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Abstract (EN)

This dissertation addresses the analysis of data emerging in the field of music neuro-
science, specifically data collected from neurophysiological monitoring techniques that
can be modeled as random objects in spaces of smooth functions. Spaces equipped with
a Hilbert structure offer a versatile and elegant framework for the generalization of vari-
ous statistical techniques, ensuring adaptability and robustness in analyzing complex data
structures. Within the context of functional data analysis, these spaces serve as essential
tools for understanding and interpreting dynamic data trends over continuous domains.
Given the relevance of independent component analysis (ICA) in neuroscience research,
our investigation is directed towards its functional counterpart, a technique whose poten-
tial still remains relatively overlooked. Functional ICA can be considered a refinement of
functional principal component analysis, aimed at identifying low-dimensional structures
"as independent as possible" by exploiting the underlying topological features of the data.
We provide a comprehensive account of the theoretical foundations of functional ICA in
an infinite-dimensional framework and extend the method to Sobolev spaces of smoother
functions. Some relevant theoretical properties regarding functional data classification are
also presented. Additionally, we develop a repertoire of related functional data techniques
tailored for pre-processing and analyzing data in the emerging field of embodied mu-
sic neuroscience, which investigates the neurological basis of how the body influences
musical experience. Two methods based on nonlinear wavelet and polynomial approx-
imations are developed for pre-processing artifactual activity in EEG and pupillometric
signals. These methods yield excellent outcomes for neuromotor research, particularly
considering the suboptimal condition of the recorded data due to locomotor activity.
We further introduce a set of neural descriptors derived from data collected through the
aforementioned non-invasive methods, aiming to uncover brain behavior during em-
bodied musical interactions. More specifically, we focus on methodologies for modeling
neurotransmitter activity, a critical aspect shown to be essential in shaping motor func-
tionality and other proprioceptive sensations. Our experimental research is portrayed
by the concept of emotion transferred into a neurological domain, providing a unique
framework to define and capture the neural essence of embodiment in music.
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Abstract (NL)

Deze thesis behandelt de analyse van data die ontstaan op het gebied van muziekneu-
rowetenschap, in het bijzonder data verzameld met neurofysiologische meettechnieken
die gemodelleerd kunnen worden als willekeurige objecten in ruimtes van gladde func-
ties. Ruimtes uitgerust met een Hilbert-structuur bieden een veelzijdig en elegant kader
voor de veralgemening van verschillende statistische technieken en garanderen zo het
aanpassingsvermogen en de robuustheid bij de analyse van complexe datastructuren.
Binnen de context van functionele data-analyse dienen deze ruimtes als essentiële in-
strumenten voor het begrijpen en interpreteren van dynamische datatrends over con-
tinue domeinen. Gezien de relevantie van onafhankelijke componentenanalyse (ICA) in
neurowetenschappelijke studie, is ons onderzoek gericht op de functionele tegenhanger
ervan, een techniek waarvan het potentieel nog steeds enigszins over het hoofd wordt
gezien. Functionele ICA kan worden beschouwd als een verfijning van functionele prin-
cipale componentenanalyse, gericht op de identificatie van "zo onafhankelijk mogelijk"
laagdimensionale structuren door gebruik te maken van de onderliggende topologis-
che kenmerken van de data. We geven een uitgebreide beschrijving van de theoretis-
che grondslagen van functionele ICA in een oneindig dimensioneel kader en breiden de
methode uit tot Sobolev-ruimtes van gladdere functies. Enkele theoretische eigenschap-
pen met betrekking tot functionele dataclassificatie worden ook voorgesteld. Bovendien
ontwikkelden we een repertoire van verwante functionele datatechnieken op maat voor
het voorbewerken en analyseren van data in het opkomende gebied van de belichaamde
muziekneurowetenschap, die de neurologische basis onderzoekt van hoe het lichaam
muzikale ervaringen beïnvloedt. Er werden twee methodes gebaseerd op niet-lineaire
wavelet- en polynomiale benaderingen ontwikkeld voor het voorbewerken van arte-
factuele activiteit in EEG-signalen en pupillometrie. Deze methodes leveren uitstekende
resultaten op voor neuromotorisch onderzoek, vooral gezien de suboptimale conditie van
de geregistreerde data als gevolg van bewegingsactiviteit. Verder introduceren we een
reeks neurale descriptoren afgeleid van data die zijn verzameld met de eerdergenoemde
niet-invasieve methodes, met als doel het gedrag van de hersenen tijdens belichaamde
muzikale interacties bloot te leggen. Meer specifiek richten we ons op methodologieën
voor het modelleren van neurotransmitteractiviteit, een kritisch aspect dat essentieel is
bij de vormgeving van motorische interacties en andere proprioceptieve sensaties. Ons
experimenteel onderzoek is gebaseerd op het concept van emotie in een neurologisch
domein, wat een uniek kader biedt om de neurale essentie van belichaamdheid in muziek
te definiëren en vast te leggen.
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Abstract (ES)

En esta tesis se aborda el análisis de datos emergentes en el campo de la neurociencia de
la música, más concretamente de datos grabados mediante técnicas de monitoreo neu-
rofisiológico que pueden ser modelados como objetos aleatorios en espacios de funciones
suaves. Los espacios equipados con estructura de Hilbert ofrecen un marco versátil y el-
egante para la generalización de un ámplio abanico de técnicas estadísticas, asegurando
adaptabilidad y robustez en el análisis de estructuras de datos complejas. En el contexto
del análisis de datos funcionales, estos espacios sirven como herramientas esenciales para
comprender e interpretar tendencias dinámicas de datos sobre dominios continuos. Dada
la relevancia del análisis en componentes independientes (ICA) para el análisis de datos
neurocientíficos, nuestra investigación se dirige hacia su versión funcional, una técnica
cuyo potencial aún permanece relativamente poco explorado. El ICA funcional puede
considerarse una extensión del análisis en componentes principales funcional, orientado
a identificar componentes "lo más independientes posible" mediante la explotación de las
características topológicas subyacentes de los datos. Se proporciona un análisis exhaustivo
de los fundamentos teóricos del ICA funcional en un marco infinito-dimensional y se
extiende el método a espacios de Sobolev de funciones más suaves. También se presentan
algunas propiedades teóricas sobre la clasificación de datos funcionales en el contexto del
ICA funcional. Asimismo, desarrollamos un repertorio de técnicas relacionadas de datos
funcionales diseñadas para el preprocesamiento y análisis de datos en el campo emergente
de la neurociencia musical encarnada, cuyo objetivo es investigar la base neurológica de
cómo el cuerpo influye en las experiencias musicales. En particular, se desarrollan dos
métodos basados en aproximaciones no lineales de wavelets y polinomios para el pre-
procesamiento de actividad artefactual en señales EEG y pupilometría. Estos métodos
producen resultados excelentes para la investigación neuromotora, a pesar de la condición
subómptima de los datos registrados durante la actividad locomotora. Además, presenta-
mos un conjunto de descriptores neurales derivados de datos recopilados a través de los
mencionados métodos no invasivos, con el objetivo de desvelar el comportamiento cere-
bral durante interacciones musicales encarnadas. Más específicamente, nos centramos en
metodologías para modelar la actividad neurotransmisora, un aspecto crítico demostrado
como esencial en la funcionalidad motora y otras sensaciones propioceptivas. Nuestra
investigación experimental se presenta mediante el concepto de emoción transferido al
dominio neurológico, proporcionando un marco único para definir y capturar la esencia
neural de la encarnación en la música.
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Notation1

CNS Central nervous system
EEG Electroencephalography
FDA Functional data analysis
GA Generalized arousal
ICA Independent component analysis
KL Kosambi-Karhunen-Loève [expansion]

MRA Multiresolution analysis
PCA Principal component analysis

RKHS Reproducing kernel Hilbert space
𝑋 a Hilbertian random variable
X a whitened Hilbertian random variable
X a vector of Hilbertian random variables
𝑓 , 𝑔 deterministic functions
u, v univariate vectors

𝐴,𝐶, 𝐷 matrices
𝐴⊤ the transpose of 𝐴
𝐼𝑞 𝑞 × 𝑞 identity matrix

diag(𝐴) diagonal matrix with same diagonal elements as 𝐴
vec(·) vectorization operator
N positive integers
N0 N ∪ 0
R real numbers
R+ positive real numbers
C complex numbers
E mathematical expectation
R𝑞 𝑞-dimensional Euclidean space
⊥⊥ stochastic (or statistical) independence
⊥ orthogonality
𝐻 a real separable Hilbert space
𝐼𝐻 the identity of 𝐻
𝐿2 space of square integrable functions
B(·) the Banach space of all bounded operators

B(·)HS the space of Hilbert-Schmidt operators
ran(𝑇 ) the range of the operator 𝑇
ran(𝑇 ) the closure of the range of the operator 𝑇
tr(·) trace operator
(Ω,A, 𝑃) a basic probability space

B Borel 𝜎-algebra
N(𝜇, 𝜎2) Normal distribution with mean 𝜇 and variance 𝜎2

a.e. almost everywhere
a.s. almost sure
iff if and only if
s.t. subject to

w.r.t. with respect to
I indicator function
≡ equality by definition
■ end of proof
§ section/subsection

1Additional abbreviations used in this dissertation can be found at the beginning of some chapters. Any
modifications to the existing notation are meticulously indicated within their respective chapters.
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Introduction

This thesis straddles two worlds: that of high/infinite dimensional statistics and that of
music neuroscience. While the convergence between these two fields may not be imme-
diately apparent, here we endeavor to explore their joint underpinnings while preserving
certain degree of independence in their development.

