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Show yourself more human than critical

and your pleasure will grow

– Domenico Scarlatti



Abstract (EN)

This dissertation addresses the analysis of data emerging in the field of music neuro-
science, specifically data collected from neurophysiological monitoring techniques that
can be modeled as random objects in spaces of smooth functions. Spaces equipped with
a Hilbert structure o�er a versatile and elegant framework for the generalization of vari-
ous statistical techniques, ensuring adaptability and robustness in analyzing complex data
structures. Within the context of functional data analysis, these spaces serve as essential
tools for understanding and interpreting dynamic data trends over continuous domains.
Given the relevance of independent component analysis (ICA) in neuroscience research,
our investigation is directed towards its functional counterpart, a technique whose poten-
tial still remains relatively overlooked. Functional ICA can be considered a refinement of
functional principal component analysis, aimed at identifying low-dimensional structures
"as independent as possible" by exploiting the underlying topological features of the data.
We provide a comprehensive account of the theoretical foundations of functional ICA
and extend the method to Sobolev spaces of smoother functions. Some theoretical prop-
erties regarding functional data classification are also presented. Additionally, we develop
a repertoire of related functional data techniques tailored for pre-processing and analyz-
ing data in the emerging field of embodied music neuroscience, which investigates the
neurological basis of how the body influences musical experience. Two methods based
on nonlinear wavelet and polynomial approximations are developed for pre-processing
artifactual activity in EEG signals and pupillometry. These methods yield excellent out-
comes for neuromotor research, particularly considering the suboptimal condition of the
recorded data due to locomotor activity. We further introduce a set of neural descriptors
derived from data collected through the aforementioned non-invasive methods, aiming
to uncover brain behavior during embodied musical interactions. More specifically, we
focus on methodologies for modeling neurotransmitter activity, a critical aspect shown
to be essential in shaping motor functionality and other proprioceptive sensations. Our
experimental research is portrayed by the concept of emotion transferred into a neuro-
logical domain, providing a unique framework to define and capture the neural essence
of embodiment in music.
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Abstract (NL)

Deze thesis behandelt de analyse van data die ontstaan op het gebied van muziekneu-
rowetenschap, in het bijzonder data verzameld met neurofysiologische meettechnieken
die gemodelleerd kunnen worden als willekeurige objecten in ruimtes van gladde func-
ties. Ruimtes uitgerust met een Hilbert-structuur bieden een veelzijdig en elegant kader
voor de veralgemening van verschillende statistische technieken en garanderen zo het
aanpassingsvermogen en de robuustheid bij de analyse van complexe datastructuren.
Binnen de context van functionele data-analyse dienen deze ruimtes als essentiële in-
strumenten voor het begrijpen en interpreteren van dynamische datatrends over con-
tinue domeinen. Gezien de relevantie van onafhankelijke componentenanalyse (ICA) in
neurowetenschappelijke studie, is ons onderzoek gericht op de functionele tegenhanger
ervan, een techniek waarvan het potentieel nog steeds enigszins over het hoofd wordt
gezien. Functionele ICA kan worden beschouwd als een verfijning van functionele prin-
cipale componentenanalyse, gericht op de identificatie van "zo onafhankelijk mogelijk"
laagdimensionale structuren door gebruik te maken van de onderliggende topologische
kenmerken van de data. We geven een uitgebreide beschrijving van de theoretische
grondslagen van functionele ICA en breiden de methode uit tot Sobolev-ruimtes van
gladdere functies. Enkele theoretische eigenschappen met betrekking tot functionele
dataclassificatie worden ook voorgesteld. Bovendien ontwikkelden we een repertoire
van verwante functionele datatechnieken op maat voor het voorbewerken en analyseren
van data in het opkomende gebied van de belichaamde muziekneurowetenschap, die de
neurologische basis onderzoekt van hoe het lichaam muzikale ervaringen beïnvloedt. Er
werden tweemethodes gebaseerd op niet-lineaire wavelet- en polynomiale benaderingen
ontwikkeld voor het voorbewerken van artefactuele activiteit in EEG-signalen en pupil-
lometrie. Deze methodes leveren uitstekende resultaten op voor neuromotorisch onder-
zoek, vooral gezien de suboptimale conditie van de geregistreerde data als gevolg van
bewegingsactiviteit. Verder introduceren we een reeks neurale descriptoren afgeleid van
data die zijn verzameld met de eerdergenoemde niet-invasieve methodes, met als doel het
gedrag van de hersenen tijdens belichaamde muzikale interacties bloot te leggen. Meer
specifiek richten we ons op methodologieën voor het modelleren van neurotransmitter-
activiteit, een kritisch aspect dat essentieel is bij de vormgeving van motorische interac-
ties en andere proprioceptieve sensaties. Ons experimenteel onderzoek is gebaseerd op
het concept van emotie in een neurologisch domein, wat een uniek kader biedt om de
neurale essentie van belichaamdheid in muziek te definiëren en vast te leggen.
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Abstract (ES)

En esta tesis se aborda el análisis de datos emergentes en el campo de la neurociencia de
la música, más concretamente de datos grabados mediante técnicas de monitoreo neu-
rofisiológico que pueden ser modelados como objetos aleatorios en espacios de funciones
suaves. Los espacios equipados con estructura de Hilbert ofrecen un marco versátil y el-
egante para la generalización de un ámplio abanico de técnicas estadísticas, asegurando
adaptabilidad y robustez en el análisis de estructuras de datos complejas. En el contexto
del análisis de datos funcionales, estos espacios sirven como herramientas esenciales para
comprender e interpretar tendencias dinámicas de datos sobre dominios continuos. Dada
la relevancia del análisis en componentes independientes (ICA) para el análisis de datos
neurocientíficos, nuestra investigación se dirige hacia su versión funcional, una técnica
cuyo potencial aún permanece relativamente poco explorado. El ICA funcional puede
considerarse una extensión del análisis en componentes principales funcional, orientado
a identificar componentes "lo más independientes posible" mediante la explotación de las
características topológicas subyacentes de los datos. Se proporciona un análisis exhaus-
tivo de los fundamentos teóricos del ICA funcional y se extiende el método a espacios
de Sobolev de funciones más suaves. También se presentan algunas propiedades teóricas
sobre la clasificación de datos funcionales en relación al ICA functional. Asimismo, de-
sarrollamos un repertorio de técnicas relacionadas de datos funcionales diseñadas para el
preprocesamiento y análisis de datos en el campo emergente de la neurociencia musical
encarnada, cuyo objetivo es investigar la base neurológica de cómo el cuerpo influye en
las experiencias musicales. En particular, se desarrollan dos métodos basados en aproxima-
ciones no lineales de wavelets y polinomios para el preprocesamiento de actividad artefac-
tual en señales EEG y pupilometría. Estos métodos producen resultados excelentes para la
investigación neuromotora, a pesar de la condición subómptima de los datos registrados
durante la actividad locomotora. Además, presentamos un conjunto de descriptores neu-
rales derivados de datos recopilados a través de los mencionados métodos no invasivos, con
el objetivo de desvelar el comportamiento cerebral durante interacciones musicales en-
carnadas. Más específicamente, nos centramos en metodologías para modelar la actividad
neurotransmisora, un aspecto crítico demostrado como esencial en la funcionalidad mo-
tora y otras sensaciones propioceptivas. Nuestra investigación experimental se presenta
mediante el concepto de emoción transferido al dominio neurológico, proporcionando
un marco único para definir y capturar la esencia neural de la encarnación en la música.
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� a real separable Hilbert space
�� the identity of �
!2 space of square integrable functions
B(·) the Banach space of all bounded operators

B(·)HS the space of Hilbert-Schmidt operators
tr(·) trace operator
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�Additional abbreviations used in this dissertation can be found at the beginning of some chapters. Any modifications to the
existing notation are meticulously indicated within their respective chapters.
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Introduction

This thesis straddles two worlds: that of high/infinite dimensional statistics and that of music neuroscience.
While the convergence between these two fields may not be immediately apparent, here we endeavor to
explore their joint underpinnings while preserving certain degree of independence in their development.

We concentrate on the study of infinite-dimensional statistical models designed for analyzing high-
dimensional objects such as functions, images, surfaces, among others. This area of research requires a
strong knowledge in functional analysis, operator theory, as well as measure and probability theory. We
may think of our data as a random object with some topological properties to exploit, such as smoothness.
A way to do that is by assuming our random object lives in some function space with a predefined met-
ric or geometry (inner product), allowing us to analyze their topological properties in relation to some
probability axioms one may build. The kind of analysis we are currently discussing, known as "Func-
tional Data Analysis" (FDA), was featured by J. O. Ramsay and colleagues in the late ����s (or even earlier)
[���], with a primary focus on data represented as functions. Since then, FDA has become a substan-
tial and multifaceted field of statistics that has found applications in a number of disciplines. We refer to
[��, ���, ���, ���, ���] for a comprehensive overview on FDA. The evolution of FDA appears to be transi-
tioning toward object-oriented data analysis [���], a field encompassing more complex objects as molecules
of the statistical analysis – say, a FDA++.

The primary aim of employing these advanced methods is to study the neural underpinnings of em-
bodiment –i.e, the incorporation of bodily experiences– during musical interactions. Our approach aligns
with the principles of naturalistic neuroscience, seeking to investigate brain function and behavior in eco-
logically valid contexts that mimic real-world scenarios. However, studying embodied interactions in such
circumstances poses challenges with current non-invasive neuroimaging techniques, as data quality may
be compromised by artifact-related activity. Addressing this issue has been a fundamental aspect in this
investigation. Conversely, our approach acknowledges the multisensory nature of these processes by inte-
grating behavioral, neuroscientific, and other relevant data into statistical models that consider information
across multiple probabilistic dimensions.

Research objectives in mathematical statistics
The works presented herein, especially those of a statistical nature, were motivated by a thesis entitled "Al-
ternativas geométricas en el ACP de una V.A Hilbertiana" [Geometric alternatives in principal component
analysis (PCA) of a Hilbertian random variable] written by Prof. F .A. Ocaña (UGR) and supervised by
Prof. A. M. Aguilera [���]. Our primary objective was to extend the results of the aforementioned the-
sis by delving deeper into the concept of functional independent component analysis (ICA), a dimension
reduction technique that can be considered a refinement of the functional PCA.

Despite ICA has gained widespread popularity across diverse research domains since its foundational
theory was developed around the ����s, its functional counterpart has, in contrast, received relatively
limited attention. Methods based on reproducing kernel Hilbert spaces were among the earliest to exploit
ICAwithin an infinite-dimensional feature space [��, ���]. Not until early the ����s, however, a theoretical
framework for functional ICA was first presented in a conference proceedings [���]. While no posterior
contributions on this topic are attributed to the authors, they introduced pioneering concepts critical to
functional ICA. These encompass the notions of statistical independence, irreducibility and IC separability
within the context of infinite-dimensional spaces. Some early attempts to materialize these principles using
functional data can be found in [��, ���]. Subsequent to these initial works, the most notable contribution
in addressing the estimation of functional ICs can be attributed to D. Peña and colleagues [���]. Although
the authors did not delve into the specifics of the functional ICA model, they introduced the kurtosis
operator, proposed a computational approach for its implementation while showed some of its theoretical
properties with regard to the classification of Gaussian processes. The functional ICA model as such,
was later introduced in the context of univariate and multivariate functional data in [���, ���]. While
these papers are primarily geared towards practical applications in functional classification, neither of them
has extended the theoretical results in [���]. Additionally, there are numerous potential applications of
functional ICA beyond functional classification that have yet to be thoroughly explored.

�



Here, our aim is to provide a comprehensive study on functional ICA based on smoothing and other
nonlinear estimators, demonstrating their relevance and applicability in analyzing neuroscientific data. As
described below, we focus on studying brain behavior during embodied music interactions.

Research objectives in music neuroscience
Why do we feel compelled to move when listening to music? How is it possible that pianists can play
without looking at the keyboard, or why can violinists accurately tune complex passages without even
glancing at the fingerboard? To what extent does action contribute to shaping the experience of music?
Or vice versa, does music perception influence our motor behavior? These questions are usually addressed
within the embodied music cognition (EMC) hypothesis [���, ���]. It is undeniable that the brain and
body form an inseparable tandem, shaping the way we interact with the environment. Nevertheless, the
neurological mechanisms underlying motor behavior able to modulate and probably facilitate or enhance
perception during the experience of music (i.e. embodiment) remain somewhat poorly understood; see
[��, ���, ���] as earlier pioneering contributions to the field or more recent research aligned with this trend
[���, ���, ���, ���, ���]. In this dissertation, we investigate the neurology of embodiment during musical
interactions, an area of study that we refer to as embodied music neuroscience (EMN). One major objective
of this thesis is to provide support for the concept of EMN based on empirical evidence.

Experimental investigations outlined here were initially motivated to uncover how movement could
influence the perception of tonal harmony. Some insights into this question can be found in Moura et al.
[���], where we demonstrated, using causal analysis methods and Leman’s auditory model [���, ���], that
bodily movement during music performance anticipated tonal context of music (surprisingly, knee flexion
evidences this aspect of embodiment!). See also [���–���] for further details. Nevertheless, the present
investigation focuses on other aspects of EMC. We aimed at identifying suitable descriptors for character-
izing the dynamics of brain activity across di�erent time scales and spatial dimensions during embodied
music interactions. Therefore, we hypothesize that there might be a neural signature characterizing these
processes of embodiment. To address this, we devised two experimental studies focusing on singing per-
formance and emotion, as emotion plays a crucial role in configuring embodied music interactions, while
singing can serve as a powerful medium for expressing these emotions [���]. Specific hypotheses and fur-
ther discussion can be found in Chapter �, Chapter �, and §�.�. In both studies, we develop advanced FDA
models to derive neural descriptors critical for understanding embodiment. Our research primarily relies
on non-invasive neuroimaging techniques, specifically EEG and pupillometry.

Thesis overview and structure
In Chapter �, we review the main concepts and backgrounds of FDA essential for the subsequent
chapters. This includes elementary operator theory, methods for data representation using basis functions,
and the fundamental principles of functional PCA. In Chapter �, we present three papers [���, ���, ���]
that focus on the theory and applications of functional ICA. The foundational background of ICA is
covered in the initial subsections, followed by a rational integration of the aforementioned papers. Proofs
for certain propositions and theorems are excluded in the two first chapters since they can be found in
the associated published papers as detailed therein. Exceptions to this rule include cases where proofs are
unpublished or are provided for the sake of clarity in our developments.

In Chapter �, we introduce a methodology that bridges some of the theoretical underpinnings estab-
lished Chapter � with our experimental investigations. There, we propose a functional ICA approach
based on wavelets for artifact removal particularly tailored for EEG data acquired during experimental
conditions involving body movement. The chapter discusses some issues regarding typical practices for
EEG artifact removal, and illustrates the performance of the proposed method with thorough simulation
studies and analysis of selected EEG datasets. Current pre-processing approaches will be applied to the
EEG data recorded in one of our experiments.

We conducted two experimental studies to investigate brain behavior during embodied music
interactions. In Study I (Chapter �), we have investigated how motor task related emotionality cor-
responds to pupillometry signatures in a singing performance paradigm. We present a multivariate
functional PCA based on Pfa� ’s generalized arousal principles [���] to study how pupil dynamics
across di�erent subbands relate to level of emotionality during the di�erent motor tasks. The model is
built upon prior investigations that relate pupil dilation to neurotransmitter activity. We also introduce
an unsupervised method to pre-process responses to ocular events during motor tasks. This method
is flexible, easy to apply, and has a low computational cost, yielding robust estimates of cognitive-related
pupil activity. The experimental paradigm introduced in Study I is elaborated upon in a subsequent study
that incorporates a more complex design involving immersive virtual reality interactions (Chapter � ). We
introduce a model for the analysis of turbulence in EEG recordings based on a multivariate func-
tional ICA for spatially indexed data that is derived from our prior research in Chapter � and Chapter �.
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Our aim is to analyze turbulent flows on dominant EEG components that are assumed to reflect generalized
arousal function in a similar vein as in Study I. With this, we investigate how the level of emotionality
during embodied musical interactions in immersive virtual reality relates to turbulence activity in
alpha and gamma ranges.
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� | Mathematical and statistical framework

This chapter provides definitions, notations, and basic concepts used throughout the dissertation. For an
extensive account of the material discussed here, see [���, ���, ���].

§ �.�. Basic probabilistic principles

Consider a sample space ⌦ and assume for convenience that A is a f-algebra (an algebra closed under
complementation and countable unions). Define a mapping % : A! R, called probability, such that it
adheres to the following axioms after Kolmogorov:

�. For each ⇢ 2 A, % (⇢) � 0,

�. % (⌦) = 1 (the entire sample space has probability equal to �),

�. % (⇢1 [ ⇢2 [ ⇢3 · · · ) = % (⇢1) + % (⇢2) + % (⇢3) + · · · if ⇢8 \ ⇢ 9 = ; for all 8 < 9 (all ⇢’s are disjoint).

Under these considerations, the triple (⌦,A, %) is then called probability space. A probability space is usually
build upon an abstract point set ⌦, devoid of specific mathematical properties such as algebra or topology.
To better understand and apply mathematical concepts to such spaces, we can explore di�erent ways of
connecting the elements of A to more structured mathematical spaces. In this dissertation, we deal with
elements presumed to reside in a normed or Banach space (a vector space equipped with a norm function)
with geometrical structure (inner product). This particular space, commonly referred to asHilbert space and
denoted here by � , is a mathematical construct that can encompass various objects, including functions,
images, shapes, etc. A critical property of spaces with such structure is that every Cauchy sequence (of
elements) converges to a limit within the space itself, which means the space is complete. This property
ensures that geometrical operations can be consistently performed. In what follows, we can consider a
Hilbert space � over the field of the reals R, and h·, ·i : � ⇥ � ! R an inner product on � inducing the
norm k · k = h·, ·i1/2.

A common scenario in probability theory is to deal with mappings called random variables defined by
- : ⌦ ! R, i.e.,- is a function that assigns to each element of the sample space a real number. Instead, here
we consider - : ⌦ ! � , where � is a separable Hilbert space, and therefore each element of the sample
space has now an associated element from � . We call - a Hilbertian or �-valued random variable. More
formally, - is a mesurable function from (⌦,A, %) to (� ,B� ) where B� is the Borel f�field generated
by the class of all open subsets of � . The probability of an event ⇢ 2 B� is determined by the measure
induced on (� ,B� ), defined as %- (⇢) = % (- �1 (⇢)) = % (l 2 ⌦ : - (l) 2 ⇢)�. The induced measure of - is
commonly referred to as its distribution or law.

Definition �. Let - be �-valued random variable. The element of � denoted by E- 2 � verifying

hE- , Gi =
π
⌦
h- (l), Gid% (l) 8G 2 � (�.�)

is called the expectation of - .

Note that in �.� we are integrating the projection of - in the direction of G over all possible outcomes in
the sample space with respect to the probability measure % .

The random variable - is said to be Bochner integrable if Ek- k =
Ø
⌦
k- (l)kd% (l) < 1, which implies

the existence of the expectation or first moment of - . If exists, this expectation is unique. We can further
consider the existence of the ?th moment (for an integer ?), i.e.,

Ø
⌦
k- (l)k?d% (l) < 1, leading us to

extend the concept of common moment functions within the framework of Hilbert spaces.

�Note that- �1 ( ·) denotes the pre-image or inverse image function associated with- . Therefore,- �1 (⇢ ) consists of all outcomes
in the sample space that get mapped to the set ⇢ under -
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§ �.�. Moment operators

Preliminaries
An operator T : � ! � is said to be continuous if for every n 2 R there is some X 2 R such that
kT(G) � T(~)k < n whenever kG � ~k < X , which ensures the operator behaves smoothly and predictably
for all G,~ 2 � . If furthermore, T(0G + ~) = 0T(G) + T(~) for all 0 2 R, the operator T satisfies the
properties of linearity. Every linear operator is continuous in the finite dimensional case, but in infinite
dimensions a linear operator Tis only continuous i� it is bounded, i.e., kTk ⌘ sup{kT(G)k : kG k  1} < 1
where sup{·} is the supremum function. The kernel of a linear operator T, denoted ker(T), comprises
all elements in the domain of T that map to the null space in the codomain. The range (or image) of
T, denoted ran(T), encompasses all possible output elements in the codomain obtained by applying T to
elements in the domain.

If � : � ! R is a linear and bounded functional, there exists a unique element ~ 2 � such that
� (G) = hG,~i for every G 2 � (Riesz’ representation theorem [���, §�.�]). It follows that if T is bounded,
its adjoint T⇤ is also bounded and are related by the equation hTG,~i = hG,T⇤~i for all G,~ 2 � . If T⇤ = T

and hTG, Gi � 0 the operator is self-adjoint (Hermitian) and positive definite. Note that a positive operator
can be raised to any positive power; therefore, (T1/=)= = T,= 2 N. Operators that commute with the
adjoint are normal. As an example, consider the isometry kTG k = kG k, then T is a unitary operator with
the property TT

⇤ = T
⇤
T= �� , where �� is the identity operator.

A fundamental property of a Hilbert space is the existence of the so-called orthonormal basis. Two
elements G,~ 2 � are said to be orthogonal if hG,~i = 0. A sequence of elements i ⌘ (i 9 ) 92N on � is called
orthonormal basis if all elements of i are mutually orthogonal, have unit norm and the series

G =
1’
9=1

⌦
G,i 9

↵
i 9 , (�.�)

is convergent in the norm topology of � [���, pp.�-�], for all G 2 � . Then, kG k2 =
Õ1
9=1

��⌦G,i 9 ↵��2, which
follows from Parseval’s Theorem. Equation �.� can alternatively be expressed as G = Pi (G), where Pi (·)
denotes the orthogonal projection on to the subspace generated by i . The operator Pi is idempotent
(P2

i = Pi ), and self-adjoint (Pi = P
⇤
i ). The orthogonal complement of the subspace generated by i is

(�� �Pi ) and the rank of the projection operator is equal to the dimension of the subspace on to which it
projects.

A bounded linear operator T : � ! � is said to be compact if it maps bounded sets in � to sets that
have all their limit points contained within a closed set with respect to the norm topology on � (see [���,
§�.�]). A critical property of a compact operator in� is the existence of a canonical decomposition. For two
orthonormal sets (i 9 ,k 9 ) 92N in � one has that TG =

Õ1
9=1 \ 9

⌦
G,i 9

↵
k 9 (or equivalently, Ti 9 = \ 9k 9 ), where

\ 9 is a sequence of real numbers decreasing to � called the eigenvalues of T. If furthermore T is compact
self-adjoint, the same result is expressed in terms of a unique basis, i.e., Ti 9 = \ 9i 9 . A compact operator
T is said to be trace class if tr(T) = Õ1

9=1
⌦
Ti 9 ,i 9

↵
converges independently of the chosen orthonormal

basis. We note that having finite trace as defined by the above quantity does not guarantee the invertibility
of T, since zero can be an accumulation point in the spectrum of T. A trace-class (or nuclear) operator
T is of the Hilbert-Schmidt (HS) class, often called Schatten-� [���, §�.�], if tr (T⇤

T) < +1. The class of
all HS operators forms a separable Hilbert space itself, and will be denoted as by B�( (� ). The associated
operator norm, denoted as kTk2HS = tr (T⇤

T) for all T 2 BHS (� ), is a generalisation of the Frobenius
norm for finite-dimensional matrices.

Covariance, skewness and kurtosis operators
Here, the term moment operators refers to linear mappings that capture information about the moments of
an �-valued random variable. Laha and Rohatgi [���, pp.���] identified operators of this type to possess
certain properties such as compactness, self-adjointness, positive definiteness and finite trace in the HS
sense. In the following, we consider probability measures % on (� ,B� ) such that

Ø
⌦
k- (l)k4d% (l) < 1.

Unless otherwise stated, the mean value E- will be assumed �. Under these assumptions, the covariance
(or second moment) operator C- 2 B�( (� ) is uniquely determined by the relation

hC- (G),~i =
π
⌦
h- (l), Gih- (l),~id% (l). (�.�)

It is well-known that �.� is positive definite, self-adjoint (therefore symmetric) with finite HS norm or
trace; see [���, pp.���–��].
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Now consider the linear operator G ⌦ ~ : � ! � , called the tensor product operator, and defined by
(G ⌦ ~) (·) = h·, Gi~ for all G,~ 2 � . This operator has rank � and is HS.

Lemma � (Ocaña [���], Lemmas �.�.�, �.�.�). The covariance operator defined in �.� can be expressed as E(-⌦- ).

In accordance with the given definition of the tensor product, we now enumerate some of its prop-
erties, as they will be utilized throughout this dissertation. Let B(� ) denote the algebra of all bounded
linear operators on � .

Lemma �. For G,~, I 2 � and T1,T2 2 B(� )

�. (G ⌦ ~)⇤ = ~ ⌦ G ;

�. (T1 ⌦ T2) (G ⌦ ~) = (T1G) ⌦ (T2~) = T1 (G ⌦ ~)T⇤
2 ;

�. (I ⌦ ~) (~ ⌦ G) = k~k2 (I ⌦ G).

Peña et al. [���], based on [���], defined a kurtosis (fourth-moment) operator K- 2 B�( (� ) which is
uniquely determined by the relation

hK- (G),~i =
π
⌦
h- (l),- (l)ih- (l), Gih- (l),~id% (l)

=
π
⌦
k- (l)k2h- (l), Gih- (l),~id% (l) (�.�)

The operator K- shares the same properties as C- (see §�.�), and following the same reasoning provided
in Lemma �, K- can be further expressed as E{(- ⌦- )2} = E{k- k2 (- ⌦- )}. It is a common procedure to
work with whitening representations of - in order to remove scaling e�ects and ensure that the kurtosis
operator accurately reflects the shape of the distribution that characterizes- . Whitened functional random
variables are discussed in Chapter �.

To our knowledge, a third moment operator of an �-valued random variable has not yet been es-
tablished in the literature. Extending the skewness matrix of a multivariate random variable (e.g., ..>.
as in [���]) into the form of a normal operator is not feasible, somehow limiting the application of the
Spectral Theorem. In finite dimensions, the diagonalization of non-normal operators can be addressed
using the Jordan decomposition; however, in infinite dimensions, alternative methods must be pursued.
One potential approach could be to define an skewness operator as follows:

S- = E
⇣p

(- ⌦ - )3
⌘
, (�.�)

which can be shown to be related to the power two of the skewness matrix in [���]. It is easy to prove that
the operator S- 2 B�( (� ) shares the same properties of the moment operators C- and K- . The study of
this operator, however, lies beyond the scope of the current dissertation.

§ �.�. Hilbertian independence and irreducibility

In this subsection, we elaborate on the notion of independence in Hilbert spaces, a concept that lacks a
straightforward intuition compared to its definition in conventional probability theory. Independence is
a central and somewhat elusive concept in probability, often ambiguously used and conflated with other
properties such as uncorrelatedness and sparsity.

Consider a basic probability space (⌦,A, %) and a probability measure % : A ! [0, 1]. Two events
⇢1, ⇢2 2 A are said to be statistically independent i� % (⇢1 \ ⇢2) = % (⇢1) · % (⇢2), i.e., their joint probability
equals the product of their probabilities. Further, let I to be an index set, with the index 8 varying on I.
A collection of events (⇢8 )82I are said to be independent i� for any finite subset I= = {81, 82, . . . , 8=} of I

%

 Ÿ
82I=

⇢8

!
=

÷
82I=

% (⇢8 ) . (�.�)

Note that the above definition implies more than just asking % (—82I⇢8 ) =
Œ
82I% (⇢8 ) , and still further

more than pairwise independence. In other words, we have that subclasses of independent classes are nec-
essarily independent. Stepniak [���] gives a didactic illustration of statistical independence, exemplifying
cases of joint and pairwise independence. For a more advanced treatment of the subject, see [���].
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We now introduce some concepts to show how independence is conceived in an infinite dimensional
Hilbert space � . Consider � ⇤, the dual space of � , i.e., � ⇤ is the separable Hilbert space consisting of all
bounded linear functionals from � to R, and - a �-valued random variable. Then for every ; 2 � ⇤, ; (- )
is a real valued random variable. Two �-valued random variables - ,. defined on (⌦,A, %) are said to be
identically distributed if %- = %. . Let (-8 )82N be a collection of �-valued random variables. If ; (-8 ) is a
collection of identically distributed random variables, then-8 are identically distributed. See [���, pp.���-�]
for further details.

Definition �. A sequence of random variables -1,-2, · · · : ⌦ ! � is said to be independent i� for every = 2
N,= � 2, any (finite) subset I= ✓ N of cardinality =, and all mesurable sets ⇢8 2 B� (8 2 I=), the relation

%

 Ÿ
82I=

{-8 2 ⇢8 }
!
=

÷
82I=

% (l 2 ⌦ : -8 (l) 2 ⇢8 ) , (�.�)

holds.

Note that independence of an infinite number of events is defined by demanding that every finite subset
is independent.

Remark �. If {;8 (-8 ), 8 2 I=, ;8 2 � ⇤} is a collection of independent random variables, then {-8 , 8 2 I=} is also
independent.

So far, we have defined independence through finite sequences of variables residing in an infinite-
dimensional separable Hilbert space. However, determining when - (a single random variable) is inde-
pendent becomes a more nuanced task, and understanding the implications of this concept is crucial in
refining Definition �.

Definition � (Independent random variable, Gutch and Theis [���], Definition �). A random variable - :
⌦ ! � is said to be independent if for an orthonormal basis

�
i 9

�
92N of � and for @ 2 N,@ � 2, any subset I@ ✓ N

of cardinality @,

�. The random variables h- ,i 91i, . . . , h- ,i 9@ i are independent;

�. PqI
(- ) and Pi

I
(- ) are independent, where Pi

I
(- ) = (�� �PiI

) (- ).

Assumption � in Definition � reads as “the orthogonal projection to the subspace spanned by a subset of
the basis is independent to the projection to the complement of the subspace" and, while di�cult to prove
analytically due to the ranks of such projections, it bears critical implications for the study of functional ICA.
A desirable property of a projection is that Pi � (- ) ? Pi �

(- ), which usually holds when Pi �
(- ) is null or

a negligible white noise, but not necessarily when Pi � (- ) is reduced to a few components. Assumption �
goes beyond linear independence and rather entails that bothPi � (- ) andPi �

(- ) aremutually independent
to define - as independent. This occurs in very particular and restrictive scenarios, which eventually
reduces to an orthogonality constraint in Gaussian cases; see [��, Lemma �.�.�]. From now on, we will
use the symbol ?? to denote statistical independence� in our developments.

We also note that if assumption � Definition � in holds, then ( 91 ?? · · · ?? ( 9@ , where ( 9 = h- ,i 9 ii 9 are
Hilbert-valued functional independent components. Additionally, the independent variables ( 91 , . . . , ( 9@
are called irreducible if further decomposition of any of the components is not possible. Current notion of
independence will facilitate our understanding of the functional ICA model proposed in Chapter �.

In the context of Hilbert spaces, we have seen that independence is defined through an isometric iso-
morphism between the dual space � ⇤ and the original space � . This isomorphism allows the identification
of Borel measures on � ⇤ with those on � when an orthonormal basis of � is chosen. Through this iden-
tification, the statistical properties of - can be analyzed, as otherwise there is no explicit parametric form
assumed for the distribution of elements in an abstract Hilbert space. Going back to Definition �, we note
that joint independence is likely to be true if any of the -8 ’s is not independent in the sense of Definition �.

§ �.�. Featuring the Hilbert space with basis functions

Functional statisticians work in spaces with structure that allows them to reflect the underlying regularity
of the processes they study. Although the (separable) Hilbert space of square integrable functions � ⌘ !2 is

�It is worth mentioning that the symbol ??, denoting stochastic independence, can be credited to Gustav Elfving, a Finnish
statistician, probabilist, and mathematician, who first used such symbol in some lecture notes around ����–����; see [���].
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certainly the most common starting point, Hilbert spaces of smoother functions such as kernel or Sobolev
spaces are typically preferred. In real-world applications, it is however impossible to observe a process
continuously and data is commonly sampled as a finite set of discrete observations. Here, the approach
for analyzing these data involves utilizing basis of !2 functions for their approximation. In the end, this
allows working with coe�cients obtained through a projection on to a predefined basis (whether or not
it is orthonormal) that better captures the characteristics of our data.

Now, we formulate the problem of approximation of a single realization of an arbitrary functional
random variable. We study the classic non-parametric problem of recovering the values of an unknown
function {5 2 !2) : ) ✓ R} from noisy observations ~8 2 R. This corresponds to

~8 = 5 (C8 ) + Y8 (8 = 1, . . . ,=) , (�.�)

where Y8 2 R is an error term, and C1, C2, . . . , C= are sampling points here assumed in an equidistant grid
within ) . We are concerned with estimators of 5 based on di�erent systems of basis functions, including
Fourier, B-splines, and Wavelet bases. Because basis functions form a vector space, similarly to �.�, we can
represent 5 as

5 (C) =
@’
9=1

0 9q 9 (C), (�.�)

where q 9 (C) are the set of @ basis functions defining the space and 0 9 their respective coe�cients.
A classical orthonormal basis system is the Fourier basis. This basis consists of a series of periodic

trigonometric functions on ) = [0, 1] given by

{
p
2 sin(2c 9C); 9 2 N} [ {

p
2 cos(2c 9C); 9 2 N} [ {1}. (�.��)

The Fourier basis is a typical choice for the approximation of stable and periodic functions that have a
roughly constant curvature [���].

To represent curves that are not uniformly smooth, splines are a more suitable choice due to their good
local support. Splines are curves made of piecewise polynomial functions that smoothly join at prefixed
knots. A B-spline, short for "basis spline", is a curve defined by a basis system of degree ? that generates
a space of splines of the same degree. Let U = {D1,D2 . . . ,D: , . . . ,D<}, be a sequence of knots over ) ⇢ R,
i.e an increasing and uniformly-spaced sequence of< � 1 real numbers. For each : = 1, . . . ,<, a B-spline
basis function of degree ? (denoted by B

?
:,U (G)) is defined recursively as

B
?
:,U (G) =

G � D:
D:+? � D:

B
?�1
:,U (G) +

D:+?+1 � G
D:+?+1 � D:+1

B
?�1
:+1,U (G), (�.��)

where

B0
:,U (G) =

(
1 if G 2 [D: ,D:+1) ,
0 otherwise.

(�.��)

The above formula when ? = 3 (meaning that cubic polynomials are used) produce the popular "Cubic
B-splines". These are smooth curves with continuous first and second derivatives. For a knot sequence
with< unique elements, @ =< � ? � 1 B-splines of degree ? can be generated.

