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Abstract: In this work, we study the possibility of using a new non-homogeneous stochastic diffusion
process based on the Rayleigh density function to model the evolution of the active cases of COVID-19
in Morocco. First, the main probabilistic characteristics and analytic expression of the proposed
process are obtained. Next, the parameters of the model are estimated by the maximum likelihood
methodology. This estimation and the subsequent statistical inference are based on the discrete
observation of the variable x(t) “number of active cases of COVID-19 in Morocco” by using the
data for the period of 28 January to 4 March 2022. Then, we analyze the mean functions by using
simulated data for fit and forecast purposes. Finally, we explore the illustration of using this new
process to fit and forecast the active cases of COVID-19 data.

Keywords: Rayleigh distribution; diffusion process estimation; mean function; simulated annealing;
COVID-19

1. Introduction

The mathematical modeling of infectious diseases is a way in which to study the
spread of diseases and their behavior to predict the future trajectories of an epidemic, as
well as to help guide public health planning and disease control. The models developed use
stochastic processes to estimate the number of infected cases that could occur in the coming
weeks or months. This methodology helps researchers simulate real-world possibilities
in a virtual environment. On the other hand, diffusion stochastic processes (SDPs) are
good mathematical models that describe probabilistic phenomena in several domains, like
environment, biology, economics, medicines and others. Some of the SDPs studied in this
sense are found in the works of Bertalanffy [1], Gamma [2], Weibull [3] and Lundqvist-
Korf [4], who used SDPs to study growth patterns because of their exponential behavior.
In addition, Capocelli and Ricciardi [5] were the first to consider a diffusion process that
was associated with the Gompertz curve, and this has been applied to several fields of
study, such as population growth or neural activity modeling [6]. The logistic diffusion
process has been applied to a diverse range of scientific areas; specifically, Capocelli and
Ricciardi [7] derived a new diffusion process from a re-parameterization of the logistic
model. Giovanis and Skaidas [8] proposed a stochastic logistic model that was analytically
solved by using the theoretical framework of reducible stochastic differential equations
(SDEs), and these were then applied to study the consumption of electricity in Greece and
the United States.

The new virus of SARS-CoV-2, named COVID-19 (Coronavirus 2019) by the World
Health Organization (WHO), is believed to have originated from an animal source in
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the city of Wuhan, Hubei region, China, in December 2019. Since its first appearance,
the disease has spread worldwide. On 11 March 2020, the WHO officially classified the
epidemic as a pandemic. As of 22 March 2022, the virus (including its variants) has infected
492 million people, with 6.5 million deaths. Several research studies have been developed
in the context of modeling the pandemic. For example, see Ref. [9] for the stochastic
COVID-19 Levy jump model with an isolation strategy; Ref. [10] introduced a new model
for the spread of COVID-19 and the improvement of safety; Ref. [11] constructed a new
random infectious disease system under the environmental noise of the infection rate, as
well as studied the probability density function (PDF) of the stochastic system; and Ref. [12]
applied a mathematical model to describe the behavior of the number of cases with respect
to time in Italy.

The Rayleigh distribution was developed by the physicist Lord Rayleigh [13], and it is
widely used in physics-related fields to model processes such as sound and light radiation,
wind speed, and wave height. It is also used in communications theory to describe the
hourly median and instantaneous peak power of received radio signals (see, [14]). In
addition, it plays a crucial role in the field of land mobile radio as it can accurately describe
wind speed. Thus, the Rayleigh distribution has a wide use in many fields, which makes
its study from dynamic and stochastic point of views interesting (see for example, [15]).

The problem of statistical inference in SDPs has attracted a great deal of interest in
recent years, and this applies both when the process is considered continuously or discretely.
In general, the estimation of parameters in stochastic models is not direct apart from in
simple cases, and one possible method is based on the approximation of the maximum
likelihood (ML) function. In this context, various methods have been developed to address
this problem. The basic case for this approach can be found in Bibby and Sorensen [16], as
well as in Ait-Sahalia [17]. The method of estimating the ML of the parameters when using
likelihood equations can be difficult to implement, which is the reason why we propose to
use the simulated annealing (SA) method for estimating the parameters in an SDP (see, for
instance, [3,4]).