We concentrate on the study of infinite-dimensional statistical models designed for
analyzing high-dimensional objects such as functions, images, surfaces, among others.
This area of research requires a strong knowledge in functional analysis, operator theory,
as well as measure and probability theory. We may think of our data as a random object
with some topological properties to exploit, such as smoothness. A way to do that is by
assuming our random object lives in some function space with a predefined metric or
geometry, allowing us to analyze their topological properties in relation to some prob-
ability axioms one may build. The kind of analysis we are currently discussing, known
as "Functional Data Analysis" (FDA), was featured by J. O. Ramsay and colleagues in
the late 1980s (or even earlier) [246], with a primary focus on data represented as func-
tions. Since then, FDA has become a substantial and multifaceted field of statistics that
has found applications in a number of disciplines. We refer to [91, 121, 156, 248, 311] for
a comprehensive overview on FDA. The evolution of FDA appears to be transitioning
toward object-oriented data analysis [186], a field encompassing more complex objects
as molecules of the statistical analysis –say, a FDA++.

The primary aim of employing these advanced methods is to study the neural under-
pinnings of embodiment –i.e, the incorporation of bodily experiences– during musical
interactions. Our approach aligns with the principles of naturalistic neuroscience, seek-
ing to investigate brain function and behavior in ecologically valid contexts that mimic
real-world scenarios. However, studying embodied interactions in such circumstances
poses challenges with current non-invasive neuroimaging techniques, as data quality may
be compromised by artifact-related activity. Addressing this issue has been a fundamen-
tal aspect in this investigation. Conversely, our approach acknowledges the multisensory
nature of these processes by integrating behavioral, neuroscientific, and other relevant
data into statistical models that consider information across multiple probabilistic dimen-
sions.

Research objectives in mathematical statistics
The works presented herein, especially those of a statistical nature, were motivated by a
thesis entitled "Alternativas geométricas en el ACP de una V.A Hilbertiana" [Geomet-
ric alternatives in principal component analysis (PCA) of a Hilbertian random variable]
written by Prof. F. A. Ocaña (UGR) and supervised by Prof. A. M. Aguilera [225].
Our primary objective was to extend the results of the aforementioned thesis by delving
deeper into the concept of functional independent component analysis (ICA), a dimen-
sion reduction technique that can be considered a refinement of the functional PCA.
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Despite ICA has gained widespread popularity across diverse research domains since
its foundational theory was developed around the 1990s, its functional counterpart has,
in contrast, received relatively limited attention. Methods based on reproducing ker-
nel Hilbert spaces were among the earliest to exploit ICA within an infinite-dimensional
feature space [19, 275]. However, it was not until the early 2010s that a theoretical frame-
work for functional ICA was first presented in conference proceedings [109]. While no
posterior contributions on this topic are attributed to the authors, they introduced pio-
neering concepts critical to functional ICA. These encompass the notions of statistical in-
dependence, irreducibility and IC separability within the context of infinite-dimensional
spaces. Some early attempts to materialize these principles using functional data can be
found in [86, 197]. Subsequent to these initial works, the most notable contribution in
addressing the estimation of functional ICs can be attributed to D. Peña and colleagues
[232]. Although the authors did not delve into the specifics of the functional ICA model,
they gave a formal definition of the kurtosis operator for the first time, proposed a compu-
tational approach for its implementation, and demonstrated some of its theoretical prop-
erties in relation to the classification of Gaussian processes. The functional ICA model as
such, was later introduced in the context of univariate and multivariate functional data
in [175, 307]. While these papers are primarily geared towards practical applications in
functional classification, neither of them has extended the theoretical results in [232]. Ad-
ditionally, there are numerous potential applications of functional ICA beyond functional
classification that have yet to be thoroughly explored.

Here, our aim is to provide a comprehensive study on functional ICA based on
smoothing and other nonlinear estimators, demonstrating their relevance and applica-
bility in analyzing neuroscientific data. As described below, we focus on studying brain
behavior during embodied music interactions.

Research objectives in music neuroscience
Why do we feel compelled to move when listening to music? How is it possible that
pianists can play without looking at the keyboard, or why can violinists accurately tune
complex passages without even glancing at the fingerboard? To what extent does action
contribute to shaping the experience of music? Or vice versa, does music perception
influence our motor behavior? These questions are usually addressed within the em-
bodied music cognition (EMC) hypothesis [168, 170]. It is undeniable that the brain
and body form an inseparable tandem, shaping the way we interact with the environ-
ment. Nevertheless, the neurological mechanisms underlying motor behavior able to
modulate and probably facilitate or enhance perception during the experience of mu-
sic (i.e. embodiment) remain somewhat poorly understood; see [23, 154, 165] as earlier
pioneering contributions to the field or more recent research aligned with this trend
[99, 228, 258, 282, 283]. In this dissertation, we investigate the neurology of embodiment
during musical interactions, an area of study that we refer to as embodied music neuroscience
(EMN). One major objective of this thesis is to provide support for the concept of EMN
based on empirical evidence.

Experimental investigations outlined here were initially motivated to uncover how
movement could influence the perception of tonal harmony. Some insights into this
question can be found in Moura et al. [204], where we demonstrated, using causal anal-
ysis methods and Leman’s auditory model [134, 167], that bodily movement during mu-
sic performance anticipated tonal context of music (surprisingly, knee flexion evidences
this aspect of embodiment!). See also [202–204] for further details. Nevertheless, the
present investigation focuses on other aspects of EMC. We aimed at identifying suitable
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descriptors for characterizing the dynamics of brain activity across different time scales
and spatial dimensions during embodied music interactions. Therefore, we hypothesize
that there might be a neural signature characterizing these processes of embodiment.
To address this, we devised two experimental studies focusing on singing performance
and emotion, as emotion plays a crucial role in configuring embodied music interactions,
while singing can serve as a powerful medium for expressing these emotions [168]. Spe-
cific hypotheses and further discussion can be found in Chapter 4, Chapter 5, and §6.3.
In both studies, we develop advanced FDA models to derive neural descriptors critical for
understanding embodiment. Our research primarily relies on non-invasive neuroimag-
ing techniques, specifically EEG and pupillometry.

Thesis overview and structure
In Chapter 1, we review the main concepts and backgrounds of FDA essential for
the subsequent chapters. This includes elementary operator theory, methods for data
representation using basis functions, and the fundamental principles of functional PCA.
In Chapter 2, we present three papers [298, 302, 305] that focus on the theory and
applications of functional ICA. The foundational background of ICA is covered in
the initial subsections, followed by a rational integration of the aforementioned papers.
Proofs for certain propositions and theorems are excluded in the two first chapters since
they can be found in the associated published papers as detailed therein. Exceptions to
this rule include cases where proofs are unpublished or are provided for the sake of clarity
in our developments.

In Chapter 3, we introduce a methodology that bridges some of the theoretical under-
pinnings established Chapter 2 with our experimental investigations. There, we propose
a functional ICA approach based on wavelets for artifact removal particularly tai-
lored for EEG data acquired during experimental conditions involving body movement.
The chapter discusses some issues regarding typical practices for EEG artifact removal,
and illustrates the performance of the proposed method with thorough simulation studies
and analysis of selected EEG datasets. Current pre-processing approaches will be applied
to the EEG data recorded in one of our experiments.

We conducted two experimental studies to investigate brain behavior during em-
bodied music interactions. In Study I (Chapter 4), we have investigated how mo-
tor task related emotionality corresponds to pupillometry signatures in a singing
performance paradigm. We present a multivariate functional PCA based on Pfaff’s
generalized arousal principles [236] to study how pupil dynamics across different sub-
bands relate to level of emotionality during the different motor tasks. The model is built
upon prior investigations that relate pupil dilation to neurotransmitter activity. We also
introduce an unsupervised method to pre-process responses to ocular events dur-
ing motor tasks. This method is flexible, easy to apply, and has a low computational cost,
yielding robust estimates of cognitive-related pupil activity. The experimental paradigm
introduced in Study I is elaborated upon in a subsequent study that incorporates a more
complex design involving immersive virtual reality interactions (Chapter 5 ). We intro-
duce a model for the analysis of turbulence in EEG recordings based on a multi-
variate functional ICA for spatially indexed data that is derived from our prior research
in Chapter 2 and Chapter 3. Our aim is to analyze turbulent flows on dominant EEG
components that are assumed to reflect generalized arousal function in a similar vein as in
Study I. With this, we investigate how the level of emotionality during embodied
musical interactions in immersive virtual reality relates to turbulence activity in
alpha and gamma ranges.
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1 | Mathematical and statistical
framework

This chapter provides definitions, notations, and basic concepts used throughout the dis-
sertation. For an extensive account of the material discussed here, see [123, 225, 323].

