weighted median and weighted mode were applied to obtain
an unbiased estimate in the presence of some invalid IVs, weighting the contribution of
the IVs [43,44]. The median method requires at least half of IVs to be valid, while the
mode method assumes the validity of IVs within the larger group of IVs based on their
similarity [43,44].

In order to evaluate the effect of each SNP, we carried out a LOO sensitivity analysis,
which provides the IVW estimate sequentially excluding one of the IVs at a time [34],
applying the tool implemented in the “TwoSampleMR” package (https://elifesciences.org/
articles/34408), accessed on 26 September 2023 [34].

5. Conclusions

In conclusion, our study points towards a possible causal relationship between in-
creased LTL and a reduced risk of SSc. It is important to interpret these results with caution
until further investigation is conducted in this area, acknowledging the inherent limitations

https://creativecommons.org/licenses/by/3.0/
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of MR studies in fully assessing the assumptions related to the exclusive impact of the IVs
on the outcome through the risk factor. Future studies with the aim of clarifying specific
associations and evaluating possible mechanisms are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms242115589/s1.
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