In this work, based on previous research in this field, we introduce a stochastic
Rayleigh diffusion process (SRDP) whose mean is proportional to the Rayleigh density
function (RDF) . The SRDP is used to model the evolution of the active cases of COVID-19,
and this is the first attempt to use the stochastic Rayleigh diffusion process to model a
pandemic. The SRDP was introduced by [18] to model female and male life expectancy at
birth in Spain. A brief version of this process was introduced by [19], and we specifically
call this method the Ornstein–Uhlenbeck radial process. This process has also been studied
and applied by [20] to model the production of thermal energy in the Maghreb. The
Rayleigh process has also been used to model the exchange rate dynamics when using the
Swiss Franc against the Euro under a floating-rate regime [21], as well as for the statistical
inference and computational aspects of the stochastic Rayleigh diffusion model [22].

In the present paper, we introduce a new SRDP that is different from the one studied
in [22]. This SRDP is based on RDF, and the paper is organized in the following way: In
Section 2, we describe how the explicit form of this SRDP model is given by Itô’s lemma.
Moreover, we give all the main characteristics of the proposed process, such as the transition
PDF (TPDF), mean function (MF) and the conditional mean function (CMF). In Section 3,
we adopt the ML to find the estimators of the parameters of our model. The parameter
estimators are found by solving the ML equations. That said, in this case, we cannot find the
solution directly, so we use the numerical method of simulated annealing (SA). In Section 4,
we simulate the SRDP through using its explicit form. We also observe the behavior of the
SRDP trajectories for the different values of parameters of the diffusion coefficient. We then
use the simulated data to obtain the estimators of our given parameters by applying the
adopted numerical method. Furthermore, we predict some of the realizations by using
the estimated MF (EMF) and conditional CMF (ECMF). Section 5, offers an application of
this process through an exploration of the development of the active COVID-19 cases in
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Morocco from January to February 2022. In the last section, we detail the conclusion of
our findings.

2. The Proposed SRDP

In this section, we introduce the new SRDP, whose mean function is proportional to
the Rayleigh one. We also determine how the SDE solution can be explicitly expressed with
its probabilistic characteristics.

2.1. Definition of the SDE of the SRDP

The RDF is defined by

x(t) =
t

α2 exp
(−t2

2α2

)
; t > 0. (1)

By differentiation of Equation (1) with respect to t, we obtain the following:

dx(t)
dt

=
t

α2 exp
(−t2

2α2

)[1
t
− t

α2

]
. (2)

When considering g(t) =
1
t
− t

α2 , Equation (2) becomes

dx(t)
dt

= g(t)x(t); t > 0. (3)

When we replace g(t) by g(t) + σw(t), we obtain the following SDE:

dx(t) = g(t)x(t)dt + σx(t)dw(t); x(t1) = x1, (4)

with w(t) as a Brownian motion, x1 is a positive random variable, which is independent
of x(t) for t ≥ t1 and t1 > 0. By applying Itô’s formula, we obtain the expression of the
process {x(t) : t ≥ t1}, with infinitesimal moments:

B1(x, t) = g(t)x(t); B2(x, t) = σ2x2(t). (5)

The functions B1(x, t) and B2(x, t) in Equation (5) are measurable in the sense of Borel,
and they meet the uniform Lipschitz and the growth conditions (see [18]). Afterward, our
SDE (4) has a unique solution {x(t) : t ∈ [t1; T]}, which is continuous with probability 1
and meets the initial condition P(x(t1) = x1) = 1.