§ 1.1. Basic probabilistic principles

Consider a sample space Ω and assume for convenience that A is a 𝜎-algebra (an algebra
closed under complementation and countable unions). Define a mapping 𝑃 : A→ R,
called probability, such that it adheres to the following axioms after Kolmogorov:

1. For each 𝐸 ∈ A, 𝑃 (𝐸) ≥ 0,

2. 𝑃 (Ω) = 1 (the entire sample space has probability equal to 1),

3. 𝑃 (𝐸1 ∪ 𝐸2 ∪ 𝐸3 · · · ) = 𝑃 (𝐸1) + 𝑃 (𝐸2) + 𝑃 (𝐸3) + · · · if 𝐸𝑖 ∩ 𝐸 𝑗 = ∅ for all 𝑖 ≠ 𝑗 (all 𝐸’s
are disjoint).

Under these considerations, the triple (Ω,A, 𝑃) is then called probability space. A proba-
bility space is usually build upon an abstract point set Ω, devoid of specific mathematical
properties such as algebra or topology. To better understand and apply mathematical
concepts to such spaces, we can explore different ways of connecting the elements of A
to more structured mathematical spaces. In this dissertation, we deal with elements pre-
sumed to reside in a space equipped with a scalar product inducing a norm. This particu-
lar space, commonly referred to as Hilbert space and denoted here by 𝐻 , is a mathematical
construct that can encompass various objects, including functions, images, shapes, etc. A
critical property of spaces with such structure is that every Cauchy sequence (of elements)
converges to a limit within the space itself, which means the space is complete. This prop-
erty ensures that geometrical operations can be consistently performed. In what follows,
we can consider a Hilbert space 𝐻 over the field of the reals R, and ⟨·, ·⟩ : 𝐻 ×𝐻 → R an
inner product on 𝐻 inducing the norm ∥ · ∥ = ⟨·, ·⟩1/2.

A common scenario in probability theory is to deal with mappings called random
variables defined by 𝑋 : Ω → R, i.e., 𝑋 is a function that assigns to each element of the
sample space a real number. Instead, here we consider𝑋 : Ω → 𝐻 , where𝐻 is a separable1

Hilbert space, and therefore each element of the sample space has now an associated
element from 𝐻 . We call 𝑋 a Hilbertian or 𝐻-valued random variable. More formally, 𝑋 is
a mesurable function from (Ω,A, 𝑃) to (𝐻,B𝐻 ) where B𝐻 is the Borel 𝜎−field generated
by the class of all open subsets of 𝐻 . The probability of an event 𝐸 ∈ B𝐻 is determined by

1A separable Hilbert space is a Hilbert space 𝐻 that contains a countable set whose span is dense in the
entire space. This means there exists a countable orthonormal basis in 𝐻 , allowing any element of 𝐻 to be
expressed as a series (or linear combination) of elements from this basis. See §1.2.
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the measure induced on (𝐻,B𝐻 ), defined as 𝑃𝑋 (𝐸) = 𝑃 (𝑋−1(𝐸)) = 𝑃 (𝜔 ∈ Ω : 𝑋 (𝜔) ∈ 𝐸)2.
The induced measure by 𝑋 is commonly referred to as its distribution or law.

Definition 1. Let 𝑋 be 𝐻-valued random variable with E∥𝑋 ∥ ≡
∫
Ω
∥𝑋 (𝜔)∥d𝑃 (𝜔) < ∞ (i.e.,

𝑋 is Bochner integrable). The element of 𝐻 denoted by E𝑋 ∈ 𝐻 verifying

⟨E𝑋, 𝑥⟩ =
∫
Ω
⟨𝑋 (𝜔), 𝑥⟩d𝑃 (𝜔) ∀𝑥 ∈ 𝐻 (1.1)

is called the expectation of 𝑋 .

Remark 1. Bochner integrability implies weak integrability, i.e., for all 𝑥∗ ∈ 𝐻 ∗ (𝐻 ∗ denotes the
dual of 𝐻 , or the set of all continuous linear functionals defined on 𝐻 ), E|⟨𝑋, 𝑥∗⟩| < ∞. In 1.1 we
are integrating the projection of 𝑋 in the direction of 𝑥 over all possible outcomes in the sample
space with respect to the probability measure 𝑃 . This means that the expectation is reduced to a
Lebesgue integral over the reals (note that the expression within the integral on the right hand side
is real-valued).

If the 𝐻-valued random variable 𝑋 is Bochner integrable, this implies the existence
of the expectation or first moment of 𝑋 . If exists, this expectation is unique. We can
further consider the existence of its 𝑝th moment, i.e.,

∫
Ω
∥𝑋 (𝜔)∥𝑝d𝑃 (𝜔) < ∞, leading us

to extend the concept of common moment functions within the framework of Hilbert
spaces.

§ 1.2. Moment operators

Preliminaries
An operator T : 𝐻 → 𝐻 is said to be continuous if for every 𝜖 ∈ R there is some 𝛿 ∈ R
such that ∥T(𝑥) −T(𝑦)∥ < 𝜖 whenever ∥𝑥 −𝑦∥ < 𝛿 , which ensures the operator behaves
smoothly and predictably for all 𝑥,𝑦 ∈ 𝐻 . If furthermore, T(𝑎𝑥 + 𝑦) = 𝑎T(𝑥) + T(𝑦)
for all 𝑎 ∈ R, the operator T satisfies the properties of linearity. Every linear operator
is continuous in the finite dimensional case, but in infinite dimensions a linear operator
T is only continuous iff it is bounded, i.e., ∥T∥ ≡ sup{∥T(𝑥)∥ : ∥𝑥 ∥ ≤ 1} < ∞ where
sup{·} is the supremum function. The kernel of a linear operator T, denoted by ker(T),
comprises all elements in the domain of T that map to the null space in the codomain.
The range (or image) of T, denoted by ran(T), encompasses all possible output elements
in the codomain obtained by applying T to elements in the domain.

If 𝐹 : 𝐻 → R is a linear and bounded functional, there exists a unique element 𝑦 ∈ 𝐻
such that 𝐹 (𝑥) = ⟨𝑥,𝑦⟩ for every 𝑥 ∈ 𝐻 (Riesz’ representation theorem [323, §1.2]).
It follows that if T is bounded, its adjoint T∗ is also bounded and are related by the
equation ⟨T𝑥,𝑦⟩ = ⟨𝑥,T∗𝑦⟩ for all 𝑥,𝑦 ∈ 𝐻 . If T∗ = T and ⟨T𝑥, 𝑥⟩ ≥ 0 the operator is
self-adjoint (Hermitian) and positive definite. Note that a positive operator can be raised
to any positive power; therefore, (T1/𝑛)𝑛 = T, 𝑛 ∈ N. Operators that commute with
the adjoint are normal. As an example, consider the isometry ∥T𝑥 ∥ = ∥𝑥 ∥, then T is a
unitary operator with the property TT∗ = T∗T= 𝐼𝐻 , where 𝐼𝐻 is the identity operator.

A fundamental property of a Hilbert space is the existence of the so-called orthonor-
mal basis. Two elements 𝑥,𝑦 ∈ 𝐻 are said to be orthogonal if ⟨𝑥,𝑦⟩ = 0. A sequence of

2Note that 𝑋 −1 (·) denotes the pre-image or inverse image function associated with 𝑋 . Therefore,
𝑋 −1 (𝐸) consists of all outcomes in the sample space that get mapped to the set 𝐸 under 𝑋 .
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elements 𝜑 ≡ (𝜑 𝑗 ) 𝑗∈N on 𝐻 is called orthonormal basis if all elements of 𝜑 are mutually
orthogonal, have unit norm and the series

𝑥 =

∞∑︁
𝑗=1

〈
𝑥, 𝜑 𝑗

〉
𝜑 𝑗 , (1.2)

is convergent in the norm topology of 𝐻 [323, pp.1-6], for all 𝑥 ∈ 𝐻 . Then, ∥𝑥 ∥2 =∑∞
𝑗=1

��〈𝑥, 𝜑 𝑗 〉��2, which follows from Parseval’s Theorem. Equation 1.2 can alternatively be
expressed as 𝑥 = P𝜑 (𝑥), where P𝜑 (·) denotes the orthogonal projection into the subspace
generated by 𝜑 . The operator P𝜑 is idempotent (P2

𝜑 = P𝜑 ), and self-adjoint (P𝜑 = P∗𝜑 ).
The orthogonal complement of the subspace generated by 𝜑 is (𝐼𝐻 −P𝜑 ) and the rank of
the projection operator is equal to the dimension of the subspace into which it projects.