In this dissertation, we will also work with wavelet expansions. Wavelet basis functions are known for
their versatility in handling non-uniform curves, particularly to approximate abrupt changes and complex
varying local behaviors. A wavelet is an oscillatory function k 2 !2R satisfying

Ø +1
�1 k (G)dG = 0, kk k = 1,

centered in the neighborhood of G = 0 and decaying to 0 as G ! ±1. The dyadic dilations and translations
of any wavelet design convoluted on 5 (C) 2 !2) produce the so-called Multiresolution Analysis (MRA)
[��, ���], which is an orthogonal decomposition of a function in a set of wavelet basis coe�cients at di�erent
levels of resolution corresponding to the dimension of the wavelet basis.

How do we choose the most suitable basis for fitting the data, along with determining the appropriate
basis dimension? While providing a comprehensive answer would be rather extensive, a common approach
involves using an appropriate loss function, such as ordinary least squares, combined with a cross-validation
procedure. Then, choosing the optimal finite-dimensional representation of 5 (C) corresponds to finding
the vector of coe�cients that minimize the sum of squared errors at each C8 . Thus, the objective is to
minimize

MSE(~ | 0) = (~ � �0)> (~ � �0), (�.��)

�



where � =
�
q 9 (C8 )

�
=⇥@ is a matrix containing the discretized basis functions. Then, the estimate of 0 that

minimizes the mean squared error is 0̂ = (�>�)�1 �>~.
To enhance the accuracy of the basis approximation, refinement is sometimes necessary to mitigate

possible overfitting e�ects. This can be achieved through the application of a roughness penalty. Consider
the integrated squared 3-order derivative

π
)

h
' [3 ] 5 (C)

i2
dC = 0>P30, (�.��)

where thematrixP3 is defined byP3 =
Ø
)
' [3 ]q (C)' [3 ]q (C)>dC with' [3 ]q (C) =

�
' [3 ]q1 (C), . . . ,' [3 ]q@ (C)

�>.
In the penalized least squares problem, the coe�cients of the smoother are determined by minimizing

CPMSE3 (~ | 0) = (~ � �0)> (~ � �0) + \0>P30. (�.��)

where \ 2 R�0 is a penalty parameter. Then, the coe�cients are estimated as 0̂ = (�>� + \P3 )�1 �>~ .
When the above regression problem is formulated with B-splines, we refer to them as smoothing

B-splines. We can readily convert this estimator into a more computationally e�cient one by using a
discrete penalty, which corresponds to what is known as penalized spline (P-splines) regression. Then,P3

is calculated as a matrix representation of the 3-order di�erence operator ' [3 ] ; for additional details and
advanced approaches, see [�, ��, ��, ���]. In the case of wavelets, a variety of strategies can be employed
depending on the MRA approach. These generally include the use of shrinkage techniques, as discussed
in Chapter �, as well as other similar smoothing schemes like those outlined here; see [��] and references
therein.

§ �.�. Functional principal component analysis

The gestation of functional principal component analysis (functional PCA) owes significantly to Mercer’s
Theorem (����) and the Kosambi- (���� [���]) Karhunen- (����-� [���, ���]) Loève (���� [���]) Theorem
(KKLT, or KLT for short). Jointly interpreted, Mercer’s theorem states that any positive semi-definite
symmetric function can be represented as a convergent sum of products of basis functions in � ⌘ !2) ,
while KLT uses such decomposition for the expansion of a random function in � . Related works initially
emerged for inferential purposes on stochastic processes [���, ���], while the consolidation of functional
PCA as reduction technique started after Dauxois’ asymptotic study [��], which investigated whether the
eigenelements of the empirical covariance operator converged to the eigenelements of its theoretical coun-
terpart as well as their asymptotic distributions; see also [��, ���] for greater generality of the results. Early
works on functional PCA include [��, ���, ���], which anticipated preliminary stages of an incipient com-
putational development [�, �, ���]. In the ��s, FDA and functional PCA underwent significant progress.
Remarkably, for what this dissertation concerns, two smoothed functional PCA approaches [���, ���] were
introduced, the latter incorporating the roughness penalty into the orthonormality constraint of the co-
variance eigenfunctions via Sobolev norms and inner products; see also [���, ���] for extended asymptotic
results on Silverman’s functional PCA method. Ocaña et al. [���] generalized this procedure a few years
later and established the principles to compute functional PCA estimates under general settings [���]. By
that time, Ramsay and Silverman’s popular book on FDA [���] was published, which, along with Bosq’s
book [��], constitute two fundamental state-of-the-art contributions to the field. In parallel, KLT was
also studied beyond common function spaces, for example, in the context of random fields [��] and on
Riemannian manifold structures; see [��] for the general case.

Theory
Suppose (� , h·, ·i) is a separable Hilbert space of real valued continuous functions, and that one aims to find
an optimal approximation, say -̃ , of the random variable - taking values � . This problem corresponds to
finding the linear span that minimizes Ek- � -̃ k2, and it is commonly referred to as functional PCA.

Since we are dealing with countable bases, it is conceivable to define a procedure to identify coordi-
nates/coe�cients with the highest variability at each step, thereby simultaneously minimizing the mean
square error mentioned above. We therefore aim to find a sequence of real-valued random variables,
(b 9 ) 92N, which are generalized linear combinations of - with maximum variance. These variables are
commonly referred to as principal components (PCs) or KL expansion coe�cients. An iterative method
can be formulated to find a sequence of orthonormal functions (W 9 ) 92N whose elements verify

• W1 = argmax
k⌘k2=1

hC- (⌘),⌘i,

�



• if 9 > 1, then W 9 = argmax
k⌘k2=1

hC- (⌘),⌘i and
⌦
C-

�
W 9 0

�
,⌘

↵
= 0, 89 0 < 9 ,

such that the variance of the random variables b 9 = hW 9 ,- i is maximized. This problem is well-known to
be equivalent to the decomposition of the covariance operator, therefore the functional PCA is obtained
from the eigensystem

C-
�
W 9

�
= _ 9W 9 , (�.��)

where the eigenvalues are positive satisfying _ 9 � _ 9+1,89 2 N. The solution to �.�� is uniquely defined
when the _ 9 ’s have multiplicity one. Assuming

⌦
W 9 ,W 9 0

↵
= X 9, 9 0 , where X 9, 9 0 is the Kronecker delta, this

orthonormal property is translated to the b 9 ’s as following orthogonal property

E(b 9b 9 0 ) =
⌦
C-

�
W 9

�
,W 9 0

↵
= _ 9X 9, 9 0 . (�.��)

Additionally, observe that if _ 9 = 0, then W 9 = 0 (a.e.). Because of �.��, the current definition of functional
PCA can be modified by substituting the constraint which defines the 9th eigenfunction by hW 9 0 ,⌘i =
0,89 0 < 9 , which allows for other geometrical modifications as discussed in [���].

Proposition �. Let - : ⌦ ! � be a random variable and (_ 9 ,W 9 ) 92N the eigensystem of C- such that the W 9 ’s
form an orthornormal family and (_ 9 ) ✓ R is a sequence of values sorted in a decreasing order. Then,

• (W 9 ) 92N determine the functional PCA via hW 9 ,- (l)i;

• (b 9 ) 92N are uncorrelated random variables and Eb29 = _ 9 ;

• (_ 9 ) 92N is a decreasing sequence of distinct nonnegative real values that converge to zero.

Therefore, if C- admits spectral decomposition, the expression for the KL expansion is

- (l) =
1’
9=1

b 9 (l)W 9 , (�.��)

where b 9 (l) = hW 9 ,- (l)i.

Theorem � (Ocaña et al. [���], Theorem �.��). Let � be defined by any continuous inner product h·, ·ig such
that for a symmetric positive definite operator T : (� , h·, ·ig ) 7! (� , h·, ·ig ) one can define

h5 ,6id = hT(5 ),6ig = hT1/2 (5 ),T1/2 (6)ig . (�.��)

Then, the functional PCA of - with h·, ·id is equivalent to the functional PCA of T1/2 (- ) with h·, ·ig , in the sense
that their KL expansions with both inner products are related as follows:

• - (l) = Õ
9 b 9 (l)W 9 ( functional PCA of - with h·, ·id );

• T
1/2 (- ) (l) = Õ

9 b 9 (l)T1/2 �
W 9

�
( functional PCA of T1/2 (- ) with h·, ·ig ).

As observed, the PCs remain unchanged, and the eigenfunctions are related by T
1/2.

Theorem � establishes the existence of a bijective linear map between two Hilbert spaces that preserves
the inner product structure. This result is critical for the empirical computation of the functional PCA and
will be taken into account in Chapter �.

The first major consequence of KL expansion is that it leads to an explicit characterization of the
reproducing kernel Hilbert space (RKHS) of - , in particular for all the elements in � which are, under
certain conditions, in the closure of the span of the W 9 ’s. This aspect is thoroughly discussed in Chapter �.
Furthermore, the current theory can be extended to spaces of the type � ⌘ �1 ⇥ �2 ⇥ · · · ⇥ �= (cartesian
product), each of those corresponding to an �-valued random variable; see, for example, [���, ���, ���].
We have developed methods for analyzing groups of �-valued random variables (multivariate functional
data) in our experimental studies.
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� | Functional independent component analysis

This chapter presents a summarized compendium of the following papers/manuscripts:

• [���] V����, M., R����, M., ��� A�������, A. M. (����). Bi-smoothed functional independent component
analysis for EEG artifact removal. Mathematics, �(��):����.

• [���]V����,M. ���A�������, A.M. (����). Novel whitening approaches in functional settings. Stat, ��(�):e���.

• [���] V����, M., L����, M., ��� A�������, A. M. (����a). Functional independent component analysis by
choice of norm: a framework for near-perfect classification. Under review.

The above papers have been synthesized in one single chapter to maintain a coherent discourse in
the dissertation. Here, we begin with a concise introduction to multivariate independent component (IC)
models and discuss the concept of separability, which is critical to ICA and functional ICA. In §�.�, we
establish the conditions for the existence of a whitening transformation in infinite-dimensional spaces,
a pre-processing step often used in the majority of ICA algorithms. Further, in §�.�, we introduce the
notion of whitening operator, study the properties of various whitening transformations, and derive com-
putational algorithms for the estimation of the proposed transformations in terms of basis expansions. Both
sections contain the main theoretical results published in [���]. Subsequently, in §�.�, the functional IC
model is introduced, and we provide a formal definition of the kurtosis operator. In the next sections, two
novel smoothed functional ICA models based on kurtosis are presented. The former (§�.�) is based on the
notion of penalized kurtosis, a concept that follows from Silverman’s method [���] for smoothing principal
components we introduce in [���]. There, the penalties are directly imposed to the eigenfunctions of the
kurtosis operator. The latter (§�.�), uses the original Silverman’s method to estimate functional ICA on a
suitable smoothed KL expansion via the KL coe�cients (see [���]). Furthermore, in §�.� we present the
theoretical properties of the kurtosis operator in relation to a generalized Fisher discriminant function and
the relationship it entails with the Feldman-Hájek dichotomy for Gaussian measures. Current theoretical
results can be found in [���]. Finally, we illustrate the performance of our methods through simulations
and the analysis of various real datasets in binary classification problems.

§ �.�. Independent component model and separability: from finite to infinite

ICA was motivated by neurophysiological challenges in the ����-��s, as PCA encountered limitations to
accurately separate mixed signals into their underlying independent components (ICs). See e.g., [���], or
[���] for instructive examples. Since then, there has been a substantial body of research on various types of
ICA procedures and their interpretations. In general, these procedures can be categorized into two main
classes: one involves specifying a particular parametric model for the distributions of the ICs, while the
other adopts a semiparametric or non-parametric approach that makes no or weak assumptions about their
underlying distributions.

In the multivariate ICA model, one assumes that a centered ?-variate random vector - is a linear
mixture of a ?-variate vector of mutually ICs. The model is commonly expressed as - = �( , where
� 2 R?⇥? is a nonsingular matrix and ( a random vector of ICs. The goal is therefore to estimate �
and ( given only - , which is challenging due to inherent indeterminacies of the model, such as � being
unidentifiable. Nevertheless, if ( has non-Gaussian components and�( is again independent, it is possible to
show that� can be represented as, at most, the product of a permutation and scalingwithin the components.
This result was initially validated in [��] through the following theorem:

Theorem � (Darmois–Skitovitch [���, ���, ���]). Suppose (1, . . . , (= are independent random variables, and

let

!1 =
=’
9=1

0 9( 9 and !2 =
=’
9=1

1 9( 9 (�.�)

be two linear forms with (0 9 ,1 9 ) 2 R. If we assume !1 ?? !2, then all ( 9 for which 0 91 9 < 0 are normally distributed.
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Darmois-Skitovich’s Theorem establishes that those ( 9 in �.�must be Gaussian if !1 and !2 are independent.
The theorem indirectly supports the that if the components of ( can be assumed non-Gaussian, they can be
uniquely recovered (up to scaling and permutation); see [��], also [���] for results in the multivariate and
complex setting. Valderrama and Aguilera [���] further used Theorem � to establish a su�cient condition
for Gaussianity of a random vector via its PCA.

Under mild assumptions on ( , Theis [���], following [��], demonstrated the identifiability� of the ICA
model under general settings without resorting to Theorem �. This leads to the following theorem, which
is derived within the framework of a noiseless IC model, with as many sources (or ICs) as observations.

Theorem � (ICA separability, Theis [���], Theorem �). Let ( be a ?-variate independent random vector and

� 2 R?⇥? a nonsingular matrix. Assume one of the following hypothesis:

�. ( has, at most, one Gaussian or deterministic component� and admits second order moments.

�. ( has non-Gaussian components, and its probability density function %( exists and is twice continuously

di�erentiable.

Then, if �( is again independent, the matrix � is equivalent to the identity.

Proof. First, we provide some definitions. For clarity, we will follow the notation used by the author.
A function 5 : R? ! C (note that R ⇢ C) is called separated/linearly separated if there exists a set

of one dimensional functions 61, . . . ,6? : R ! C such that 5 (G) = 61 (G1) · · ·6?
�
G?

�
, for all G 2 R? . For

separated 5 , we use the tensor product, i.e., 5 ⌘ 61 ⌦ · · · ⌦ 6? in the same vein as in [���]. Further, denote
by CA (* ;+ ) the ring of continuously di�erentiable functions of order A , from * ⇢ R? to + ⇢ C, with *
open.

For the first hypothesis, the author starts showing that due to a pre-whitening step, � can be assumed
without loss of generality orthonormal. Therefore � is the product of a permutation and scaling matrix.
Then, the proof builds upon the fact that among all densities and characteristic functions, the Gaussians
satisfy the di�erential equation

05 2 � 5 5 00 + 5 02 ⌘ 0, 5 2 C2 (R;C),0 2 C, (�.�)

whose solutions are 5 ⌘ 0 or 5 (D) = exp
�0
2D

2 + 1D + 2
�
, with D 2 R and 1, 2 2 C (see [���, Lemma �]).

Furthermore, the author presents the following Lemma to complete the proof.

Lemma � (Theis [���], Lemma �). Let 68 2 C2 (R;C) and ⌫ a ? ⇥ ? invertible matrix such that for G 2 R?

the factorization 5 (G) ⌘ 61 ⌦ · · · ⌦ 6? (⌫G) holds. Then for all indices ✓ and 8 < 9 with ⌫✓8⌫✓ 9 < 0, 6✓ satisfies �.�
for some constant 0.

Now, set - = �( , and let G, B 2 R? . Further, let b( (B) ⌘ E( (exp 8B>() be the characteristic function of
( . If ( is independent, then b( ⌘ 61 ⌦ · · · ⌦ 6? 2 C2 (R? ;C), where 68 ⌘ b(8 . The characteristic function of
�( can be calculated as

c�( (G) = E( (exp 8G>�() = b( (�>G) = 61 ⌦ · · · ⌦ 6? (�>G). (�.�)

If we let ⌫ ⌘ (⌫8 9 ) = �>, given that �( is also independent, we have 5 (G) ⌘ c�( (G) = 61 ⌦ · · · ⌦ 6? (⌫G). By
assuming � ⌧ �? and noting that ⌫ = �>, there exists : < ✓ and 8 < 9 with ⌫:8⌫: 9 < 0 and ⌫✓8⌫✓ 9 < 0, such
that both 6: and 6✓ satisfy �.� according to Lemma �. This contradicts the first hypothesis, as it shows that
(: and (✓ are both Gaussian (see also [���, Corollary �]).

For the second hypothesis, let %( 2 C2 (R? ;R) be the density of ( . Since ( is assumed independent
(with no Gaussian component), %( ⌘ 61 ⌦ · · · ⌦ 6? with 68 ⌘ %(8 . Then, the density of �( is

%�( (G) = | det�|�1%(
⇣
��1G

⌘
= | det�|�161 ⌦ · · · ⌦ 6? (��1G), (�.�)

where |det�|�1 is a scaling factor which ensures that the total probability integrates to �. Given that �( is
also independent, we can define 5 (G) ⌘ | det�|%�( (G) = 61 ⌦ · · · ⌦ 6? (⌫G) by letting ⌫ ⌘ (⌫8 9 ) = ��1.

If, once more, we assume that � ⌧ �? , then ⌫ = ��1 ⌧ �? . Hence, there exist indices ✓ and 8 < 9 such
that ⌫✓8⌫✓ 9 < 0. According to Lemma �, 6✓ satisfies the di�erential equation �.�. This means that the ✓th
component of ( is Gaussian, leading to a contradiction (see also [���, Corollary �]). ⌅

�That is, the possibility of determining the mixing matrix �.
�( is said to have a Gaussian component if one ( 9 is Gaussian, i.e., %(9 (G ) = 3 exp(�0G2 + 1G + 2 ) with (0,1, 2,3 2 R,0 > 0) ,

while deterministic means that the component is constant.
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Indeed, Theorem � confirms the separability of the linear IC model: if - = �( and, is a demixing
matrix such that,- is independent, then,� ⇠ �? , implying, �1 ⇠ �. In view of the current results,
Nordhausen and Oja [���] proposed a more precise characterization of the ICA model, which intuitively
draws some analogies with the definition of independence provided in §�.�.

Definition � (ICA model, Nordhausen and Oja [���], §�.�). Let - be a centered ?-variate random vector.

Then, - follows an IC model if

- = �( = �1(1 +�2(2, (�.�)

where � = (�1,�2) 2 R?⇥? is nonsingular with �1 2 R?⇥@,�2 2 R?⇥ (?�@) . The random vector ( = ((>1 , (>2 )>
verifies (i) var ((8 ) = 1 (8 = 1, . . . , ?), (ii) (1 ?? (2 (iii) the components of (1 are independent non-Gaussian and of

(2, independent Gaussian.

As noted in [���], it is often presumed that @ = ?�1,which implies at most one component is Gaussian,
as discussed in Theorem �. Meanwhile, the current model formulation appears to be more flexible, as it
does not strictly require (2 to have a specific dimension.

Now, let’s shift our focus back to the Hilbert space setting discussed in Chapter �. Extending the notion
of separability to infinite dimensions brings forth several inherent challenges. Gutch and Theis [���] based
on Theorem �, provided the following result in this respect:

Theorem � (Gutch and Theis [���], Theorem �). Let (� , h·, ·i) be a separable Hilbert space and ( a �-valued
independent random variable whose characteristic function (̂ (D) ⌘ E( [exp(8h(,Di)],D 2 � , is twice di�erentiable.
Suppose � : � ! � is a linear operator with bounded inverse, and let - = �( be again independent. If one

considers an arbitrary orthonormal basis
�
i 9

�
92N of � and there exist indices ✓ 2 N and 9 < : 2 N such that

hi 9 ,�i✓i < 0 < hi: ,�i✓i, then the ✓th component of ( has to be Gaussian.

If the inverse of the operator� exists, then it is continuous and defined for all elements of� . This implies
that � is both injective (one-to-one) and surjective (onto), meaning it establishes a bijective mapping
between elements of the domain and codomain. This isomorphism is interpreted in the following sense:
if hi 9 ,�i✓i < 0 < hi: ,�i✓i (this operation describes specific non-orthogonal relationships with regard
to an arbitrary orthonormal basis of � ), then ( must be Gaussian, and any mixing of the components
of ( into more than one component of - will be Gaussian too. This also follows from extensions of the
Darmois–Skitovitch and Cramér’s theorems; see, e.g., [���]. If none of the components of ( are Gaussian
but independent, then � maps each component of ( to a single component of - , therefore � = Id. For
more details, see proof in [���].

Although general grounds for separability have been provided, those may be deemed somewhat ar-
tificial as the law of - may not allow for a linear transformation resulting in independent components.
Therefore, a more explicit characterization of the problem is necessary since the model outlined becomes
too restrictive. In the presence of numerous Gaussian sources, the non-Gaussian ones may be barely dis-
tinguishable. Conversely, when the number of Gaussian sources is limited to a few or one, their separation
becomes optimal (assuming they are independent, although this is not always the case [���]). In a broad
sense (take e.g. Definition �), the objective is to maximize the non-Gaussianity of the sources by sepa-
rating the ones that do not contribute to make the model fully identifiable. Although yet unexplored in
functional settings, these issues have been previously studied, for example, in [���, ���]. Current notion of
decomposition in ICs based on non-Gaussianity has also found a reasoning in the central limit theorem
and in the framework of information geometry [��].

Taking into account the preceding factors, pre-whitening the data —essentially, ensuring linear in-
dependence by eliminating second-order correlations— is a common and useful step to enhance the iden-
tification of the ICs. However, extending this procedure to infinite-dimensional spaces carries certain
problems due to the covariance operator having unbounded inverse. This is discussed in the following
sections, and the functional ICA model will be presented afterwards.

§ �.�. The Cameron-Martin space geometry

Next, we assume a common scenario in functional data where� is a separable space of real-valued functions
on a closed interval I = [0,) ],) > 0 with inner product operator h·, ·i : � ⇥ � ! R and norm k · k :
� ! [0,1). Given a probability space (⌦,A, %), a �-valued random functional variable is the mapping
- : ⌦ ! � that is B� -measurable, where B� is the f-field generated by the class of all open subsets of � .
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Suppose Ek- k2 < 1. Then, - has mean function ` = E- and covariance operator C- = E{(- � `) ⌦
(- � `)} admitting the spectral representation

C- =
1’
9=1

_ 9 (W 9 ⌦ W 9 ) =
1’
9=1

_ 9PW 9 , (�.�)

where _1 � _2 � · · · � 0 is its set of non-negative eigenvalues converging to zero and (W 9 ) 92N an orthonor-
mal basis of corresponding eigenfunctions. We employ the notation PW 9 = W 9 ⌦ W 9 for the projection of
� on to the one dimensional eigenspace spanned by W 9 . Unless otherwhise stated, we assume that C- has
strictly positive eigenvalues, hence C- is injective. Furthermore, as C- is a self-adjoint positive operator,
consider there exists the operator C

1/2
- such that (C1/2

- )2 = C- .

Definition � (Vidal and Aguilera [���], Definition �). The whitening operator  transforms a functional variable

- into a new element X =  (- � `) with zero mean and covariance operator being exactly the identity in � .
We note that there is no convention in how mean-centering should be performed, if before or after the
transformation. In the sequel it will be assumed that ` = 0.

A natural way to produce a whitening operator is via factorization of the precision (the inverse of C- ),
which suggests the expression  ⇤ = C

�1
- , where  ⇤ is the adjoint of  . A priori, major drawbacks might

arise in this context, as the precision operator turns out to be unbounded and, in general, - does not belong
to its domain (see, for example, [���, §�.�] ). One should therefore proceed with care, as even considering
certain kinds of regularization,  (- ) may not exist in the sense of Definition �. We now discuss how  can
also be correctly validated to lead to a number of whitening operators in the functional setting through a
particular space geometry.

The Cameron-Martin (CM) space can be defined as a certain completion of � with respect to the
norm induced by a Gaussian measure. Originally, this space was associated with a Wiener measure due
to the investigations conducted by Cameron and Martin [��] on its kernel. However, the name CM space
has since been extended to encompass a�ne transformations of Wiener measures as well as other Gaussian
distributions.

Following the factorization Theorem [���, §�.�], the usual definition of a CM space is as follows:

M =

(
⌘ 2 � :

1’
9=1

⌦
⌘,W 9

↵2
_ 9

< 1
)

with h6,⌘iM =
1’
9=1

⌦
6,W 9

↵ ⌦
⌘,W 9

↵
_ 9

. (�.�)

Note the CM space is not only a Hilbert space but also a RKHS. The necessary and su�cient condition for
an element in � to be inM is that satisfies

Õ
9 _

�1
9

⌦
⌘,W 9

↵2
< 1. Casting the current law, often referred to as

Picard’s criterion [��, §�.�], is not simply a procedural step since M only becomes closed under the norm
induced by the RKHS topology or finite dimensional constraints. Under Picard’s criterion, we can use �.�
to reparametrize the random variable - to have the identity as covariance operator in M, and through it
define a family of whitening transformations. For all 5 ,6 2 M, note that the inner product in �.� can be
written as h6,⌘iM = hC1/2†

- 5 , C1/2†
- 6i, where C

1/2†
- is the the Moore-Penrose inverse of C1/2

- [���, §�.�.�].

§ �.�. Optimal whitening transformations

Whitening operators
A whitening operator can be defined as a two-step transformation, with representation  : M ! M,
restricted to map elements in the range of C- . Therefore, the other part of the mapping comprises a
projection on to the space generated by (W 9 ) 92N, so that - becomes entirely determined by the covariance
operator C- before whitening. Unless otherwise stated, in the following sections we reset - to the range
space of C- , hence the proposed whitening operators map elements of the kind

Õ1
9=1h·,W 9 iW 9 .

The most typical whitening transformation is obtained via square root factorization of the precision
operator C

†
- , which stands as a direct extension of the popular zero phase component analysis multivariate

whitening [��]. The aforementioned operator is here denoted by  W⌦W = C
1/2†
- , and its spectral decompo-

sition is straightforwardly written as

 W⌦W = C
1/2†
- =

1’
9=1

_�1/29 (W 9 ⌦ W 9 ). (�.�)

Now, we describe some properties of this mapping.

��



Proposition � (Vidal and Aguilera [���], Proposition �). The covariance operator of X = U W⌦W (- ) satisfies
the identity in M for any unitary transformation U in ran(C1/2

- ), the closure of the range space of C1/2
- .

According to the above proposition, rotational freedom becomes apparent, which leads us to the possibility
of defining a family of whitening operators, as described below.

A slight modification in �.� alternatively yields the non-symmetric whitening operator

 W⌦4 =
1’
9=1

_�1/29 (W 9 ⌦ 4 9 ), (�.�)

where (4 9 ) 92N is a fixed orthonormal basis of � . In fact, here we see the role of operator U as the agent of
sending W 9 to 4 9 . Current operator follows the principles of [��], which only considers a single rotation of
the covariance matrix eigenvectors.

To further extend the class of whitening operators, one can consider a succinct form of decorrelation
by defining the diagonal operator V= diag(C- ) =

Õ1
:=1 P4: C-P4: , where P4: = (4: ⌦ 4: ). The operator

V is not unique as it depends on an arbitrary orthonormal basis of� . In other words, there is no privileged
orthonormal basis on � to define V, and for each one of them di�erent operators can be obtained. This
way, the notion of standardization in multivariate analysis can be extended to the functional case by the
operator V1/2†, where V

1/2† is the Moore Penrose inverse of V1/2. Further usefulness of this operator will
become clear in the following sections.

Two whitening procedures with appealing properties were defined in [���] by constraining the arbi-
trariness of the transformation to inherent autocorrelations. Next, we will suppose that R : M ! M de-
fined as R = V

1/2†
C- V

1/2† is a compact operator, boundedly invertible, with associated singular system
(d 9 ,i 9 ) 92N. The operator R closely resembles the usual correlation matrix and its spectral decomposition
leads to an eigenspace that will be of use in combination to V

1/2†. Thus, there is no loss of generality in
assuming that

 i⌦i = R
1/2†

V
1/2† =

( 1’
9=1

d�1/29 (i 9 ⌦ i 9 )
)
V

1/2†, (�.��)

or analogously to �.�,

 i⌦4 =

( 1’
9=1

d�1/29 (i 9 ⌦ 4 9 )
)
V

1/2† (�.��)

satisfies the usual properties of a whitening transformation in the sense of Definition �. Both operators
decline the span of C- by its diagonal, merging it with the spectral decomposition of R, which leads
to a non-symmetric operator. In turn, the operator  i⌦i is up to permutation or sign changes but also
invariant under unitary transformations within the subspace spanned by the eigenvectors ofR. Again, we
can write U i⌦i , where U denotes a unitary operator in the range of R1/2†

V
1/2†.

Triangular factorization of self-adjoint and positive operators, might provide us another whitening
procedure closely related to the Cholesky decomposition of the precision matrix. Due to a result of Krein
(see Theorem �.�.� in [��]), the usual precision operator can be factored as

(�� + C- )�1 = (�� � �⇤) (�� � �), (�.��)

where � is a triangular Volterra operator on � = !2
I
and �⇤ its adjoint. The factorization in �.�� leads to

the whitening operator  � = (�� � �). Nevertheless, we will restrict the analyses to a common Cholesky
decomposition of the precision operator in the finite dimensional setting. Optimal whitening with tri-
angular operators presents further technical di�culties requiring a separate study, in part, because of the
great variety of them.

Optimal functional whitening
Similarly to the multivariate case, optimality in a functional whitening transformation can be identified in
two di�erent ways. The first corresponds to a problem aiming to find a component wise transformation
that is closer to the original functional variable using some measure of adjustment or resemblance. The
second is related to the ability of the whitening operator to compress the original functional variable and
retain the maximum information content.
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The adjustment between the original projected and whitened functional variable is measured by the
minimization of

Ek- �Xk2 = tr(C- ) � 2tr(C-X) + tr(CX), (�.��)

where C-X = E(- ⌦ X) is the cross-covariance operator between - and X. As 2tr(C-X) is the only
dependent between the original and the whitened variable, the minimization problem can be reduced to
the maximization of tr(C-X). We implicitly assume that X falls in a space with the usual inner product
and that - lies in the closure of M.

Proposition � (Vidal and Aguilera [���], Proposition �). The whitening operator  W⌦W is the unique transfor-
mation that minimizes Ek- �Xk2.

The least-squares problem in Proposition �, however, is restrictive in the sense that it only allows
to quantify the goodness of fit of the whitening transformation without not being further explanatory of
correlations or level of compression. For a correlation-based similarity objective, a scale-invariant measure
is usually required. Here, we consider a functional extension of the criteria used in [���], consisting of the
minimization of the mean squared error between the standardized functional variable and the whitened
one. The operator V

1/2† scales the original variable without removing correlations, allowing to construct
a scale invariant measure without being necessary to compute derivatives. The optimality objective is then
expressed as

EkV1/2†(- ) �Xk2 = tr{CV1/2† (- ) } � 2tr{CV1/2† (- )X} + tr(CX), (�.��)

which corresponds to the maximization of tr{CV1/2† (- )X}.

Proposition � (Vidal and Aguilera [���], Proposition �). The whitening operator  i⌦i is the unique transfor-

mation that minimizes EkV1/2†(- ) �Xk2.
Robustness in small local changes is not necessarily guaranteed when a whitening transformation is

based onminimal least squared adjustment. Tomeasure the degree of compression of a whitening transfor-
mation, Kessy et al. [���] used the row sum of squared cross-covariance and cross-correlations between the
components of the whitened and the original random vector. Then, a monotonically decreasing condition
on the resultant variance is established to be maximized. As one might suspect, a similar approximation
can be developed in the functional data setting.

First, note that the operators C-X and CX- are not self-adjoint, whereas C-X is the adjoint of CX- .
Define then the compound operator C-X � C-X, which is self-adjoint and compact.

Formally, a way to measure how the whitening operator e�ectively compresses the original functional
variable in terms of a cross-covariance relation is by

fcov = sup
k4: k=1

h4: , CX- � C-X (4: )i . (�.��)

We can similarly proceed for the cross-correlation operator, now defined in the same sense of [���] as
R-X = C

1/2†
- C-X C̃

1/2†
- , where C̃- = E(X ⌦ X). Thus, if the aim is to maximize the compression under a

cross-correlation measure, we look for the maximization of the rate

fcorr = sup
k4: k=1

h4: ,RX- �R-X (4: )i . (�.��)

Simulations conducted in [���] show that the whitening operators  W⌦4 and  i⌦4 maximize the proposed
compression rates.

Finite dimensional approximation
Let -8 (8 = 1, . . . ,=) be = independent copies of - not directly observable. The curves -8 are reconstructed
from a vector of measurements collected in a finite set of equidistant time points C80, C81, . . . , C8<8 , contam-
inated with additive independent errors, i.e., -8: = -8 (C8: ) + n8: (: = 0, . . . ,<8 ). Suppose the observations
are assumed in a @-dimensional space � [@ ] of � spanned by a collection of basis functions q = (q1, . . . ,q@)>
not necessarily orthonormal in the usual sense. For two functions 5 = q>f and 6 = q>g, the inner product
is defined by h5 ,6i = f>Gg, where G 2 R@⇥@ is the Gram matrix of inner products between pairs of basis
functions. Then, -8 can be expressed as the vector valued function - (C) = �q (C), where � 2 R=⇥@ is a
matrix of coe�cients and q (C) = (q1 (C), . . .q@ (C))>.

The @-dimensional sample covariance operator C
[@ ]
- is defined for any 5 2 � [@ ] as

C
[@ ]
- (5 ) = h⇠ [@ ] (B, ·), 5 i (�.��)
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where ⇠ [@ ] is the covariance kernel function of - admitting the following matrix representation

⇠ [@ ] (B, C) = =�1- (B)>- (C)
= q (B)>G�1/2 (=�1G1/2�>�G

1/2)G�1/2q (C)
= q̂ (B)>⌃�G1/2q̂ (C).

(�.��)

Then, the coordinates of ⇠ [@ ] can be expressed in terms of an orthonormalized basis q̂ (C) = G
�1/2q (C) as

=�1G1/2�>�G
1/2 = ⌃�G1/2 . The matrix ⌃�G1/2 2 R@⇥@ has the eigendecomposition ⌃�G1/2 = *⇤* > where

* are eigenvectors and ⇤ is a diagonal matrix with entries the eigenvalues of ⌃�G1/2 . The eigenfunctions
of C[@ ]

- are then defined as W (C) = ⌫q (C) with ⌫ = G
�1/2* . Further, consider the decomposition ⌃�G1/2 =

⇡1/2'�G1/2⇡1/2, where ⇡ = diag(⌃�G1/2 ) and '�G1/2 is a matrix capturing the correlations of ⌃�G1/2 with
eigendecomposition '�G1/2 = +⇥+>. With this, we next derive the whitening procedures described in the
last subsection. Normalization is omitted for the sake of clarity.