2.2. The Explicit Form of the SRDP

We address the transformation form z(t) = ln(x(t)), and apply it to Itô’s formula.
Thus, the obtained SDE (4) is as follows:

dz(t) =
[

g(t)− σ2

2

]
dt + σdw(t) =

[
1
t
− t

α2 −
σ2

2

]
dt + σdw(t). (6)

By integrating the two sides, we obtain

z(t) = z(t1) + ln
(

t
t1

)
− 1

2α2 (t
2 − t2

1)−
1
2

σ2(t− t1) + σ(w(t)− w(t1)). (7)

Thus, from the latter and due to the result in [23], a necessary and sufficient condition for
z(t) to be a Gaussian process is that ln(x1) must be normally distributed or constant.
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When the initial condition x(t1) = x1 is taken into account, then the solution of the
SDE (4) from the (7) can be explicitly expressed as follows:

x(t) = xt1

(
t
t1

)
exp

(
− 1

2α2 (t
2 − t2

1)−
1
2

σ2(t− t1) + σ(w(t)− w(t1))

)
. (8)

2.3. Characteristics of the SRDP
2.3.1. The TPDF of the Process

Regarding the SRDP expression in Equation (8), we find

x(t) ∼ Λ1(µ(t, s, xs), σ2(t− s)). (9)

We can then determine the TDPF of the SRDP for t > s as

f (x, t | xs; s) =
1

σxs
√

2π(t− s)
exp

[
− (ln(x)− µ(t, s, xs))

2

2σ2(t− s)

]
, (10)

with µ(t, s, xs) = ln(xs) + ln
(

t
s

)
− 1

2α2 (t
2 − s2)− σ2

2
(t− s).

2.3.2. The r-th Conditional and Its Mean Functions

Based on the fact that {x(t) | x(s) = xs} is a lognormal process, the rth conditional
moments of the SRDP are as follows:

E(xr | x(s) = xs) = exp
(

rµ(s, t, xs) +
r2σ2

2
(t− s)

)
=

(
xs

t
s

)r
exp

[
r
(
− 1

2α2 (t
2 − s2)− σ2

2
(t− s)

)
+

r
2

σ2(t− s)
]

.

When r = 1, then the CMF is

E[x(t) | x(s) = xs] = xs

(
t
s

)
exp

(
− 1

2α2 (t
2 − s2)

)
. (11)

By taking into account the degenerate distribution P(x(t1) = x1) = 1, the MF is

m(t) = x1

(
t
t1

)
exp

(
t2
1

2α2

)
exp

(
− t2

2α2

)
. (12)

2.4. Remark

In the case where σ = 0 i.e., in the absence of white noise, Equation (4) has a unique
solution of x(t) = kt exp

(
−t2

2α2

)
, which is proportional to the Rayleigh curve f (t; α) =

kt exp
(
−t2

2α2

)
with α > 1.

3. Inference on the SRDP
3.1. The Model Estimation by Using the ML

The SRDP parameters can be estimated via a discrete sampling that drives from
the likelihood function, and this originates in the transitions of the process. Let us take
the discrete sample x(ti) = xi, of the process i = 1, . . . , n during t1, . . . , tn. We thus take
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ti− ti−1 = h for i = 2, . . . , n. The parameters estimated through the ML include θ = (β, σ2)
′
,

where β =
1
α2 . The likelihood function is then given by

L(x1, . . . , xn; θ) =
n

∏
i=2

fθ(xi, ti | xi−1; ti−1), (13)

When we search for the value of θ maximizing L, to this end, we search for a solution to
this differential system:

∂

∂θj

n

∏
i=2

fθ(xi, ti | xi−1; ti−1) ; j = 1, 2.