A bounded linear operator T : 𝐻 → 𝐻 is said to be compact if it maps bounded sets in
𝐻 to sets that have all their limit points contained within a closed set with respect to the
norm topology on𝐻 (see [323, §1.3]). A critical property of a compact operator in𝐻 is the
existence of a canonical decomposition. For two orthonormal sets (𝜑 𝑗 ,𝜓 𝑗 ) 𝑗∈N in𝐻 one has
that T𝑥 =

∑∞
𝑗=1 𝜃 𝑗

〈
𝑥, 𝜑 𝑗

〉
𝜓 𝑗 (or equivalently, T𝜑 𝑗 = 𝜃 𝑗𝜓 𝑗 ), where 𝜃 𝑗 is a sequence of real

numbers decreasing to 0 called the eigenvalues of T. If furthermore T is compact self-
adjoint, the same result is expressed in terms of a unique basis, i.e., T𝜑 𝑗 = 𝜃 𝑗𝜑 𝑗 . A compact
operator T is said to be trace class if tr(T) = ∑∞

𝑗=1
〈
T𝜑 𝑗 , 𝜑 𝑗

〉
converges independently of

the chosen orthonormal basis. We note that having finite trace as defined by the above
quantity does not guarantee the invertibility of T, since zero can be an accumulation
point in the spectrum of T. A trace-class (or nuclear) operator T is of the Hilbert-
Schmidt (HS) class, often called Schatten-2 [323, §1.4], if tr (T∗T) < +∞. The class of all
HS operators forms a separable Hilbert space itself, and will be denoted as by B𝐻𝑆 (𝐻 ).
The associated operator norm, denoted as ∥T∥2HS = tr (T∗T) for all T ∈ BHS(𝐻 ), is
a generalisation of the Frobenius norm for finite-dimensional matrices. In general, any
compact operator, and, in particular, Hilbert-Schmidt and trace operators, has a sequence
of eigenvalues which converges to zero, hence, the sequence of inverses diverges, and the
inverse operator is unbounded.

Covariance, skewness and kurtosis operators
Here, the term moment operators refers to linear mappings that capture information about
the moments of an 𝐻-valued random variable. Laha and Rohatgi [164, pp.473] identified
operators of this type to possess certain properties such as compactness, self-adjointness,
positive definiteness and finite trace in the HS sense. In the following, we consider prob-
ability measures 𝑃 on (𝐻,B𝐻 ) such that E∥𝑋 ∥4 ≡

∫
Ω
∥𝑋 (𝜔)∥4d𝑃 (𝜔) < ∞ (we assume up

to four finite moments). Unless otherwise stated, the mean value E𝑋 will be assumed
0. Under these assumptions, the covariance (or second moment) operator C𝑋 on 𝐻 is
uniquely determined by the relation

⟨C𝑋 (𝑥), 𝑦⟩ =
∫
Ω
⟨𝑋 (𝜔), 𝑥⟩⟨𝑋 (𝜔), 𝑦⟩d𝑃 (𝜔). (1.3)

It is well-known that 1.3 is positive definite, self-adjoint (therefore symmetric) with finite
HS norm or trace; see [164, pp.471–73].

Now consider the linear operator 𝑥 ⊗ 𝑦 : 𝐻 → 𝐻 , called the tensor product operator,
and defined by (𝑥 ⊗ 𝑦) (·) = ⟨·, 𝑥⟩𝑦 for all 𝑥,𝑦 ∈ 𝐻 . This operator has rank 1 and is HS.
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Lemma 1 (Ocaña [225], Lemmas 1.3.2, 1.3.4). The covariance operator defined in 1.3 can be
expressed as E(𝑋 ⊗ 𝑋 ).

In accordance with the given definition of the tensor product, we now enumerate
some of its properties, as they will be utilized throughout this dissertation. Let B(𝐻 )
denote the algebra of all bounded linear operators on 𝐻 .

Lemma 2. For 𝑥,𝑦, 𝑧 ∈ 𝐻 and T1,T2 ∈ B(𝐻 )

1. (𝑥 ⊗ 𝑦)∗ = 𝑦 ⊗ 𝑥 ;

2. (T1 ⊗ T2) (𝑥 ⊗ 𝑦) = (T1𝑥) ⊗ (T2𝑦) = T1(𝑥 ⊗ 𝑦)T∗2 ;

3. (𝑧 ⊗ 𝑦) (𝑦 ⊗ 𝑥) = ∥𝑦∥2(𝑧 ⊗ 𝑥).

Peña et al. [232], based on [201], defined a kurtosis (fourth-moment) operator K𝑋 on
𝐻 . This operator is uniquely determined by the relation

⟨K𝑋 (𝑥), 𝑦⟩ =
∫
Ω
⟨𝑋 (𝜔), 𝑋 (𝜔)⟩⟨𝑋 (𝜔), 𝑥⟩⟨𝑋 (𝜔), 𝑦⟩d𝑃 (𝜔)

=

∫
Ω
∥𝑋 (𝜔)∥2⟨𝑋 (𝜔), 𝑥⟩⟨𝑋 (𝜔), 𝑦⟩d𝑃 (𝜔) (1.4)

The operator K𝑋 shares the same properties as C𝑋 (see §2.4), and following the same rea-
soning provided in Lemma 1, K𝑋 can be further expressed as E{(𝑋 ⊗𝑋 )2} = E{∥𝑋 ∥2(𝑋 ⊗
𝑋 )}, which denotes de composition of (𝑋 ⊗ 𝑋 ) with itself. It is a common procedure to
work with whitening representations of 𝑋 in order to remove scaling effects and ensure
that the kurtosis operator accurately reflects the shape of the distribution that character-
izes 𝑋 . Whitened functional random variables are discussed in Chapter 2.

To our knowledge, a third moment operator of an 𝐻-valued random variable has not
yet been established in the literature. Extending the skewness matrix of a multivariate
random variable (e.g., 𝑌𝑌⊤𝑌 as in [201]) into the form of a normal operator is not fea-
sible, somehow limiting the application of the Spectral Theorem. In finite dimensions,
the diagonalization of non-normal operators can be addressed using the Jordan decom-
position; however, in infinite dimensions, alternative methods must be pursued. One
potential approach could be to define an skewness operator as follows:

S𝑋 = E
(√︁
(𝑋 ⊗ 𝑋 )3

)
, (1.5)

which can be shown to be related to the power two of the skewness matrix in [201].
It is easy to prove that the operator S𝑋 on 𝐻 shares the same properties of the moment
operators C𝑋 and K𝑋 . The study of this operator, however, lies beyond the scope of the
current dissertation.

§ 1.3. Hilbertian independence and irreducibility

In this subsection, we elaborate on the notion of independence in Hilbert spaces, a con-
cept that lacks straightforward intuition compared to its definition in conventional prob-
ability theory. Independence is a central and somewhat elusive concept in probability,
often ambiguously used and conflated with other properties such as uncorrelatedness and
sparsity.
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Consider a basic probability space (Ω,A, 𝑃) and a probability measure 𝑃 : A→ [0, 1].
Two events 𝐸1, 𝐸2 ∈ Aare said to be statistically independent iff 𝑃 (𝐸1∩𝐸2) = 𝑃 (𝐸1) ·𝑃 (𝐸2),
i.e., their joint probability equals the product of their probabilities. Further, let I to be
an index set, with the index 𝑖 varying on I. A collection of events (𝐸𝑖)𝑖∈I are said to be
independent iff for any finite subset I𝑛 = {𝑖1, 𝑖2, . . . , 𝑖𝑛} of I

𝑃

(⋂
𝑖∈I𝑛

𝐸𝑖

)
=

∏
𝑖∈I𝑛

𝑃 (𝐸𝑖) . (1.6)

Note that the above definition implies more than just asking 𝑃 (⋂𝑖∈I𝐸𝑖) =
∏
𝑖∈I𝑃 (𝐸𝑖) ,

and still further more than pairwise independence. In other words, we have that sub-
classes of independent classes are necessarily independent. Stepniak [286] gives a didactic
illustration of statistical independence, exemplifying cases of joint and pairwise indepen-
dence. For a more advanced treatment of the subject, see [173].

We now introduce some concepts to show how independence is conceived in an in-
finite dimensional Hilbert space 𝐻 . Consider 𝐻 ∗, the dual space of 𝐻 , i.e., 𝐻 ∗ is the
separable Hilbert space consisting of all bounded linear functionals from 𝐻 to R, and 𝑋 a
𝐻-valued random variable. Then for every 𝑙 ∈ 𝐻 ∗, 𝑙 (𝑋 ) is a real valued random variable.
Two 𝐻-valued random variables 𝑋,𝑌 defined on (Ω,A, 𝑃) are said to be identically dis-
tributed if 𝑃𝑋 = 𝑃𝑌 . Let (𝑋𝑖)𝑖∈N be a collection of 𝐻-valued random variables. If 𝑙 (𝑋𝑖) is a
collection of identically distributed random variables, then 𝑋𝑖 are identically distributed.
See [164, pp.447-8] for further details.