Proposition � (Vidal and Aguilera [���], Proposition �). Let us consider the orthonormalized basis 4 (C) = q̂ (C)
of� [@ ] . Using the functional representation- (C) = �G

1/2q̂ 9 (C), the coe�cients of each functional whitening operator
are obtained by their respective multivariate whitening procedures of the orthonormalized coe�cient matrix �G

1/2 as
follows:

 W⌦W {- (C)} = (�G
1/2)⌃�1/2

�G1/2q̂ (C),
 W⌦4 {- (C)} = (�G

1/2)*⇤�1/2q̂ (C),
 i⌦i {- (C)} = (�G

1/2)⇡�1/2'�1/2
�G1/2q̂ (C),

 i⌦4 {- (C)} = (�G
1/2)⇡�1/2+⇥�1/2q̂ (C),

 �{- (C)} = (�G
1/2)!q̂ (C),

(�.��)

where ! is the solution to the Cholesky factorization !!> = ⌃�1
�G1/2 .

§ �.�. Functional ICA model based on kurtosis

Kurtosis extremization is a common problem addressed in the context of ICA, which is often referred
to by the name of fourth-order blind identification (FOBI); see, for example, [���]. While multivariate
ICA methods are based on various kinds of non-Gaussian optimization, functional ICA has primarily been
developed using FOBI or related families of estimators. This limitation is probably due to the fact that
the concept of a density function is not straightforwardly defined in functional data spaces. Furthermore,
in the absence of a parametric form of the component distribution, one strongly relies on the topological
features of the data. Current functional ICA models are then defined through functional PC reduction
[���, ���, ���], or penalized versions of it to exploit and regulate the level of smoothness [���] (see, §�.�).
These approaches assume that the interesting ICs lie in the subspace spanned by the first functional principal
factors. However, some ICs could be mixed with the discarded PCs, and there is also little room remain-
ing to investigate other non-linear structures underlying the original data because the aforementioned
models are constrained by the linearity of the PCs. To address this, a more general model is proposed in
§�.�. It should be stressed that current functional IC models exploit temporal independence, akin to early
developments in ICA for time series analysis [��, ���].

As has been previously outlined in [���], functional ICA can be summarized in the following steps:

• Whitening the functional random variable;

• space rotation via scatter operators and spectral decomposition;

• projection on to the space generated by the operator’s eigenfunctions and expansion.

Typically, this procedure is described through a demixing and mixing transformation, the latter mapping
the Hilbert-valued functional independent components into the original space of functions.

The model
The functional ICA aims to enhance the estimation of independent components via orthogonal rotations of
X. Let * (M) denote the class of all unitary operators in B(M). The functional IC model can be expressed
as

â (- ) = U (PW- ) = / , (�.��)
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where â is commonly known as the demixing operator, U 2 * (M) and / is a �-valued element with
independent component functions satisfying C/ = Pran( ) . Another way to see model �.�� is by means of
a mixing operator � 2 * (M) which corresponds to

- = �/ + (�� �PW ) (- ), (�.��)

where � =  �1U. Note that PW is the projection operator on to the span of the W 9 ’s. A key question in
functional ICA is henceforth how to determine U. We thus present the properties of the kurtosis operator,
previously defined in [���], whose spectral decomposition will provide us the operator of interest.

Assumption �. Ek- k4 < 1.

Under the above assumption, we can establish the existence of a mapping K 2 B�( (M) with the
action X 7! KX defined as E{(X ⌦ X)2}. This mapping is referred to as the kurtosis operator of X and
their properties are derived below.

Proposition �. The operator KX is self-adjoint, positive definite with finite trace. From the Hilbert-Schmidt

boundeness, KX admits the spectral decomposition

KX =
1’
9=1

^ 9k 9 ⌦k 9 , (�.��)

where (^ 9 ) 92N is a sequence of strictly positive eigenvalues in decreasing order and (k 9 ) 92N the associated eigenfunc-

tions. The operator KX is unitary equivariant with respect to an unitary operator U 2 * (M), that is, K(UX +1) =
UKXU

⇤, for each 1 2 M.

Proof. For any 5 2 M one can verify that

hKX 5 , 5 i = E
⌦
(X ⌦ X)2 5 , 5

↵
= E

⇣
hX,Xi hX, 5 i2

⌘
= E

⇣
kXk2 hX, 5 i2

⌘
� 0, (�.��)

so clearly, K(X) is nonnegative definite. Self-adjointness becomes apparent since, per definition, KX =
E{kXk2 (X ⌦ X)}. Therefore KX = K

⇤
X, where K

⇤
X is the adjoint of KX, and consequently hKX 5 ,6i =

h5 ,KX6i with 5 ,6 2 M. Self-adjoint operators are necessarily normal. To show that K(X) is trace class,
consider any orthonormal basis {41, 42, . . .} of M. Similarly as in (�.��) observe that

tr(KX) =
1’
9=1

⌦
KX4 9 , 4 9

↵
=

1’
9=1

E
⇣
kXk2

⌦
X, 4 9

↵2⌘ = EkXk4 .

Furthermore, by our assumptions Ek- k4 is finite, and so it is EkXk4 when Picard’s condition holds. Ac-
cording to the spectral theorem, operators satisfying the above properties are diagonalizable.

To conclude, consider a unitary operator U 2 B(M) and a location function 1 2 M. Then, we can
write

K(UX + 1) = E{(UX ⌦ UX)2} = E{kUXk2 (UX ⌦ UX)}.

Taking separately both factors of the last expression, we have that kUXk2 = hX, U⇤
UXi = kXk2 and

UX ⌦ UX = U(X ⌦ X)U⇤, which follows from the tensor product properties. As a result, K(UX) =
UK(X)U⇤, showing that unitary equivariance holds. ⌅

Note that the kurtosis operator naturally fosters the properties of the covariance operator. This operator
is uniquely determined by the relation

E (h5 ,Xi hX, 5 ihX,Xi) = h5 ,KX 5 i , (�.��)

which holds for all 5 2 M.
The independent components are of the form hX,k 9 i, where the orthonormal family (k 9 ) 92N, called

independent component weight functions, are obtained by solving k 9 = argmax5 kurt(hX, 5 i) subject to
k 5 k2 = 1, h5 ,k 9 i = 0. This way, the kurtosis based functional ICA is determined by the solutions to the
eigenproblem

KX

�
k 9

�
= ^ 9k 9 . (�.��)
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The independent component scores b̃ 9 = hX,k 9 i are then generalized linear combinations of X with max-
imum kurtosis satisfying kurt(b̃ 9 ) = hKXk 9 ,k 9 i = ^ 9 . It is easy to see that the model �.�� is completed by
defining U =

Õ1
9=1 (k 9 ⌦k 9 ).

Now, assume that ^ 9 and k 9 satisfy equation �.��. Then, lim"!1
Õ"
9=1 b̃ 9k 9 converges uniformly to

X, which is a direct consequence of Mercer’s Theorem for a symmetric positive-definite operator. Since
the correlation structure of - is removed in X, note that the additive sum of projections will be rather
changeable if compared with the usual KL expansion.

§ �.�. Kurtosis based smoothed functional ICA

We next extend the method introduced by Silverman [���] for smoothing principal component estimates
to functional ICA by introducing the notion of penalized kurtosis. In doing so we aim at controlling the
smoothness of the IC weight functions by applying roughness penalties through a second order linear
di�erential operator. The small perturbations produced by this type of penalty will presumably have a
regularizing e�ect on the lower order eigenelements by adjusting possible distortions.

In what follows, we shall consider thatM\ is a closed subspace of continuously di�erentiable functions
with weighted Sobolev inner product and corresponding norm

h5 ,6i\ = h5 ,6i + \ h'5 ,'6i , k 5 k2\ = h5 , 5 i\ , (�.��)

where \ 2 R�0 is a penalty parameter and ', a bounded self-adjoint di�erential operator on M\ with the
action 5 7! 5 00. Note that there can exist many smooth eigenspaces as values are given to \ and if \ = 0,
then M\ = M.

The spectral decomposition of KX prevails in our model but now imposing orthonormality in terms
of h·, ·i\ . Analogously to Silverman’s method, the novel penalized IC approach maximizes

kurth5 ,Xi
h5 , 5 i + \ h'5 ,'5 i =

h5 ,KX 5 i
k 5 k2\

, (�.��)

for all 5 2 M\ , 5 < 0. Note that \ controls the roughness of the function 5 as measured by the penalty
h'5 ,'5 i. Consequently, one can find a collection of smoothed functions k\ , 9 2 M\ that maximize �.��
which is equivalent to solve the following optimization problem:

k\ ,1 = argmax5 h5 ,KX 5 i s. t. k 5 k2\ = 1,

k\ ,: = argmax5 h5 ,KX 5 i s. t. k 5 k2\ = 1,
⌦
5 ,k\ , 9

↵
\ = 0, for all 9 < :, (: = 2, 3, . . .).

(�.��)

The orthonormal condition over the smoothed IC weight functions is fixed by the inner product h·, ·i\
whereas the kurtosis of the independent components is given by h·, ·i. In this sense, the smoothed IC
weight functions form an orthonormal system of M\ .

Under the assumption of finite fourth moments and if Picard’s law holds, for any 5 2 M\ , \ � 0, the
solutions to the optimization problem �.�� are given by the equation

h5 ,KXk\ , 9 i = ^\ , 9
⌦
k\ , 9 , 5

↵
\ . (�.��)

Proposition �.� establishes in same sense as Theorem �.� in [���] that the solutions to �.�� exist almost
surely; the details provided there can be succinctly deduced for the present case. In order to get the
main results given in the next section, consider from Proposition �.� in [���] for the covariance operator
(functional PCA) that, due to a continuous assumption on the usual inner product h·, ·i for the new inner
product h·, ·i\ , there exists a positive definite, symmetric, continuous and bounded operator (2 such that
h5 ,6i = h(2 (5 ),6i\ (see [���] for a rigorous definition of the operator ().

Proposition �. The eigensystem of the smoothed functional ICA, obtained as the solutions to Equation �.�� and

denoted by (k\ , 9 ,^\ , 9 ) 2 M\ ⇥R, is equivalent to the eigensystem of K(2 (X) with the inner product h·, ·i\ .

Proof. This result is immediate from the relation between the two inner products h- , 5 i = h(2 (- ), 5 i\ . As
a consequence, the optimization problems �.�� and �.�� are the same. ⌅

Equivalently to the results provided in [���] for the smoothed functional PCA, this algorithm can be
regarded as an equivalence between the smoothed functional ICA and the spectral decomposition of the
kurtosis operator of the half-smoothed process ( (X) with the usual inner product.
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Proposition �. (k\ ,^\ ) 2 M\ ⇥R is an eigenelement of K(2 (X) with h·, ·i\ i� ((�1 (k\ ),^\ ) is an eigenelement
of K( (X) with h·, ·i.

Proof. Since the operator (2 is a symmetric positive definite operator, then there exists its square root
operator, ( which is also a symmetric positive definite operator verifying (2 = ((, so that

h5 ,6i = h(2 (5 ),6i\ = h( (5 ), ( (6)i\ . (�.��)

Let us denote by K(2 (X) the kurtosis operator of the random variable (2 (X) with the inner product
h·, ·i\ and by K( (X) the kurtosis operator of ( (X) with h·, ·i.

The equivalence between the two eigensystems is clearly deduced from the following relationship
between both kurtosis operators:

K(2 (X) = (K( (X)(
�1. (�.��)

In fact,

K(2 (X) (5 ) = E{h5 , (2 (X)i\ h(2 (X), (2 (X)i\(2 (X)}
= ( [E{h(�1 (5 ), ( (X)ih( (X), ( (X)i( (X)}]
= (K( (X) ((�1 (5 )) .

⌅

Then, we can establish the following equivalences which follows immediately from Propositions � and �.

Corollary �. The smoothed independent components b̃\ , 9 , 9 2 N+ of - satisfying E(b̃\ , 9 b̃\ , 9 0 ) = X 9 9 0 are equiva-
lently obtained by the following projections:

�.
⌦
X,k\ , 9

↵
�.

⌦
(2 (X),k\ , 9

↵
\

�.
⌦
( (X), (�1 (k\ , 9 )

↵
.

As a consequence, the orthogonal representation for the half-smoothed whitened variable ( (X) in
terms of the independent components is obtained by the expansion

( (X) =
1’
9=1

b̃\ , 9(
�1 (k\ , 9 ). (�.��)

Basis expansion implementation
A general strategy for solving the continuous eigenproblem to an equivalent matrix eigenanalysis is to
consider a representation of the empirical counterpart of - with a finite basis of functions. Let - [@ ] (C) =
(- [@ ]

1 (C), . . . ,- [@ ]
= (C))> be a vector-valued function containing = copies of - assumed in a @-dimensional

Hilbert space. Each function of - [@ ] (C) admits the basis function representation

- [@ ] (C) = �q (C), (�.��)

where � 2 R=⇥@ is a matrix of coe�cients and q (C) = (q1 (C), . . . ,q@ (C))> their respective vector of basis
functions. The linear span of q (C) is denoted by � [@ ] with inner product defined as h5 ,6i = f>Gg, where
f, g are the coe�cient vectors of the functions 5 ,6 2 � [@ ] and G = hq 9 ,q:i 2 R@⇥@, 9, (: = 1 . . .@), that
is, the inner products of each pair of basis functions, so that possibly G < �@ when q (C) might be not
orthonormal in the usual sense. Recalling the computational algorithms in §�.�, we henceforth assume
that X[@ ] (C) = �̃q (C) is a set of whitened functional data, i.e., a basis expansion with coe�cient matrix
satisfying =�1�̃>�̃ = G (�̃ have identity covariance matrix in the topology of the space). Then, from
expression �.��, we can define the sample kurtosis operator as

KX [@ ] (5 ) (B) = =�1
=’
8=1

D
X

[@ ]
8 ,X[@ ]

8

E D
X

[@ ]
8 , 5

E
X

[@ ]
8 (B) =

*
=�1

=’
8=1

���X[@ ]
8

���2X[@ ]
8 (B)X[@ ]

8 , 5

+

= h [@ ] (B, ·), 5 i,
(�.��)
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where  [@ ] (B, C) is a kurtosis kernel function admitting the following representation in terms of an or-
thonormalized basis

 [@ ] (B, C) = q> (B)G�1/2 (=�1G1/2�̃>⇡�̃G
1/2)G�1/2q (C), (�.��)

where ⇡ = diag(�̃G�̃>), i.e. ⇡88 = kX8 k2.

Proposition �. Given the basis expansion in �.��, the functional ICA of - [@ ]
8 with respect to the inner product

h·, ·i is equivalent to the multivariate ICA of matrix �G
1/2 with the usual metric in R@ .

Proof. As indicated beforhand, the weight functions of the independent components are obtained as the
eigenfunctions of the sample kurtosis operator by solving the following eigenproblem:

KXk (C) = ^k (C). (�.��)

If we expand the independent component weight functions as k (C) = q (C)>1, then the problem turns in
matrix form as

=�1�̃>⇡�̃G1 = ^1, (�.��)

which is equivalent to

=�1G1/2�̃>⇡�̃G
1/2D = ^D, (�.��)

withD = G
1/21 . That is, ⌃[4]

�̃G1/2D = ^D . Taking into account that the matrix �̃G
1/2 is the whitening counter-

part of the matrix�G
1/2,we can conclude that the functional ICA is equivalent to ICA of matrix�G

1/2. ⌅

Proposition ��. For any \ > 0, the penalized functional ICA of - [@ ]
8 defined by the successive optimization prob-

lem in �.�� is equivalent to the multivariate ICA of the matrix �G
1/2 using the metric M = (!�1G1/2)> (!�1G1/2)

in R@, with ! defined by the factorization G\ = G+\P2 = !!>, andP2 the matrix whose elements are h'q 9 ,'q:i.
Proof. If we expand the weight functions in �.�� as 5 (C) = Õ@

9=1 1 9q 9 (C) = q (C)>1 where 1 = (11, . . . ,1@)>,
the coe�cients of k\ , 9 , are obtained by solving the penalized kurtosis problem �.�� expressed in matrix
form as

=�11>G�̃>⇡�̃G1

1>G1 + \1>P21
=
1>G1/2⌃[4]

�̃G1/2 G
1/21

1> (G+ \P2) 1
. (�.��)

The above developments can be used to transform the eigenequation �.�� into the matrix eigenproblem

G
1/2⌃[4]

�̃G1/2 G
1/21 = ^\ G\1, (�.��)

where G\ = G+ \P2. Then, by performing the factorization G\ = !!>, the eigenequation �.�� can be
rewritten as

!�1G1/2⌃[4]
�̃G1/2 G

1/2 (!�1)>E = ^\E, (�.��)

where E = !>1, with E>E = 1.
Now, defining F = (!�1G1/2)�1E, the eigenproblem turns on

⌃[4]
�̃G1/2 (!�1G1/2)> (!�1G1/2)F = ^\F , (�.��)

with F> (!�1G1/2)> (!�1G1/2)F = 1. This means that the smoothed functional ICA is equivalent to the
ICA of matrix �G

1/2 with a new metric in R@ defined by hG,~i
M

= G>M~, for all G,~ 2 R@ .
Therefore, solving �.�� yields to 1\ , 9 = (!�1)>E\ , 9 = (!�1)>!�1G1/2 such that k\ , 9 (C) = q (C)>1\ , 9 is the

solution to the eigenequation �.��. By computing the successive optimization problems in �.�� we obtain
a set of orthonormal eigenfunctions verifying

kk\ , 9 k2\ = 1>\ , 9G\1\ , 9 = E
>
9 E 9 = 1; hk\ , 9 ,k\ ,:i\ = 1>\ , 9G\1\ ,: = E>9 E: = 0. (�.��)

⌅

From the relation between inner products given by �.��, it can be deduced that the operator (2 is
defined as (2 (5 ) = q (C)> (G+ \P2)�1 Gf, with 5 = q (C)>f. Then, for the smoothed whitened data ( (X),
the independent component scores are obtained as b̃\ , 9 = �>G(!�1)>E\ , 9 and the kurtosis eigenfunctions
as i 9 = (�1 (k\ , 9 ).
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§ �.�. Kurtosis based functional ICA on smoothed KL expansions

Vidal et al. [���] introduced an alternative functional ICA build upon smoothed KL expansions. There,
the covariance eigenfunctions are estimated using Silverman’s method [���], which corresponds to the
maximization problem

W\ , 9 = argmax
var(hW,- i)

| |W | |2 + \ h'W,'Wi = max
hW, C-Wi
| |W | |2\

, s.t. hW,W\ ,:i\ = 0, for all : < 9 . (�.��)

The functions (W\ , 9 ) 92N form a complete orthonormal system in the subspace endowed by h·, ·i\ , making
this basis non-compatible for an ICmodel in� . As previously mentioned, [���] developed a generalization
of the Silverman’s method providing the following equivalences:

Proposition �� (Ocaña et al. [���], Proposition �.�; Vidal et al. [���], Proposition �). Assume for any 5 2 � ,
the derivatives of 5 up to certain order are absolutely continuous in� . Then, there exists a positive definite self-adjoint
operator (2 such that the following functional PCA decompositions are equivalent:

• The functional PCA of (2 (- ) with respect to h·, ·i\ , (2 (- ) =
Õ
9 b 9W\ , 9 ;

• The functional PCA of ( (- ) with respect to h·, ·i, ( (- ) = Õ
9 b 9(

�1 (W\ , 9 );

• The functional PCA of - with respect to h·, ·i( , - =
Õ
9 b 9(

�2 (W\ , 9 ),
with h5 ,6i( = h( (5 ), ( (6)i = h(2 (5 ), (2 (6)i\ .

Therefore, the eigenfunctions of the covariance operator C( (- ) = (C-( of ( (- ) are given by V 9 =
(�1 (W\ , 9 ), where W\ , 9 are obtained by the penalized estimation procedure �.��. Then, the basis V 9 is or-
thonormal with respect to the usual inner product in � , so that the smooth random variable ( (- ) can be
approximated by the KL expansion

- [? ] (C) =
?’
9=1

b 9V 9 , (�.��)

where b 9 = hV 9 , ( (- )i = hW\ , 9 ,- i and, by abuse of notation, - [? ] (C) denotes a truncated representation
of the smoothed random variable ( (- ). The functional IC model presented in the following subsection,
consists in performing the functional ICA of - [? ] (C), which is equivalent to the multivariate ICA of the
b 9 ’s. In this model, it is assumed that the interesting non-Gaussian ICs lie in the space spanned by the first
? eigenfunctions of the operator C( (- ) .

Basis expansion implementation
To derive smoothed KL expansions using basis functions, here we adopt the B-spline functional PCA
approach developed by Aguilera and Aguilera-Morillo [�], which incorporates a discrete penalty (P-spline
penalty) on the orthonormality constraint described above. Consider the B-spline basis expansion of the
covariance eigenfunctions W (C) = q (C)>1, with 1 = (11, . . . ,1@)> being its vector of basis coe�cients,
and a roughness penalty function defined by pen3 (W) = 1>P31, where P3 2 R@⇥@ is the penalty matrix
P3 = �>3 �3 , with �3 being a matrix representation of the 3-order di�erence operator ' [3 ] . As in §�.�, we
assume second order di�erences (' ⌘ ' [2]) for defining the penalty function 1>P21 = (11 � 212 + 13)2 +
· · · + (1@�2 � 21@�1 +1@)2. This way, the inner product in �.�� is given in terms of B-splines expansions as

h5 ,6i \ = f>Gg + \f>P2g, (�.��)

with 5 = q>f, 6 = q>g and G the Gram matrix of inner products between basis functions (see §�.� for the
notation). Then, the maximization problem in �.�� is equivalent to solve the following matrix problem:

1\ , 9 = argmax
1>G⌃�G1

1> (G+ \P2) 1
, (�.��)

subject to the constraint 1> (G+ \P2) 1\ ,: = 0 for all : < 9, where ⌃� = =�1�>� and \ � 0 is the penalty
parameter used to control the trade-o� between maximizing the sample variance and the strength of the
penalty.

Because a B-spline basis is not orthonormal by construction, one can apply Cholesky factorization
of the form !!> = G+ \P2 in order to derive an isometry that allows us to operate in terms of usual
geometrical structure. Then, the smoothed functional PCA corresponds to solve the eigenvalue problem

!�1G⌃�G(!�1)>E 9 = [ 9E 9 , (�.��)
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where E 9 = !>1\ , 9 , and the coe�cients of W\ , 9 are 1\ , 9 = (!�1)>E 9 . We have obtained a set of orthonormal
functions with respect to the inner product h·, ·i\ . Then, the 9th smoothed principal component is given
by

b 9 = �G1\ , 9 = �G(!�1)>E 9 . (�.��)

Thus, the problem is reduced to the multivariate PCA of the matrix �G(!�1)>, as discussed [�]. From
the results in [���, ���], we now deduce the expression of the smoothing operator ( that provides the
equivalence between such multivariate PCA and the functional PCA of the smoothed data.

Proposition �� (Vidal et al. [���], Proposition �). Given the basis expansion - [@ ] (C) = �q (C) of a sample of
curves, the PCA of the matrix �G(!�1)> is equivalent to all functional PCA’s in Proposition �� with the operator

(2 defined as (2 (5 ) = q (C)> (G+ \P3 )�1Gf, with 5 = q (C)>f.

As a result, the principal components of ( (-8 ) (8 = 1, . . . ,=) are given by �G(!�1)>+ where + is the
matrix whose columns are the eigenvectors E 9 verifying Equation �.��, and thus, the eigenfunctions V 9 are
V 9 = (�1 (W\ , 9 ).

Having estimated the weight functions coe�cients and principal components scores, assume �.�� is
truncated at some ?  @. Then, the vector of smoothed sample curves is given by - [? ] (C) = ⌅[? ]V (C) ,
where ⌅[? ] = (b8 9 ) 2 R=⇥? is the matrix whose columns are the first ? principal components scores with
respect to the basis of smoothed weight functions V (C) = (V1 (C), . . . , V@ (C))> .

From now on, we only have to estimate the multivariate ICA of the matrix ⌅[? ] . Since ⌅[? ] is
uncorrelated, we can simply standardize this matrix as ⌅̃[? ] = ⌅[? ]⇡[ , where ⇡[ is a diagonal matrix
with entries ([1, . . . ,[? )�1/2. Then, for all ⌘ = V (C)>h, the kurtosis operator of the standardized curves
X[? ] (C) = ⌅̃[? ]V (C) have the matrix expansion

KX [? ] (⌘) = =�1 (⌅̃[? ]>⇡⌅̃[? ] ⌅̃[? ]h)>V (C), 8⌘ = V (C)Th, (�.��)

where ⇡⌅̃[? ] = diag(⌅̃[? ]⌅̃[? ]>). The eigenanalysis of KX [? ] leads to the diagonalization of the kurtosis
matrix

⌃4,⌅̃[? ]D; = d;D; (; = 1, . . . , ?), (�.��)

where ⌃4,⌅̃[? ] = =�1 (⌅̃[? ]>⇡⌅̃[? ] ⌅̃[? ]h)>. The eigenfunctions ofKX [? ] are V (C)>D; , and the ICs are obtained
as ⌅̃[? ]D; . Alternatively one can consider ⌅[? ]D; (projecting on to the non-whitened principal components)
and build an expansion via the eigengunctions of KX [? ] , with any of the coe�cient vectors previously
discussed. See [���] for further details.

§ �.�. Theoretical properties of the kurtosis operator

Discriminative properties of the kurtosis operator
Suppose that - : ⌦ ! � can be observed as a mixture of two subpopulations ⇧: (: = 0, 1), and the aim is
to assign their sample paths into one of them. The two subpopulations are identified by the binary variable
. = : when - 2 ⇧: . We denote by c: = % (. = :) with c1 = 1 � c0. The prior probability of classification
is usually unknown and in practice c0 = 1/2 is often assumed. The estimation of the function that allows to
optimally classify - corresponds to Fisher’s discriminant problem. The purpose of this section is to show
that the eigendecomposition of KX provides solutions to it.

Shin [���] proposed a seamless extension of Fisher’s discriminant analysis in infinite dimensional set-
tings we shall take into account in the following lines. We henceforth reset - to ran(C- ), such the pre-
cision operator is possibly bounded under Picard’s rule. Further, consider that class : has mean function
`: = E(- |. = :) and E- = ` = c0`0 + (1�c0)`1. In principle, we do not impose distributional assumptions
on - , but we consider `0 < `1 and equal class covariance operators. Within this functional framework,
Fisher’s discriminant problem consists in estimating a function 5 that maximizes the ratio

� (5 ) =
⌦
5 , C,- 5

↵�1 ⌦
5 , C⌫- 5

↵
, (�.��)

where C
⌫
- = c0 (1 � c0){(`1 � `0) ⌦ (`1 � `0)} and C

,
- = c0C- |.=0 + (1 � c0)C- |.=1 = R are respectively,

the between and within-class covariance operator. We note that, R ⌘ Õ1
9=1 _ 9PW 9 represents the common

covariance operator in each population. Roughly speaking, the idea is to give large separation to the group
means while, at the same time, keeping the variance between groups small. According to the law of the
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total covariance, one can also write C- = C
,
- + C

⌫
- . Then, for a function 5 with expansion 5 =

Õ
9 f9W 9 ,

the covariance operator can be written in its spectral form as

C- (5 ) =
1’
9=1

{_ 9f9 + c0 (1 � c0)v9
1’
9 0=1

v9 0f9 0 }W 9 ,=
1’

9 9 0=1

B 9 9 0f9W 9 0 , (�.��)

where v9 are the coe�cients of the mean di�erences between classes in terms of W 9 ’s (i.e., `� = `0 � `1 =Õ1
9=1 v9W 9 ) and

B 9 9 0 =
⇢
_ 9 + c0 (1 � c0)v29 9 = 9 0

c0 (1 � c0)v9v9 0 9 < 9 0 .
(�.��)

Solutions to (�.��) are well-known. Here, we briefly debrief them for the sake of clarity.

Proposition �� (Peña et al. [���], Lemma �). For some constant 2 , the function V with expansionF = 2
Õ1
9=1 _

�1
9 v9W 9

is the maximizer of � in �.��.

According to this result, our goal is to show that the kurtosis operator has an eigenfunction that is
equivalent to the function found in Proposition ��. This is proved in the next Proposition.

Proposition ��. Let - be a random functional variable corresponding to the mixture of two groups ⇧: (: = 0, 1),
with `: = E(- |. = :) and `0 < `1. Then, the kurtosis operator of the whitened functional variable X 7! KX has

an eigefunction that corresponds to 2
Õ1
9=1 _

�1
9 v9W 9 .

Proof. Let ˜̀� =  (`�). From Proposition � in [���], it can be easily proven that ˜̀� is an eigenfunction of
CX since CX ( ˜̀�) = %ran( ) ( ˜̀�) = 1 · ˜̀�; see also Corollary � in [���]. Thus, the operator maps a function
in the domain of CX and it gives the original function again with some constant value. Now, consider the
kurtosis operator expressed as follows:

KX = E
⇥
(X ⌦ X)2

⇤
= E (kXkX ⌦ kXkX) = CkXkX, (�.��)

and the function k ˜̀�k ˜̀� where k ˜̀�k = h (`�), (`�)i1/2. Clearly, k ˜̀�k ˜̀� is in the domain of CkXkX.
Further,

CkXkX (k ˜̀�k ˜̀�) =
 1’
9=1

^ 9k 9 ⌦k 9
!
(k ˜̀�k ˜̀�) =

1’
9=1

^ 9 (k ˜̀�k ˜̀�) = g · (k ˜̀�k ˜̀�), (�.��)

where k ˜̀�k ˜̀� is invariant to rotations of the eigenbasis of CkXkX and g is the trace of CkXkX, which
by Proposition � we are assured of its finiteness. Then, note that k ˜̀�k ˜̀� = k`�k ( ˜̀�) = 2

Õ1
9=1 _

�1
9 v9W 9 ,

proving that k ˜̀�k ˜̀� is an eigenfunction ofKX equivalent to the discriminant function found in Proposition
��. See also Theorem � in [���]. ⌅

The duality of the kurtosis operator and near-perfect classification
In this subsection, we assume that (-8: ,.8: ) =

�
(-1: ,.1), . . . , (-=: ,.=: )

 
(: = 0, 1), is the empirical coun-

terpart of (- ,. ) defined as in Subsection �.�, with sample means denoted by ˆ̀: .
Next, we concisely review the asymptotic centroid-based classifier proposed by [��] which is con-

structed by projecting a newly observed function - ⇤ on to a pre-chosen square-integrable function V
on I = [0,) ]. Although this classifier reaches optimal performance in the case of a homoscedastic
Gaussian mixture, here we focus on a more general scenario. The centroid classifier is there defined as
)= (- ⇤) = ⇡2 (- ⇤, ˆ̀1) � ⇡2 (- ⇤, ˆ̀0) , where ⇡ (- ⇤, ˆ̀: ) = |h- ⇤,Fi � h ˆ̀: ,Fi |. Assuming ˆ̀0 = 0 and denoting
ˆ̀1 ⌘ ˆ̀� =

Õ1
9=1 v9W 9 , the asymptotic version of this classifier, ) 0, assigns - ⇤ to ⇧1 if

(h- ⇤,Fi � h ˆ̀�,Fi)2 � (h- ⇤,Fi)2 < 0. (�.��)

Now, to elucidate our ideas we formulate Theorem � in [��] and discuss their implications with regard
to Picard’s condition and the Hájek-Feldman dichotomy.

Theorem � (Delaigle and Hall [��] - Theorem �). Assume -8: (8 = 1, . . . ,=;: = 0, 1), are non necessarily

Gaussian, `0 < `1 and C-: = C- . If ⇧0 and ⇧1 have prior probabilities c0 and 1 � c0 respectively, and `0 = 0,
then

��



�. The missclassification probability for the classifier) 0 equals err = c% (& > a/2f& )+ (1�c)% (& < �a/2f& ),
where & = h- � `,Fi and a = h ˆ̀�,Fi.

�. If
Õ1
9=1 _

�1
9 v29 = 1, by taking a sequence of classifiers build from F[@ ] =

Õ@
9=1 _

�1
9 v9W 9 with @ ! 1, the

minimal missclassification probability tends to err0 = 0, and perfect classification is then possible.

Geometrically, from Theorem � one deduces that asymptotic perfect classification is related to the diver-
gence in norm induced by the metric h (·), (·)i = h·, ·iM, as k ˆ̀�k2M =

Õ1
9=1 _

�1
9 v29 = 1. Note this is the

same as assuming that Picard’s condition does not hold (the coe�cients v9 decay slower than the corre-
sponding _ 9 ’s and therefore, ˆ̀� 8 ran( )). On the other hand, if k ˆ̀�k2M < 1, the minimum classification
error is strictly positive, and perfect classification cannot be reached. Exploring nonconvergent paths seems
a viable option, as it can still provide optimal solutions considering that err0 ! 0 along these paths.

The reason of the behavior described in Theorem � has a probabilistic interpretation by the Hájek-
Feldman dichotomy. Two probability measures<: (: = 0, 1), are said to be equivalent (<0 ⇠ <1) if they
are absolutely continuous with respect to one another: i.e., if<0 (⌫) = 0 for every Borel set ⌫ 2 B, it holds
<1 (⌫) = 0 (they have the same zero sets). Conversely, if <0 (⌫) = 0 and <1 (⌫) = 1, then we say that <0
and<1 are mutually singular (<0 ? <1) as ⌫ splits in two disjoint sets where<0 and<1 are respectively
concentrated. The Hájek-Feldman dichotomy states that in infinite dimensions, two Gaussian measures
have the critical property of being either equivalent or mutually singular.

Theorem � (Da Prato and Zabczyk [��] - Theorem �.��). Let <: = # (`<: , C<: ), (: = 0, 1), be two
Gaussian measures on � . Then,<0 ⇠<1 i�, it holds:

�. Both measures have the same Cameron-Martin space, i.e., ran(C1/2
< ) = ran(C1/2

<0 ) = ran(C1/2
<1 ).

�. `<0 � `<1 2 ran(C1/2
< ).

�. (C�1/2
<0 C

1/2
<1 ) (C

�1/2
<0 C

1/2
<1 )⇤ � �� is a Hilbert-Schmidt operator on ran(C1/2

< ).
If one of the above conditions is violated, then<0 ?<1.

Now recall Theorem �. Suppose that all functions of -8 are Gaussian via the measures <: . In [��,
Theorem �], it has been proven that <0 ⇠ <1 , k ˆ̀�k2M < 1 and <0 ? <1 , k ˆ̀�k2M = 1, thus
explaining the mechanisms underlying the dichotomy found in [��]. This result follows from Theorem
� and Parseval’s formula as ˆ̀� 2 ran(C- ) = ran(C1/2

- ) i� k ˆ̀�k2M < 1. Let us note that M is here a
Cameron-Martin space, which is defined by Picard’s law and whose geometric structure is build from the
factorization of C†

- , i.e., h (·), (·)i = h·, ·iM.
Assuming k ˆ̀�k2M < 1 under finite dimension space dependency, yet, it can be computationally proven

that kurt(hX[@ ]
8 ,k 9 i) ! 3 ( 9 = 1, . . . ,@ � 1) and kurt(hX[@ ]

8 ,k@i) ! 1 if the means di�er enough and =
diverges. This corresponds to the schematic of perfect classification in the Gaussian homocedastic case
(maximum bimodality is then reached). By Theorem �, it can be straightforwardly deduced that, in these
cases, _ 9 ! 0 rapidly, such that � becomes an accumulation point of the spectrum of the corresponding
non-degenerate population covariance operator. One could further presume that h- [@ ],W1iwill also exhibit
a kurtosis close to � in such cases.While solutions to choose the best F are given by the last eigenfunction
in the independent component expansion, they also exist arbitrarily in the tails of the principal component
expansion [��], and eventually (when _ 9 are strongly biased upwards due to multicollinearity en each
group of functions) they concentrate towards the first principal component.