The logarithm of L is

ln L(x1,...,xn)

(
β; σ2

)
= ln

n

∏
i=2

fθ(xi, ti | xi−1; ti−1). (14)

Then,

ln L(x1,...,xn) =−
1

2σ2

n

∑
i=2

1
ti − ti−1

[
ln
(

xi
xi−1

)
− ln

(
ti

ti−1

)
+

β

2

(
t2
i − t2

i−1

)
+

σ2

2
(ti − ti−1)

]2

−
n

∑
i=2

ln
(

σxi

√
2π(ti − tt−1)

)
.

We thus consider h = ti − ti−1 and θi,β = ln
(

xi
xi−1

)
− ln

(
ti

ti−1

)
+

β

2

(
t2
i − t2

i−1

)
, and we

obtain

ln L(x1,...,xn) =
−(n− 1)

2

(
ln σ2 + ln(2πh)

)
−

n

∑
i=2

ln(xi)−
1

2σ2h

n

∑
i=2

[
θi,β +

σ2

2
h
]2

.

Regarding the derivative of ln L with respect to β and σ2, we obtain

∂ ln L
∂β

=
−1
2σ2

n

∑
i=2

(ti + ti−1)

(
θi,β +

σ2

2
h
)

(15)

∂ ln L
∂σ2 =

−(n− 1)
2σ2 −

[
−1

2σ4h

n

∑
i=2

(
θi,β +

σ2

2
h
)2

+
1

2σ2

n

∑
i=2

(
θi,β +

σ2

2
h
)]

. (16)

By setting the last Equations (15) and (16) as being equal to zero, we find the following:

n

∑
i=2

(ti + ti−1)

(
θi,β +

σ2

2
h
)
= 0.

− (n− 1)σ2 +
1
h

n

∑
i=2

(
θi,β +

σ2

2
h
)2

− σ2
n

∑
i=2

(
θi,β +

σ2

2
h
)
= 0,

after a development of the second equation, we obtain
n

∑
i=2

(ti + ti−1)

(
θi,β +

σ2

2
h
)
= 0. (1)

h2

4
σ4 + hσ2 − 1

n− 1

n

∑
i=2

θ2
i,β = 0. (2)
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The second equation of the set equations is a quadratic equation on σ2; thus, we

can find the positive solution because the discriminant ∆ = h2 +
h2

(n− 1)

n

∑
i=2

θ2
i,β is strictly

positive. The ML estimated value of σ2 is as follows:

σ̂2 =
2
h

{1 +
1

(n− 1)

n

∑
i=1

θ̂2
i,β

}1/2

− 1

, (17)

with

θ̂i,β = ln
(

xi
xi−1

)
− ln

(
ti

ti−1

)
+

1
2

β̂h(ti + ti−1),

we then obtain the non-linear equation by substituting the last expression into the second
likelihood equation

n

∑
i=2

(ti + ti−1)

θi,β +

{
1 +

1
(n− 1)

n

∑
i=1

θ̂2
i,β

}1/2

− 1

 = 0. (18)

To find the second parameter’s estimator, we need to resolve the non linear Equation (18),
which could prove to be difficult. Therefore, we opted for the numerical method SA.

3.2. The Model Characteristics Estimation
3.2.1. The MF and CMF Estimation

By considering the Zehna theorem (see [24]), the estimators of the MF and the CMF
are given by replacing the values of the parameters in Equations (11) and (12) with their
estimators. The ECMF can be described as follows:

Ê(x | x(s) = xs) = xs

(
t
s

)
exp

(
−1

2
β̂
(

t2 − s2
))

. (19)

Taking into account the condition P(x(t1) = x1) = 1, the EMF is shown as follows:

Ê(x(t)) = x1

(
t
t1

)
× exp

(
1
2

β̂t2
1

)
× exp

(
−1

2
β̂t2
)

. (20)

3.2.2. Confidence Interval

The confidence interval (CI) of the SRDP was adapted from the procedure that was
developed in [25]. Consider u(s, t) = x(t) | x(s) = xs and w(t)− w(s) ∼ N(0; (t− s)) for
t ≥ s, so

v =
ln(u(s, t))− µ(s, t, xs)