Definition 2. A sequence of random variables 𝑋1, 𝑋2, · · · : Ω → 𝐻 is said to be independent
iff for every 𝑛 ∈ N, 𝑛 ≥ 2, any (finite) subset I𝑛 ⊆ N of cardinality 𝑛, and all mesurable sets
𝐸𝑖 ∈ B𝐻 (𝑖 ∈ I𝑛), the relation

𝑃

(⋂
𝑖∈I𝑛
{𝑋𝑖 ∈ 𝐸𝑖}

)
=

∏
𝑖∈I𝑛

𝑃 (𝜔 ∈ Ω : 𝑋𝑖 (𝜔) ∈ 𝐸𝑖) , (1.7)

holds.

Note that independence of an infinite number of events is defined by demanding that
every finite subset is independent.

Remark 2. If {𝑙𝑖 (𝑋𝑖), 𝑖 ∈ I𝑛, 𝑙𝑖 ∈ 𝐻 ∗} is a collection of independent random variables, then
{𝑋𝑖, 𝑖 ∈ I𝑛} is also independent.

So far, we have defined independence through finite sequences of variables residing in
an infinite-dimensional separable Hilbert space. However, determining when𝑋 (a single
random variable) is independent becomes a more nuanced task, and understanding the
implications of this concept is crucial in refining Definition 2. It is well-known that the
𝜎-algebra generated by all cylindrical subsets of 𝐻 coincides with the Borel 𝜎-algebra
on the separable Hilbert space 𝐻 (see §4 and Theorem 4.1 in [161]). This equivalence
underscores he foundational role of cylindrical sets in describing the measurable structure
of 𝐻 , ensuring that every Borel set in 𝐻 can be constructed from these cylindrical sets.

Definition 3 (Independent random variable, Gutch and Theis [109], Definition 2). A
random variable 𝑋 : Ω → 𝐻 is said to be independent if for an orthonormal basis

(
𝜑 𝑗

)
𝑗∈N of 𝐻

and for 𝑞 ∈ N, 𝑞 ≥ 2, any subset I𝑞 ⊆ N of cardinality 𝑞,
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1. The random variables ⟨𝑋,𝜑 𝑗1⟩, . . . , ⟨𝑋,𝜑 𝑗𝑞⟩ are mutually independent;

2. P𝜙I𝑞
(𝑋 ) and P𝜑

I𝑞
(𝑋 ) are independent, where P𝜑

I𝑞
(𝑋 ) = (𝐼𝐻 −P𝜑I𝑞

) (𝑋 ).

Assumption 2 in Definition 3 reads as “the orthogonal projection to the subspace
spanned by a subset of the basis is independent to the projection to the complement of
the subspace" and, while difficult to prove analytically, it bears critical implications for the
study of functional ICA. A desirable property of a projection is that P𝜙I𝑞

(𝑋 ) ⊥ P𝜑
I𝑞
(𝑋 ),

which usually holds for orthonormal bases. Assumption 2 goes beyond linear indepen-
dence and entails both P𝜙I𝑞

(𝑋 ) and P𝜑
I𝑞
(𝑋 ) are mutually independent to define 𝑋 as

independent3. Thus, independence now is based on the mutual independence between
any two arbitrary vector random variables. These are constructed from finite sets of pro-
jections of 𝑋 into the two orthogonal subspaces of 𝐻 above referred, where the values
are cylindrical sets.

From now on, we will use the symbol⊥⊥ to denote statistical independence4 in our de-
velopments. We also note that if assumption 1 Definition 3 in holds, then 𝑆 𝑗1 ⊥⊥ · · · ⊥⊥ 𝑆 𝑗𝑞 ,
where 𝑆 𝑗 = ⟨𝑋,𝜑 𝑗 ⟩𝜑 𝑗 are Hilbert-valued functional independent components. In addi-
tion, the independent variables 𝑆 𝑗1, . . . , 𝑆 𝑗𝑞 are called irreducible if further decomposition
of any of the components is not possible5. Current notion of independence will facilitate
our understanding of the functional ICA model proposed in Chapter 2.

In the context of Hilbert spaces, we have seen that independence is defined through
an isometric isomorphism between the dual space 𝐻 ∗ and the original space 𝐻 . This
isomorphism allows the identification of Borel measures on 𝐻 ∗ with those on 𝐻 when an
orthonormal basis of 𝐻 is chosen. Through this identification, the statistical properties
of 𝑋 can be analyzed, as otherwise there is no explicit parametric form assumed for the
distribution of elements in an abstract Hilbert space. Going back to Definition 2, we
note that joint independence is likely to be true if any of the 𝑋𝑖 ’s is not independent in
the sense of Definition 3.

§ 1.4. Featuring the Hilbert space with basis functions

Functional statisticians work in spaces with structure that allows them to reflect the un-
derlying regularity of the processes they study. Although the (separable) Hilbert space of
square integrable functions 𝐻 ≡ 𝐿2 is certainly the most common starting point, Hilbert
spaces of smoother functions such as kernel or Sobolev spaces are typically preferred. In
real-world applications, it is however impossible to observe a process continuously and
data is commonly sampled as a finite set of discrete observations. Here, the approach for
analyzing these data involves utilizing basis of 𝐿2 functions for their approximation. In
the end, this allows working with coefficients obtained through a projection into a pre-
defined basis (whether or not it is orthonormal) that better captures the characteristics of
our data.

3This occurs in very particular and restrictive scenarios, which eventually reduces to an orthogonality
constraint in Gaussian cases; see, for example, [40, Lemma 1.2.6].

4It is worth mentioning that the symbol⊥⊥, denoting stochastic independence, can be credited to Gustav
Elfving, a Finnish statistician, probabilist, and mathematician, who first used such symbol in some lecture
notes around 1949–1950; see [220].

5Therefore there is no operator allowing the decomposition of 𝑆 𝑗 in further lower dimensional ICs.
Having a singular covariance operator is a necessary but not sufficient condition for irreducibility.
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Now, we formulate the problem of approximation of a single realization of an ar-
bitrary functional random variable. We study the classic non-parametric problem of
recovering the values of an unknown function {𝑓 ∈ 𝐿2

𝑇
: 𝑇 ⊆ R} from noisy observations

𝑦𝑖 ∈ R. This corresponds to

𝑦𝑖 = 𝑓 (𝑡𝑖) + 𝜀𝑖 (𝑖 = 1, . . . , 𝑛) , (1.8)

where 𝜀𝑖 ∈ R is an error term, and 𝑡1, 𝑡2, . . . , 𝑡𝑛 are sampling points here assumed in an
equidistant grid within 𝑇 . We are concerned with estimators of 𝑓 based on different
systems of basis functions, including Fourier, B-splines, and Wavelet bases. Because basis
functions form a vector space, similarly to 1.2, we can represent 𝑓 as

𝑓 (𝑡) =
𝑞∑︁
𝑗=1

𝑎 𝑗𝜙 𝑗 (𝑡), (1.9)

where 𝜙 𝑗 (𝑡) are the set of 𝑞 basis functions defining the space and 𝑎 𝑗 their respective
coefficients.

A classical orthonormal basis system is the Fourier basis. This basis consists of a series
of periodic trigonometric functions on 𝑇 = [0, 1] given by

{
√
2 sin(2𝜋 𝑗𝑡); 𝑗 ∈ N} ∪ {

√
2 cos(2𝜋 𝑗𝑡); 𝑗 ∈ N} ∪ {1}. (1.10)

The Fourier basis is a typical choice for the approximation of stable and periodic functions
that have a roughly constant curvature [294].

To represent curves that are not uniformly smooth, splines are a more suitable choice
due to their good local support. Splines are curves made of piecewise polynomial func-
tions that smoothly join at prefixed knots. A B-spline, short for "basis spline", is a curve
defined by a basis system of degree 𝑝 that generates a space of splines of the same degree.
Let U = {𝑢1, 𝑢2 . . . , 𝑢𝑘 , . . . , 𝑢𝑚}, be a sequence of knots over 𝑇 ⊂ R, i.e an increasing and
uniformly-spaced sequence of 𝑚 ≥ 1 real numbers. For each 𝑘 = 1, . . . ,𝑚, a B-spline
basis function of degree 𝑝 (denoted by B

𝑝

𝑘,U(𝑥)) is defined recursively as

B
𝑝

𝑘,U(𝑥) =
𝑥 − 𝑢𝑘
𝑢𝑘+𝑝 − 𝑢𝑘

B
𝑝−1
𝑘,U (𝑥) +

𝑢𝑘+𝑝+1 − 𝑥
𝑢𝑘+𝑝+1 − 𝑢𝑘+1

B
𝑝−1
𝑘+1,U(𝑥), (1.11)

where

B0
𝑘,U(𝑥) =

{
1 if 𝑥 ∈ [𝑢𝑘 , 𝑢𝑘+1) ,
0 otherwise.