The above results can be seen parallel to those of Theorem �: in fact, in the Gaussian case, half the
absolute value of the kurtosis coe�cient minus � will take values in [0, 1] and can be interpreted as a
probabilistic measure. It is insightful to give a formal argument in the current operating context.

Corollary �. Let ka kB = sup{|a (⌫) | ⌫ ✓ B} define a norm on the space of Borel measures. Then, <0 ⇠ <1 ,
k<0 �<1kB = 0 and<0 ?<1 , k<0 �<1kB = 1.

Proof. Is immediate from the properties described above. ⌅

Not surprisingly, low kurtosis has been previously associated, with some reservations, to bimodality
in symmetric distributions. Noting that kurt(b 9 ) = hKXk 9 ,k 9 i = ^ 9 , the spectrum of KX provides a unique
avenue for assessing the trade-o� between equivalence/singularity of two Gaussian measures on the sample
paths of- , as well as a way to prospect the chances of correct classification, even in non-Gaussian scenarios.
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§ �.�. Simulated and real data examples

The following numerical studies correspond to the functional ICmodel in §�.�, which is used for functional
data classification purposes.

Simulated data
To investigate the empirical performance of the proposed estimators discussed in §�.�, we conduct a study
that extends the results of Simulation � in [���] using three possible taxonomies of mean di�erences. Let
-8 (8 = 1, . . . ,=), be a mixture of two subpopulations ⇧: , (: = 0, 1), with =: = =/2 curves sampled on a grid
of �� equispaced points on C 2 [1,) ] with ) = 20. Both groups have same quadratic covariance matrix
cov(C 9 , C 9 0 ) = exp{�(2✓2)�1 (C 9 � C 9 0 )2}, ( 9, 9 0 = 1, . . . ,) ), with ✓ = 15. The data is then generated as

-8 9 =
1’
:=0

 
)’
9=1

_1/29 /:,8 9W 9 + `: + n:,8 9

!
I (-8 2 ⇧: ) , (�.��)

where /8 9 are Gaussian random variables, n:,8 9 is an additive error term and I denotes the indicator function.
Further extensions of the above model to non-Gaussian settings using /:,8 9 ⇠ exp(1) � 1 can be also found
in our results.

We consider the following versions of the above model: in Example � we define `0 = 0 and `1 =
0.2 cos(3cC/) ), the means di�er in shape; in Example �, `0 = 0.3 cos(3cC/) ) and `1 = 0.2 cos(3cC/) ),
the means have equal shape and slightly di�er in amplitude; in Example � we set `0 = 0.2 sin(3cC/) ) and
`1 = 0.2 cos(3cC/) ), the means are equal in shape but dephased c/2. In all cases, /:,8 9 are sampled from
a standard normal distribution and n:,8 9 ⇠ N(0,f2). We generated ��� datasets for each experiment with
sample sizes =: = 30, 50. The R package pfica [���] was used for the implementation of various functional
pre-whitening methods via B-spline expansions with @ = 5.

Results for f = 0 are shown in Table A.� in Appendix A. In all examples, the overall good behavior
of kurtosis classifiers based on the last independent component (minimum kurtosis) is apparent, particu-
larly for the smoothed kurtosis projections and large sample sizes. In Example �, the PC with the lowest
kurtosis coe�cient performed notably well, similarly to their kurtosis peers and eventually outperforming
the rates of the non-smoothed kurtosis. Regarding functional whitening, results indicate that classifica-
tion optimization with the proposed operators is not that di�erent, although Cholesky whitening reaches
good performance in Examples � and �, while zero-phase components analysis whitening does better in
Example �. In the non-Gaussian simulation, results are more balanced between both functional ICA’s, al-
though superior to the rest of competitors. Figure �.� further illustrates the e�ect of modulating the noise
in the performance of the classifiers on a Gaussian scenario. Note that as f grows, it exponentially worsens
the classification rate. Notwithstanding, results for the smoothed kurtosis are very competitive for mild
levels of noise. These analyses point to the importance of finding a good trade-o� between groups when
smoothing the data, as both noise and the type of smoothing (especially if it is homogeneous across curves)
can undermine the e�ectiveness of these classifiers.
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Figure �.�: Comparison of the missclassification rate (mean values for training samples of size ���) for the three
Examples �-� (from left to right) and di�erent levels of noise (f) using ZCA whitening.

Real datasets
Our methods are now applied to well-known datasets in the functional data literature. In the first example,
we show that the smoothed kurtosis is able to find bimodality in the Canadian Weather data, which is
usually treated as a discrimination problem of more than two groups. We consider a geographical division
based on awest-east location distribution rather than the usual four climate regions. Thewhiteningmethod
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and penalty parameter was selected using cross-validation by minimizing the kurtosis coe�cient of the
projections on to k@ (Figure �.�A) with @ 2 {5, . . . , 34}, \ 2 {0, 100, . . . , 108}. Results suggest the presence
of bimodality in these data, and the fewmissclasified observations appear to be locations close to large bodies
of water, commonly encountered in the west zone. Due the representativeness of these data, we further
asses the asymptotic behavior of k�CX [@ ] k�( = kCX [@ ] � �@ k�( as @ increases, to evaluate the consistency
of the whitening procedures. As shown in Figure �.�B most of the whitening procedures are (under mild
conditions) consistent, with Cholesky whitening being the less consistent albeit the one that provides more
interesting results.
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Figure �.�: Canadian Weather data results. (A) Kurtosis coe�cient of b\ ,@, \ 2 {0, 100, . . . , 3 · 104} for various B-
spline basis dimensions (@) and whitening procedures. (B) The plot shows the asymptotic behavior of the whitening
transformations when @ grows up to = as evaluated by k�CX [@ ] k�( ,@ 2 {6, . . . , 34} (C) Picard’s plot. The black line
stands for the eigenvalues log(_ 9 ) and the grey one, for the means of absolute values of principal component scores
given by

Õ=
8=1 |h-

[@ ]
8 ,W 9 i | expressed in a logarithmic scale. (D) Scatter plots. From left to right: functional PCA, ICA

and smoothed functional ICA using a basis expansion of @ = 14 (E) Estimated densities of the vector b\ ,@ for each
lambda, showing the e�ect of smoothing the kurtosis operator.

In a second example, we consider the phoneme dataset as analyzed in [��]. The data were retrieved
from the fds package [���] and consist of ��� log-periodograms constructed from audio recordings of
males pronouncing the phonemes ‘aa’ as in dark and ‘ao’ as in water. The similarity between both groups
of curves has been previously reported to pose a challenging problem of classification. In fact, we were
neither able to find interesting projections with any of the proposed methods. As workaround, we propose
to perform a functional PCA on each sample and use the basis function expansion

- [? ]
:,8 =

?’
9=1

h- [@ ]
:,8 ,W:, 9 iW:, 9 I (-8 2 ⇧: ) , (�.��)

which takes the matrix form

- [? ]
: = (�:G1>: )1:q (C), (�.��)

where 1: = *:G�1/2, with *: 2 R?⇥@ the matrix of eigenvectors of =�1G1/2�>:�:G
1/2 truncated at the

?-row and - [? ]
: = (- [? ]

:,1 , . . . ,-
[? ]
:,=:

)>. Taking - [? ] = (- [? ]
1 ,- [? ]

2 ) and using the coe�cients in terms of
basis functions pooled by rows, one can perform the functional ICA using these coe�cients. However, the
matrix � = {(�:G1>: )1: }1:=0 might have non invertible covariance matrix. Although this could be reversed
with a suitable Tikhonov regularization, to avoid harming the whitening procedure, the best option is
to truncate and perform the functional ICA on the ?-principal components. Therefore, we use the first
components up to the limit where the whitening transformation no longer meets the orthonormality
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property. Results in Figure �.�, taking ? = 8 components, show the great improvement of performing
functional ICA on these representations, which achieves near-perfect classification with an error rate of
�.��� %.
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Figure �.�: Phoneme data results. (A) Picard’s plot before and after a functional PCA per group. (B) Scatter plots.
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§ �.�. Discussion

In this chapter, we present a comprehensive overview of the theory behind Functional ICA. We establish
the necessary conditions for the existence of a whitening transformation in infinite-dimensional spaces and
define the class of whitening operators. Additionally, we have introduced two smoothed functional ICA
models. The model discussed in §�.� harnesses the infinite dimensionality of the estimates to evaluate the
extent of non-Gaussianity within the sample, paving the way for optimal classification strategies. Current
methods recast on "Gaussianizing" the data using a suitable whitening transformation, regularization, or a
functional PCA reduction in order to balance and minimize the kurtosis of the eigenprojections. We have
shown the proposed approach has competitive operating features in binary classification problems, both
in Gaussian and non-Gaussian settings. The kurtosis operator and particularly its spectral attributes, o�er
a unique analytical pathway that can bring us nearer to achieving near-perfect accuracy, as elucidated by
the Feldman-Hájek dichotomy. In contrast, the model discussed in §�.� is primarily conceived to provide
smooth estimates of non-Gaussian components, potentially enhancing their irreducibility by regulating
the roughness of the estimates. Further simulations and applications not reported in this dissertation can
be found in [���]. A more advanced/alternative version of this model is presented in the next chapter.
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� | Functional ICA for EEG artifact removal

The work presented in this chapter includes the manuscript:

• [���] V����, M. ��� A�������, A. M. (����). Wavelet thresholding on independent subspace factorizations of
spatially indexed wide functional data for robust estimation of cortical activity. Under review.

In the field of neurophysiology, electroencephalography (EEG) represents one of the few techniques
providing a direct measure of bioelectrical brain activity, as oscillations in excitability of populations of
cortical pyramidal cells [���] contribute to variations in the electrical potentials over the scalp. Oscillations
are characterized by intrinsic rhythms conventionally grouped into frequency bands, which are by now
validated as markers of several neurocognitive phenomena [��]. However, despite the temporal resolution
achievable with its high sampling rate, EEG is a technique that su�ers from low signal-to-noise ratio. This
is mainly due to the fact that the layers of tissue dividing the electrodes from the cortex act as a natural
filter attenuating genuine brain activity, resulting in a combination of cortical and artifactual sources in
the EEG signal. In addition, brain-related spectral features often overlap with artifactual activity in higher
frequency bands, and particularly at lower frequencies most of the variance in the signal is explained by
physiological sources outside the brain. For these reasons, analyzing EEG signals can ultimately be viewed
as solving a source-separation problem with the goal of estimating brain potentials of interest.

This chapter has a predominant focus on methodology, and can be seen as a bridge between the
theoretical and applied/experimental part of the dissertation. Here, we delve into the mathematical and
probabilistic principles behind the reconstruction of artifactual activity from EEG signals. In [���], we
attempted to provide a first approximation to this problem from a functional data perspective. While the
mathematical model (see §�.�) itself is valuable, the application was limited to short time courses and arti-
facts assumed to be basically smooth. The limited applicability of this model led to a new manuscript three
years after its initial publication, wherein more rigorous developments (both theoretical and practical) were
addressed. Results are presented in the current chapter. The proposed methodology has been e�ectively
applied in the investigation reported in Chapter �, where we also delineate a pipeline for pre-processing
EEG data during complex motor interactions.

Here, we argue the reconstruction of artifacts is related to the approximation of a function in a Hilbert
basis that is a realization of a random variable taking values in a two-domain Hilbert space. A model for
sparse optimization based on a fixed-point iteration over the spatial domain and posterior optimization in
the temporal domain via wavelet thresholding is discussed under the paradigm of "wide functional data".
Two criteria are introduced for selecting wavelet expansion coe�cients in scenarios where noise lacks of
a precise parametric specification: one based on multiplicative scaling and the other on the entropic NID
(ENID), as introduced in Bruni et al. [��]. Through comprehensive numerical simulations and real data
analyses of EEG data, we showcase the e�ectiveness of the proposed methods.

§ �.�. Introduction

In the analysis of data assumed to be realizations of a random variable - taking values in a separable
function space endowed with Hilbert structure, certain considerations are frequently made. These include
assuming finite second moments and the Hilbert-Schmidt boundedness of the covariance operator, along
with considering independent and identically distributed realizations of - . In practice, however, there
are scenarios in which the sample covariance operator poses certain challenges: it is often not injective,
and low sample sizes can lead to eigenvalues that are biased upwards, potentially lacking an upper bound,
especially in high-dimensional settings. Furthermore, assuming that all realizations of - are independent
is not always justifiable, especially when there exists repeated measures in time or space.

Let !2
I
denote the space of square integrable functions defined over a real compact interval I ⇢ R,

equipped with inner product h·, ·i and norm k · k. Consider {-8 }<8=1 to be< realizations of a random variable
- = {- (C), C 2 I} taking values in !2

I
with Ek- k2 < 1, i.e., the theoretical covariance operator is here

assumed to exist [���]. Since separability holds, for any orthonormal basis (4 9 ) 92N of !2
I
, we can express

these realizations of- as-8 ⇡
Õ@
9=1 /8, 94 9 , where /8, 9 = h-8 , 4 9 i are the expansion coe�cients. This property

follows directly from the Projection Theorem which constitutes the fundamental tool for functional data
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analysis [���, ���]. Spaces of smoother functions, such as reproducing kernel or Sobolev spaces, are often
preferred to better capture the underlying topological features of - .

While under mild conditions (i.e, for a reasonable< < @) the sample covariance function of -8 is still
computable, when < n @, it becomes ill conditioned and computationally intractable. In such extreme
cases, we categorize data with these characteristics as wide functional data. One can envision these data as
functions that exhibit fine detail throughout their domain, which may not necessarily be related to noise.
Importantly, we assume our functions have finite energy in !2

I
, i.e. they are Lesbegue square-integrable,

although in practice wide data integration might get exhausted in common computers due to memory
requirements. Therefore, alternative approaches are needed to e�ectively explore data over I.

In the current context, our attention is drawn to a specific type of data that may not necessarily repre-
sent independent realizations of- . Dependencies could potentially arise in a parallel domain, such as space.
These kind of data can be encountered in various scenarios, with a notable occurrence in neuroscience,
e.g., during the pre-processing of artifacts or the analysis of long-term monitoring studies involving in-
dividual patients. Note that, by assuming dependencies in a secondary domain, the covariance matrix of
/> = (/ 9,8 )@⇥< becomes a subject of interest.

Although not restricted to, here we consider a two-domain random variable

X= {- (C, B) : C 2 I, B 2 S}, (�.�)

taking values in !2
I⇥S. We address the problem of approximating a single realization of X denoted as

-: ⌘ - (C, B: ) (: = 1, . . . , ?), where B: are indexed locations fixed on a compact plane (or other manifold
structures), where functions in I emerge.

Now, suppose that -: is observed at = equidistant points and has the form

-:,8 = �(C8 , B: ) + B(C8 , B: ) + n:,8 (8 = 1, . . . ,=), (�.�)

where � is an artifactual function with non-Gaussian components in S and sparse in I, B is anisotropic
and follows an unknown Gaussian distribution in I and (n:,8 ) is a noise assumed to be independent in
space, with each column following a (possibly correlated) normal distribution. Note that both � and B

are random functions taking values in !2
I⇥S. In this paper we are interested to estimate B considering

estimates of � when ? n =. This problem is genuinely motivated by the analysis of contaminated EEG
data, where muscular artifacts (here represented by �) are exacerbated by volume conduction, leading to
challenges in isolating the brain activity of interest (i.e. B).

It has been argued that in the analysis of large-scale data, sparsity is meant to be reinforced to detect
interpretable low-dimensional structures with statistical significance [��]. Sparsity is an appealing property
since it compressively encodes relevant information in a few entries of the expansion coe�cients of a
function. Statistically, this is a particular way of being non-Gaussian, reason why sparsity shares a close
connection with independent component techniques [��]. However, while sparsity implies a form of non-
Gaussian behavior, it does not guarantee independence [��] (independent variables can indeed be present in
datasets that do not exhibit sparsity). Here, we propose a model (see Figure �.�A) that consists of the analysis
of subspaces emerging from the spatial structure of- = (-:,8 )?⇥= and spanned by independent components
(§�.�). Wavelet techniques are then applied to find a sparse approximation of � among a variety of spatial
factorizations of - . We therefore review some concepts of wavelet theory and derive a suitable method
for multiresolution analysis to apply wavelet denoising techniques (§�.�). Two non-parametric methods
for the selection of expansion coe�cients are then introduced (§�.�). Both of them do not directly depend
on the variance of the detail coe�cients, rather on the global regularity properties of the original signal,
allowing the discrimination of coe�cients that significantly reflect the signal of interest.

The outlined model can be viewed as an alternative method to the functional independent component
analysis (ICA) model in [���], o�ering the advantage of circumventing the challenging task of estimating
large covariance matrices. Additionally, it eliminates the need for an excessive number of B-spline knots,
providingmore versatility for denoising and the potential to e�ectively handle a large number of covariates,
all within a reasonably fast computation time. It also extends prior wavelet ICA schemes that take into
account the spatial structure of the data; see [��] and references therein. We also introduce a method
for simulating EEG data (§�.�) and provide numerical evidence illustrating why current pre-processing
practices may not always be reliable. Finally, some real data analyses are discussed.

Notation
For a particular matrix, take� 2 R?⇥? , a selection of its vector-rows is denoted as�1:?,• and vector-columns
as �•,1:? . A single one of its vector rows or columns is written as �1,• or �•,1, respectively. The operator
C : R? ! R? performs cumulative sum. O stands for the numerical order. By some abuse of notation, k · k
will denote the !2 and Euclidean norm.
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Figure �.�: Wavelet functional ICA model for artifact reduction. (A)Main model representation (B) Exemplification
of multiplicative scaling (�\ was scaled for the sake of its representation).

§ �.�. Factorization into subspaces spanned by spatial ICs

The spatial independent component model applied to wide data
Assume - = (-:,8 )?⇥= with ? n = can be expressed as linear transformation of an unobserved matrix
( 2 R?⇥= of mutually spatially independent components, i.e. the probability distribution of (1::,• factorizes
as %(1::,• =

Œ=
:=1 %(:,• . The spatial independent component (spatial IC) model can be expressed as

- = - +�( (�.�)

where � 2 R?⇥? is an unknown invertible square matrix containing vectors of spatial weights for each
(:,• and - = -1=/= is the spatial mean. The task of spatial ICA is therefore to infer the matrix ( from
- . Due to the variance indeterminacy in the model �.�, a common pre-processing step is to "whiten" or
map to orthogonality - . This transformation has some desirable properties to fasten the convergence of
some ICA algorithms. A whitening transformation  (·) : R?⇥= ! R?⇥= is derived from the factorization
⌃�1 =   > where ⌃�1 = {(- � - ) (- � - )>/?}�1 is the covariance of the transpose of the original data.
As a result, -̃ =  (- � - ) becomes spatially decorrelated (or isotropic, i.e., the spatial covariance matrix
of -̃ is �? ). Let us note that  is not uniquely determined and many whitening procedures can be devised
due to the rotational freedom the transformation possesses; see [���] for further details. This property is
the basic principle of ICA.

Under the above assumptions and assuming  = ⌃�1/2, the model �.� can be straightforwardly refor-
mulated as

-̃ =  (- � - ) =  (�() = (��>)�1/2�( = �̃( . (�.�)

Given that -̃ is isotropic and ( has independent components, the matrix �̃ is orthogonal. At this point, we
might further suppose that � is orthogonal in �.� when assuming - = 0. Therefore, one can only recover
( up to a permutation and the sign [��], which means there exists a demixing matrix, 2 R?⇥? satisfiying
,� = ⇡% , where⇡ is a diagonal matrix with diagonal elements being � or -� and % is a permutation matrix.

Fixed-point iteration on isotropic data using non-linearities
After pre-whitening, the aim is to estimate a demixing matrix for -̃ , we denote by , ⇤. A fixed-point
iteration based on a non-Gaussian optimization is then used. This iteration is at the core of the popular
FastICA algorithm [���], which is presented in its basic form in the next lines.

Let 6 : R ! R be a function measuring non-Gaussianity that operates elementwise to the entries
of a scalar vector. We call the function 6 nonlinearity, which is usually defined as 6(·) = ⌧ 0 (·), where ⌧
is twicely di�erentiable nonlinear and non-quadratic function with ⌧ (0) = 0. Typical examples of ⌧ (·)
include x4/4 (kurtosis), � exp(�x2/2) (gauss) or logcosh(x) (tanh). All of these nonlinearities are smooth and
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even, and can be bounded by a polynomial function. The optimization problem in FastICA summarizes
in the contrast function

J

kwk=1
(w) = =�1⌧

�
w>-̃

�
1=, (�.�)

where w is a vector of ? entries on the unit hypersphere S ⌘ {w 2 R? | kwk = 1}. Under Langrangian
conditions, the extreme value of �.� can be obtained via solutions to the equation -̃6(-̃>w) + Vw = 0. This
problem is solved using the following iterative method:

�. Chose an initial guess for w 2 S.

�. Iterate

w+  -̃6(-̃>w) � =�1w60 (w>-̃ )1=

w+  w+

kw+k ,
(�.�)

until convergence.

�. An estimate ŵ = w+ of, ⇤
1,• is obtained.

Note the above algorithm only extracts one demixing vector. Therefore, a sequential or deflationary
orthogonalization procedure is usually conducted to estimate the rest of vectors. One can add the following
orthogonal constrain in between the two steps in �.�:

w+ = w+ �
’
:

(v:v>: )w+, (�.�)

where v: are previously obtained demixing vectors ("deflated" observations). Each extracted ŵ in the
fashion described above is a column of, ⇤, and ( =, ⇤ (- �- ) can be finally obtained. This algorithm is
called one-unit FastICA as it extracts one demixing vector at a time in a similar vein to projection pursuit
techniques.

Subspace reconstruction and expansion
Once the matrix, ⇤ is obtained, finding the inverse of, =, ⇤ gives the mixing matrix � to recover - .
Given that - = �( assuming - = 0, one can perform the following factorization of - as

- = {�•,1(1,•|  {z  }
/ 12R?⇥=

+ · · · +�•,:(:,•|  {z  }
/:

+ · · · +�•,?(?,•|  {z  }
/?

}. (�.�)

where {/: }?:=1 are a set of subspaces spanned by each (:,•. In the following lines, we discuss some of
their statistical properties. All /: ’s are not isotropic while they are a.s. spatially irreducible [���]: i.e., for
any /: , the matrix � in the model /: = �( vanishes, indicating that /: is not separable into lower in-
dependent components. Having singular covariance matrix is a necessary but not su�cient condition for
irreducibility; however, non-Gaussian random vectors often exhibit irreducibility under such conditions.
Additionally, the /: ’s are pairwise orthogonal (i.e., /:/:

0> = 0? for all : < : 0) and any linear combination
of them, say /:1 + · · · +/:< (< < ? � 1), is orthogonal to the rest of /: s and of its complement. It is worth
noting that applying wavelet denoising directly to (:,• would compromise these properties, thus failing to
ensure the level of independence that spatial ICA provides.

§ �.�. Wavelet approach

A critical step before applying wavelet techniques is the selection of /: ’s, which is discussed in Sections
�.� and �.�. Assume some of these /: ’s, or linear combinations of them, correspond to the function in �.�
containing artifactual components. The next step involves approximating each of the selected /: ’s using a
suitable Hilbert basis in the temporal domain with the aim of optimizing the irreducibility (consequently
the independence) of the selected components. We now recall some concepts of wavelet theory to later
present our wavelet thresholding approach.
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Preliminaries: wavelet transform and multiresolution analysis of !2

A wavelet on R is an oscillatory function k 2 !2R satisfying
Ø +1
�1 k (C)dC = 0 (has zero average), kk k = 1 (is

normalized at �), centered in the neighbourhood of C = 0 and decaying to � as C ! ±1. Other desirable
properties ofk include regularity, having3 vanishingmoments, i.e.,

Ø 1
�1 C

?k (C)dC = 0,3 2 N0 (the ability to
represent polynomial functions) or compact support (for further details, see [��]). The continuous wavelet
transform of a function 5 2 !2R with respect to k is the linear functional

[Wk 5 (C)] (1,0) = h5 (1 + 0G),k ⇤ (G)i =
⌧
5 (C), 1

0
k ⇤

✓
C � 1
0

◆�
(1,0) 2 R ⇥R+, (�.�)

where 0 is a scale parameter and 1 a translation parameter andk ⇤ is the complex conjugate ofk . The above
transform it is usually performed in a dyadic fashion (0 and 1 are based on powers of �), which gives rise
to the notion of multiresolution analysis (MRA).

Definition �. A function q 2 !2R is a scaling function of a MRA of !2R if the following conditions hold:

�. The family of translated functions {q (· � X)}X2Z is a complete orthonormal system of !2R .

�. The linear spaces⌥0 = span{q (·�X)}, . . . ,⌥9 = span{q (29 ·�X)}, . . . are nested; i.e,⌥9�1 ⇢ ⌥9 , 89 2 N.

�. [9�0⌥9 = !2R (the closure of [9⌥9 is dense in !2R , i.e. \9⌥9 = {0}).

Note that here, the index 9 indicates the scale (or level of resolution) and, as it increases to 1, the
precision of the approximation increases too. Further, observe that each subspace⌥9 consists of functions
that are piecewise constant over intervals of exactly twice the length of those for ⌥9�1. From points (8)
and (88) it immediately follows that the the functions q 9,X (G) = 29/2q (29G �X), X 2 Z, form an orthonormal
basis of the space⌥9 , 9 2 N, as these spaces are just scalings of⌥0.

The multiresolution approximations of a function 5 2 !2R are given by the projections % 9 on to ⌥9 ,
% 9 5 =

Õ
X hq 9,X , 5 iq 9,X , with hq, 5 i =

Ø +1
�1 5 (C)q⇤dG . The range of the di�erence between two successive

approximations % 9+1 5 � % 9 5 corresponds to the orthonormal complement of the space ⌥9 in ⌥9+1. The
information contained in these subspaces are relevant for reconstructing 5 since

⌥9 = ⌥0 �
 
9�1 
✓=0

⌥?
✓

!
, (�.��)

where ⌥?
✓ ⌘ ⌥✓+1  ⌥✓ with ⌥✓ ? ⌥✓ 0 , ✓ < ✓ 0. Thus, one would like to find basis functions that span

the spaces ⌥?
✓ . Using q , it is possible to construct via standard ways a corresponding wavelet function k ,

so that {k (· � X)}X2Z is an orthonormal basis of ⌥?
0 . Similarly, k✓,X (G) = 2✓/2k (2✓G � X), X 2 Z will form

an orthonormal basis for ⌥?
9>0, as these spaces are mutually orthogonal and obtained (from each other)

by scalings. We note that the functions q and k are roughly referred to as father and mother wavelet,
respectively.

Under the above considerations, one can expand a function 5 2 !2R as the convergent series expansion

5 =
’
✓2Z

’
X2Z

3✓,Xk✓,X , k 5̂ k2
!2
R

=
’
✓,X2Z

32✓,X < 1, (�.��)

where 3✓,X = h5 ,k✓,X i =
Ø 1
�1 5 (G)k

⇤
✓,X (G)dG are the wavelet coe�cients of 5 in terms of the wavelet basis.

The relation of the wavelet transform in �.�with the wavelet coe�cients is then 3✓,X = 2�
✓
2 Wk 5

�
X2�✓ , 2�✓

�
.

MRA has previously been used in functional data studies to estimate a function-on-function linear re-
gression model, elucidating the relationship between lupus severity and stress levels in patients with this
autoimmune disease [�].

Discrete non-decimated multiresolution analysis
As noted above, the dilation and translation parameters 0,1 are assumed to vary continuously over R (with
the constraint 0 < 0). If these parameters take discrete values, then the transform is called discrete wavelet
transform (DWT). Here, the aim is to perform MRA on z8 ⌘ /:8,•, for each 8 and a fixed :, using Mallat’s
pyramidal algorithm [���] but without using dyadic subsampling (decimation). This corresponds to the
maximal overlap discrete wavelet transform (MODWT) [���, ���], in which the number of coe�cients
at each resolution level end being =. The aforementioned technique o�ers several advantages, including
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its insensitivity to vector length or circular translations as well as improved frequency localization due to
the redundancy introduced by the overlap, resulting in enhanced denoising capabilities and better ability
to mitigate the boundary e�ects commonly encountered when decimation is conducted.

We use an even length scaling filter {6; }!�1;=0 and wavelet filter {⌘; }!�1;=0 with !  =, that are discretely
compactly supported filters of the Dauchebies class [��, Chapter �]. By definition, these filters sum zero,
have unit square norm and are orthogonal to its even translations. As in [���], filters are additionally
selected to be quadrature mirror, ensuring that they meet the orthogonality condition ⌘; = (�1);6!�;�1
or 6; = (�1);+1⌘!�;�1 for ; = 0, . . . , ! � 1. Furthermore, filters are normalized as follows: 6̃; = 6;/

p
2 and

⌘̃; = ⌘;/
p
2. This procedure allows to preserve the energy when the filters are upsampled by 29�1, which

is achieved by padding out zeros between successive elements of the filter, that is,

⌘̃ 9 ⌘ [⌘̃0, 0, . . . , 0,|   {z   }
29�1�1 zeros

⌘̃1, 0, . . . , 0,|   {z   }
29�1�1 zeros

. . . , ⌘̃!�2, 0, . . . , 0,|   {z   }
29�1�1 zeros

⌘̃!�1] .

Observe that this operation is akin to dilating the wavelets, thereby enabling the formation of a multires-
olution analysis without decimation. If +0,8 ⌘ z8 , the 9th-level of the pyramid algorithm is then given by
the following circular filterings:

⇡ 9,8 =
!�1’
;=0

⌘̃;+9�1,(8�29�1;) mod =, +9,8 =
!�1’
;=0

6̃;+9�1,(8�29�1;) mod =,

where ⇡ 9,8 ,+9,8 represent the 9th-level wavelet and scaling coe�cients, 8 = 0, 1, . . . ,= � 1 the number of
samples and mod the modulo operator. The reconstructing coe�cients are then

+9�1,8 =
!�1’
;=0

⌘̃;⇡ 9,(8+29�1; ) mod = +
!�1’
;=0

6̃;+9,(8+29�1; ) mod = .

The coe�cients of both MODWT and DWT share the same nominal frequency band at each level
of resolution. Nevertheless, the MODWT is not an orthonormal transform of z8 and if = is an integer
multiple of 2� , the MODWT has a computational complexity of O(= log2 =) multiplications whereas the
DWT solely of O(=).

§ �.�. Wavelet thresholding for non-necessarily white noise

Let ⇡ = (⇡ 9,8 )� ⇥= be the matrix that contains the coe�cients of the MODWT performed on z8 . Consider-
ing that the wavelet transform of a well-behaved function typically exhibits sparsity, only a small portion
of the wavelet coe�cients will have significant values, while the rest will be relatively small and can be
considered negligible. Therefore, when a coe�cient ⇡ 9,8 is relatively small, it is justifiable to treat it as
predominantly noise and set it to zero; conversely, if it is significantly large, retaining it is a reasonable
choice. This corresponds to the shrinking policy/rule called hard thresholding [��, ��] and defined here
by the estimator [� (⇡ 9,8 ,U 9 ) = ⇡ 9,8 I{|⇡ 9,8 | > U 9 } for some threshold values U 9 . In this paper, our focus
centers on the aforementioned estimator in the context of the model �.�. An intriguing aspect lies in the
estimation of �, since the conventional reliance on the assumption of a white noise for the selection of a
suitable threshold no longer holds. Two non-parametric solutions to chose level-dependent thresholds are
presented in the following lines.

Multiplicative scaling of Walden’s MODWT level-dependent threshold

Walden [���] proposed a robust alternative to the so-called universal threshold U ⌘ {2f2n log(=)}1/2, where
fn is the standard deviation of the detail (or finest level) coe�cients, ⇡1,•. It is therefore assumed that ⇡1,•
are noise dominated. While this approach has been proven asymptotically optimal [��], it can erroneously
set to zero certain coe�cients. The common estimator for fn is then replaced in [���] by

f̂MAD ⌘
median

n��⇡1,0
�� , ��⇡1,1

�� , . . . , ���⇡1,=2 �1
���o

0.6745
, (�.��)

where 0.6745 is a rescaling factor, so that the correct variance can be returned in case of Gaussian white
noise. The resultant threshold is typically levelwise adjusted as U 9 ⌘ {2f29 log(=)}1/2 with f29 = f

2
n /29 , and
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adapted to the MODWT considering the estimator 21/2f̂MAD, where the scaling factor 21/2 accounts for
the relation ⇡1,8 = 21/2⇡1,28+1.

The current approach may indeed be e�ective in optimizing the reduction of the error term in �.�.
However, it may not be as e�cient in separating latent components of � from B. Some packages o�er the
possibility to heuristically tailor the denoising level by either scaling U 9 or by incrementing the median
value in �.��. However, finding a good trade-o� between both parameters is not an easy task. Here, we
concentrate on estimating amultiplicative scaling factor forWalden’sMODWT level-dependent threshold
via cross-validation schemas without altering �.��.

For \ 2 R+, consider U\9 ⌘ \ {2f29 log(=)}1/2 where the estimator for f29 is given by 21/2� 9 f̂MAD. We
then aim at finding a \ that maximizes the cumulative variance of the loss function

�\ ⌘
1
?

?’
:=1

(
1
=

=’
8=1

⇣
/::,8 � /̂

:,\
:,8

⌘2)1/2

, (�.��)

where /̂:,\ is a "denoised" /: using U\9 for di�erent values of \ . The optimization problem is then defined
as

argmax\ 2R+
CVAR (�\ ), (�.��)

where CVAR (x) = (= � 1)�1{C(x2) � =�1C(x)2} is the cumulative variance calculated for any x 2 R=.
We now discuss the rationale underlying this approach. The function �\ is assumed monotonically

increasing and grows fast as we progressively move away from /: by increasing \ . Nonetheless, �\ starts
growing slowly as /̂:,\ becomes sparser. As a result, CVAR (�\ ) reaches a peak and decreases along with
the first derivative of �\ converging to � (indicating that no significant variance is added to the model,
see Figure �.�B). This peak (depicted by a grey vertical line) can be interpreted as a stability/fixed point
where the behavior of �\ starts changing. Investigating the vicinity of this maximum can lead to optimal
outcomes, as shown by our simulations.