σ
√

t− s
∼ N(0, 1),

with µ(s, t, xs) = ln(xs) + ln
(

t
s

)
− 1

2
β
(

t2 − s2
)
− σ2

2
(t− s). The conditional CI (CCI) for

v a δ% is given by P(−λ ≤ v ≤ λ) = δ%.
Then, we can obtain the CI for the variable u(s, t) by applying the formula(

ulower(s, t); uupper(s, t)
)

with

ulower(s, t) = exp
(

µ(s, t, xs)− λσ
√

t− s
)

, (21)

uupper(s, t) = exp
(

µ(s, t, xs) + λσ
√

t− s
)

, (22)

and with λ = F−1
N(0;1)

(
1− δ

2

)
, where F−1

N(0;1) is the inverse cumulative normal standard
distribution.



Fractal Fract. 2023, 7, 660 7 of 14

On the other hand, the estimation of the CIs ûlower and ûupper can be expressed by
replacing the parameters by their estimators in Equations (21) and (22). Therefore, the
limits of the CIs are

ûlower(s, t) = exp
(

µ̂(s, t, xs)− λσ̂
√

t− s
)

. (23)

ûupper(s, t) = exp
(

µ̂(s, t, xs) + λσ̂
√

t− s
)

, (24)

with µ̂(s, t, xs) = ln(xs) + ln
(

t
s

)
− 1

2
β̂
(

t2 − s2
)
− σ̂2

2
(t− s).

3.3. Optimization via the SA Algorithm

The SA algorithm is a method designed to optimize the solution of optimization
problems. This was introduced by [26]. Through this algorithm, in each iteration, θ is
a current solution, and θ

′
is a new value chosen near θ in the following iteration. The

objective difference is ∆ = g(θ
′
)− g(θ). If ∆ ≤ 0 , then θ

′
is chosen as the novel solution.

Or else, it may be accepted with a probability p = exp
(
−∆
T

)
.

3.3.1. The Objective Function

For the second estimator of the parameter β, we applying a numerical method based
on the simulated annealing by looking for the solution of the following unconstrained
optimization problem:

min
β,σ

g(β, σ2) =
(n− 1)

2
ln σ2 +

1
2hσ2

n

∑
i=2

[
ln
(

xi
xi−1

)
− ln

(
ti

ti−1

)
+

β

2
(t2

i − t2
i−1) +

σ2

2
h
]2

. (25)

3.3.2. Bounding the Search Space

The solution of Equation (20) is found in the estimators of the parameters β and σ2.
The solution space is the space where the estimators take their values. It is defined by
]0;+∞[×]0;+∞[, and is continuous and unbounded. Then, in some cases, the information
provided by the data of the sample, as well as by some characteristics of the model allow
one to limit this parameter space (see for, example, [1,27]).

In this section, we numerically construct the boundary spaces for the parameters with
process simulations. As for σ, we can see that, if it takes on large values, it leads to sampling
paths with a high variability around the mean. As a result, an excessive variability in the
available paths would mean that a Rayleigh model is not recommended (see Figure 1).
The simulations carried out for different values led us to observe that 0 ≤ σ ≤ 0.1, which
makes it possible to obtain trajectories that are compatible with a Rayleigh-type growth.
For the β parameter, a numerical study of the ML function was carried out by varying its
values. Through using simulated examples, we derived the ML function, which is defined
as β ∈ (0, 1]. When the solution space is bounded, the initial parameters of the algorithm
and the stopping criterion are specified as follows:

1. Choose the first solution arbitrarily in the obtained bounded subspace.
2. The initial temperature (T0) must be sufficiently high for a good probability in accept-

ing a less good solution to be at least 80% (see [26]).
3. The cooling process is Ti = λTi−1 with λ < 1 being constant. Typically, 0.75 ≤ λ ≤ 0.95.
4. The number of solutions generated at a temperature T is determined by the length L

of the chain.
5. The stopping conditions are indicated when the system reaches the required energy

level (freezing temperature), or when an acceptance ratio is reached. In this case, the
total number of generated solutions is given. As for the maximal number of iteration,
it is fixed to 1000.
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Figure 1. Simulated trajectories for the SRDP and MF (β = 0.7).