(1.12)

The above formula when 𝑝 = 3 (meaning that cubic polynomials are used) produce the
popular "Cubic B-splines". These are smooth curves with continuous first and second
derivatives. For a knot sequence with 𝑚 unique elements, 𝑞 = 𝑚 − 𝑝 − 1 B-splines of
degree 𝑝 can be generated.

In this dissertation, we will also work with wavelet expansions. Wavelet basis func-
tions are known for their versatility in handling non-uniform curves, particularly to ap-
proximate abrupt changes and complex varying local behaviors. A wavelet is an oscilla-
tory function𝜓 ∈ 𝐿2

R
satisfying

∫ +∞
−∞ 𝜓 (𝑥)d𝑥 = 0, ∥𝜓 ∥ = 1, centered in the neighborhood

of 𝑥 = 0 and decaying to 0 as 𝑥 → ±∞. The dyadic dilations and translations of any
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wavelet design convoluted on 𝑓 (𝑡) ∈ 𝐿2
𝑇

produce the so-called Multiresolution Analysis
(MRA) [71, 185], which is an orthogonal decomposition of a function in a set of wavelet
basis coefficients at different levels of resolution corresponding to the dimension of the
wavelet basis.

How do we choose the most suitable basis for fitting the data, along with determining
the appropriate basis dimension? While providing a comprehensive answer would be
rather extensive, a common approach involves using an appropriate loss function, such
as ordinary least squares, combined with a cross-validation procedure. Then, choosing
the optimal finite-dimensional representation of 𝑓 (𝑡) corresponds to finding the vector
of coefficients that minimize the sum of squared errors at each 𝑡𝑖 . Thus, the objective is
to minimize

MSE(𝑦 | 𝑎) = (𝑦 − Φ𝑎)⊤(𝑦 − Φ𝑎), (1.13)

where Φ =
(
𝜙 𝑗 (𝑡𝑖)

)
𝑛×𝑞 is a matrix containing the discretized basis functions. Then, the

estimate of 𝑎 that minimizes the mean squared error is 𝑎 = (Φ⊤Φ)−1 Φ⊤𝑦.
To enhance the accuracy of the basis approximation, refinement is sometimes neces-

sary to mitigate possible overfitting effects. This can be achieved through the application
of a roughness penalty. Consider the integrated squared 𝑑-order derivative∫

𝑇

[
𝑅 [𝑑] 𝑓 (𝑡)

]2
d𝑡 = 𝑎⊤P𝑑𝑎, (1.14)

where the matrix P𝑑 is defined by P𝑑 =
∫
𝑇
𝑅 [𝑑]𝜙 (𝑡)𝑅 [𝑑]𝜙 (𝑡)⊤d𝑡 with 𝑅 [𝑑]𝜙 (𝑡) =(

𝑅 [𝑑]𝜙1(𝑡), . . . , 𝑅 [𝑑]𝜙𝑞 (𝑡)
)⊤

. In the penalized least squares problem, the coefficients of the
smoother are determined by minimizing

CPMSE𝑑 (𝑦 | 𝑎) = (𝑦 − Φ𝑎)⊤ (𝑦 − Φ𝑎) + 𝜃𝑎⊤P𝑑𝑎. (1.15)

where 𝜃 ∈ R≥0 is a penalty parameter. Then, the coefficients are estimated as 𝑎 =

(Φ⊤Φ + 𝜃P𝑑)−1 Φ⊤𝑦.
When the above regression problem is formulated with B-splines, we refer to them as

smoothing B-splines. We can readily convert this estimator into a more computationally
efficient one by using a discrete penalty, which corresponds to what is known as penal-
ized spline (P-splines) regression. Then, P𝑑 is calculated as a matrix representation of
the 𝑑-order difference operator 𝑅 [𝑑] ; for additional details and advanced approaches, see
[4, 67, 85, 213]. In the case of wavelets, a variety of strategies can be employed depending
on the MRA approach. These generally include the use of shrinkage techniques, as dis-
cussed in Chapter 3, as well as other similar smoothing schemes like those outlined here;
see [13] and references therein.

§ 1.5. Functional principal component analysis

The gestation of functional principal component analysis (functional PCA) owes signif-
icantly to Mercer’s Theorem (1909) and the Kosambi- (1943 [159]) Karhunen- (1946-7
[142, 143]) Loève (1948 [183]) Theorem (KKLT, or KLT for short). Jointly interpreted,
Mercer’s theorem states that any positive semi-definite symmetric function can be rep-
resented as a convergent sum of products of basis functions in 𝐻 ≡ 𝐿2

𝑇
, while KLT uses

such decomposition for the expansion of a random function in 𝐻 . Related works initially
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emerged for inferential purposes on stochastic processes [108, 250], while the consolida-
tion of functional PCA as reduction technique started after Dauxois’ asymptotic study
[73], which investigated whether the eigenelements of the empirical covariance operator
converged to the eigenelements of its theoretical counterpart as well as their asymp-
totic distributions; see also [42, 121] for greater generality of the results. Early works
on functional PCA include [36, 246, 265], which anticipated preliminary stages of an
incipient computational development [7, 8, 247]. In the 90s, FDA and functional PCA
underwent significant progress. Remarkably, for what this dissertation concerns, two
smoothed functional PCA approaches [255, 278] were introduced, the latter incorporat-
ing the roughness penalty into the orthonormality constraint of the covariance eigen-
functions via Sobolev norms and inner products; see also [166, 243] for extended asymp-
totic results on Silverman’s functional PCA method. Ocaña et al. [224] generalized this
procedure a few years later and established the principles to compute functional PCA
estimates under general settings [223]. By that time, Ramsay and Silverman’s popular
book on FDA [248] was published, which, along with Bosq’s book [42], constitute two
fundamental state-of-the-art contributions to the field. In parallel, KLT was also studied
beyond common function spaces, for example, in the context of random fields [14] and
on Riemannian manifold structures; see [88] for the general case.

Theory
Suppose (𝐻, ⟨·, ·⟩) is a separable Hilbert space of real valued continuous functions, and
that one aims to find an optimal approximation, say 𝑋̃ , of the random variable 𝑋 taking
values 𝐻 with E∥𝑋 ∥2 < ∞ and E𝑋 = 0. This problem corresponds to finding the linear
span that minimizes E∥𝑋 − 𝑋̃ ∥2, and it is commonly referred to as functional PCA.

Since we are dealing with countable bases, it is conceivable to define a procedure
to identify coordinates/coefficients with the highest variability at each step, thereby si-
multaneously minimizing the mean square error mentioned above. We therefore aim
to find a sequence of real-valued random variables, (𝜉 𝑗 ) 𝑗∈N, which are generalized linear
combinations of 𝑋 with maximum variance. These variables are commonly referred to
as principal components (PCs) or KL expansion coefficients. An iterative method can be
formulated to find a sequence of orthonormal functions (𝛾 𝑗 ) 𝑗∈N whose elements verify

• 𝛾1 = argmax
∥ℎ∥2=1

⟨C𝑋 (ℎ), ℎ⟩,

• if 𝑗 > 1, then 𝛾 𝑗 = argmax
∥ℎ∥2=1

⟨C𝑋 (ℎ), ℎ⟩ and
〈
C𝑋

(
𝛾 𝑗 ′

)
, ℎ

〉
= 0, ∀𝑗 ′ < 𝑗 ,

such that the variance of the random variables 𝜉 𝑗 = ⟨𝛾 𝑗 , 𝑋 ⟩ is maximized. This problem is
well-known to be equivalent to the decomposition of the covariance operator, therefore
the functional PCA is obtained from the eigensystem

C𝑋
(
𝛾 𝑗

)
= 𝜆 𝑗𝛾 𝑗 , (1.16)

where the eigenvalues are positive satisfying 𝜆 𝑗 ≥ 𝜆 𝑗+1,∀𝑗 ∈ N. The solution to 1.16 is
uniquely defined when the 𝜆 𝑗 ’s have multiplicity one. Assuming

〈
𝛾 𝑗 , 𝛾 𝑗 ′

〉
= 𝛿 𝑗, 𝑗 ′ , where

𝛿 𝑗, 𝑗 ′ is the Kronecker delta, this orthonormal property is translated to the 𝜉 𝑗 ’s as following
orthogonal property

E(𝜉 𝑗𝜉 𝑗 ′) =
〈
C𝑋

(
𝛾 𝑗

)
, 𝛾 𝑗 ′

〉
= 𝜆 𝑗𝛿 𝑗, 𝑗 ′ . (1.17)

Additionally, observe that if 𝜆 𝑗 = 0, then 𝛾 𝑗 = 0 (a.e.). Because of 1.16, the current defini-
tion of functional PCA can be modified by substituting the constraint which defines the
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𝑗th eigenfunction by ⟨𝛾 𝑗 ′, ℎ⟩ = 0,∀𝑗 ′ < 𝑗 , which allows for other geometrical modifica-
tions as discussed in [224].