Entropic normalized information distance
We now present an alternative coe�cient selection approach based on a paper by Bruni et al. [��]. There,
it is assumed that the expansion coe�cients originate from two separate and independent sources, namely,
the most "representative" and the "less representative" coe�cients. This method boasts a distinctive advan-
tage: there is no prerequisite knowledge needed about the statistical nature of the noise, a requirement often
taken into account in other approaches [��]. The method is established within an information-theoretic
framework, introducing a novel measure called entropic normalized information distance (ENID), which
is fundamented the so-called Vitanyi’s normalized information distance and shaped by the notion of di�er-
ential entropy. Although ENID is formulated in terms of the detail coe�cients, it can be applied, without
loss of generality, to coarser levels or the whole coe�cient set, as proposed here.

Consider the vectorization of the matrix ⇡, d9 = vec(⇡) ( 9 = 0, . . . , ? ⇥ # ). Suppose that the absolute
value of d9 are rearranged in decreasing order and normalized on [0, 1], i.e, d̃9 = {1 > d̃?⇥#�1 > · · · > 0}.
Then, for all V 2 {1, . . . , ? ⇥ # � 1}, the ENID is defined as

ENIDV =

����⇢ [0,1] �� �min
�
V
��⇢ [0,V ] �� , (1 � V) ��⇢ [V,1] �� ��

max
�
V
��⇢ [0,V ] �� , (1 � V) ��⇢ [V,1] �� , (�.��)

where ⇢ [ ·,· ] denotes the di�erential entropy at a predefined interval. Numerical schemes for the approxima-
tion of ⇢ are provided in [��] §�.�. The index entry that realizes the minimum of ENIDV allows to identify
in d̃9 (when not normalized) the wavelet coe�cient used for thresholding. Then, in U 9 ⌘ {2f29 log(=)}1/2
we define the estimate for f29 as |d9 |/29 where d9 represents the wavelet coe�cient related to the minimum
ENIDV .

Remark �. In order to fasten computation when handling wide data, one can model d̃9 as a !2I function using

some basis functions representation. Given that the approximation coe�cients maintain the probabilistic properties

of the functional approximation (due to the existence of an isometric isomorphism between !2
I
and the coe�cient

space), ⇢ can be computed on them. Note that ENID will be drastically reduced to a few data points, therefore some

interpolation technique has to be used to identify the wavelet coe�cient of interest.

In essence, ENID gauges the dissimilarity between two coe�cient sets as the di�erence between
the overall complexity and the less complex of the two subsets concerning the regularity of the signal,
as reflected by the decreasing rearrangement of the coe�cients. When ENID reaches a minima, this
indicates that the entropy of one coe�cient set is close to the overall entropy and therefore the remaining
one has little impact on the randomness of the other.
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§ �.�. Model summary

An overview of the proposed algorithm is depicted in Figure �.�.
Input: a wide data matrix - 2 R?⇥= (? n =). Output: B(C8 , B: ) 2 R?⇥=.

�. Perform spatial ICA (e.g. using FastICA) on - and derive / 1, . . . ,/? to make a selection of them.

�. For each selected /: perform the MODWT to each of its rows. Extract the corresponding matrices
of coe�cients.

�. Use one of the techniques described in §�.� to conduct hard thresholding on the wavelet coe�cients.

�. Invert all MODWT transforms and subtract the denoised /: ’s from - .

�. Repeat until no artifactual components are left.

The above algorithm is not restricted to a fixed number of iterations (in our data analyses we consider
a single one); rather, it can be performed until the residual signals meet a predefined criterion.

Proposition ��. Let /: = �•,:(:,• be the expansion of an arbitrary spatial IC and V(/: ) a non-linear mapping
that uniformly denoises the rows of /: . Then, V(/: ) = �•,:V((:,•).

Proof. The proof is trivial since in the inner product �•,:(:,•, each entry of the vector �•,: is multiplied
by each of the corresponding rows of (:,•, therefore weighting ? times the vector (:,•. If, however, V(·)
applies non-uniformly to each row of /: , the above relation does not hold. ⌅

We observe that Proposition �� allows to notably reduce the computational cost by applying the de-
noising procedures to (:,• instead of /: . While there seem to be no apparent disadvantages in directly de-
noising (:,•, note that the spatial weights in �•,: do not correspond to those of V((:,•) and kV((:,•)k < 1.
Ultimately, the problem reduces to whether selecting or not an orthonormal basis for projection, since
the proposed procedures for denoising are scale invariant. For the subsequent simulations and analyses, we
adhere to our original approach.

§ �.�. Numerical simulations

In this section, various numerical simulations are conducted to show the performance of the proposed
methods. The artificial data is generated from the following model:

-8 9 = sin(g1;8, 9 ) + �̃8, 9 cos(g2;8, 9 ) +  ̃8, 9 + n8, 9 (8 = 1, . . . ,=; 9 = 1, . . . , ?), (�.��)

where, for all 8, g1;9 = cC( |x9 |), x ⇠N(0, 0.02); �̃8, 9 = �8, 9c1;9 , where c1;9 is a vector of weights of ? equidis-
tant observations in [�90, 90] and�•, 9 contains log-normal densities (Nlog (3,f),f ⇠ U[0.2, 0.8]) generated
in varying intervals ranging from � in the lower bound at the extremals; g2, 9 = 2cC( |bx9 c |)/12500, x ⇠
N(80, 180), where x9 changes of value (phase) at each ��� observations;  ̃8, 9 =  8, 9c2;9 where c2;9 is a vec-
tor of weights with ? equidistant entries and  •, 9 are linear combinations of two artifacts generated from
modified functions detailed in [��] (artifact � "Bumps"; artifact � "Doppler"); n 9 ⇠ N(0, 0.05). Note that
the vectors c1;9 , c2;9 are used as spatial weights of current spiking oscillations and artifacts. For artifact �,
c2;9 is a set of ? equidistant observations in [15, 5] and for artifact �, c2;9 2 {0, 0, . . . , 3}. In this paper, we
consider ? n = to be defined by 2� = =, � 2 N0 with ? 6 2 log2 (=), thus we take = = 215 in our simulations.

The data generated by model �.�� bears certain similarities to multichannel EEG signals. In EEG, brain
signals are typically aperiodic and exhibit intricate variability in amplitude characterized as local bursts with
exponential decay [��]. These characteristics are e�ectively captured by the phase configurations of the
trigonometric terms in �.�� and their respective scalings using the log-normal density generator. Con-
tamination of EEG brain signals (by blinks, muscular activity, cable movements...) is roughly represented
by the artifacts contained in  ̃ = { ̃8, 9 }. Artifact � appears at all channels with modulated amplitudes that
become less pronounced for a higher ?, eventually merging with the large scale processes (Figure �.�A -
first row). This artifact is sparse in time, strongly correlated in space/time while assumed independent of
the rest of processes. Instead, artifact � appears at one single channel, thus, it is uncorrelated in space and
not assumed spatially independent, at least within the first regions of its temporal domain (Figure �.�A -
second row).
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Figure �.�: Simulation Results (A) Estimation of Artifact � and � in Simulation � (l�), displaying three spatial compo-
nents. (B) Estimation of Artifact � in Simulation � (l�).

Our simulations are assessed using four key performance metrics described below. The first, and the
simplest one, is a multichannel RMSE defined as

MRMSE =
1
?

?’
:=1

(
1
=

=’
8=1

⇣
G:,8 � -̂:,8

⌘2)1/2

, (�.��)

where Gis the ground truth signal and -̂ is an estimate of Gafter the model is applied. To analyze the level
of residual noise in -̂ and the degree of similarity with G, we employ a variance- and correlation-based
signal-to-noise ratio (SNR) measures adapted from [���]. Here, the multichannel SNR variance measure
is defined through RMS as

SNRvar =
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where f2
G:,·

is variance of the ground truth signal, f2-:,·
is the variance of the original signal and f2

-̂:,·
the

estimate of f2
G:,·

after the model is applied. Conversely, the SNR correlation measure is defined as

SNRcor =
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where dG: denotes the autocorrelation of G: at lag �, d (G: ,-: ) and d (G: ,-̂: ) are, respectively, the cross-
correlation between G: with the original signal and the estimate of G: . We note that the mean of all
correlations obtained in �.�� is estimated via Fisher transformation. As SNRcor : R? ! [0, 1] decreases
to �, this means that the shape of -̂ diverges from the shape of the ground truth signal. Further, one can
intuitively observe that an increase in the level of SNRvar suggests the presence of residual noise in -̂ when
SNRcor is also high. Finally, we used the normalized compression distance (NCD) as defined in [��].

Model configurations: deflation FastICA with tanh (see [���]). We used PCA whitening as it tends to
enhance data compression [���], which can be advantageous for lower spatial resolutions.

• Simulation �. Objective: We investigate the quality of extracting artifacts � and � and reconstruct-
ing the underlying process after artifact subtraction. Two scenarios are considered: one involving
subspace factorization as depicted in Figure �.� (single iteration), and the other consisting of the di-
rect application of wavelet thresholding to the original data. Remarks: the metrics for the residual
process after subtraction of artifacts are calculated using the corresponding thresholding methods
on the detail coe�cients. Artifacts � and � where detected using the correlation coe�cient between
the ground truth artifact and denoised versions of ( . Results: as reported in Table A.�, the direct
application of wavelet thresholding significantly degrades all performance metrics when compared
to the selective removal of artifacts through spatial factorization. The SNR levels also suggest that
the residual process is spuriously modulated when direct wavelet thresholding is employed, with this
issue appearing to be less pronounced when using multiplicative scaling (MS). Regarding the artifact
estimation, it is evident that both MS and ENID outperform universal thresholding by a significant
margin, while MS reaches an overall higher performance. We found an aliasing e�ect after subspace
reconstruction of artifact � which was overcome in our analyses (metrics are derived only for the
channel containing the artifact). As expected, our methods for denoising artifact � partially failed
due to mixings with the residual process. See also Figure �.�A.

• Simulation �. Objective: We investigate the quality of extracting artifact � in the following setting:
the number of bumps increase and are randomized in location, amplitude and frequency; artifact �
is randomly changing of channel. Within this scenario, we forsee that a prior PCA reduction could
help improve the the results. Remarks: We compare performing FastICA using in the fixed-point
iteration  1:A ,•(- �- ) (with A = 2) instead of using all rows of  . Results: As shown in Table A.�, an
increase in the number of bumps leads to an exponential increase in MRMSE. However, restricting
FastICA to the first components notably improves these rates, as demonstrated in Table A.�, for both
MS and ENID.

• Simulation �. Objective: In this third simulation we investigate the extraction of a new artifact that
is characterized by white noise amplification during a short temporal period (Figure �.�B) a�ecting
the the whole spatial domain (we use the weights determined for artifact �) in a homogeneous way
(the noise is the same across all channels). We study the ability of our method to estimate artifact �
and the residual process after artifact subtraction. Remarks: Again, the metrics for the residual process
are calculated using the corresponding thresholding methods on the detail coe�cients. ISNRcor is
calculated for the region of the domain where noise amplification occurs. Results: See Table A.�
and Figure �.�B. The large values for ISNRvar indicate that our methods are relatively ine�cient in
denoising this artifact. Meanwhile, the low ISNRcor values suggest that the shape of the artifact is
almost unrecoverable. This observation holds for the residual process as well, although MS appears
to outperform ENID to some extent.

§ �.�. Applications to EEG data

Arguably, the pre-processing of EEG data stands out as one of the most intricate challenges, requiring a
rather crafted practices or intelligently driven approaches concerning the selection and removal of artifacts.
A common practice involves the manual selection of artifacts, either through spatial representations of each
vector in � or by examining ( . In contrast to our simulations, the ground truth of the artifact is now
unknown. Further, an artifact may overlap in multiple spatial components, and while we assume they are
temporally sparse, its occurrence is often unknown.

The data used in this section was recorded at ASIL lab as part of the project with protocol no. ����-
��, which received approval from the local ethics committee at the Faculty of Arts and Philosophy (Ghent
University). The participant provided written consent to take part in the study. A �� channel EEG device
recording at 10 KHz was used in the experiment. During the recording, the participant performed several
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(B) Hard chewing

(C) Swaying, 
moving arms

MIN

MAX

Motor action

Figure �.�: A selection of brain topographies illustrating target areas related to potential artifacts in the di�erent
recordings of motor actions. These topographies are built by interpolating the entries of �•,: across a circular field,
i.e., the channel coordinates on the hemisphere projected on to a compact circular field. Blinking and chewing artifacts
(A,B) are usually characterized by strong prefrontal and localized dorsolateral prefrontal activations, respectively. More
complex motor tasks, such as swaying (C) –whichmight involve eventual blinking as well (C-�)– also show clear spatial
activations in the medial frontal/dorsolateral prefrontal and occipital cortices (C-�,�,�). Observe that the artifactual
activity is mostly originated and localized at the extremals of the field.

movements and was asked to synchronize them with four auditory beats, each lasting � seconds. The task
was divided into two separate time frames, with pauses in between. The beat appeared four times with a
di�erent sound during the pauses to give a sign to the participant of the beginning/end of the task. The
recorded motor actions included blinking (Art�), intensive chewing (Art�), and swaying while moving the
arms (Art�). We will be working with three multivariate discrete signals represented by matrices of size
64⇥=. Our goal is to derive a suitable representation of EEG cortical activity by mitigating the artifactual
components as estimated through the application of the proposed model. Artifacts were visually selected,
as the use of semi- or automated detection methods was beyond the scope of this paper.

Data were solely demeaned and band-pass filtered between �.�Hz and ��Hz to remove slow drifts and
attenuate muscular activity. To assess the results, we use an SNR measure defined as the quotient between
the mean of the maximum absolute voltage across channels in the original signal and the cleaned signal,
expressed in decibels. Calculations were confined to the time frames with artifactual activity. We selected
the best-localized wavelet family based on the artifact characteristics, utilizing wavelets with either � or �
vanishing moments. For Art� (l�), SNR values were SNRMS = 1.457681 and SNRENID = 1.145932; for
Art� (l�), SNRMS = 4.742761 and SNRENID = 1.056919, and (l�) SNRMS = 0.2877005 and SNRENID =
0.8506382; for Art� (l�), SNRMS = 4.327495 and SNRENID = 0.9719538. Visual inspection (see Online
Supplementary Material) revealed satisfactory results for Art�; however, for Art� (l�), residual artifacts
persisted with both methods, albeit reduced when using higher vanishing moments. Notably, ENID
outperformed MS in reducing lower frequency artifacts in Art�. Here, SNR levels can be interpreted as
indicators of artifactual activity, particularly regarding the low frequency artifacts.

§ �.�. Discussion

In this paper, we concentrate on the mathematical and statistical principles underlying the reconstruction
of artifactual activity from EEG signals. We approach this problem by considering artifacts belong to
a high-dimensional space dominated by sparsity. Typical pre-processing techniques primarily involve
spatial covariance estimation while overlooking the temporal dimension of the data. This has inherent
drawbacks because spatial and temporal structures are related but fundamentally distinct, with critical
topological information residing in the time domain. Although in [���] we aimed to address this concern,
the proposed model does not take into account the spatial structure while lacks of asymptotic robustness,
leaving significant gaps. Instead, here we present a model that captures linear information in the spatial
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domain while also exploiting the temporal structure in a non-linear fashion using wavelet techniques on
the spatial IC expansions. Our spatial approach relies on FastICA due to its simplicity and common usage
in artifact detection problems [��]. Additionally, FastICA is known for its good asymptotic behavior [���],
while is likely to outperform other estimators such as FOBI [���]. Other ICA methods as well as di�erent
FastICA configurations can certainly be considered in future comparative studies.

We introduced two approaches for thresholdingwavelet coe�cients, both of which have demonstrated
their e�ectiveness especially in scenarios where the definition of noise (or what is meant to be denoised)
lacks of a clear parametric specification. After the spatial factorization, these methods aim to enhance the
irreducibility of the spatial ICs, thereby providing genuine independent spatial representations. The MS
method has been shown to be notably e�ective in estimating stereotyped artifacts. Nevertheless, its success
relies on selecting an appropriate scaling series, as well as a suitable number of vanishing moments, to en-
sure proper convergence. The advantage of ENID is that it always converges regardless of any parameter
configuration, although in certain cases it can be less e�ective in recovering stereotyped artifacts. The
performance of both techniques when applied to EEG data depends on their adaptability to the complex
temporal topology of the artifact taxonomy and the type of embedded noise (if one assumes the presence of
negligible white/coulored noise, reverting to the methods’ original formulation may be convenient). Our
simulations and real data analyses yield three crucial insights for practitioners: (8) the direct application
of denoising techniques to estimate artifactual activity can lead to spurious modulation of brain activity
when artifact attenuation/removal is conducted (88) if artifacts are not suitably denoised, their subtraction
will lead to brain activity loss (888) identifying certain artifacts may rely on knowledge of the covariance
structure in the temporal domain, which is not easily estimable in wide data settings.
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� | Study I: Modeling pupil data during musical
tasks of variable emotionality

This chapter includes the paper:

• [���] V����, M., O��������, E., K., A�������, A. M., S��, J., M���, P.-J., F����, T. H., ��� L����, M. (����).
Cholinergic-related pupil activity reflects level of emotionality during motor performance. European Journal of
Neuroscience, n/a:�–��.

Pupillometry has gained increased attention in recent years, driven partly by research linking pupil
activity to axonal di�usion of several neurotransmitter systems [���]. This technique o�ers a cost-e�ective
and portable means of measurement, making it particularly versatile for use during various motor activ-
ities. Unlike EEG recordings, it does not su�er from typical artifact e�ects caused by muscular activity.
However, the majority of pupil dilation changes can be attributed to autonomic regulation in response to
luminance variations; for instance, a basic eye blink reflex can induce turbulent e�ects in themid- and high-
frequency band of the pupil signal, as shown in §�.�. Therefore, estimating cognitive/neurotransmitter-
related pupil activity is not straightforward, and prior pre-processing of pupil data� is mandatory to derive
reliable scientific results.

In this chapter, we present a paper that integrates both methodological and experimental results re-
lated to estimating pupil activity during musical tasks of variable emotionality. Emotional motor control,
which involves the neural mechanisms regulating physical responses to emotions, is in its neurological
organization substantially distinct from voluntary motor control [���, ���]. Here, we aim to identify its
neurological signature with pupillometry, examining slow and phasic fluctuations previously related to the
activity of cholinergic and noradrenergic axons. We conducted pupillometry in a population of trained
singers who sequentially performed di�erent motor tasks determined by the structure of a musical piece
and designed to vary according to the degree of emotional engagement. We hypothesized that actively
engaging in musical behavior by singing and moving along with the music (movement+singing) would
elicit stronger emotional responses from participants, resulting in a qualitatively distinct pattern of baseline
and phasic pupil activity compared to control conditions that were comparable but designed to be less
emotionally engaging. The proposed paradigm is investigated within the framework of the generalized
arousal (GA) hypothesis [���–���]. GA is here defined through the estimation of dominant dynamics using
a multivariate functional PCA (§�.�) of pupil data.

Abbreviations: LC, locus coeruleus; NE, norepinephrine; BF, basal forebrain; Ch, cholinergic; ACh,
acetylcholine; GA, generalized arousal; CWT, Continuous Wavelet Transform; KL, Karhunen–Loève;
ROE, response to ocular event; NM, no movement only listening; M, body sway to music; NMS, singing
but no body sway allowed; MS, body sway plus singing.

§ �.�. Introduction

Optimal levels of arousal are critical for perceptual and cognitive functions, given that arousal modulates
entire classes of responses to various events, for example making an organism more responsive to sensory
stimuli, more ready to execute voluntary motor activity and more emotionally responsive [���]. Physi-
ologically, regulation of arousal and autonomic function are related to the activity of the locus coeruleus
norepinephrine (LC-NE) and basal forebrain cholinergic (BF-Ch) systems [��, ��, ��, ��, ��, ���, ���].
The LC-NE activity plays an important role in enhancing the processing of information salience [���, ���]
and has been shown to have an influence on decision making [��, ��]. BF-Ch activity is a key compo-
nent to promote sensory perception [���] and in emotion regulation [��, ��, ��, ���, ���]. Furthermore,
its engagement is particularly characteristic as an integral aspect of motor activity, for example during
locomotion [���] or other types of body movements independent of locomotion [���].

Prior studies in humans and non-human animals have demonstrated that, under isoluminance condi-
tions, there exists a causal relationship between pupil fluctuations and the activity in the LC and the BF-Ch

�A comprehensive and up-to-date guide to pupillometry can be found in [��].
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neurons [��, ��, ���, ���, ���, ���, ���]. However, neuromodulatory mechanisms underlying movement
control and their corresponding e�ects on pupil behavior are not yet well understood. Neurophysiological
work in rodents has shown that the pupil tends to dilate concurrently with activity of the NE and Ch axons
before locomotion onset [���]. This dilation is prolonged along with a sustained Ch axonal activity until
motor o�set, showing a hallmark latency to reach baseline levels [���, ���, ���]. BF-Ch inputs have also
been related to microdilations induced by small body movements [���]. NE phasic activity tracks transient
and di�erential dilations during motor and passive states [���, ���]. A recent study has shown, however,
that these projections are more likely to be related to infrequent and large dilation events, suggesting that
inferencing on repeated measures could increase the accuracy of the NE axonal estimates [���]. Note that,
while arousal and motor activity have been shown to be to some degree independent in how they modu-
late firing in cortical circuits [���], their interplay seems to notably contribute to functional plasticity in
the cortex, for example enhancing learning [��].

The behavior of BF-Ch and LC-NE systems in humans with respect to motor functionality and how it
relates to pupillary changes have been less investigated. Nevertheless, several studies on visuo-motor tasks
have reported that modulation of pupil size is dominated by the motor response rather than other cognitive
factors; see [���] and references therein. The intensity of physical exercise in the absence of visual cues has
been previously associated with an increased baseline pupil diameter [���, ���], which when performed
with moderate intensity was comparable to when participants performed mental arithmetic tasks [���].
Subsequent studies have corroborated these findings using measures of peak oxygen consumption ( §+$2 )
and minute ventilation ( §+⇢), further demonstrating that exercise-intensity-dependent pupil dilation was
exponentially correlated to these physiological measures [���]. Other studies have tested the e�ects of sin-
gle bouts of exercise on cognitive inhibitory control as measured by pupillometry following the physical
activity, suggesting that task enhancement was independent to some degree of LC-related pupil activ-
ity [���, ���]. Instead, findings have shown that choline supplements for boosting cholinergic activation
enhanced performance accuracy over velocity during visuo-motor aiming tasks, which translated into a
relative decrease in pupil size compared to when movements were faster and less accurate [���, ���].

Here, we investigate the inverse problem of inferring the activity of brainstem arousal systems from
a blinded-inference paradigm perspective, using pupil recordings in humans. We formulate a frequency-
specific schema of analysis based on prior investigations on motor tasks in rodents [���] that is determined
by the structure of a musical piece. Our analytical methodology is motivated by the “generalized arousal”
(GA) hypothesis [���–���]. Several components of the nervous system such as the medullary reticular
formation, thalamus and cortex contribute to GA, which is crucial for initiation of any behavior during
arousal states. The relevance of nucleus gigantocellularis neurons, whose activity is related to serotonin
and ACh, together with adrenergic projections from LC have been reported to play a role in modulating
GA [��, ���, ���, ���]. Here, we assume that the confluence of these neural mechanisms makes pupil
activity a potential candidate whose latent dynamics might serve to model GA function. The proposed
methodology extends previous e�orts of GA analysis to functional data [���] through a reduction method
that allows capturing variability in a populationwho sequentially perform di�erent motor tasks in a musical
context that are designed to vary with the degree to how emotionally engaging they are.

Participants with musical training were recruited to perform under di�erent movement conditions,
to emotionally engage the performers in various degrees during their motor tasks. Four conditions were
compared: (i) no movement (NM), only music listening, (ii) body sway to music (M), (iii) singing but
no body sway allowed (NMS), (iv) body sway plus singing (MS). We hypothesize that actively engaging
in musical behavior while singing and moving along to the music will more strongly engage participants
emotionally and lead to a qualitatively di�erent pattern of tonic and phasic pupil activity. Given the rel-
evance of GA for emotional motor control in the basal forebrain [���], we speculate that GA modeling
of BF-ACh pupil related activity might be a way of objectively quantifying emotional response whereas
transient fluctuations related to LC-NE activity occurring in parallel in higher subbands might reflect
other cognitive parameters possibly related to attention.

§ �.�. Results

GA levels of pupil related low frequency cholinergic function change with emotionality of motor
performance. The MFPCA of the smoothed pupil data reported a ��.��% of explained variance for the
GA component, which has previously been reported to account for less than half of the variance [��]. Levels
of GA were quantified by calculating the !2 log-norm (from the baseline) of the KL curves. We found
higher dilation rates of tonic activity in all motoric conditions compared to NM (Figure �.�E), with MS
leading to a significant increase compared to the other conditions. By contrast, no di�erences were found
between the pupil dilation rates of M and NMS, despite levels of motor activity being highly di�erentiated
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Figure �.�: Neuromodulatory modeling of pupil data (A) Schematic showing the division of the pupil signal in
two frequency bands (�–�.�/�.�–� Hz) as proposed by Peysakhovich et al. [���] and levels of coherency found by
Reimer for the cholinergic axons (> 0.03Hz) and noradrenergic axons (�.��-�.�Hz). Note that LC-NE pupil related
activity (in red) is generally not restricted to values in the band �.��-�.� Hz. (B) Functional data model of Pfa� ’s
generalized arousal applied to the data. The model is based on one factor (dominant eigenfunctions) Karhunen Loève
(KL) representation, estimated from a multivariate functional principal component analysis. (C) KL mean curves
representing BF-Ch pupil related activity during the performance task. The grey dashed lines delimit section changes
(see Figure �.�A). (D) Spectral analysis comparing the original dataset to the KL reduced curves. (E) Comparison
of baseline pupil rates of the KL curves for each condition (!2 log-norms). (F) Comparison of force sensor platform
velocity rates derived from the computation of the instantaneous amplitude via Hilbert transform. (G) Baseline pupil
rates are plotted as a function of the platform velocity rates; the dashed lines represent the means for each group (� )
Means of the KL pupil rates for GA component and specific arousal forms { 2f2 (C) · · · =f= (C)}. A higher velocity
decay in mean rates is observed in NMS and MS compared to the other conditions - Error bands were calculated at
a ��% bootstrap confidence interval. Statistical comparisons were made using the Wilcoxon signed-rank test (with
Bonferroni-Holm correction for multiple comparisons): *? < 0.05, **? < 0.01, and ***? < 0.001; ****? < 0.0001; n.s.,
not significant. The error bars indicate standard errors.

(Figure �.�F,G). Motor activity rates (at least in terms of body sway) did not di�er between M and MS.

Amplitude of sensorimotor engagement determines change in LC related pupil behavior during
chorus recapitulation. It can be argued that the human fascination with music to a great degree relates to
music’s capacity to dynamically vary expectation [���]. A systematic variation of such aspects of stimulus
property over time is an inherent quality of the stimulus material used in the present study. Accordingly,
we looked at LC-related pupil behavior in relation to musical structures that are known to systematically
influence expectations, verse and chorus (Figure �.�A). This also corresponds to predictive coding theories
[��, ��] that state that the brain is a solver of likelihood functions, leading to the neuronal codes that pre-
dict sensory perception, so that cognitive processing is influenced by previous exposure. We accordingly
investigated if pupil indices are modulated with chorus recapitulation. We used Pfa� ’s GA formula for
MFPCA reduction, although now applied to each part of the musical structure. Dominant fast and tran-
sient dilations can be seen as GA approximations in a lower time scale. Pupil behavior di�erences between
chorus and chorus recapitulation were observed. As shown in Figure �.�B, an overall decrease in pupil
dilation was found during the movement conditions along the di�erent parts of the formal structure. A
higher level of dilation was observed in the singing conditions during chorus and first verse compared to
NM, which was significantly higher for \1, \2 during the chorus. In the recapitulation, M, NMS and MS
were more prominently lowered in \2, \3. This is apparent in the scatterplots (Figure �.�C), where the
singing conditions shifted left in the axis of the KL log-norms as a function of the velocity rate measured
with the movement sensors. We also found evidence of this pupil constriction in a post-hoc analysis testing
di�erences across subbands by pooling all scores of each respective chorus part as a single variable. Results
suggest a general decrease of dilation indices in NMS and MS (Figure �.�D). No significant di�erences
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were reached in M and NM.

behavioral data. The discrepancy between the two experts’ evaluations of the singer’s performance was
small () 2 = 1.922, ? = 0.0941), and di�erences between the singing conditions were not significant () 2 =
1.0622, ? = 0.396). The averages across conditions of each item to be evaluated were generally high
(Intonation: NMV = 8.333±1.582, MV = 8.566±1.006; Rhythm: NMV = 9.466±1.008, MV = 9.6±0.723;
Fluency: NMV = 9.233 ± 0.971, MV = 9.466 ± 0.571. The analysis contrasting the voice recordings
between the NMV and MV conditions show that the quality of the performance in both conditions was
similar (cosine similarity: 0.97±0.01; Pearson’s correlation: 0.87±0.05 - means and SD across participants
using a suitable score transformation).

Participant’s subjective ratings of the level of excitement and absorption (Figure �.�E) show that a
significant percentage of participants had a higher emotional experience when singing and moving along
to the music compared to when they were only listening (? > 0.05, usingWilcoxon signed-rank test with
Bonferroni-Holm correction).
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Figure �.�: Modeling of LC-NE activity (rapid pupil fluctuations) and behavioral data (A) Schematic summarizing
the formal structure of the musical piece the participants were asked to perform. (B) Comparison of GA pupil rates
across di�erent frequency subbands related to LC-NE activity. - Statistical significance is measured as detailed in
Figure �.� with respect to the control condition NM, bars represent standard deviations. (C) Phasic pupil rates in the
subband �.�-� Hz are plotted as a function of the locomotor activity (force sensor platform velocity rates); the dashed
lines represent the means for each group. (D) Pooled dilation rates across all subbands ranging from �.�� to � Hz. -
Statistical tests were conducted using the two sidedWilcoxon signed-rank test for single comparisons; % < 0.05 e�ects
at MS were lost for multiple testing when using Bonferroni-Holm correction. (E) Perceived emotional attributes. -
Comparisons were made using Wilcoxon signed-rank test with Bonferroni-Holm correction.

§ �.�. Discussion

Musical activities are known to readily evoke emotional experiences, and singing as other expressive
vocalizations can be regarded to often be a rather intense emotional activity [���, ���, ���, ���, ���].
Body movement and sway has been described to happen automatically during intense musical engage-
ment [��, ���], possibly through so-called empathic gestural attuning [���], where musical features such as
beat, rhythm, melody, timbre may trigger body gesture associations. Introducing additional constraints on
physical movement is often compulsory inWestern classical professional musicians, and it also demonstrates
to the audience an enhanced control that is perceived as an attribute of professionalism. Very relevant for
the current study design, using musical engagement allowed for experimentally structuring the investiga-
tion of emotionality of task. At the same time, introducing the requirement to inhibit body sway during
the task, more specifically, singing while additionally having the constraint not to move along and sway,
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allowed for less emotional experience of the performer than singing while being allowed to move freely
with the body.

Our analyses suggest that inhibition of body sway during singing results in an enhanced pupil baseline
tone that is comparable to when participants did not sing but only swayed along to the music. It might
be that synchronizing with either voice or body for a musician engages similar cognitive processes to a
comparable degree, and that engaging in synchronization of both voice and body sway does combine to
a di�erent quality of immersive and emotional experience. This corresponds to the behavioral findings
showing higher level of emotionality during MS. Notably participants performed singing with a similar
quality with and without body sway as assessed by evaluators, supporting the notion that the observed dif-
ferences were indeed due to di�erences in emotionality and not to other parameters such as task di�culty.
Current analyses rather show that cognitive load corresponds to values of LC-NE subbands (Figure �.�B,
chorus), where singing led to an increased pupil rate compared to no singing conditions. No di�erences
were found between pupil rates in conditions NMS andMS, which reflects participants’ musical proficiency
and further supports this interpretation of the results.

Following the discussion in [���], a modulation of slow frequency cholinergic activity and related pupil
activity could be associated with pre-motor planning, arousal or both. While certainly controlling only
voice and controlling body sway correspond to an involvement of di�erent somatotopically organized pre-
motor representations [���] and selective neural populations in the auditory cortex [���, ���], their e�ect
in terms of pupil activity is comparable (Figure �.�E). This rather seems to indicate that the cholinergic
associated pupil activity reflects arousal level. As shown in Figure �.�C, level of pupil dilation increases
from no movement during music listening, to singing while not moving along to the music, to singing
while moving along to the music. Given that arousal is a consistent dimension of emotion in arousal
models, and musical activities readily evoke emotion, we argue that in this musical context a variation
of action as part of musical tasks systematically vary level of emotionality. Supporting this hypothesis,
cholinergic contributions to emotion regulation are well-known in the literature [��, ��, ��, ���] also
during diverse musical and motor experience [��, ���, ���]. We are aware that performing di�erent motor
acts, for example singing or swaying, involves a di�erent set of physiological resources that correspond
to a di�erent set of neural activation patterns that cannot only be regarded emotional. However, from a
perspective of our knowledge of a dichotomy of voluntary and emotional motor control [���, ���], we
know that movement and emotionality are entwined. The current findings on the variability of the slow
pupil dynamics are therefore congruent with the GA hypothesis and related theories on the emotional
motor system which associate mitigation of emotional cues with action [���].

Musical structure and musicians’ sway during performance has been previously described to covary
systematically [��]. Because body sway was one major aspect of the task, we took into account the formal
structure of the musical piece when investigating the time-course of pupil dilation. Furthermore, pupil
behavior in relation to musical structure is applicable to understand rapid pupil fluctuations (�.��-� Hz)
that have been observed to relate to LC activity, which is often modulated during changes in stimulation,
especially if such changes relate to the task. We observed that the pupil first dilated and then attenuated over
time and repetition of the music. Larger and rapid pupil dilations have been associated to cortical desyn-
chronization (suppression of low-frequency fluctuations), a form of attentional state required to accurately
process sensory information [���, ���, ���], also in the auditory domain [���, ���]. Although this pattern
of dilation and posterior attenuation when musical sections repeated was apparent in all motor conditions
(Figure �.�B), it was particularly robust during the singing conditions as shown in our post-hoc analyses
(Figure �.�D).

Such attenuation might correspond to the pupil’s ability to respond to information from dynamic
environments, possibly reflecting a process of active inference [���] in musical performance, even when
visual information is controlled for. Pupil activity in correspondence to multimodal cognitive rather than
visual processing has previously been shown. For example, higher learning rates in a prediction task were
associatedwith a smaller baseline pupil diameter [���], or biases on subject’s internal beliefs related to higher
pupil dilation in dynamic environments [��, ���]. In addition, motor engagement during performance
seems to enhance this aspect of pupil activity given that attenuation of LC related pupil indices occur
mainly during motor conditions as shown in our analyses (Figure �.�B,D). Similar results have also been
reported during motor tasks, reflecting motor control and learning [���, ���].