4. Numerical Simulation of the SRDP
4.1. Simulation of Sample Path of the SRDP

After having described and studied the main characteristics of the new proposed
Rayleigh process in previous sections, we proceed now to introduce some simulations
of the process sample path in order to visualize its behaviour and to validate the final
proposed model of the new process. We will focus on the form of the SRDP given explicitly
by Equation (8). The simulations are based on the generation of 25 sample paths in [t1; T],
such that ti = t1 + (i− 1)h with h = T−t1

N for i = 1, . . . , N (where N is a sample size), as
well as x1 ∼ N(1; 0.5), t1 = 0.1, T = 10 and N = 250. Figure 1 presents the simulated SRDP
trajectories for some of the values of σ and α.

4.2. Parameter Estimation of the SRDP

In this section, we suggest several examples that validate our estimation procedure.
Thus, we simulate Equation (8) 20 times with the following values: t1 = 0.1, h = T−t1

N ,
x0 ∼ Λ1(1; 0.5) and N (which is chosen to be equal to 100, 200 and 500). This is performed
in order to check the impact of the sample size on the results of the estimation methodology.

To perform the inference, we chose for each example, 25 sampled trajectories, such that
ti = t1 + (i− 1)h for i = 2, . . . , N. The obtained results are represented in Table 1, which
groups together the empirical mean (EM), the standard deviation (std) and the coefficient
of variation (CV) that was obtained for β and σ.

Table 2 illustrates the obtained results from the calculation of those measurements,
showing how the methodology works.

Table 1. The EM, the std and the CV for β and σ.

β = 1
M

M
∑

i=1
βi std(β) =

(
1

M−1

M
∑

i=1

(
βi − β

)2
) 1

2

CV(β) = std(β)

β

σ = 1
M

M
∑

i=1
σi std(σ) =

(
1

M−1

M
∑

i=1
(σi − σ)2

) 1
2

CV(σ) =
std(σ)

σ
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Table 2. The parameters estimated, as well as the std and CV of β and σ (β = 0.5).

N β σ std(β) std(σ) CV(β) CV(σ)

100 0.496327 0.022891 0.004853 0.001140 0.009778 0.049805
200 0.522479 0.005428 0.013147 0.000554 0.025162 0.102109
500 0.495557 0.010547 0.014024 0.000763 0.028301 0.072424

4.3. Prediction Study Using EMF and ECMF

In this section, we consider an application that was established on the simulated SRDP
with N =25, ti = t1 + (i− 1)h and i = 2, . . . , N. We start with t1 = 0.1, as well as with
a discretization step of h = TN−t1

N , x0 = 20 and TN = 10. We used the first 21 pieces of
data to estimate the SRDP parameters β and σ by the SA algorithm. Furthermore, we
obtain the values of EMF and ECMF expressed by (11) and (12). We predict the last
three values using the Equations (11) and (12). Next, we show the results related to a 95%
(ECI) boundary (ECIB) of the processes (see Equations (23) and (24)). To highlight the
methodology developed above, the results were checked using the mean absolute error
(MAE), the root mean square error (RMSE) and the mean absolute percentage error (MAPE)
(see Table 3).

Table 3. The MAE, RMSE and the MAPE.