Proposition 1. Let 𝑋 : Ω → 𝐻 be a random variable and (𝜆 𝑗 , 𝛾 𝑗 ) 𝑗∈N the eigensystem of C𝑋
such that the 𝛾 𝑗 ’s form an orthornormal family and (𝜆 𝑗 ) ⊆ R is a sequence of values sorted in a
decreasing order. Then,

• (𝛾 𝑗 ) 𝑗∈N determine the functional PCA via ⟨𝛾 𝑗 , 𝑋 (𝜔)⟩;

• (𝜉 𝑗 ) 𝑗∈N are uncorrelated random variables and E𝜉2𝑗 = 𝜆 𝑗 ;

• (𝜆 𝑗 ) 𝑗∈N is a decreasing sequence of distinct nonnegative real values that converge to zero.

Therefore, if C𝑋 admits spectral decomposition, the expression for the KL expansion is

𝑋 (𝜔) =
∞∑︁
𝑗=1

𝜉 𝑗 (𝜔)𝛾 𝑗 , (1.18)

where 𝜉 𝑗 (𝜔) = ⟨𝛾 𝑗 , 𝑋 (𝜔)⟩.

Theorem 1 (Ocaña et al. [224], Theorem 4.10). Let 𝐻 be defined by any continuous inner
product ⟨·, ·⟩𝜏 such that for a symmetric positive definite operator T : (𝐻, ⟨·, ·⟩𝜏 ) ↦→ (𝐻, ⟨·, ·⟩𝜏 )
one can define

⟨𝑓 , 𝑔⟩𝜌 = ⟨T(𝑓 ), 𝑔⟩𝜏 = ⟨T1/2(𝑓 ),T1/2(𝑔)⟩𝜏 . (1.19)

Then, the functional PCA of 𝑋 with ⟨·, ·⟩𝜌 is equivalent to the functional PCA of T1/2(𝑋 ) with
⟨·, ·⟩𝜏 , in the sense that their KL expansions with both inner products are related as follows:

• 𝑋 (𝜔) = ∑
𝑗 𝜉 𝑗 (𝜔)𝛾 𝑗 ( functional PCA of 𝑋 with ⟨·, ·⟩𝜌);

• T1/2(𝑋 ) (𝜔) = ∑
𝑗 𝜉 𝑗 (𝜔)T1/2 (

𝛾 𝑗
)

( functional PCA of T1/2(𝑋 ) with ⟨·, ·⟩𝜏 ).

As observed, the PCs remain unchanged, and the eigenfunctions are related by T1/2.

Theorem 1 establishes the existence of a bijective linear map between two Hilbert
spaces that preserves the inner product structure. This result is critical for the empirical
computation of the functional PCA and will be taken into account in Chapter 2.

The first major consequence of KL expansion is that it leads to an explicit charac-
terization of the reproducing kernel Hilbert space (RKHS) of 𝑋 , in particular for all the
elements in 𝐻 which are, under certain conditions, in the closure of the span of the 𝛾 𝑗 ’s.
This aspect is thoroughly discussed in Chapter 2. Furthermore, the current theory can
be extended to spaces of the type 𝐻 ≡ 𝐻1 × 𝐻2 × · · · × 𝐻𝑛 (cartesian product), each of
those corresponding to an 𝐻-valued random variable; see, for example, [132, 157, 248].
We have developed methods for analyzing groups of 𝐻-valued random variables (multi-
variate functional data) in our experimental studies.
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2 | Functional independent
component analysis

This chapter presents a summarized compendium of the following papers/manuscripts:

• [305] VIDAL, M., ROSSO, M., AND AGUILERA, A. M. (2021). Bi-smoothed functional inde-
pendent component analysis for EEG artifact removal. Mathematics, 9(11):1243.

• [298] VIDAL, M. AND AGUILERA, A. M. (2022). Novel whitening approaches in functional
settings. Stat, 12(1):e516.

• [302] VIDAL, M., LEMAN, M., AND AGUILERA, A. M. (2024a). Functional independent
component analysis by choice of norm: a framework for near-perfect classification. Under
review.

The above papers have been synthesized in one single chapter to maintain a coherent
discourse in the dissertation. Here, we begin with a concise introduction to multivariate
independent component (IC) models and discuss the concept of separability, which is
critical to ICA and functional ICA. In §2.2, we establish the conditions for the existence
of a whitening transformation in infinite-dimensional spaces, a pre-processing step of-
ten used in the majority of ICA algorithms. Further, in §2.3, we introduce the notion
of whitening operator, study the properties of various whitening transformations, and
derive computational algorithms for the estimation of the proposed transformations in
terms of basis expansions. Both sections contain the main theoretical results published
in [298]. Subsequently, in §2.3, the functional IC model is introduced, and we provide
a formal definition of the kurtosis operator. In the next sections, two novel smoothed
functional ICA models based on kurtosis are presented. The former (§2.5) is based on
the notion of penalized kurtosis, a concept that follows from Silverman’s method [278]
for smoothing principal components we introduce in [302]. There, the penalties are
directly imposed to the eigenfunctions of the kurtosis operator. The latter (§2.6), uses
the original Silverman’s method to estimate functional ICA on a suitable smoothed KL
expansion via the KL coefficients (see [305]). Furthermore, in §2.7 we present the theo-
retical properties of the kurtosis operator in relation to a generalized Fisher discriminant
function and the relationship it entails with the Feldman-Hájek dichotomy for Gaussian
measures. Current theoretical results can be found in [302]. Finally, we illustrate the
performance of our methods through simulations and the analysis of various real datasets
in binary classification problems.

§ 2.1. Independent component model and separability:
from finite to infinite

ICA was motivated by neurophysiological challenges in the 1980-90s, as PCA encoun-
tered limitations to accurately separate mixed signals into their underlying independent
components (ICs). See e.g., [139], or [126] for instructive examples. Since then, there has
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been a substantial body of research on various types of ICA procedures and their inter-
pretations. In general, these procedures can be categorized into two main classes: one
involves specifying a particular parametric model for the distributions of the ICs, while
the other adopts a semiparametric or non-parametric approach that makes no or weak
assumptions about their underlying distributions.

In the classical multivariate ICA model, it is assumed that a centered 𝑝-variate random
vector𝑋 is a linear mixture of a 𝑝-variate vector of mutually ICs. The model is commonly
expressed as 𝑋 = 𝐴𝑆 , where 𝐴 ∈ R𝑝×𝑝 is a nonsingular matrix and 𝑆 a random vector of
ICs. The goal is therefore to estimate 𝐴 and 𝑆 given only 𝑋 , which is challenging due to
inherent indeterminacies of the model, such as 𝐴 being unidentifiable. Nevertheless, if
𝑆 has non-Gaussian components and 𝐴𝑆 is again independent, it is possible to show that
𝐴 can be represented as, at most, the product of a permutation and scaling within the
components. This result was initially validated in [64] through the following theorem:

Theorem 2 (Darmois–Skitovitch Theorem [127, 191, 281]). Suppose 𝑆1, . . . , 𝑆𝑛 are inde-
pendent random variables, and let

𝐿1 =

𝑛∑︁
𝑗=1

𝑎 𝑗𝑆 𝑗 and 𝐿2 =

𝑛∑︁
𝑗=1

𝑏 𝑗𝑆 𝑗 (2.1)

be two linear forms with (𝑎 𝑗 , 𝑏 𝑗 ) ∈ R. If we assume 𝐿1 ⊥⊥ 𝐿2, then all 𝑆 𝑗 for which 𝑎 𝑗𝑏 𝑗 ≠ 0 are
normally distributed.

Darmois-Skitovich’s Theorem establishes that those 𝑆 𝑗 in 2.1 must be Gaussian if 𝐿1 and 𝐿2
are independent. The theorem indirectly supports the that if the components of 𝑆 can be
assumed non-Gaussian, they can be uniquely recovered (up to scaling and permutation);
see [64], also [290] for results in the multivariate and complex setting. Valderrama and
Aguilera [293] further used Theorem 2 to establish a sufficient condition for Gaussianity
of a random vector via its PCA.

Under mild assumptions on 𝑆 , Theis [291], following [64], demonstrated the identi-
fiability1 of the ICA model under general settings without resorting to Theorem 2. This
leads to the following theorem, which is derived within the framework of a noiseless IC
model, with as many sources (or ICs) as observations.

Theorem 3 (ICA separability, Theis [291], Theorem 2). Let 𝑆 be a 𝑝-variate independent
random vector and 𝐴 ∈ R𝑝×𝑝 a nonsingular matrix. Assume one of the following hypothesis:

1. 𝑆 has, at most, one Gaussian or deterministic component2 and admits second order moments.