Furthermore, we have introduced an unsupervised algorithm that allows to detect ROE of di�erent
duration and amplitude regardless of the artefact benchmark. The method works in a nonlinear fash-
ion, which makes it suitable for non-stationary environments and only recasts on a dispersion parameter
that can be relaxed according to the levels of contamination. Turbulence due to ROE is then minimised,
providing a more precise estimate of the neurological processes under investigation. With this, dissocia-
ble traits in the pupil behavior related to the LC and BF-ACh activity found in previous research can be
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discovered. However, simultaneous measurements of neuroimaging and pupillometry techniques are nec-
essary to corroborate how pupil size and the activity of these neuromodulators, and possibly others, are
related and interact during motor performance of variable emotionality.

§ �.�. Materials and methods

Participants
Fifteen participants (all female, aged ��-��), with formal and/or informal musical education (mean = 11.46
years; SD = 6.51), gave written consent for taking part in the study, approved by the local ethics committee
(Faculty of Arts and Philosophy, Ghent University). They were right-handed and had normal vision, or
vision correction, normal hearing and were neurologically healthy. All participants were screened on their
experience with singing in a choir, which ensured they had experience with singing a steady part in the
presence of other voices. They received voucher credit for their participation.

Acquisition of pupil data and other modalities
Pupil diameter was recorded at �� Hz frequency rate using Pupil Lab’s wearable headset with integrated
cameras (Logitech C���e) directed towards the right eye. A force sensor platform with �� cm radius was
used to control for body movement. This platform consists of a plate with four sensitive weight sensors
underneath (one at each corner) to register variations in pressure related to body movement. Each sensor
is captured with the ��bit Analog Digital Converter of a micro-controller (Teensy �.�, PJRC) at ���Hz.
The sensor data is wrapped into MIDI packets. This allows recording audio and sensor values in sync
using standard digital audio workstation software: in this case, Ableton Live � was used. The participant’s
singing voice was recorded with a Shure Beta ��A microphone. Next to this, a decibel meter (UNI-T
UT���) was used to monitor and review the volume level before the start of the experiment (to limit the
e�ect of loudness).

Procedure and rating of perceived level of emotionality
The experiment was conducted in a dark room with steady LED luminance of less than about �� cd/m2

(Uni-T Luminometers UT���). The participants stood on the platform, facing three speakers at a distance
of � meters. During conditions NM and NMS they had to stand still looking at a white cross placed
on the middle speaker whereas in conditions M and MS, gaze movement was allowed facing forward
horizontally where the speakers were located. Gazing upwards or downwards was advised against. Five-
point calibration and validation were performed before the start of the experimental session. Hereafter, we
asked participants to stand on their assigned spot in the room and to sing the rehearsed melody by heart.
This allowed us to check whether participants learned the melody to complete the various tasks with
fluency. Participants performed with an instrumental music piece including a three-part vocal harmony.
In conditions NMS, MS, they were singing the middle voice from the three part harmony, which was
in the singing conditions not audible in the music presentation. The order in which every condition was
presented was randomized for all participants. For further details concerning the experimental setting and
stimuli, see Supplementary Material.

After performing each task, participants were asked to rate their perceived level of excitement and
absorption (degree of correspondence with the activity) on a Likert scale from � “low” to � “high level”.
We used the terms absorption and excitement as attributes of positive emotionality.

Analysis of the singing performance
Recordings of the singers were evaluated by two experts with more than �� years of musical training and
teaching experience in musical institutions. They were asked to rate on a scale from � (very inaccurate) to
�� (very accurate) the following items: intonation, rhythm and fluency (smootheness of the performance,
as in [���]). The recording files were blinded and randomized before their presentation to the evaluators.
Furthermore, acoustic similarity between NMS and MS conditions was measured on the recordings with
the singing part isolated from the instrumental by calculating cosine-similarity and Pearson’s correlation
on spectrogram-like representations (frequencies were in Mel).

General data preprocessing and statistics
Outlying data produced by blinks taking values of zero (or close to it) were removed from ��� ms before
until ��� ms after the observation (�.���% ±6.158 of missing data). As an alternative to interpolate the
removed values, we imputed them using an algorithm based on a vector autoregressive model with heavy-
tailed Student’s C distributed innovations that is robust against outliers [���]. This procedure reconstructs
the missing data using stochastic parameters amenable for heavy-tailed and sparse high-dimensional data.
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Subsequently, the pupil time series were mean-centered and normalized to unit variance. Standardiza-
tion across subjects allowed to control for di�erential sensitivity to the ambient luminance, as to compute
higher-order moments. Unless otherwise stated, the median pupil size of the interval from ��� ms to the
start of the auditory stimuli was used as baseline. Similarly, the data recorded with the force platform was
downsampled at �� Hz, low-pass filtered (�.� Hz) and normalized. To express this data as dynamic firing
rates, we calculated the first derivative and its Hilbert envelope or instantaneous amplitude.

All data and statistical analyses were performed using custom-made R scripts [���] (ver. �.�.�). Statis-
tical significance was measured against an alpha level of 0.05.

Estimation of cognitive-related pupil activity

Turbulent-like dynamics can be encountered in many physiological phenomena, such as in cardiac [���]
or brain imaging signals [��, ��]. In the current research scenario it can be understood as chaotic dynamics
that appear as a distortion of amore parsimonious state by various physiological parameters. More precisely,
in pupillometry turbulence is observed after changes in retinal illuminance (for example, when blinking),
as the pupil tends to rapidly constrict and re-dilate transiently to tonic levels, drawing the shape of a
negative gamma function in the signal (Figure �.�A,E). Luminance-related changes directly modulate
the feedforward response of V� (striate cortex) that is independent of psychological factors like attentional
load [��], suggesting that changes in pupil size due to autonomic regulation also a�ect visual perception to
some degree. Note that while blinks are often considered informative of attentional or other arousal states
[��, ���, ���], their e�ect on pupil size is probably rather related to basic visual function.

Pupil responses produced by subtle changes in luminosity can act as confounders, notoriously bias-
ing the results of a subsequent data reduction [���, ���]. The intensity, duration and frequency of pupil
occlusion together with abrupt visual changes resulting from movement, can generate turbulent flows in
the signal hampering estimating pupil behavior related to cognitive processes. We observed that blinks are
more likely to occur during movement and vocalization tasks compared to the control task NM (? < 0.05
using permutation test for location based on means applying the Box–Cox transformation; see [��]), which
is consistent with previous findings reporting an increasing blink rate due to complex motor activity dur-
ing speaking [��]. Furthermore, responses to ocular events (ROE) might overlap with other ROE in such
conditions, which can lead to a non-linear distortion of the signal. Taking into account all these facts, a
systematic correction of ROE is necessary to provide reliable results about levels of pupil-linked arousal.

To detect these turbulent flows, we applied a novel unsupervised algorithm that accounts for slow and
high frequency ocular responses. The model uses nonlinear internal vector spaces of the pupil signal re-
constructed by a third-order Butterworth band-pass filter with a fixed higher cuto� frequency and variable
low pass frequency cuto� to gradually remove localized abnormal oscillations.

ROE reduction algorithm

Let G1, G2, . . . , GC , . . . , G= be an univariate time series of = pupil diameter measurements and denote by
BPl,l 9 (·) a battery of third-order band-pass Butterwoth filters with fixed cuto� frequency l and vari-
able low pass frequency cuto� l 9 ( 9 = 1, . . . ,<). Then, the ROE reduction consists in the following
iterative process.

For each filtering step l 9 , we repeat:

�. Calculate ĜC = BPl,l 9 (GC ) and determine the set of turbulence onsets Cg; (; = 1, . . . , ! 9 ) such that
�ĜCg; < Mdn�Ĝ � : · f�Ĝ , where � denotes the di�erencing operator and : is a dispersion hyperpa-
rameter.

�. For each Cg; at the 9th filtering step, let {C0; , . . . , Cg; , . . . , C?; } be the set of observed time points where
C0; , C?; represent the index positions related to the smallest nearest neighbouring peak of Ĝg; and the
relative position of this peak before or after Cg; . Then, the subtraction can be performed using baseline
correction as

(GC0; :C?; � GC0; ) � (ĜC0; :C?; � ĜC0; ) + GC0; , (�.�)

where GC0; :C?; is the snippet containing the ROE.

�. Update GC for each g; and then go to the next filtering step.

Parameter selection and validation

To determine the parameters l,l 9 ,:, we recorded a participant who was asked to blink four times syn-
chronizedwith an auditory beat (of � s duration) in two time frames separated by pauses. The beat appeared
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Figure �.�: Removal of ROE: toy simulation and real data examples showing how the ROE algorithm works. (A)
Simulated contaminated pupil data. (B) Downwards oscillations corresponding to ROE are detected using a battery of
band pass filters and progressively removed at each smoothing step subtracting the area of the curve generated below
the nearest low-peak of the oscillation period to the turbulence onset.(C) CWT before and after the application of
the ROE correction (with final low-pass filter at �.� Hz). Zones shaded in grey depict the ROE phase changes during
the blinking task (� blinks) with contours enclosing turbulent flow fields (regions with a significance level > 0.95%
according to a j2 test). (D) Series showing the row sums of the matrix containing significance levels of the CWT for
the di�erent zones marked in the CWT before ROE correction. (E) Application of the algorithm (with : = 3) to real
data retrieved from the Python package FIRDeconvolution [���].

� times with a di�erent sound during the pauses to alert the participant of the beginning/end of the blink-
ing task. Blinks were intentionally performed longer to see their e�ect on the signal. During the pauses,
eventual and faster blinks also occurred. We recorded pupil activity in a dark environment where a white
fixation cross was projected during the experiment. This produced a slow ROE related to changes in the
luminance level (Figure �.�C). For further details, see Supplementary Material Online.

The continuous wavelet transform (Morlet wavelet) was performed on the data to examine the pseudo-
frequency scales characterizing the dynamics of turbulence produced by ROE. Time-power spectra bias-
corrected [���] and levels of significance (j2 test, see [���]) are shown in Figure �.�. The ROE algorithm
was applied in two steps from the baseline frequencies l1 = 0,l2 = 0.25 and l1, 9 = (0.03, 0.045, . . . ),
l2, 9 = (0.5, 0.515, . . . ) that allowed to detect slow and rapid ROE, respectively. We chose l2 guided by
the CWT (continuous wavelet transform) results analyzing the series obtained by summing the values of
each row of the matrix containing significance levels (zone �, Figure �.�D). The minima found (�.���
Hz) after the first local maximum (�.��� Hz), which roughly delimits the upper frequency range for the
low-frequency ROE observed in zone �, served as a point of reference. The value of l1,1 was determined
by Reimer’s top frequency threshold for the slow ACh activity, and l2,1 again summing the values of
each row of the matrix containing significance levels, but now selecting the second peak of frequency (⇠
�.� Hz) which was noticeable across all zones analyzed with blinking activity, whether voluntary or not.
The <th values of the l 9 ’s vectors can be chosen based on a frequency limit above which pupil activity
is rarely attributable to physiological sources (e.g. � Hz as suggested in [���, ���]). Lastly, the corrected
pupil data can be low-pass filtered at �Hz or at lower frequencies for subsequent analyses (we used �.�Hz,
see Figure �.�C).

The dispersion hyperparameter (:) from the filtered signal’s first derivative median value is fixed to
identify the abnormal oscillatory changes. Because blink responses contribute more variance to the signal
in movement-controlled conditions [���], a lower value than : = 3 (which is often conventionally used)
provided more realistic estimations. Thus, for l2, we modeled the dispersion hyperparameter as the de-
creasing exponential function : = 3 ·4�1 , where 1 denotes the participants’ blink rate. The turbulence onset
is then defined as a low peak of velocity that surpasses the established dispersion threshold. Application of
the ROE algorithm to the data and other external data (Figure �.�C) shows that the algorithm is capable
to identify all ROE turbulence right after the blink artifact but also others that occur directly after ROE
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indistinctly of the artifact benchmark, possibly due to autonomic regulation [���]. More research is needed
to refine parameter selection, for example, in di�erent or even variable luminosity conditions assessed by
multiple recording devices.

Hilbert space modeling of generalized arousal function
Fourier basis approximations of slow BF-Ch pupil related activity

Axonal projections from the cholinergic neuromodulatory neurons during locomotion have been found
to be coherent with pupil oscillations in low frequencies (< 0.03 Hz) [���]. These frequencies operate
on a timescale beyond what is often described as moment-to-moment changes/fluctuations, therefore we
examined pupil data across the duration of the entire musical excerpt. To characterize cholinergic activity
through pupil measurements, in a first step pupil curves are regressed out as smooth functions using a
Fourier basis. The choice of a Fourier basis instead of other systems (B-splines, Wavelets) is supported by
the assumption that the shape of the pupil is a perfect circle as well as the apparent periodic behavior of the
data. The dimension of the basis was selected in order to minimize the root mean square error (RMSE)
between the observed data and the evaluated Fourier basis approximation (discrete predicted values). To
shape the baseline modulations of interest, we selected the basis dimension on a low range (? < 11).
This allowed to find a RMSE trade o� between middle and low-frequency rhythmicity, notably reducing
oscillatory activity (> 0.05 Hz, see Figure �.�D) to levels of coherency previously found [���].

Fourier basis approximations of phasic LC-NE pupil related activity

To quantify variations of noradrenergic activity through pupil diameter, we bandpass-filtered the data
from �.�� to � Hz (\1). This frequency band includes part of Reimer’s subband for NE axonal activity
(�.��-�.� Hz) and ranges upwards with the high-frequency threshold determined in a recent study in
humans [���] that is based on previous research in rodents [���, ���]. Above � Hz, results might be more
accurately quantifiable in a more fine grained time scale. Note, however, that human pupillary oscillations
in higher subbands have been linked to luminance e�ects rather than other cognitive factors [���, ���].

Crucially, we are interested in representations of the pupil data less susceptible to baseline e�ects, as
activity in noradrenergic projections in cortex, which is characterized by localized bursts, tracks pha-
sic changes in pupil diameter with an observable causal e�ect on the pupil size gain [���, ���, ���, ���].
Therefore we selected a high-pass cuto� of �.�� Hz to ensure certain degree of stationarity, while also
preventing overlap with slow BF-Ch pupil related activity. To this end, here we further propose a form
of deconvolution by narrowbanding the signal into two additional subbands, from �.� to � Hz (\2) and
from �.� to � Hz (\3). This technique is used as an alternative to taking first di�erences, which although it
has previously allowed to establish a number of correlations with NE axonal activity [���, ���], after a first
normalisation of the pupil data, statistical e�ects are more unlikely to survive when di�erentiating (which
is also a kind of normalization); see Discussion in [���].

To enhance the functional representations of the data filtered above �.�� Hz given their high density
rhythmicity, we cut the data into four parts according to the formal structure described in Figure �.�A.
In order to accurately represent the shape of the rapid oscillations that were observed, we fitted a standard
Fourier basis with a larger dimension (? = 19). Since the filtered curves tend to be rather stationary when
slow oscillations are reduced (? > 0.01 on ��.��% of the data, augmented Dickey-Fuller test) the pupil
series were mean-corrected instead of baseline aligned.

Multivariate functional GA model of pupil data

Within this setting, we resort to Pfa� ’s GA form, an elementary form of arousal we denote by�1 expressed
in combination to other specific forms �2, . . . ,�= as

Arousal = � ( 1�1 u  2�2 u · · · u  =�=), (�.�)

where � is a mapping (non necessarily linear) and  1, 2, . . . , = are scores reflecting traits of the individual
[���]. Eq. �.�. can also be expressed dynamically as a di�erential equation [��]. Statistically, we interpret
Eq. �.� by means of a multivariate functional principal component analysis (MFPCA), which takes into
account response dependencies through the pairwise cross-covariance functions [�, ���]. This modeling
strategy naturally extends previous linear formulations of the problem [���, ���] to the functional case. In
our approach, however,  1 is a vector of scores obtained from the projection of the original functional
data on to a vector of weight functions (one for each condition) with a major variance contribution. The
GA we define in this context is then the set of random functions ^⌧� (C) =  1f 1 (C), where f 1 is a vector of
weight functions and ^⌧� is a one factor representation of the original data (see Figure �.�B), also known
as the truncated Karhunen-Loève (KL) expansion.
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Next we formalize the above interpretation of Pfa� ’s GA model. We assume that the pupil data have
been approximated by a finite linear combination of non-linear Fourier functions (see, for example, [���]).
Consider a sample of multivariate functional observations over a closed interval,

^ 8 (C) = (-81 (C), . . . ,-8� (C))>; (8 = 1, . . . ,# ; C 2 I), (�.�)

containing the pupillometric curves of # individuals in � experimental conditions. These functional ap-
proximations have the basis expansion ^ 8 (C) = �(C)c>8 , where �(C) is a diagonal matrix of ? dimensional
vector valued Fourier functions with dimension � ⇥ (?1 + ?2 + · · · + ?� ), that is,

�(C) =
©≠≠≠≠
´

q11 (C) · · · q1?1 (C) 0 · · · 0 · · · 0 · · · 0
0 · · · 0 q21 (C) · · · q2?2 (C) · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · q�1 (C) · · · q�?� (C)

™ÆÆÆÆ
¨
, (�.�)

and

c8 = (2811, . . . , 281?1 , 2821, . . . , 282?2 , . . . , 28�1, . . . , 28�?� ), (�.�)

its vector of coe�cients. If all coe�cients 28 are pooled together by rows, we can rewrite the above ex-
pression as ^ (C) = I�> (C). The MFPCA is then obtained by solving the eigenequation

�(B)⌃IMb>< = _<�(B)b><, (�.�)

where ⌃I = 1
=I

>I , M =
Ø
I
�(C)>�(C)dC and b>< is the vector of coe�cients of f< (C) = �(C)b>< , a vector of

weight functions obtained from the spectral decomposition of the variance-covariance function â (B, C) =
� (B)⌃I�> (C), and _< 2 R its associated eigenvalues. This problem has the algebraic solution in the matrix
eigenproblem ⌃IMb

>
< = _<b>< , where b< are in turn the eigenvectors of the matrix ⌃I provided that M is

the identity matrix. This way, the principal component scores are  8< = c>8<b< and the corresponding KL
expansion for the GA component is

^⌧�
8 (C) = - (C) +  81f 1 (C), (�.�)

where - (C) is a vector of mean functions of^ 8 (C) andf 1 (C) is a vector of eigenfunctions (one per condition).
Specific forms of arousal are then similarly obtained as

{^ (2)
8 (C) = - (C) +  82f 2 (C), . . . }. (�.�)

Note that the MFPCA is reduced to the multivariate PCA of the Fourier coe�cients concatenated across
trial conditions within each subject.

As the MFPCA (or second order models) are based on a Gaussian assumption, some unusual observa-
tions might significantly influence the estimation of the covariance and the quality of the estimators of its
spectrum. Therefore, prior application of the method we checked whether this assumption was satisfied.
After ROE removal, no multivariate functional outliers were detected [��], meaning that these dominant
dynamics we retrieved from our data are robust and consistent for inferencing. Computational implemen-
tations of the MFPCA can be found in the R packages fda, funHDDC and MFPCA.
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� | Study II: Turbulence modeling of EEG sig-
nal during embodied virtual interactions

The current chapter includes the manuscript:

• [���] V����, M., M����, N., A�������, A. M., F����, T. H., ��� L����, M. (����b). Geometric-based
turbulence analysis of EEG signals for modeling emotional arousal during active immersive virtual interactions.
Under review.

The current investigation’s contribution is critical for understanding the neurology of emotion and emo-
tional motor control, and can be regarded as an extension of the research conducted in [���] (Chapter �).
The study emphasizes the relevance of embodied musical interactions in comprehending the brain’s op-
erations under emotional states and reveals that brain function, operating at a less turbulent level, can be
facilitated through virtual external agents, thereby engaging in a more parsimonious/homeostatic state
that characterizes the sense of emotionality. We assessed turbulence of dominant brain dynamics in EEG
recordings of �� healthy participants during musical tasks in a virtual reality setup, allowing for variation
in both task demand and degree of emotionality. Conditions included singing, swaying, responding to a
virtual conductor of variable expressivity, having your own body movements mirrored by a virtual agent,
and combinations thereof. In §�.�, we introduce multivariate functional ICA based on [���, ���] that is
sequentially performed throughout the signal, allowing to quantify the degree of turbulence intensity in
large time courses. This model aligns with the one outlined in [���], yet it emphasizes the analysis of
generalized arousal function from a spatio-temporal perspective, while benefits from the finer temporal
resolution EEG recordings o�er.

Abbreviations: ENID, entropic normalized information distance; EE, emotional engagement; GA, gen-
eralized arousal; GOF, goodness of fit; LL, log-likelihood; MEM, mixed-e�ects model; MVR, movement
velocity rate; TD, task demand; NM.S.NA, no movement singing, no avatar; M.S.NA, movement singing
no avatar; M.NS.Mir, movement no singing avatar mirroring; NM.S.Rob, no movement singing robotic
avatar; NM.S.Exp, no movement singing expressive avatar; M.S.Mir, movement singing avatar mirroring;
VA, virtual agent.

§ �.�. Introduction

Singing is one of the most archaic and refined forms of human emotional expression. From an evolution-
ary perspective, the intimate relationship between singing and emotion can be explained by the adaptive
functions of music [��, ���], ranging from mating selection [���, ���] to social bonding [��, ���, ���] or
care giving [��, ���, ���]. If, on the one hand, the act of singing embodies intense a�ective responses
which facilitate performers experiencing emotions themselves, it also induces an emotionally contagious
e�ect that amplifies interpersonal interactions.

Intricately connected to the emotional motor system [���], vocal production crucially engages premo-
tor interneurons in the nucleus retroambiguus, a region of the brainstem connected to nuclei and higher
brain regions controlling motor functions [���]. This process is influenced by two neural pathways: one
through the anterior cingulate cortex and the midbrain periaqueductal gray for voluntary initiation and
emotional control, and the other involving the primary motor cortex and subcortical loops that modulate
vocal motor commands [���, ���]. Singing (or listening to human singing) elicits unique neurological
patterns, involving specific brain areas such as the insula and parietal regions, anterior superior temporal
gyrus, among others potentially influencing interactions with networks of selective neural populations in
sensory-motor areas beyond the auditory cortex [���, ���, ���, ���, ���, ���]. Research in humans and
non-human animals suggest that brainstem neurotransmitters play a significant role in shaping singing
behavior [���, ���, ���].

Given that vocal production engages both voluntary and emotional motor systems, with singing being
perceived as a rather emotional experience, we believe that the current paradigm is adequate to investi-
gating neurological signatures of emotional arousal states. We hypothesize that active participation in
musical tasks, including singing and moving along to the music, will more strongly involve participants
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emotionally, hence constituting an optimal scenario to study the neurology of emotion and emotional
motor control. In this study, we use the context of an immersive virtual reality experience including sev-
eral singing and expressive movement task combinations. We experimentally introduce three di�erent
task-specific conditions: (�) singing (singing vs. non-singing), (�) moving (moving vs. non-moving), and
(�) virtual agent (VA) interaction (expressive vs. robotic vs. mirroring vs. no VA). Combined, the previous
conditions produce six di�erent tasks: without VA, non-movement singing (NM.S.NA) and movement
singing (M.S.NA), and with VA, movement non-singing mirroring VA (M.NS.Mir), movement singing
mirroring VA (M.S.Mir), non-movement singing robotic VA (NM.S.Rob), and non-movement singing
expressive VA (NM.S.Exp). The dual movement paradigm has been widely adopted in music research
[��, ���, ���, ���], to cite a few. We further incorporate virtual reality as novel means to explore the
social dimension underlying music experience, ensuring an environment that closely mimics real-world
conditions while allowing for the use of complex physiological apparatus.

Modeling brain arousal through a geometric-based turbulence approach

The relevance of brainstem function to singing brings forth the notion of generalized CNS arousal (GA)
[��, ���, ���, ���, ���]. GA is considered the composite result of multiple neuromodulatory systems oper-
ating at a high hierarchical level in the brain, commonly manifested through behavioral activation. This
phenomenon has been widely investigated using electrophysiological measures [��, ���, ���, ���]. While
existing studies have proposed several quantitative descriptors for GA [��, ���, ���, ���, ���], our work
introduces a Hilbertian framework for analyzing turbulent EEG dynamics, capturing dominant spatio-
temporal brain activity patterns aimed at reflecting GA function.

In recent years, di�erential equation modeling using ensembles of Stuart-Landau (Hopf ) oscillators
have been applied to characterize turbulence in fMRI and MEG datasets [��, ��, ��], with limited explo-
ration in the context of EEG studies. These approaches, however, provide a compact interpretable model
in terms of the relationship between derivatives, while other reduction techniques achieve more e�ec-
tive dimension reduction from a geometric point of view [�, ��, ���]. Nuanced variability can be further
enhanced through multivariate considerations [���], encompassing models that factor in multiple dimen-
sions, including time, space, and experimental conditions altogether, facilitating precise characterization
of dynamic interdependencies inherent in neuroscientific data.

Here, we work under the paradigm of second-generation functional data [���]. In the analysis of
these data, typically assumed to belong to an infinite-dimensional Hilbert space, complex dependencies
between functional observations are considered. Given the non-Gaussian nature of turbulence, we propose
a functional independent component analysis (ICA) [��, ���] extended to high-dimensional multivariate
functional data that vary in spatial and temporal location to analyze turbulent flows on the cortical field. The
model bears resemblance to methods that use the Karhunen-Loève decomposition for analyzing turbulent
dynamics [��], although here adapted to the functional ICA paradigm and the notion of GA. We aim to
uncover the presence of turbulent-like brain dynamics through the spectral analysis of a kurtosis kernel
function, examining its temporal e�ects on dominant spatial representations of EEG brain activity. We
also anticipate that the latent temporal dynamics under study, represented by the kernel eigenfunctions,
operate within a regime of near-criticality. The model is depicted in Figure �.�D.

§ �.�. Results

This experimental study adopted a naturalistic neuroscience approach to preserve participants’ organic
singing and motor behavior. Six conditions (see Figure �.�A) were compared varying in the degree of
emotional engagement during embodied virtual interactions. We selected the alpha (�-�� Hz) and high
gamma (��-�� Hz) frequency bands due to their significance in emotional processing (see Discussion).

Self-reports. Graphical representation of the self-report results is shown in Figure �.�B,C. Emotional
engagement was rated higher in the mirroring (M.S.Mir, ? = 0.01, and M.NS.Mir, ? = 0.0005) and ex-
pressive (NM.S.Exp, ? = 0.01) conditions, when compared to the robotic condition (NM.S.Rob). Similar
results were found for mirroring (M.S.Mir, ? = 0.005, andM.NS.Mir, ? = 0.018) and expressive conditions
(NM.S.Exp, ? = 0.027) compared to the non-movement singing no avatar condition (NM.S.NA). Absorp-
tion was rated higher in the singing mirror (M.S.Mir, ? = 0.006) and expressive conditions (NM.S.Exp,
? = 0.012) compared to the robotic condition (NM.S.Rob). Absorption was also rated higher in the mir-
roring (M.S.Mir, ? = 0.002, and M.NS.Mir, ? = 0.022) and expressive conditions (NM.S.Exp, ? = 0.003)
compared to the non-movement singing no avatar condition (NM.S.NA). In both variables, no e�ects
were found with the movement singing no agent condition (M.S.NA). For the variable control, no sig-
nificant e�ects were found. Interaction levels with the virtual avatar were rated higher for the mirroring
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Figure �.�: Experimental paradigm, behavioral data results and schematic of the brain activity modeling (A) Partici-
pants engaged in a set of conditions combining singing, swaying and interacting with three virtual agents conducting
music (robotically, expressivelly and mirroring participants’ movements), while wearing a mocap suit, VR headset and
EEG cap. The experiment was organized in two blocks of randomized conditions, without and with VA. A short
familiarization task with the VA took place before the VA block. Abbreviations for conditions: NM (no movement),
M (movement), S (singing), NS (non-singing), NA (no VA), Mir (mirroring VA), Rob (robotic VA), Exp (expressive
VA). (B) Behavioral data: pyramid relating the di�erent items rated by the subjects (on the vertices); higher deviations
from the center represent heterogeneity in behavior patterns. (C)On the left, graphs of the rated items directed with
colors towards the condition with higher rates with the indication of the test significance. On the right, percentage
distributions of the participants’ emotional engagement and VA interaction ratings (� to �) across task conditions. (D)
Mathematical model of Pfa� ’s generalized arousal to study turbulence behavior in the EEG signal. - Statistical com-
parisons were made using the two sided Wilcoxon signed-rank test: *? < 0.05, **? < 0.01, and ***? < 0.001; ****
? < 0.0001; n.s., not significant.

(M.S.Mir, ? < 0.0000, and M.NS.Mir, ? < 0.0000) and expressive conditions (NM.S.Exp, ? < 0.0000) in
comparison to the robotic condition (NM.S.Rob). Among the participants, �� reported that the expressive
VA had a positive impact on their performance, while � preferred the VA mirroring their movements.

Dominant brain dynamics during motor-related emotional arousal states exhibit scale invariance
patterns. Music is often perceived as timeless, having the power to evoke intense emotions and transiently
mediating a subjective experience to be connected with others. This distinctive quality of music is explored
here by investigating the scale invariance of EEG brain dynamics during the temporal course of the mu-
sical piece. We reconstructed the curves k 91 (·) across all the domain and followed the method in [��] who
divides the time series into non-overlapping segments at di�erent time scales: a total of �� levels, factors of
�� s (the duration of the musical piece) ranging from �� to �.��� s. We then calculated the mean fluctuation
for each segment (see formula no. � in [��]) and averaged them at each level. To study the presence of scale
invariance, we opted for fitting a continuous log-normal distribution instead of a power law. This choice
was motivated by the fundamental nature of lognormal behavior in reflecting the complex structural and
functional organization of the brain [��]. Additionally, log-normal distributions o�er improved model-
ing of tail behavior, particularly in the presence of extreme values. Results suggest that dominant brain
dynamics during motor-related emotional arousal states are (in general) scale invariant (Table �.�). Levels
of significance were derived following goodness of fit (GOF) tests based on the Kolmogorov-Smirnov
statistic [��], via bootstrapping (���� iterations) on the data. We observe that the results for the gamma
band are statistically more consistent, exhibiting an overall better GOF and showing less sensitivity to the
level of significance.

Dominant brain dynamics duringmotor-related emotional arousal states are distinctly turbulent.
As a kurtosis value of � corresponds to that of a Gaussian distribution, this specific threshold can be taken
to determine a cuto� point to discern the transition from the stability inherent in a Gaussian scenario to
a turbulent state of non-Gaussian behavior. To investigate the presence of turbulence, our approach in-
volves an information measure based on the di�erential entropy called Entropic NID (ENID) [��], that
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Table �.�: The table shows the results of fitting a continuous log-normal distribution to the temporal structure of the
data. The parameters ` and f are the estimated mean and standard deviation. The ?-value and goodness of fit (GOF)
are obtained on a basis of a bootstrapping procedure from the Kolmogorov-Smirnov test (? > 0.05 indicates that one
can not rule out the log-normal model).

Condition (alpha band) ?-value GOF ` f

NM.S.NA �.���� �.���� �.���� �.����
M.S.NA �.���� �.���� �.���� �.����
M.NS.Mir �.���� �.���� �.���� �.����
NM.S.Rob �.���� �.���� �.���� �.����
NM.S.Exp �.���� �.���� �.���� �.����
M.S.Mir �.���� �.���� �.���� �.����

Condition (gamma band) ?-value GOF ` f

NM.S.NA �.���� �.���� �.���� �.����
M.S.NA �.���� �.���� �.���� �.����
M.NS.Mir �.���� �.���� �.���� �.����
NM.S.Rob �.���� �.���� �.���� �.����
NM.S.Exp �.���� �.���� �.���� �.����
M.S.Mir �.���� �.���� �.���� �.����

Table �.�: Mean turbulence velocity levels on the alpha and gamma band. Comparisons and consistency.

Condition (alpha band) � ?-value adj. Power [�-�] #

NM.S.NA - M ��� �.���� �.���� ��
NM.S.NA - M.NS.Mir ��� �.���� �.���� ��
NM.S.NA - NM.S.Exp ��� �.���� �.���� ��
NM.S.NA - M.S.Mir ��� �.���� �.���� ��
M - NM.S.Rob ��� �.���� �.���� ��
M.NS.Mir - NM.S.Rob ��� �.���� �.���� ��
NM.S.Rob - NM.S.Exp ��� �.���� �.���� ��
NM.S.Rob - M.S.Mir ��� �.���� �.���� ��
NM.S.Exp - M.S.Mir ��� �.���� �.���� ��

Condition (gamma band) � ?-value adj. Power [�-�] #

NM.S.NA - M.NS.Mir ��� �.���� �.���� ��
NM.S.NA - NM.S.Exp ��� �.���� �.���� ��
M.S.NA - M.NS.Mir ��� �.���� �.���� ��
M.S.NA - NM.S.Exp ��� �.���� �.���� ��
M.NS.Mir - M.S.Mir ��� �.���� �.���� ��
NM.S.Rob - NM.S.Exp ��� �.���� �.���� ��
NM.S.Exp - M.S.Mir ��� �.���� �.���� ��

aims to separate realizations of a random variable in two (as much as possible) statistically independent
subsets: here, those kurtosis coe�cients of b8 9✓ ’s > 3 (for all 8, 9) attracted to the vicinity of �, and those
who depart from it. By applying ENID to the inverse of the coe�cients (the result should then reflect
the optimal separation point after �), divergence from a Gaussian equilibrium occurs at a kurtosis coef-
ficient threshold of �.���� and �.���� for the alpha and gamma bands respectively. This indicates that
turbulence is more prominent in the gamma band, as evidenced by ENID separating faster from �. As
our model yields the maximized kurtosis in time-space for each condition rather than each participant,
the counts of values exceeding this threshold are reported on a per-condition basis (proportion of counts
alpha; gamma): NM.S.NA ��.����; ��.����%; M.S.NA ��.����; ��.����%; M.NS.Mir ��.����; ��.����%;
NM.S.Rob ��.����; ��.����%; NM.S.Exp ��.����; ��.����%; M.S.Mir ��.����; ��.����%.