MAE =
1
N

N

∑
i=2
| x(ti)− x̂(ti) |

RMSE =

√√√√ 1
N

N

∑
i=2

(x(ti)− x̂(ti))
2

MAPE =
1
N

N

∑
i=2

| x(ti)− x̂(ti) |
x(ti)

× 100

The MAPE result (see Tables 4 and 5 ) can be used to judge the performance of the
forecast, which was less than 10%, thus showing that the forecast was performing well.
The estimated parameters of the SRDP from the simulated data are summarized in Table 6.
Table 7 illustrates the results of the simulated data and the estimated values of the EMF,
ECMF and ECI of the SRDP process. Figures 2 and 3 show the performance of the SRDP
for prediction when using the EMF and ECMF functions.

Table 4. Interpretation of a typical MAPE.

MAPE Interpretation

<10 Highly accurate forecasting
20–30 Good forecasting
30–50 Reasonable forecasting
>50 Inaccurate forecasting

Table 5. Performance of fit.

MAE RMSE MAPE

0.10925 0.17931 3.56523

Table 6. Estimated parameters of the process.

Parameters β̂ σ̂2

estimated values 0.20174 0.02124
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Table 7. Simulated and forecast values, as well as the EMF, ECMF and ECI.

i x(i) EMF ECMF ECI

1 2.53160 02.53160 02.53160 [02.53160 02.53160]
2 10.64310 10.67555 10.67555 [10.46910 10.88499]
3 18.10549 18.13428 18.07915 [17.72953 18.43385]
4 24.33010 24.45975 24.42093 [23.94867 24.90004]
5 29.26810 29.32107 29.16564 [28.60162 29.73784]
6 32.57670 32.53200 32.47323 [31.84525 33.11032]
7 33.66320 34.05875 34.10554 [33.44599 34.77466]
8 33.28419 34.00826 33.61329 [32.96326 34.27275]
9 31.66570 32.60080 31.90671 [31.28968 32.53268]
10 29.12040 30.13244 29.26814 [28.70214 29.84235]
11 25.95149 26.93398 26.02936 [25.52600 26.54003]
12 22.49320 23.33262 22.48150 [22.04674 22.92257]
13 18.36149 19.62098 18.91509 [18.54931 19.28619]
14 14.95020 16.03638 15.00699 [14.71678 15.30141]
15 12.04740 12.75082 11.88717 [11.65729 12.12038]
16 09.23780 09.87071 09.32617 [09.14582 09.50914]
17 07.04150 07.44401 06.96670 [06.83197 07.10338]
18 05.20210 05.47186 05.17599 [05.07589 05.27754]
19 03.73410 03.92209 03.72873 [03.65662 03.80188]
20 02.62060 02.74225 02.61081 [02.56032 02.66203]
21 01.76380 01.87084 01.78784 [01.75327 01.82292]
22 - 01.24572 01.17444 [01.15173 01.19748]
23 - 00.80975 00.76449 [00.74971 00.77949]
24 - 00.51394 00.49429 [00.48473 00.50399]

0 1 2 3 4 5 6 7 8

Time

0

5

10

15

20

25

30

35

40

Simulated data

ECIL

EMF

ECIU

Figure 2. The SRDP’s simulated data, as well as the EMF and its ECI .
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Figure 3. The SRDP’s simulated data, as well as the ECMF and its ECI.

5. Application to Real Data

The SRDP with the statistical method proposed above was used to study the evolution
of the active cases of COVID-19 when considering the EMF and the ECMF. The process
x(t) represents the number of COVID-19 active cases, and we have taken the period of
4 January to 27 February 2022 to fit the model.

Let us take ti = t1 + (i − 1)h for i = 2, . . . , N with t1 = 0.1, where the step size is
h = TN−t1

N , and where TN = 26, N = 37 and x1 = 13450. We used the series of observations
considered between 28 January and 4 March 2022 of the COVID-19 active cases to estimate
the parameters of the SRDP through using the SA algorithm, thus we found β̂ = 0.393749
and σ̂ = 0.04. By using the MF and CMF, we predicted the corresponding results for the
days of 5 to 9 March by the EMF and ECMF. In addition, we showed the results that were
attached to a 95% ECCI of the SRDP. Table 8 gives the results for the real data, the EMF,
the ECMF and the ECCI. Figures 4 and 5 illustrate the real data, the EMF and the ECMF
values. This figure shows that the conditional versions are preferable for a better fit to the
observed data and for short-term predictions.