Lower turbulence intensity reflects higher level of motor-related emotionality. We initially com-
pared potential di�erences in turbulence intensity within the alpha and gamma bands (results are reported
on Table �.� and Figure �.�). Our analysis across both bands revealed varying significance levels, par-
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Figure �.�: Turbulence analysis results. (A) Boxplots of turbulence intensity across conditions in alpha (�-�� Hz) and
high gamma (��-��Hz). The centre line of each boxplot represents the datamedian and the bounds of the box show the
interquartile range. The whiskers represent the bottom ��% and top ��% of the data range. (B) Scaling of turbulence
(i.e. the cumulative sum of the turbulence intensity) across conditions and bands sampled at each ��� observations for a
better visualization (C) �D scatterplots showing interactions between the variable emotional engagement, turbulence
intensity and movement velocity rates in a log-scale - Statistical significance is measured as detailed in Figure �.�

ticularly noteworthy in the cases of NM.S.NA and NM.S.Rob, which exhibited elevated contributions to
turbulence intensity with respect to the rest of conditions. Further, turbulence intensity was higher for the
mirroring conditions (M.NS.Mir, M.S.Mir) and M.S.NA in the gamma band, while NM.S.Exp exhibited
the lowest level. For the current results, empirical power of Wilcoxon tests was assessed using simulations
on non-Gaussian data exp(1) � 1 to validate the sensitivity of the e�ects (in Table �.�, if # < 30 it means
���% of reliability) which proved to be highly reasonable. Subsequently, we used a mixed-e�ects model
(MEM) via restricted maximum likelihood leveraging subject/condition variation, focusing exclusively on
the singing conditions (only M.NS.Mir was excluded). The response variable was turbulence intensity,
while the predictors included the rated level of emotional engagement (EE) and the movement velocity
rate (MVR) (see Materials and Methods), all in a log-scale. For the alpha band, the model output (AIC =
���.����, Log-Likelihood/LL = -���.����) indicates a significant e�ect of EE (V = �0.0487, ? = 0.048) and
strong e�ect of MVR (V = �0.2194, ? < 0.000) on turbulence intensity with intercept correlation (IC) of
�0.728 for EE and �0.219 for MVR. Note that ICmeasures the degree of association between the intercept
and each fixed e�ect; no random slopes were included in our models to avoid complexity and overfitting.
For the gamma band, the model output (AIC = ���.����, LL = -��.����) indicates a significant e�ect of EE
(V = �0.3622, ? = 0.0063) and MVR (V = 0.0987, ? = 0.0001) with a IC of �0.736,�0.224 respectivelly.
Figure �.�C shows current interactions in �D scatterplots.

Lower turbulence intensity in higher gamma band corresponds to level of emotionality and emo-
tional motor control. In the current MEM, we introduced a combined e�ect of (MVR + Task Demand),
where Task Demand (TD) is a predictor that assigns values of �, �, or � to the conditions according to
level of demand (moving, singing, interacting with the VA or any combination of them). For the al-
pha band, the model output (AIC = ���.���, LL = -���.����) indicates a strong e�ect of MVR + TD
(V = �0.2066, ? < 0.000) on turbulence intensity with an IC of �0.191. No significant e�ects were found
for EM (V = 0.0274, ? = 0.1737). For the gamma band, the model output (AIC = ���.����, LL = -��.����)
indicates significant e�ects of EE (V = �0.3442, ? = 0.0085) and MVR + TD (V = 0.0716, ? = 0.001)
on turbulence intensity with an IC of �0.726 for EE and �0.202 for MVR + TD . By adding the inter-
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action term EM:Control to the model (AIC = ���.����, LL = -��.����), we found e�ects of EE:Control
(V = �0.2143, ? = 0.0204) and MVR + TD (V = 0.0617, ? = 0.0014) on turbulence intensity with an IC of
�0.569 and �0.328, respectively.

§ �.�. Discussion

We have shown that dominant dynamics of EEG oscillatory activity during motor-related emotional
arousal are turbulent, scale invariant and therefore working at a dynamical regime of near-criticality. Evi-
dence presented here suggests that turbulence modulation in alpha band activity (�-��Hz) is fundamentally
mediated bymotor function and associated level of task demand. We found a dichotomy between alpha and
high gamma band (��-��Hz) dynamics that suggests that, even in the absence of overt bodily movement,
emotionality is revealed by the integrated interpretation of both bands.

While alpha-band activity has been a longstanding subject of psychophysiological investigations, its
systematic examination in relation to motor-specificity of alpha emotional modulation has only emerged
in few studies [���, ���, ���, ���], see also [���]. Extensive work suggests that alpha oscillations play a cru-
cial role in optimizing cognitive resources by selectively dampening neural responses to non-pertinent
information [��]. Decline of alpha power in the extended motor system has been shown to engage in
neuronal spiking whereas increased alpha power exhibits phase synchronization due to rhythmic inhibi-
tion of neuronal firing. This supports the idea that alpha oscillations serve as an informative reflection of
the motor system’s state, acting as predictive markers of the overall performance [���, ���]. Our findings
suggest that alpha turbulence down-modulation, at least in terms of the dominant dynamics under study,
is produced by the influences of motor functionality in relation to the level of task demand. This is clearly
illustrated by the gradual decrease in turbulence intensity, progressing from nomovement during singing,
to singing while observing the VA conducting, and ultimately singing while mirroring the movement on
the VA (Figure �.�A). We speculate that this phenomenon could possibly be linked to volume conduction
e�ects arising from low-frequency cholinergic axonal di�usion during states of motor planning andmove-
ment [���, ���, ���], or to recent evidence on the control of inhibitory neurons by the cholinergic system
[���]. The observed enhancement of alpha turbulence intensity in the NM conditions (Figure �.�A) is
in agreement with previous findings [���, ���] suggesting that synchronization of mu activity (�–�� Hz)
in left and midline somatomotor area indicates active inhibition of motor urges, which here aligns with
participants’ inclination to move during the various singing tasks (�� out of �� participants reported levels
� � of involuntary urge to move in restricted movement conditions). The influence of motor a�erents in
alpha modulation is reinforced by the fact that motor brain regions, particularly basal ganglia, cerebellum,
and premotor cortices including area ��b (a restricted region in the right hemisphere), are consistently
activated during music listening, even in the absence of overt bodily movement [���].

Although our study did not generate ample statistical evidence to validate turbulence alpha down-
modulation as a robust signature of emotional arousal, we found that high gamma activity, as supported
by current investigations [��, ���], was a more suitable candidate for this purpose. Aside from the e�ects of
movement and task demand, results in gamma turbulence modulation suggest balanced contributions of
emotional engagement and emotional motor control. Particularly relevant to these findings is that high-
frequency brain activity supports the existence of GA function [��, ���], often evidenced in humans as a
surge of gamma power linked to conscious processing during comatose states [���]. Based on our results
(Figure �.�A), we hypothesize that GA function plays a complex role in shaping motor-related emotional
arousal, reflecting a mind-body interplay as proposed in [���] (i.e., coordinating and integrating motor
functions to convey emotional expression). Remarkably, participants’ sense of emotion (Figure �.�C) was
significantly correlated to down-modulation of turbulence in the gamma range, apparently implying a
process of embodiment [���], considering that this was observed in conditions with movement and/or
watching natural movement (M.NS.Mir, NM.S.Exp). In complement, NM.S.Exp was the condition in
which participants perceived the greatest increase in their performance level, reinforcing the connection
between gamma turbulence down-modulation and emotional motor control. The observed dichotomy in
conditionM.S.Mir, where alpha turbulence decreases while gamma activity intensifies, suggests an increase
in attentional demands resulting from more complex social interactions [���, ���, ���], and possibly linked
to heightened noradrenergic axonal activity [��, ���]. Interestingly, this dichotomy appears to be com-
patible with participants’ reported level of emotional engagement. Recent investigations have established
connections between attention and emotion employing models that link noradrenergic and cholinergic
activity to distinct pupillary signatures [��, ���].

Some limitations were identified in the current research. We found challenging to find precise to-
pographical descriptors of the turbulent states under study due to the intermittent and chaotic nature
of turbulence. Future e�orts may aim to establish tailored measures of dissipation, metastability, func-
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tional connectivity, among others, as well as possibly extending the proposed modeling on manifold struc-
tures [��, ��, ���] contributing to a better understanding of the spatio-temporal aspects of GA function.
Secondly, considering that lower turbulence levels occurred in conditions involving just singing or just
watching movement hence implying lower cognitive workload, our study emphasizes the need for further
clarification of the role of attention in emotional processing during motor tasks. Using immersive VR is
necessary to enhance the tradeo� between internal and external validity in psychophysiological research.
Although current VR still constitutes a reductionist version of in-person musical interactions, our work
unveils that it can evoke emotionality in simulation contexts when genuine ones are intangible, o�ering
promising clinical and educational applications [��, ���].

§ �.�. Materials and methods

Participants

We recruited �� healthy volunteers (mean age, ��.���� ± �.���� years; �� female) based on the inclusion
criteria of being right-handed, having normal or corrected-to-normal vision, normal hearing, and no
history of neurological or psychiatric disorders. Participants reported a median of �� years of musical
education (range �-�� years) despite not being music professionals or trained singers, fulfilling the required
musical skills to perform the task. Musical scores were sent to the volunteers ��h prior to the experiment.
All of them were requested to restrict ca�eine intake or other stimulants in the data collection day. The
experiment took ⇠�h and a compensation of ��� voucher was given upon completion. After screening,
data from one participant was discarded due to bad electrode conductivity leading to a sample of # = 30
(mean age, ��.���� ± �.��� years; �� female). Although not included, � extra participants took part in
pilot tests to asses the feasibility of the experimental procedure. This study was approved by the Ethics
Committee of the Faculty of Arts and Philosophy of Ghent University (protocol no. ����-��). Written
informed consent was obtained from all subjects involved in the study.

Screening
Before the experiment, all �� initial recruits took part in a training and screening session with a laboratory
technician and a musical expert. This was done to make sure subjects were capable of singing the music
stimuli correctly by heart and moving under a reasonable degree of freedom while using the equipment
(mocap suit and VR headsets). After short testing their ability to move, participants were asked to sing the
song with the musical accompaniment under the guidance of the musical expert to check whether they
were able to perform with fluency. Participants were naive to the purposes of the study, although they
were informed that performance quality would not be under analysis, but rather their engagement and
perceptions about the activity. Afterwards, instructions were read to the participants before starting the
experiment.

Post-hoc performance quality assessment

Following the same procedure as in [���], twomusical experts performed an a posteriori quality assessment
of the singing recordings. Audio recordings were presented in randomized order and evaluators rated
them on a scale from � (very inaccurate) to �� (very accurate) in the following items: intonation, rhythm,
fluency, and memory. The discrepancy between the two evaluators on the singers’ performance was
not significant () 2 = 2.875, ? = 0.095). Following Koo and Li’s reliability levels [���], we found good
reliability of absolute agreement (Intraclass Correlation Coe�cient = �.���) and consistency (ICC = �.���).
No di�erences were found between the singing performance comparing the two experimental blocks
() 2 = 1.0896, ? = 0.3544), therefore the evaluators reached the consensus that all participants were able to
keep good performance levels.

Task
At the beginning of each trial, key instructions appeared in the virtual environment, such as "Move. Sing
along." or "Do not move. Do not sing.", at �.�m distance from the participant virtual view and �� s before
starting singing. A cue of � beats was included to signal the start of the music performance. Participants
had to sing pronouncing "la" (instead of "ta") in order to limit artifactual e�ects in the EEG signal.

The experimental task was divided in two blocks, respectively, without and with VA. In the first block,
there were two conditions: non-movement singing (NM.S.NA) and movement singing (M.S.NA). Prior
to the VA block, participants had a training familiarization with the VA, both conducting and mirror-
ing their movements. In the second block, there were four conditions: movement non-singing mirror-
ing VA (M.NS.Mir) and movement singing mirroring VA (M.S.Mir), non-movement singing robotic VA
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(NM.S.Rob), and non-movement singing expressive VA (NM.S.Exp). After performing each trial, partici-
pants were asked to rate their perceived level of emotional engagement, absorption (degree of correspon-
dence with the activity), control and interaction (only second block) on a Likert scale from � "low level"
to � "high level". They also rated their levels of stress at the beginning and the end of each block, with
the intention of discarding trials in which levels above � were reported. No participant reported levels of
stress > 3. The distribution of the ratings was: level � - ��.����%, level � - ��.����%, level � - ��.����%.
As in [���], we further asked participants to indicate us if they felt general discomfort, nausea, dizziness,
headache, blurred vision, and di�culty concentrating. Some participants felt discomfort in the nasal area
due to the headset’s weight, which was cautioned by accommodating a cushion between the nose and the
headset’s support zone. At the end of the experiment, participants were asked a forced-choice question,
"Which of the agent behaviors (robotic, expressive, mirror, or none of them) do you believe had the most
positive impact on your singing performance?" to reiterate their VA preferences. Lastly, we ask them to
rate the involuntary urge to move during the conditions they were not allowed to.

Data acquisition
Participants’ movement was recorded with a �� -infrared camera optical motion capture system (Qualisys,
Sweden) using a sampling rate of ��� Hz. The acquisition software was the Qualisys Track Manager
(QTM) ����. Participants wore a suit where �� reflective markers were placed following the Qualisys full
body biomechanical model. This model was adopted due to its capability of producing realistic projections
of the subjects’ movements.

EEG data was recorded at � kHz with ANT-Neuro eegTM mylab systems using a �� channel headset
(��-�� system, with Ag/AgCl electrodes). One electrooculogram (EOG) electrode was placed below and
next to the right eye. Recordings were conducted using a referential montage, with electrode CPz as
reference. To reduce tension on electrode cables and allow unrestricted movements, the amplifier was
positioned on an elevated table behind � m distance of the participant. Mobility was measured to freely
sway (with su�cient cable length) one step ahead and laterally. Impedance levels were monitored using
the eegoTM software to ensure they remained below �� k⌦.

The VR headset was carefully placed over the EEG cap. Participants were equipped with HTC Vive
Pro � headsets and followed the standard calibration procedure recommended by the manufacturer. The
mocap data were streamed to a standard digital audio workstation software (Ableton Live �) for syn-
chronization with Unity (Unity Technologies, consumer version ����.�.��) allowing the VA to mirror
participant’s movements. Vocal performance was recorded using a Shure Beta ��A microphone placed in
the ceiling above the participant. Additionally, a decibel meter (UNI-T UT���) was employed to oversee
and assess the volume levels before the commencement of the experiment, aiming to mitigate the impact
of loudness.

Stimuli
The virtual environment was designed in Unity. We used a gender-neutral VA in a room with plane
size limited at �⇥�� m with low visual impact colors [���]. Participants were standing in the middle of
the room �.� m distance from the VA. Initially, a light grey cross was projected on to the middle of the
scene to help participants fix their gaze on a point. The movements of the VA conducting robotically or
expressivelly were recorded previously from a professional conductor instructed to perform the gesturing
accordingly. Auditory stimuli were the same as in our previous experiment (see Supplementary Material
in [���]), where participants found it easy to memorize and adapt to their tonal range. See supplementary
material.

Pre-processing of neuroimaging data
All pre-processing was performed in R [���] using custom made scripts. Routines were conducted sepa-
rately for data recorded per participant and condition.

Detecting and removing artifacts in EEG signals during vocal tasks and body sway poses a complex
challenge. Particularly, singing implies generation of artifacts from hypoglossal movement, involuntary
clenching and by contractions of the neck and facial muscles. In addition, blink activity tends to be more
prevalent in such conditions [���]. On the other hand, body movements can induce cable sway, muscle
tension, and heightened heart rate variability. The critical mixture of artifactual potentials over the scalp
field due to volume conduction, rather requires that the method used for identification and removal suitably
adjusts to their topological features in time and space. The approach considered here bears resemblance
to a multi-band component analysis [���], which allows to target artifacts according to the band-width in
which they arise more predominantly. In a first stage, line noise interference was removed using a fourth-
order Pei-Tseng notch filter centered at �� Hz on the raw signal and FastICA (PCA whitening, parallel
extraction with logcosh) was performed on the data high-pass filtered at �� Hz (forward-backward �th
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order Butterworth filter - �Bw), a common low threshold for the spectral bandwidth of muscle activity
[���]. In order to select artifactual components, we inspected spatial topographies and applied wavelet
shrinkage (MODWT-l� [���]) to the vectors of the sourcematrix and visualized them using line references
of the timmings when the participants pronounced "la" to change pitch. We enhanced their selection
considering a median standard deviation threshold (as weighted by the number of channels containing
absolute voltages > 100`V) of the norm of the transformed source vectors with the Teager-Kaiser operator
(TKO) [���]. The selected components were individually backprojected for removal and denoised through
wavelet shrinkage, as per the methodology outlined in [���], aiming to minimize modulation and preserve
brain activity to the greatest extent possible. On average, ��.���� denoised and temporally-sparse high-
frequency components per subject were removed, which is considered a reasonable number according to
current investigations in the area [���, ���].

Subsequently, adaptive notch (bandwidth: �.�) filtering [��] was performed on the data around spectral
peaks exceeding the default threshold of � standard deviations using non-overlapping widows of a ��
Hz step from �� Hz via FFT. We followed this protocol since muscle activity can mask sources of line
noise (possibly produced by the VR headset system [���]) while induce their spectral distortion. Channels
containing absolute voltages > 100`V above �� Hz were denoised (MODWT-Cl�) on the four coarsest
decomposition levels (> 30 Hz) by shrinking to � the coe�cients surpassing the universal threshold of
their related TKO transformation. For the sake of smoothness, a Gaussian kernel was applied to these
decomposition levels using Scott’s bandwidth after performing the shrinkage. Pathological cases of noise
corrupted channels were visually inspected and reconstructed via spline spherical interpolation.

In a second stage the data was referenced to robust average and FastICA was conducted on the broad-
band pre-processed signal after a PCA reduction. A PCAusually enhances the estimation of high amplitude
components corresponding to blinks, body movements or cable sway, by restricting their mixture with
other PCs when ICA is performed. Outlying and sparsest spatial components were semi-automatically
detected using the norms and the index of sparsity defined in [���] on the vector columns of the estimated
mixing matrix. To minimize the impact on brain activity, wavelet denoising (l�) was once again applied.
The removal process was evaluated using a depth statistics [��] on themedian absolute voltage and the norm
of the Fourier spectrum (�-�� Hz) pooling all channels across subjects and conditions. Outlying channels
and associated trials were inspected to further detect artifactual ICA components which were removed
until su�cient depth consistency was achieved (only mastoids were left as residual outliers, which were
not used in our analyses). Results were visually validated and, on average, 1.7583 artifactual components
were removed from the signal. In a last round, the signal was again examined with ICA to identify residual
artifactual activity and cardiogenetic components, whose detection is known to be improved under more
stationary conditions.

Robust subband estimation and EEG data representation

The pre-processed EEG data was filtered (�Bw) in the alpha (�-�� Hz) and high gamma (��-�� Hz) bands
using spatio-spectral decomposition (SSD) [���]. This technique aims to find linear filters maximizing
power in the frequency band of interest while minimizing power in the neighboring "flanking" frequency
bins. Prior studies have shown the ability of the technique to enhance the robustness and interpretability
of results [��, ���, ���], as well as to increase classification accuracy in BCI applications [���]. The SDD
parameters were set as follows: bandpass signal ±� Hz, bandstop noise ±� Hz, bandpass noise ±� Hz.
The number of SDD components (filters) were selected via perpendicular line method, resulting in an
average of ��.���� and ��.���� filters being retained for each band. Subsequently, Cauchy robust PCA
[��] was applied to the filtered signal to represent the data in terms of the dominant spatial eigenvector.
This technique, well-suited for high-dimensional data, utilizes a Cauchy likelihood instead of a Gaussian
likelihood to ensure maximum robustness in component estimation, thereby notably reducing the leakage
of possible artifact residual.

Hilbertian spatio-temporal model of dominant dynamics for turbulence analysis

Suppose we have the EEG data {-8 9 (C1, B: ), . . . ,-8 9 (C<, B: ), . . .-8 9 (C" , B )}# ,�
8, 9=1, where # are the number

of participants, � the number of experimental conditions and  the number of channels. The matrices
(-8 9 ) ⇥" had been filtered using the spatio-spectral decomposition at the frequency band of interest and
then expressed in terms of the first spatial Cauchy principal component. Although the data is observed at
C1, . . . , C" time points, we assume these are realizations of � spatio-temporal random variables taking values
on the space of square integrable functions !2)⇥( . Given that our data comes in a wide format (# n "), the
interval ) ⇢ R representing the temporal domain is partitioned in T1, . . . ,T✓ , . . . ,Tg subintervals, possibly
intersecting in a region of its domain.
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Consider the basis expansions approximations at any Iof # · curves - 9 (C) = � 9q (C), C 2 Iwhere � 9
is # ·  ⇥ ? coe�cient matrix of the participant’s curves pooled per channel and q (C) = (q1 (C), . . . ,q? (C))>
is a basis of ? functions. Note � 9 represent sequences of matrices in the direction of the experimental
conditions and - 9 their respective vector of functions. We will work with the expansion X (C) = A�(C)
where X (C) = [- 1 (C); . . . ;- � (C)]# · ⇥ � , A= [�1; . . . ;�� ]# · ⇥? · � and �(C) is matrix of size ? · � ⇥ � with �
?-dimensional basis functions in its diagonal.

Following [���], we can map X (C) to orthogonality, i.e, X (C) ! X(C) : cov(X(C)) = Id., using the
factorization of the matrix G=

Ø
I
�(C)�(C)>dC and its inverse. Then, we consider the projections

b 9 =
π
I

- 9 (C)k 91 (C)dC, (�.�)

where k 91 (C) is a function embedded in the dominant eigenfunction k1 (C) obtained via spectral decompo-
sition of the kurtosis kernel function admitting the basis expansion

kurt(X) (C, ·) = �(·)>G�1/2
✓

1
# ·  G

1/2
Ã
>⇡ÃG

1/2
◆

|                           {z                           }
⌃
ÃG1/2

G
�1/2�(C), (�.�)

where ⇡ = diag
⇣
ÃGÃ

>
⌘
, Ã is the a coe�cient matrix A after whitening and ⌃

ÃG1/2 is its kurtosis matrix.
By solving the eigenvalue problem �(C)>⌃

ÃG1/2 Gb>B = ^B�(C)>b>B , we get a set of eigenvalues ^1 >
· · · > ^? · � and associated eigenvectors bB which allow to compose kB (C) = �(C)>G�1/2b>B , the eigenfunc-
tions of kurt(X) which have unit norm and are pairwise orthogonal. If we take the following division of
the coe�cients [11, . . . ,1? ;1?+1, . . . ,12·? ; . . . ;1 (# · �1) ·?+1 . . . ,1# · ·? ], one can easily obtain the dominant
functions k 91 (C) by expanding each coe�cient trunk by q (C) and obtain Equation �.�.

In our model, the functions k 91 (C) are projected on to each univariate functional dataset - 9 , thus pre-
serving the participant’s dimension across conditions, albeit at the cost of having non-uncorrelated pro-
jection scores. By subsequently performing at each I✓ the above operations, we will get g realizations of
a discrete spatio-temporal random field, i.e, ⌅8 9 ⌘ {b8 91 ; . . . ; b

8 9
✓ ; . . . ; b

8 9
g } where b8 9✓ is a univariate vector of

 entries that has been reorganized participant wise. The di�erentiation of ⌅8 9 in time gives the gradient
flow or fluctuation matrix and for all ✓ > 1, the turbulence intensity is defined as

D
kb8 9✓ � b

8 9
✓+1k

2
E
✓
, (�.�)

where h·, ·i✓ indicates average in the temporal direction.

Turbulence model setup
For a system of overlapping windows, we determined a hop size of �� ms according to the latencies that
characterize interneuronal information transmission [���]. Window sizes of ��� and ��� ms for the alpha
and gamma band were respectively used to perform multivariate functional ICA (with ZCA whitening
[���]). This choice aimed to uphold a consistent ratio of neural fluctuations in each window while mit-
igating the risk of numerical instabilities in the estimation of the covariance function in the functional
ICA model. We regressed out the data using B-spline basis functions keeping towards � the RMSE in the
approximation. For the reconstruction of k 91 (·) across all domain, an overlapping Gaussian window with
width factor of � was used, and the hop size was determined as half the window size.

Pre-processing of motion capture data
Motion capture data was initially pre-processed in QTM ���� (Qualisys AB, Sweden) for marker label-
ing, gap-filling and trajectory smoothing (�� Hz low pass Butterworth filter). Marker trajectories were
exported and movement velocity was then calculated as the first-order time-derivatives of the marker po-
sitions. Velocity data was then normalized across the three axis to produce the magnitude velocity of each
marker. We then applied the Minimum Covariance Determinant estimator [���] to the pre-processed
spatial data, obtaining location estimates for each marker. These estimates were then median-averaged
to calculate the movement velocity rate per participant and condition. Data from two participants were
excluded from the MEM analyses due to technical issues with tracking.
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� | Conclusions and research perspectives

§ �.�. Contributions in mathematical and applied statistics

The research presented in this thesis represents a notable step forward in the field of functional ICA, build-
ing upon and extending the findings of previous studies [���, ���, ���, ���]. One of the main contributions
lies in the utilization of Sobolev norms to regulate the smoothness level of the ICs estimates within the
subspaces generated by the covariance/kurtosis eigenfunctions. Concurrently, we have developed an ex-
tension of functional ICA for wide functional data in the presence of spatial dependencies using wavelet ex-
pansions and customized shrinkage techniques for denoising. Overall, the proposed smoothing/denoising
techniques have demonstrated e�cacy in functional classification and representation of functional anoma-
lies. By controlling the noise of the estimates, we e�ectively enhance the irreducibility of the components,
a quality that has been described critical in estimating true independent components [���]. The success of
the separation in ICs strongly depends on both the characteristics of the data and the whitening method
employed. In this regard, we have generalized typical multivariate whitening procedures to infinite-
dimensional function spaces, o�ering versatility to optimally explore functional data beyond second-order
correlations. In functional classification, previous research has shown that methodologies achieving e�ec-
tive variance reduction per group, such as partial least squares [�, �, ��, ��], variable selection [��, ��], or
grup-wise smoothing as shown in §�.�, tend to yield superior outcomes. Guided by our theoretical insights
(§�.�), classification strategies should probably align towards the principles of Feldman-Hájek Theorem
and its derivations to attain acceptable levels of accuracy. Nevertheless, in unsupervised settings things
become more complicated. We foresee that a rigorous stochastic study of the definition of Hilbertian in-
dependence, IC separability and moment operators could pave the way for understanding relationships
among linear/non-linear independent structures in the data critical to unveil significant low-dimensional
projections. Our research on functional ICA has further motivated us to accommodate our methodologies
to more complex structures, encompassing di�erent kinds of multivariate functional data (as for example
we do in Chapter �) as well as on manifold structures [��, ���]. After the results here obtained, it also
would be interesting to explore avenues for inference with functional ICA similarly as in [�, �, ���].

Regarding the asymptotic behavior of the proposed functional IC models, there are various points
to take into consideration. Functional ICA is commonly defined in the RKHS generated by the covari-
ance operator (i.e., the covariance operator’s closed range), and therefore based on functional PCA esti-
mates. While the asymptotic convergence of functional PCA has been extensively studied, see for example
[��, ��, ��, ���, ���], addressing the smoothed case demands a more nuanced approach. Following [���]
or [���], which extended Silverman’s results on smoothed functional PCA consistency by incorporating
additional Tikhonov regularization, most remarkably, Lakraj and Ruymgaart [���] derived its asymptotic
properties using results on the perturbed eigensystem of a sample smoothed covariance operator to fur-
ther investigate the consistency and asymptotic distributions for the first smoothed principal components
and corresponding eigenvalues. Nevertheless, in smoothed functional ICA models, finite sample bounds
(intermediate regimes) seem to be a more realistic choice of study, as all covariance eigenvalues exceeding
= are consistently zero, thus hindering a straightforward application of typical asymptotic results. Further,
Picard’s law is likely to hold under particular regularity conditions. In this vein, Virta et al. [���] suggested
that asymptotic convergence of functional ICA estimates could be obtained by leveraging the rank of PW
together with the sample size via the operator norm | |â9 (�=) � â9 (� ) | |HS = O? (⌘=) ( 9 = 1, · · · ,@), where
â (� ) = (k 9 ⌦k 9 ) (PW- ), �= is the empirical distribution function of a sample of size = from the distribution
� , and ⌘= is some su�cient rate of convergence. Alternatively, one can also build upon prior consistency
results in functional canonical correlation (see, e.g., [��, ��, ���]), or other sibling techniques [��, ��, ���].
Parallel to this, Li et al. [���] studied the Fisher consistency of the kurtosis operator, similar to [���, ���],
for the multivariate case. This is closely related to the approach we have employed to study the consistency
of the proposed whitening procedures (§�.�). We hope to provide more extensive and rigorous results in
the future.

Finally, we wish to emphasize that our methods, including all whitening procedures and functional
ICA models, have been implemented in the R package pfica [���], which is available on CRAN.
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§ �.�. Some remarks on pre-processing neuroscientific data during embodied
interactions

One of the most challenging objectives of this dissertation was to design an e�ective method for pre-
processing neuroscientific data collected from non-invasive devices during complex motor tasks. This
involved conducting numerous tests in the laboratory, and performing thorough examinations of the
recorded data across multiple motor conditions to determine the extent of our capabilities. Undoubt-
edly, pre-processing data collected from neurophysiological monitoring techniques is currently one of the
primary challenges confronting the development of embodied music neuroscience.

In Chapter � and Chapter �, we provided an algorithm for unsupervised removal of ROEs in pupil sig-
nals based on non-linear polynomial optimization, and a wavelet-based spatial functional ICA for detecting
and characterizing artifacts in EEG signals. Both methods yielded satisfactory results, enhancing to a great
extent the estimation quality of brain signal and the applicability of subsequent statistical techniques. Re-
sults in simulations and real-data analyses speak for themselves: the use of smoothing/denoising techniques
is indispensable for deriving reliable neuroscientific results. However, there are some points of discussion.
During the preprocessing of the EEG data from Study II (Chapter �), we observed a notable improve-
ment in the application of the method described in Chapter � when applied independently across multiple
frequency bands, thereby assuming artifacts can be stereotiped frequency-wise. Considering the highly
complex mixture of artifacts in the signal during motor tasks, e�ectively estimating certain artifacts in a
single spatial ICA decomposition proved to be nearly unfeasible. Conducting spatial ICA in frequency sub-
layers and integrating it with a PCA reductions/wavelet techniques o�ered more precise artifact estimates.
However, more thorough study on the filtering methods and frequency ranges is needed to improve, val-
idate and generalize the procedure. We wonder whether it is possible to integrate current developments
into rigorous theoretical precepts that allow us to design a functional ICA covering all these aspects dis-
cussed. Future comparative and validation studies can certainly help to this endeavor, further simplifying
the laborious (and often subjective) task of manually selecting artifacts. We believe the methods devel-
oped in this dissertation provide robust starting tools for researchers aiming to analyze brain signals under
movement conditions. The proposed methodologies have however raised additional questions regarding
their suitability for real-time estimation of brain signals, particularly for neurofeedback optimization ori-
ented towards action-control and emotion regulation. A primary concern revolves around the adequacy
and minimization of computational time needed for pre-processing in real-time scenarios, ensuring the
usability of the neurofeedback system.

From a more fundamental perspective, our concern lies in understanding how concurrent repeated
motor actions (e.g., walking or tapping) modulate the EEG signal, and in distinguishing genuine brain ac-
tivity from artifact-induced activity. Preliminary analysis indicates that certain oscillatory features, tempo-
rally associated with these types of motor actions, may be either artifactual or represent basic neuroanatom-
ical responses, potentially rendering them spurious or prone to overinterpretations. This is because EEG
signals not only capture muscular activity originating from areas beyond the immediate recording area
but also reflect volume conduction e�ects, such as produced by low-frequency axonal di�usion involved
in the functionality of pre-motor areas [���]. This activity could be mixed with typical artifactual volume
conduction e�ects making even more complex to accuratelly separate both processes in a spatio-temporal
sense. Therefore, a rigorous study is expedient, possibly exploiting joint analyses with mocap data and
the assessment of the EEG signal with more sophisticated spatio-temporal/source localization techniques
[���, ���], or approaches that can provide cross-frequency insights [���, ���, ���]. Nevertheless, and to be
realistic, we anticipate that invasive techniques will play a critical role in addressing some of these questions
in the coming years.

§ �.�. Understanding brain behaviour during embodiedmusical interactions: pre-
liminary contributions to the field of embodied music neuroscience

E�orts undertaken in this investigation have been primarily aimed at uncovering neuroscientific evidence
supporting the postulates of embodied music cognition, a paradigm spearheaded by Prof. Marc Leman
over the past �� years of his career. Often, embodiment is thought to be best investigated in terms of
synchronization [��, ���, ���, ���, ���]. However, here we describe a di�erent approach to investigating
the neuroscience of embodiment, focusing on a broader spectrum of e�ects that can be measured when
engaging with music. We all know that music is more than just a metronome, and that listening to mu-
sic is driven by inherently emotional motivations. Therefore, investigating emotional e�ects mediated
through music, along with the associated motor responses evoked by music listening and music making,

��



in our opinion, is better suited for studying the neurology of embodiment in these scenarios. As a result,
a paradigm was developed, viewing emotion as an isomorphism of embodiment. This idea came up after
long discussions with Prof. Thomas H. Fritz on the relevance of both emotional and voluntary motor sys-
tems in shaping embodied interactions (see [���, ���], also §�.�, �.�, �.� ). It was natural to investigate CNS
arousals to elucidate the neurological underpinnings of embodied music cognition, here understood as a
construct of complex brain-CNS-body interactions, seemingly as postulated in the theory of constructed
emotion by Barrett [��].

In our initial study (Chapter �), we were among the first to propose analyzing pupil dilation at specific
frequencies, building on prior research relating pupil signals to putative neurotransmitter activity dur-
ing motor tasks. This way of modeling the data, often referred to as a blinded inference methodology
[���], was bolstered by the principles of the generalized CNS arousal hypothesis (see §�.�, �.�). With this,
we aimed at quantifying emotional response during embodied interactions and examining potential rela-
tions with agency/control. We found that cholinergic-related pupil activity reflected the perceived level
of emotionality as well as, possibly, the level of physical task demand, and that noradrenergic pupil-related
activity consistently scaled down during conditions varying in emotionality of motor task, which is often
interpreted as a signature of agency. Another intriguing aspect of the results was the comparable mod-
ulation of low-frequency pupil activity observed during conditions where only bodily sway or singing
was permitted, but not during a combination of both. This suggests that slow pupil frequencies are also
sensitive to di�erent motor a�erents.

The findings from this initial study prompted a second investigation (Chapter �), where we intention-
ally maintained the basic experimental design to validate our previous findings. Indeed, Study I generated
questions around the role of physical task demand in relation to the perceived level of emotionality. Fol-
lowing some recent studies [��, ���], we were further interested in how musical interactions in immersive
virtual reality could have an impact on the level of emotionality. Specifically, we examined interactions
with a virtual agent (VA) conductingmusic in di�erent expressive fashions, with the expectation that neural
engagement would decrease as a result of an embodiment process. To prove this, we used EEG recordings
and formulated a turbulence model that combines dominant spatial representations and functional data.
We chose this modeling approach since neuromodulatory activity is often described to be spatially di�use
[��], therefore the examination of a turbulent behaviour in the cortical field was a potential way to measure
GA function. Our analyses provided evidence that turbulence down-modulation of alpha band reflected
physical arousal, a factor undoubtedly related to the perceived level of emotionality as observed in Study
I, which may easily be misunderstood as a signature of emotionality. Instead, down-modulation of turbu-
lence in the high gamma band consistently corresponded to emotionality conditional to level of agency,
here induced by the processing of expressive gestures from the VA.

Put together, our findings suggest that embodiment arises from complex bidirectional interactions
between the CNS/brain and body behavior in response to environmental cues. Modulation of higher
frequencies of pupil and EEG signals reflect this phenomenon, evidenced through a negative scaling or
down-modulation of neural activity during embodied interactions. Nevertheless, embodiment is con-
tingent to the quality of the interaction being able to ensure optimal brain functionality by allocating
resources e�ciently, which may include, say, delegating tasks to the body (under minimal motor process-
ing) or other external agents (social,virtual, etc.) that ultimately facilitate neural processing and a fluent
experience of music. This enhancement seems to occur particularly when interactions are emotionally
engaging, emphasizing that while movement synchronization to music may be significant in these pro-
cesses, it is not a su�cient condition for embodiment to be experimentally validated. Current notion of
embodiment echoes key principles discussed in Leman’s ���� book [���], highlighting the essential role of
expressivity in musical interactions, but now reflected through neurological parameters. Future research
aims to uncover the physiological underpinnings of our findings, elucidating the role of particular brain
regions, as well as sensory receptors and their corresponding neural pathways, in shaping embodied music
interactions. Looking ahead, the insights gained from our research have the potential to facilitate further
studies in this field and pave the way for optimizing neurofeedback applications across clinical, educational,
and recreational settings.
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Results (%) for the centroid classifiers:
Data =: PC1 PC< Whitening IC@ SIC@

Scenario I (Gaussian)
Example � �� ��.�� (�.���) �.��� (��.��) PCA �.��� (�.���) �.��� (�.���)

PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

�� ��.�� (�.���) �.��� (�.���) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

Example � �� ��.�� (�.���) ��.�� (��.��) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Chol �.��� (�.���) �.��� (�.���)

�� ��.�� (�.���) ��.�� (��.��) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

Example � �� ��.�� (�.���) �.��� (�.���) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

�� ��.�� (�.���) �.��� (�.���) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

Scenario II (non-Gaussian)
Example � �� ��.�� (�.���) �.��� (��.��) PCA �.��� (�.���) �.��� (�.���)

PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

�� ��.�� (�.���) �.��� (�.���) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

Example � �� ��.��� (�.���) �.�� (��.��) PCA �.��� (�.���) �.��� (��.��)
PCA-cor �.��� (�.���) �.��� (��.��)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

�� ��.�� (�.���) �.��� (��.��) PCA �.��� (��.��) �.��� (�.���)
PCA-cor �.��� (��.��) �.��� (�.���)
ZCA �.��� (��.��) �.��� (��.��)

ZCA-cor �.��� (��.��) �.��� (��.��)
Cholesky �.��� (��.��) �.��� (�.���)

Example � �� ��.�� (�.���) ��.�� (��.��) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

�� ��.�� (�.���) ��.�� (��.��) PCA �.��� (�.���) �.��� (�.���)
PCA-cor �.��� (�.���) �.��� (�.���)
ZCA �.��� (�.���) �.��� (�.���)

ZCA-cor �.��� (�.���) �.��� (�.���)
Cholesky �.��� (�.���) �.��� (�.���)

Table A.�: Simulation results for the mean and standard deviation (in parentheses) of the classification errors ob-
tained with ��� repetitions of the experiment for di�erent sample sizes and zero error variance. PC1, first principal
component; PC< , principal component with lowest kurtosis coe�cient; IC@ , @th independent component (minimal
kurtosis); SIC@ , @th smoothed independent component; PCA, principal component analysis whitening; PCA-cor,
principal component analysis correlated whitening; ZCA, zero-phase component analysis or Mahalanobis whitening;
ZCA-cor, zero-phase component analysis or Mahalanobis correlated whitening; Cholesky, Cholesky whitening.

��



Method Universal Multiplicative scaling ENID
Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

Space factorization via FastICA
Estimation of artifact �

d� 0.657841
(0.054892)

0.463164
(0.060811)

0.747474
(0.048975)

0.997745
(0.014261)

0.14744
(0.024254)

0.527069
(0.071056)

0.989449
(0.003292)

1.004141
(0.003844)

0.165179
(0.020554)

0.546836
(0.069524)

0.986186
(0.003157)

1.003312
(0.003796)

d� 0.654121
(0.049689)

0.456799
(0.057024)

0.75094
(0.042332)

0.997804
(0.010781)

0.146762
(0.022762)

0.516577
(0.066261)

0.989174
(0.003035)

1.003399
(0.00425)

0.169321
(0.017953)

0.534618
(0.064933)

0.984854
(0.002682)

1.003698
(0.003009)

d�� 0.664732
(0.062922)

0.467959
(0.06702)

0.741682
(0.056257)

0.997843
(0.010855)

0.158773
(0.033939)

0.531458
(0.080123)

0.987699
(0.003974)

1.003011
(0.003537)

0.187063
(0.025776)

0.547876
(0.078217)

0.981829
(0.002979)

1.002668
(0.00314)

s� 0.674182
(0.069498)

0.465488
(0.065459)

0.733095
(0.065597)

0.995529
(0.010776)

0.149827
(0.029964)

0.533555
(0.08142)

0.989299
(0.003555)

1.004635
(0.003541)

0.165849
(0.025953)

0.552471
(0.078376)

0.986335
(0.003442)

1.00337
(0.004673)

s� 0.662008
(0.070549)

0.461941
(0.068915)

0.745201
(0.061283)

0.996788
(0.010722)

0.147735
(0.043849)

0.524252
(0.087342)

0.989401
(0.004757)

1.00347
(0.005009)

0.152865
(0.050574)

0.53012
(0.083029)

0.987959
(0.007949)

1.003197
(0.00403)

s�� 0.689355
(0.162002)

0.478221
(0.138828)

0.737399
(0.06731)

0.995632
(0.011597)

0.168446
(0.109922)

0.550704
(0.21001)

0.985715
(0.017965)

1.002996
(0.006368)

0.17984
(0.14963)

0.554262
(0.17579)

0.976944
(0.070141)

1.001929
(0.003731)

l� 0.653949
(0.075971)

0.45909
(0.061999)

0.751058
(0.065643)

0.999594
(0.00668)

0.174939
(0.035771)

0.537958
(0.081046)

0.985109
(0.004112)

1.003979
(0.003385)

0.175247
(0.039638)

0.559213
(0.075559)

0.985085
(0.004854)

1.003903
(0.00421)

l� 0.658251
(0.089136)

0.455168
(0.048934)

0.750035
(0.059427)

0.996658
(0.011368)

0.150381
(0.054262)

0.519542
(0.068559)

0.987702
(0.01367)

1.002709
(0.004035)

0.168047
(0.050643)

0.53917
(0.0648)

0.984441
(0.013343)

1.003644
(0.004307)

l� 0.682652
(0.141768)

0.478555
(0.117798)

0.740986
(0.065049)

0.995317
(0.0117)

0.154036
(0.096781)

0.549401
(0.175358)

0.987827
(0.0174)

1.003927
(0.004826)

0.161814
(0.125562)

0.549477
(0.14955)

0.980589
(0.062262)

1.003116
(0.003972)

Estimation of artifact � after removal of artifact �
d� 0.448573

(0.080736)
7.058343
(1.5539)

0.206537
(0.091623)

0.994474
(0.01221)

0.179966
(0.043525)

13.08566
(2.08737)

0.94488
(0.013193)

0.988835
(0.005719)

0.219096
(0.034826)

11.30297
(2.346056)

0.752741
(0.105738)

1.001098
(0.003419)

d� 0.478646
(0.114056)

6.231146
(1.848091)

0.190032
(0.086348)

0.994389
(0.011764)

0.165698
(0.051095)

12.07822
(2.01196)

0.954331
(0.028477)

0.990374
(0.004926)

0.229771
(0.058317)

10.01514
(2.374593)

0.685261
(0.132237)

1.002501
(0.003344)

d�� 0.463715
(0.117373)

7.195422
(2.538593)

0.212163
(0.097225)

0.997188
(0.012264)

0.174244
(0.053313)

13.40127
(3.739797)

0.960158
(0.020007)

0.990068
(0.006701)

0.228199
(0.053029)

11.39044
(3.863455)

0.690974
(0.151923)

1.000551
(0.002689)

s� 0.481191
(0.094494)

6.876887
(2.964637)

0.182231
(0.08988)

0.996344
(0.011589)

0.166153
(0.049944)

13.08194
(3.678795)

0.938575
(0.020764)

0.988792
(0.007044)

0.221005
(0.059506)

11.25547
(4.291475)

0.736291
(0.101049)

1.001947
(0.004974)

s� 0.477981
(0.122649)

6.148436
(2.141086)

0.184581
(0.086663)

0.999877
(0.011393)

0.162497
(0.054183)

12.09902
(2.521667)

0.938797
(0.02968)

0.989764
(0.006364)

0.228402
(0.066671)

10.22325
(2.781534)

0.718982
(0.123985)

1.002124
(0.003841)

s�� 0.450076
(0.121299)

6.908305
(1.750583)

0.195547
(0.102384)

0.9948
(0.011853)

0.171401
(0.051476)

12.83481
(2.106197)

0.941029
(0.024431)

0.990128
(0.004157)

0.222343
(0.0637)

11.16996
(2.443443)

0.758519
(0.130586)

1.001261
(0.003741)

l� 0.474286
(0.116032)

6.38784
(1.973903)

0.201856
(0.095818)

0.991828
(0.014245)

0.158886
(0.051663)

12.63274
(2.028879)

0.920712
(0.035078)

0.987492
(0.008565)

0.204492
(0.059059)

11.19462
(2.486581)

0.831017
(0.113073)

1.001821
(0.004013)

l� 0.481977
(0.108547)

6.526081
(1.519683)

0.177943
(0.105206)

0.995067
(0.011407)

0.16754
(0.047464)

12.85754
(1.828242)

0.938471
(0.025187)

0.989671
(0.005161)

0.222795
(0.06059)

10.80704
(2.158874)

0.713172
(0.107712)

1.002276
(0.003537)

l� 0.475801
(0.135504)

6.688158
(2.230017)

0.194956
(0.102018)

0.994838
(0.011626)

0.170529
(0.068397)

12.56913
(2.374871)

0.947924
(0.020882)

0.989334
(0.005779)

0.23031
(0.075192)

10.77806
(2.841559)

0.725982
(0.130428)

1.001989
(0.004048)

Residual process
d� 0.738246

(0.080425)
14.0968
(1.017869)

0.776452
(0.054885)

1.000071
(0.00061)

0.218931
(0.035644)

12.41901
(0.125124)

0.987847
(0.00525)

1.000045
(0.000278)

0.653094
(0.205282)

17.4102
(2.876577)

0.841971
(0.140961)

1.003297
(0.00401)

d� 0.765165
(0.098509)

14.39541
(1.194617)

0.75228
(0.081967)

1.000145
(0.000653)

0.211383
(0.044286)

12.41617
(0.140848)

0.986339
(0.00924)

1.000007
(0.000391)

0.585683
(0.198107)

16.2318
(2.572425)

0.869526
(0.124406)

1.005189
(0.009544)

d�� 0.758087
(0.087336)

14.13698
(1.216202)

0.76204
(0.065671)

1.000044
(0.000344)

0.22903
(0.055803)

12.39145
(0.160723)

0.983142
(0.011898)

1.000076
(0.000479)

0.558872
(0.207715)

15.76073
(2.633102)

0.876353
(0.123663)

1.003598
(0.005857)

s� 0.777628
(0.08824)

14.1943
(1.17767)

0.749269
(0.062649)

1.000078
(0.000555)

0.2191
(0.042485)

12.42149
(0.136114)

0.984919
(0.008589)

0.999975
(0.000469)

0.659411
(0.212358)

17.63971
(3.49145)

0.836779
(0.149657)

1.003288
(0.003653)

s� 0.779329
(0.115211)

14.2918
(1.231617)

0.743803
(0.082314)

1.000183
(0.000737)

0.214661
(0.054557)

12.4172
(0.153326)

0.984814
(0.015237)

1.000042
(0.00038)

0.601071
(0.220126)

16.52397
(2.94092)

0.857555
(0.134843)

1.004735
(0.007739)

s�� 0.77373
(0.187424)

14.03099
(1.601392)

0.760316
(0.088662)

1.000289
(0.001056)

0.235843
(0.1075)

12.35732
(0.304361)

0.97791
(0.041909)

1.000045
(0.000472)

0.589722
(0.229105)

16.08278
(3.070026)

0.866431
(0.12719)

1.005028
(0.007345)

l� 0.757961
(0.121074)

14.47602
(1.253644)

0.758431
(0.089847)

1.00242
(0.002298)

0.233153
(0.040547)

12.54336
(0.14477)

0.985532
(0.009437)

1.002417
(0.002354)

0.9726
(0.172043)

16.0039
(3.10405)

0.57697
(0.224512)

1.008963
(0.004623)

l� 0.765353
(0.119101)

14.41742
(1.142444)

0.752045
(0.085337)

1.00012
(0.000413)

0.21357
(0.053796)

12.43673
(0.1391)

0.986281
(0.018187)

0.999979
(0.000322)

0.664585
(0.20677)

17.60278
(3.086074)

0.834492
(0.143537)

1.003279
(0.004079)

l� 0.777206
(0.153319)

14.11338
(1.480863)

0.7524
(0.087891)

1.000212
(0.000855)

0.225024
(0.100507)

12.37257
(0.268305)

0.975033
(0.045931)

1.000096
(0.000488)

0.620489
(0.208674)

16.61105
(2.811296)

0.856105
(0.130395)

1.00448
(0.005421)

Direct wavelet thresholding without space factorization
Residual process

d� 5.224387
(6.7e�05)

0.001952
(3.9e�05)

0.000859
(1.9e�05)

1.007742
(0.005988)

0.350488
(0.032121)

12.63689
(0.112317)

0.959848
(0.008763)

1.016823
(0.000997)

4.655145
(0.014108)

0.975732
(0.023955)

0.027352
(0.003129)

1.002533
(0.003737)

d� 5.224411
(6.8e�05)

0.001385
(2e�05)

0.000621
(1.1e�05)

1.010126
(0.008669)

0.364778
(0.032564)

12.55015
(0.11611)

0.954875
(0.009424)

1.016263
(0.001566)

4.959671
(0.015523)

0.488918
(0.028622)

0.01033
(0.001262)

1.001518
(0.003497)

d�� 5.224431
(6.8e�05)

0.001346
(2e�05)

0.000623
(1.1e�05)

1.007699
(0.006925)

0.392122
(0.033239)

12.47344
(0.117539)

0.945953
(0.010439)

1.016001
(0.001352)

5.092638
(0.073315)

0.367497
(0.475808)

0.008612
(0.015257)

1.001061
(0.003151)

s� 5.224387
(6.7e�05)

0.001952
(3.9e�05)

0.000859
(1.9e�05)

1.007742
(0.005988)

0.350488
(0.032121)

12.63689
(0.112317)

0.959848
(0.008763)

1.016823
(0.000997)

4.655145
(0.014108)

0.975732
(0.023955)

0.027352
(0.003129)

1.002533
(0.003737)

s� 5.22441
(6.8e�05)

0.001377
(2e�05)

0.000616
(1.1e�05)

1.009041
(0.008097)

0.361796
(0.031641)

12.55376
(0.118119)

0.95602
(0.008998)

1.016371
(0.000831)

4.27154
(0.02344)

1.628292
(0.037872)

0.056054
(0.005375)

1.003574
(0.005942)

s�� 5.224425
(6.8e�05)

0.001339
(2e�05)

0.000614
(1e�05)

1.008357
(0.006263)

0.366345
(0.033106)

12.53038
(0.122384)

0.954428
(0.009598)

1.016139
(0.000905)

4.588933
(0.201799)

1.093925
(0.331744)

0.033573
(0.015406)

1.003898
(0.005626)

l� 5.224434
(6.8e�05)

0.008067
(0.000318)

0.003731
(0.000162)

1.011359
(0.008578)

0.356622
(0.035124)

12.67734
(0.120713)

0.957368
(0.010016)

1.01729
(0.001456)

4.530846
(0.204702)

1.253825
(0.363926)

0.033993
(0.014062)

1.001847
(0.002889)

l� 5.224387
(6.7e�05)

0.001952
(3.9e�05)

0.000859
(1.9e�05)

1.007742
(0.005988)

0.350488
(0.032121)

12.63689
(0.112317)

0.959848
(0.008763)

1.016823
(0.000997)

4.655145
(0.014108)

0.975732
(0.023955)

0.027352
(0.003129)

1.002533
(0.003737)

l� 5.224397
(6.8e�05)

0.001463
(2.5e�05)

0.000643
(1.1e�05)

1.008026
(0.006987)

0.366042
(0.031447)

12.57657
(0.120449)

0.954616
(0.009027)

1.016468
(0.000706)

4.217773
(0.024888)

1.73342
(0.037461)

0.059514
(0.005928)

1.001965
(0.002704)

Table A.�: Simulation �. Results for the mean and standard deviation (in parentheses).

��



Method Multiplicative scaling ENID
Bumps Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

� d� 0.159291
(0.069863)

0.358825
(0.144347)

0.984507
(0.016588)

1.002765
(0.004964)

0.193867
(0.063698)

0.379448
(0.144599)

0.979141
(0.01601)

1.005223
(0.010008)

d� 0.163211
(0.070968)

0.356399
(0.143688)

0.983955
(0.017346)

1.005484
(0.011355)

0.199216
(0.06538)

0.372693
(0.148255)

0.978004
(0.016922)

1.00467
(0.013603)

d�� 0.164168
(0.071788)

0.355782
(0.142736)

0.983331
(0.01806)

1.005512
(0.013642)

0.195436
(0.061398)

0.367613
(0.147055)

0.978602
(0.016409)

1.004877
(0.013144)

s� 0.161111
(0.070123)

0.358263
(0.143787)

0.984421
(0.016788)

1.005032
(0.008621)

0.194974
(0.064198)

0.378684
(0.143937)

0.978802
(0.0162)

1.005997
(0.012937)

s� 0.162521
(0.071738)

0.356998
(0.143806)

0.984027
(0.017515)

1.00451
(0.014427)

0.191091
(0.064118)

0.372247
(0.144607)

0.980151
(0.016253)

1.003506
(0.014803)

s�� 0.166472
(0.069998)

0.356361
(0.144719)

0.983452
(0.017627)

1.003101
(0.014161)

0.192127
(0.06193)

0.368337
(0.146528)

0.979802
(0.016172)

1.002007
(0.008341)

l� 0.159557
(0.069042)

0.357821
(0.144692)

0.984501
(0.016638)

1.003891
(0.010418)

0.193677
(0.06453)

0.378221
(0.144862)

0.979103
(0.016428)

1.00473
(0.010382)

l� 0.159694
(0.070206)

0.356714
(0.143863)

0.984282
(0.016722)

1.001941
(0.006664)

0.187241
(0.059847)

0.370021
(0.146461)

0.981099
(0.015089)

1.0053
(0.012834)

l�� 0.167355
(0.069427)

0.355992
(0.143556)

0.984022
(0.017148)

1.002998
(0.01267)

0.205929
(0.05885)

0.369595
(0.147001)

0.976907
(0.015745)

1.000983
(0.013902)

�� d� 0.724685
(1.612114)

0.685095
(2.102155)

0.901374
(0.129116)

1.006923
(0.020861)

0.591157
(0.856144)

0.343955
(0.512492)

0.890397
(0.134923)

1.010199
(0.018469)

d� 0.551384
(0.987695)

0.457148
(1.194392)

0.910466
(0.116887)

1.006886
(0.018809)

0.627072
(1.205259)

0.350894
(0.604046)

0.90271
(0.115208)

1.006781
(0.022956)

d�� 0.703307
(1.532512)

1.11241
(4.914024)

0.90176
(0.123371)

1.001302
(0.01846)

0.60838
(1.009288)

0.34754
(0.585179)

0.900579
(0.108871)

1.002743
(0.019389)

s� 0.641476
(1.154969)

0.55715
(1.348479)

0.920366
(0.092921)

1.006083
(0.018532)

0.732812
(1.409297)

0.41983
(0.732078)

0.918276
(0.079527)

1.006933
(0.013144)

s� 0.55633
(0.873282)

0.458521
(1.149952)

0.893676
(0.155817)

1.002721
(0.017266)

0.621449
(1.037493)

0.363579
(0.627734)

0.898906
(0.127887)

1.004279
(0.018832)

s�� 0.513823
(0.767747)

0.364192
(0.867869)

0.911304
(0.110165)

1.004306
(0.017468)

0.56101
(0.90929)

0.314307
(0.465586)

0.902988
(0.109343)

1.0024
(0.0171)

l� 0.448391
(0.605762)

0.335321
(0.819777)

0.903447
(0.134264)

1.004411
(0.016742)

0.488141
(0.6715)

0.307291
(0.498307)

0.897219
(0.130477)

1.005373
(0.019825)

l� 0.483993
(0.900187)

0.346639
(0.913789)

0.912547
(0.112069)

1.003771
(0.02029)

0.532507
(1.039031)

0.29606
(0.468976)

0.904181
(0.110642)

1.003258
(0.014893)

l�� 0.617499
(1.408627)

1.014224
(4.871136)

0.907653
(0.114166)

1.002906
(0.022153)

0.504228
(0.650793)

0.290652
(0.426294)

0.899666
(0.110273)

1.000883
(0.018175)

�� d�.� 2.289305
(3.78737)

3.704562
(8.783911)

0.782068
(0.191837)

1.006454
(0.019372)

1.117433
(1.203409)

0.417781
(0.593175)

0.771339
(0.181056)

1.003642
(0.019137)

d� 2.321636
(3.864667)

4.126944
(10.05845)

0.805676
(0.179522)

1.00599
(0.017931)

1.147826
(1.207275)

0.406517
(0.537533)

0.798205
(0.167418)

1.005686
(0.017435)

d�� 3.235971
(4.531725)

5.977425
(11.170955)

0.816142
(0.171087)

1.005847
(0.019492)

1.443686
(1.746928)

0.561799
(0.917904)

0.797775
(0.171935)

1.00421
(0.014973)

s� 2.745307
(3.962096)

4.076504
(8.834003)

0.786004
(0.186007)

1.006435
(0.0184)

1.651523
(2.170198)

0.615613
(0.878697)

0.779281
(0.181533)

1.006058
(0.015548)

s� 2.575273
(3.951517)

3.86153
(9.080391)

0.822613
(0.153616)

1.003017
(0.018229)

1.68199
(2.230744)

0.625587
(0.922405)

0.810139
(0.141282)

1.006552
(0.014503)

s�� 2.638055
(4.057873)

4.638803
(10.229077)

0.801158
(0.185309)

1.007601
(0.01738)

1.338485
(1.56303)

0.470911
(0.674924)

0.810442
(0.156894)

1.005819
(0.016086)

l� 2.995763
(4.36862)

5.353475
(11.095618)

0.79115
(0.177379)

1.005817
(0.01713)

1.573052
(2.083158)

0.638905
(1.008776)

0.795401
(0.159402)

1.008974
(0.016238)

l� 2.695803
(4.228284)

4.760014
(10.92135)

0.805486
(0.174724)

1.006337
(0.018507)

1.470696
(2.008197)

0.537353
(0.833422)

0.810694
(0.154772)

1.004203
(0.016277)

l�� 2.310197
(3.785727)

3.618736
(8.676085)

0.795568
(0.188833)

1.004359
(0.019337)

1.196305
(1.219698)

0.407566
(0.518579)

0.791504
(0.174445)

1.004859
(0.017136)

Table A.�: Simulation �. Results for the mean and standard deviation (in parentheses).
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Method Multiplicative scaling ENID
Bumps Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

� d� 0.278977
(0.075478)

0.310165
(0.153355)

0.956232
(0.022263)

1.003926
(0.009127)

0.295637
(0.066051)

0.332025
(0.158492)

0.951295
(0.020952)

1.002317
(0.005758)

d� 0.381498
(0.710254)

0.834804
(3.74196)

0.955144
(0.023296)

1.002774
(0.005705)

0.366557
(0.475057)

0.361546
(0.325496)

0.94925
(0.02421)

1.003113
(0.007367)

d�� 0.286015
(0.078918)

0.308136
(0.152218)

0.953715
(0.023619)

1.003407
(0.007132)

0.300079
(0.071558)

0.320898
(0.161124)

0.949205
(0.022617)

1.002044
(0.005747)

s� 0.366373
(0.630382)

0.43806
(0.899154)

0.95649
(0.022628)

1.001635
(0.006477)

0.395209
(0.71569)

0.393364
(0.442472)

0.95164
(0.02111)

1.00322
(0.008703)

s� 0.36444
(0.585368)

0.431208
(0.869336)

0.954911
(0.023046)

1.001013
(0.006736)

0.374136
(0.572328)

0.402068
(0.562952)

0.951229
(0.022525)

1.00259
(0.005957)

s�� 0.284629
(0.07721)

0.308566
(0.152475)

0.954309
(0.022996)

0.999097
(0.008341)

0.295098
(0.071145)

0.320162
(0.154227)

0.951062
(0.021983)

0.99951
(0.008496)

l� 0.279207
(0.075893)

0.310101
(0.153201)

0.956123
(0.022487)

1.002857
(0.00571)

0.295626
(0.066044)

0.33199
(0.158229)

0.951294
(0.020947)

1.00422
(0.005852)

l� 0.3794
(0.718319)

0.453815
(1.026379)

0.956133
(0.023038)

1.002638
(0.006066)

0.390604
(0.704092)

0.377876
(0.397596)

0.951748
(0.022917)

1.003278
(0.005562)

l�� 0.360668
(0.534311)

0.431371
(0.877391)

0.953921
(0.023169)

1.00117
(0.007913)

0.389645
(0.598784)

0.381469
(0.427141)

0.946951
(0.023886)

0.999426
(0.007593)

�� d� 0.53741
(1.482123)

1.057295
(6.257677)

0.943494
(0.037982)

1.001305
(0.011715)

0.483093
(0.947932)

0.243026
(0.410164)

0.936155
(0.036315)

1.00155
(0.013933)

d� 0.576363
(1.289214)

0.432287
(1.299278)

0.944652
(0.03944)

1.002677
(0.017383)

0.626345
(1.430758)

0.28966
(0.545162)

0.935713
(0.039442)

1.000418
(0.018353)

d�� 0.324535
(0.1045)

0.167582
(0.0788)

0.944216
(0.038764)

0.999009
(0.02012)

0.354507
(0.096669)

0.176342
(0.081029)

0.933003
(0.038674)

1.000247
(0.020905)

s� 0.325248
(0.101277)

0.170678
(0.07947)

0.944425
(0.037728)

1.002563
(0.016044)

0.346576
(0.092593)

0.184544
(0.083682)

0.937145
(0.03608)

1.003901
(0.017645)

s� 0.321038
(0.103521)

0.168496
(0.078943)

0.945582
(0.038128)

0.998785
(0.017964)

0.34569
(0.098836)

0.180468
(0.082236)

0.936463
(0.037626)

0.999636
(0.014431)

s�� 0.628834
(1.524998)

0.773952
(3.139666)

0.943981
(0.039028)

0.99604
(0.01692)

0.575311
(1.161048)

0.292821
(0.583894)

0.935015
(0.039318)

0.99919
(0.014637)

l� 0.324999
(0.101587)

0.170399
(0.079182)

0.944444
(0.037812)

1.00159
(0.017377)

0.34633
(0.092664)

0.184288
(0.08348)

0.937204
(0.036112)

1.005251
(0.017332)

l� 0.322387
(0.10313)

0.16838
(0.079303)

0.945189
(0.038304)

0.996719
(0.017164)

0.345075
(0.09709)

0.180264
(0.083373)

0.936968
(0.037112)

0.99962
(0.017637)

l�� 0.327088
(0.104244)

0.16813
(0.078912)

0.9434
(0.038998)

0.997651
(0.014466)

0.356428
(0.101977)

0.177906
(0.082459)

0.931794
(0.040157)

0.997215
(0.018032)

�� d� 0.905044
(2.261311)

1.605199
(7.186142)

0.919071
(0.071803)

1.008833
(0.020804)

0.780203
(1.442554)

0.272594
(0.518534)

0.909313
(0.066224)

1.005734
(0.022098)

d� 0.610808
(1.355359)

0.300605
(1.093299)

0.91782
(0.081938)

1.007045
(0.021838)

0.678018
(1.422401)

0.213704
(0.464417)

0.897264
(0.09483)

1.005309
(0.022458)

d�� 0.458799
(0.410554)

0.165084
(0.199359)

0.920552
(0.074049)

1.008349
(0.023205)

0.513442
(0.46369)

0.163986
(0.170019)

0.904851
(0.07156)

1.002686
(0.021561)

s� 0.866828
(2.039579)

1.394554
(6.129677)

0.918756
(0.074621)

1.007634
(0.021973)

0.76726
(1.359431)

0.287662
(0.599528)

0.909053
(0.069523)

1.007725
(0.020853)

s� 0.449803
(0.401718)

0.16601
(0.198488)

0.924418
(0.070533)

1.00834
(0.021393)

0.50325
(0.453814)

0.166742
(0.168517)

0.910259
(0.065097)

1.006501
(0.021204)

s�� 0.852483
(1.972862)

0.479465
(1.544905)

0.920621
(0.072136)

1.004966
(0.020075)

0.925264
(2.032946)

0.283825
(0.581927)

0.901148
(0.073822)

1.004148
(0.020672)

l� 0.661345
(1.423682)

0.510414
(2.411068)

0.918585
(0.072485)

1.004082
(0.018574)

0.640855
(1.017962)

0.235268
(0.476841)

0.908977
(0.067377)

1.00565
(0.02271)

l� 0.451066
(0.402885)

0.167089
(0.201114)

0.924094
(0.070665)

1.003885
(0.022509)

0.501066
(0.460699)

0.165798
(0.167181)

0.911239
(0.067503)

1.008086
(0.019978)

l�� 1.024389
(2.455579)

1.058305
(4.1202)

0.919855
(0.075064)

1.004743
(0.020503)

0.928163
(1.838425)

0.305748
(0.640235)

0.902548
(0.072899)

1.00622
(0.019914)

Table A.�: Simulation � (with PCA reduction). Results for the mean and standard deviation (in parentheses).

Method Multiplicative scaling ENID
Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

Estimation of artifact �
d� 0.32449

(0.110405)
19.666781
(16.022239)

0.375898
(0.345606)

0.996752
(0.011416)

0.307209
(0.015833)

35.087096
(59.891356)

0.161303
(0.074897)

1.001241
(0.009637)

d� 0.300474
(0.019488)

10.396631
(1.956171)

0.194692
(0.038094)

0.98356
(0.010629)

0.313112
(0.014667)

27.166834
(37.185624)

0.174632
(0.071993)

1.002353
(0.010394)

d�� 0.297385
(0.021813)

10.592946
(1.744777)

0.194671
(0.037912)

0.983509
(0.012712)

0.318688
(0.017602)

37.031991
(57.92455)

0.176195
(0.067008)

0.998639
(0.009202)

s� 0.329951
(0.114453)

20.220228
(16.274081)

0.376508
(0.345268)

0.998346
(0.011645)

0.30677
(0.017629)

30.073986
(49.705099)

0.155408
(0.059579)

1.001806
(0.009501)

s� 0.30127
(0.020871)

10.380395
(1.510583)

0.195429
(0.040296)

0.987409
(0.013945)

0.315699
(0.021737)

33.968198
(48.685646)

0.163204
(0.041023)

0.999826
(0.008382)

s�� 0.297059
(0.022694)

10.519902
(1.719476)

0.192203
(0.041188)

0.983148
(0.011443)

0.316246
(0.016719)

35.200289
(59.096552)

0.17844
(0.062609)

1.001565
(0.00913)

l� 0.330069
(0.112139)

20.686284
(16.420751)

0.441564
(0.368488)

0.997428
(0.01235)

0.311746
(0.025501)

44.478047
(68.038811)

0.154451
(0.058194)

1.001661
(0.011234)

l� 0.295269
(0.019324)

10.202649
(1.146886)

0.195629
(0.039621)

0.986915
(0.011474)

0.311885
(0.017601)

24.357743
(31.35387)

0.163433
(0.049073)

0.999569
(0.01018)

l�� 0.295777
(0.038664)

10.93541
(5.039836)

0.235729
(0.200106)

0.98914
(0.014021)

0.312929
(0.010345)

24.031415
(29.78275)

0.172338
(0.037118)

1.002093
(0.009656)

Residual process
d� 0.3279

(0.109782)
0.826845
(0.465825)

0.450759
(0.402703)

1.000108
(0.000364)

1.124316
(0.022943)

27.945365
(58.116577)

0.318605
(0.072596)

1.008613
(0.001926)

d� 0.304247
(0.019222)

1.141014
(0.101401)

0.783703
(0.097536)

1.000022
(0.000333)

1.099346
(0.02275)

15.605888
(27.662141)

0.304468
(0.09202)

1.024867
(0.007719)

d�� 0.301585
(0.021501)

1.108117
(0.10845)

0.773917
(0.107725)

0.999997
(0.000387)

1.096181
(0.025846)

21.588673
(49.320924)

0.280452
(0.076679)

1.015238
(0.007331)

s� 0.333332
(0.113818)

0.807657
(0.478003)

0.411115
(0.407524)

0.999946
(0.000404)

1.124426
(0.022933)

32.274049
(65.581258)

0.325612
(0.076183)

1.008835
(0.002014)

s� 0.305048
(0.020596)

1.128588
(0.131168)

0.790893
(0.109763)

0.999959
(0.000448)

1.098626
(0.027366)

24.567193
(59.515188)

0.296483
(0.080671)

1.019395
(0.00525)

s�� 0.301153
(0.022367)

1.113911
(0.108619)

0.795174
(0.119217)

1.000086
(0.000428)

1.089849
(0.024621)

26.34881
(58.767608)

0.277901
(0.05723)

1.019431
(0.007893)

l� 0.333439
(0.111529)

0.802553
(0.477065)

0.373569
(0.388143)

0.99997
(0.000382)

1.128657
(0.023591)

42.141073
(89.750224)

0.322659
(0.075404)

1.008547
(0.002108)

l� 0.298853
(0.019067)

1.137067
(0.113262)

0.838727
(0.082222)

1.000004
(0.000374)

1.107698
(0.022136)

15.021812
(32.288008)

0.318269
(0.105439)

1.013479
(0.003051)

l�� 0.300058
(0.038306)

1.0931
(0.176757)

0.772466
(0.205443)

0.999987
(0.000418)

1.084504
(0.020424)

9.642752
(0.466005)

0.279749
(0.086515)

1.023144
(0.007724)

Table A.�: Simulation �. Results for the mean and standard deviation (in parentheses).
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