0 5 10 15 20 25
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Figure 4. Observed and predicted values when using the EMF.
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Figure 5. Observed and predicted values when using the ECMF.

Table 8. Observed data, fits and forecast using the EMF and ECMF.

COVID-19 Active Cases EMF ECMF ECCB

14,024 14,024 14,024 [14,024 14,024]
18,152 19,774 19,774 [18,347 21,281]
22,457 25,268 23,195 [21,522 24,963]
26,396 30,438 27,052 [25,101 29,114]
31,808 35,225 30,547 [28,343 32,875]
35,768 39,575 35,736 [33,158 38,460]
38,386 43,446 39,266 [36,433 42,259]
42,282 46,802 41,352 [38,368 44,504]
46,081 49,622 44,829 [41,595 48,246]
49,491 51,890 48,188 [44,711 51,860]
52,350 53,604 51,126 [47,437 55,022]
55,971 54,770 53,488 [49,629 57,565]
55,982 55,402 56,617 [52,532 60,932]
57,568 55,525 56,106 [52,058 60,382]
58,631 55,168 57,198 [53,071 61,558]
57,021 54,369 57,782 [53,613 62,186]
55,655 53,169 55,762 [51,739 60,012]
52,353 51,613 54,027 [50,129 58,144]
49,613 49,750 50,463 [46,822 54,309]
46,610 47,629 47,497 [44,070 51,117]
40,845 45,298 44,329 [41,131 47,708]
36,884 42,806 38,598 [35,814 41,540]
35,677 40,200 34,639 [32,140 37,279]
35,255 37,524 33,302 [30,899 35,840]
32,746 34,818 32,713 [30,352 35,206]
30,791 32,119 30,208 [28,028 32,510]
27,560 29,460 28,242 [26,204 30,394]
28,257 26,869 25,136 [23,323 27,052]
23,991 24,370 25,629 [23,780 27,582]
22,462 21,983 21,641 [20,079 23,290]
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Table 8. Cont.

COVID-19 Active Cases EMF ECMF ECCB

21,569 19,723 20,152 [18,698 21,688]
20,242 17,600 19,248 [17,859 20,715]
19,694 15,623 17,968 [16,672 19,338]
16,014 13,796 17,390 [16,136 18,716]
13,392 12,119 14,068 [13,053 15,140]
11,961 10,591 11,704 [10,859 12,596]

Prediction
- 09,209 10,400 [09,650 11,192]
- 07,966 09,707 [09,007 10,447]
- 06,857 08,775 [08,142 09,444]
- 05,872 08,012 [07,434 08,623]

6. Conclusions

The recent COVID-19 pandemic had revealed the importance of utilizing different
mathematical modeling tools that can help to understand the progress of the disease and can
forecast the possible outcome of the pandemic progress. In this work, a diffusion process
related to the Rayleigh density function SRDP was introduced to model the progress of the
number of COVID-19 active cases. The main characteristics of the proposed model were
discussed and analyzed in order to obtain a forecast of the possible cases. The parameters
of the SRDP were estimated by applying the ML method and the SA algorithm. Then,
based on the simulation of the SRDP, we managed to handle the forecasting phase by
using the estimation of the EMF and ECMF, as shown in Table 7. Finally, we proposed an
application to study the active cases of COVID-19 in Morocco by adjusting the proposed
process to the real data for the period of 4 January to 10 February 2022. We also obtained
a good representation of the series and good short-term forecasts (4–10 February). Our
model is the first attempt ever to use the stochastic Rayleigh diffusion process in modeling
a pandemic. Our next step is to generalize our approach to model the different waves of
the pandemic via the superposition stochastic Rayleigh diffusion process.
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