2. 𝑆 has non-Gaussian components, and its probability density function 𝑃𝑆 exists and is twice
continuously differentiable.

Then, if 𝐴𝑆 is again independent, the matrix 𝐴 is equivalent to the identity.

Denote by C𝑟 (𝑈 ;𝑉 ) the ring of continuously differentiable functions of order 𝑟 , from
𝑈 ⊂ R𝑝 to 𝑉 ⊂ C, with 𝑈 open. Proof of Theorem 3 builds upon the fact that among all
densities and characteristic functions, the Gaussians satisfy the differential equation

𝑎𝑓 2 − 𝑓 𝑓 ′′ + 𝑓 ′2 ≡ 0, 𝑓 ∈ C2(R;C), 𝑎 ∈ C, (2.2)
1That is, the possibility of determining the mixing matrix 𝐴.
2𝑆 is said to have a Gaussian component if one of its components, say, 𝑆 𝑗 is Gaussian, i.e., 𝑃𝑆 𝑗

(𝑥) =
𝑑 exp(−𝑎𝑥2 + 𝑏𝑥 + 𝑐) with (𝑎, 𝑏, 𝑐, 𝑑 ∈ R, 𝑎 > 0), while deterministic means that the component is constant.
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whose solutions are 𝑓 ≡ 0 or 𝑓 (𝑢) = exp
(
𝑎
2𝑢

2 + 𝑏𝑢 + 𝑐
)
, with 𝑢 ∈ R and 𝑏, 𝑐 ∈ C (see

[291, Lemma 3]). Furthermore, the author presents the following Lemma to complete
the proof.

Lemma 3 (Theis [291], Lemma 4). Let 𝑔𝑖 ∈ C2(R;C) and 𝐵 a 𝑝 × 𝑝 invertible matrix such
that for 𝑥 ∈ R𝑝 the factorization 𝑓 (𝑥) ≡ 𝑔1 ·𝑔2 · · ·𝑔𝑝 (𝐵𝑥) holds. Then for all indices ℓ and 𝑖 ≠ 𝑗

with 𝐵ℓ𝑖𝐵ℓ 𝑗 ≠ 0, 𝑔ℓ satisfies 2.2 for some constant 𝑎.

Indeed, Theorem 3 confirms the separability of the linear IC model: if 𝑋 = 𝐴𝑆 and
𝑊 is a demixing matrix such that𝑊𝑋 is independent, then𝑊𝐴 ∼ 𝐼𝑝 , implying𝑊 −1 ∼ 𝐴.
Naturally,𝑊 = 𝐴−1 = 𝑈 ⊤Σ−1/2, where𝑈 is unitary (𝑈 ⊤𝑈 = 𝐼𝑝) and Σ = cov(𝑋 ), therefore
𝑊 demixes 𝑋 into a random vector of ICs. In view of the current results, Nordhausen and
Oja [218] propose a more precise characterization of the ICA model, which intuitively
draws some analogies with the definition of independence provided in §1.3.

Definition 4 (ICA model, Nordhausen and Oja [218], §3.1). Let 𝑋 be a centered 𝑝-variate
random vector. Then, 𝑋 follows an IC model if

𝑋 = 𝐴𝑆 = 𝐴1𝑆1 +𝐴2𝑆2, (2.3)

where 𝐴 = (𝐴1, 𝐴2) ∈ R𝑝×𝑝 is nonsingular with 𝐴1 ∈ R𝑝×𝑞, 𝐴2 ∈ R𝑝×(𝑝−𝑞) . The random vector
𝑆 = (𝑆⊤1 , 𝑆

⊤
2 )
⊤ verifies (i) var (𝑆𝑖) = 1 (𝑖 = 1, . . . , 𝑝), (ii) 𝑆1 ⊥⊥ 𝑆2 (iii) the components of 𝑆1 are

independent non-Gaussian and of 𝑆2, independent Gaussian.

As shown in Theorem 3, it is often presumed that 𝑞 = 𝑝 − 1, which implies at most
one component is Gaussian. Meanwhile, the model formulation in Definition 4 appears
to be more flexible, as it does not strictly require 𝑆2 to have a specific dimension.

Now, let’s shift our focus back to the Hilbert space setting discussed in Chapter 1.
Extending the notion of separability to infinite dimensions brings forth several inherent
challenges. Gutch and Theis [109] based on Theorem 3, provided the following result in
this respect:

Theorem 4 (Gutch and Theis [109], Theorem 1). Let (𝐻, ⟨·, ·⟩) be a separable Hilbert space
and 𝑆 a𝐻-valued independent random variable whose characteristic function is twice differentiable.
Suppose 𝐴 : 𝐻 → 𝐻 is a linear operator with bounded inverse, and let 𝑋 = 𝐴𝑆 be again
independent. If one considers an arbitrary orthonormal basis (𝑒𝑘)𝑘∈N of 𝐻 , and there exist indices
𝑖 ≠ 𝑗 ∈ N such that ⟨𝑒𝑖, 𝐴𝑒𝑘⟩ ≠ 0 ≠ ⟨𝑒 𝑗 , 𝐴𝑒𝑘⟩, then the 𝑘th component of 𝑆 has to be Gaussian.

Proof of Theorem 4 depends on a Lemma where it is assumed that for twice differen-
tiable operators T𝑘∈N : 𝐻 → C and all 𝑥 ∈ 𝐻 , the infinite product

∏∞
𝑘=1T𝑘 (𝑥) converges

to a twice differentiable function T(𝑥), such that

T𝜕𝑖𝜕 𝑗T − (𝜕𝑖T)
(
𝜕 𝑗T

)
≡
∞∑︁
𝑘=1

(∏
𝑙≠𝑘

T𝑙

)2 [
T𝑘

(
𝜕𝑖𝜕 𝑗T𝑘

)
− (𝜕𝑖T𝑘)

(
𝜕 𝑗T𝑘

) ]
. (2.4)

The authors start from the premise that if 𝑋 is independent, its characteristic function is
equal to the product of the component densities evaluated at ⟨𝑥, 𝑒𝑘⟩, i.e.,

𝑋 (𝑥) = E[exp(𝑖⟨𝑋, 𝑥⟩)] =
∞∏
𝑘=1

𝑋𝑘 (⟨𝑥, 𝑒𝑘⟩) , (2.5)
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where 𝑋𝑘 ≡ ⟨𝑋, 𝑒𝑘⟩ is the 𝑘th component of 𝑋 , and 𝑥𝑘 ≡ ⟨𝑥, 𝑒𝑘⟩ the 𝑘th component of 𝑥 .
Evaluating the right hand side of 2.4 with T𝑘 (𝑥) = 𝑋𝑘 (𝑥𝑘), then, whenever 𝑖 ≠ 𝑗 ,

𝑋𝜕𝑖𝜕 𝑗𝑋 −
(
𝜕𝑖𝑋

) (
𝜕 𝑗𝑋

)
≡ 0. (2.6)

This also applies to 𝐴𝑆 , and is used to complete the proof. For further details, we refer
to Theorem 1 and Lemma 4 in [291], as complements to the proof of Theorem 1 in [109]
(here, Theorem 4). Further, see [191] for additional considerations on the idempotency
of the characteristic functions in the induced linear combinations.

If the inverse of the operator𝐴 exists, then it is continuous and defined for all elements
of 𝐻 . This implies that 𝐴 is both injective (one-to-one) and surjective (onto), meaning it
establishes a bijective mapping between elements of the domain and codomain. This iso-
morphism is interpreted in the following sense: if ⟨𝑒𝑖, 𝐴𝑒𝑘⟩ ≠ 0 ≠ ⟨𝑒 𝑗 , 𝐴𝑒𝑘⟩ (this operation
describes specific non-orthogonal relationships with regard to an arbitrary orthonormal
basis of 𝐻 ), then the components of 𝑆 must be Gaussian, and any mixing of the compo-
nents of 𝑆 into more than one component of 𝑋 will be Gaussian too (because we assume
independence). If none of the components of 𝑆 are Gaussian but independent, then 𝐴

maps each component of 𝑆 to a single component of 𝑋 , therefore 𝐴 = 𝐼𝐻 .
Although general grounds for separability have been provided, those may be deemed

somewhat artificial as the law of 𝑋 may not allow for a linear transformation resulting in
independent components. Therefore, a more explicit characterization of the problem is
necessary since the model outlined becomes too restrictive. In the presence of numer-
ous Gaussian sources, the non-Gaussian ones may be barely distinguishable. Conversely,
when the number of Gaussian sources is limited to a few or one, their separation becomes
optimal (assuming they are independent, although this is not always the case [268]). In a
broad sense (take e.g. Definition 4), the objective is to maximize the non-Gaussianity of
the sources by separating the ones that do not contribute to make the model fully identi-
fiable. Although yet unexplored in functional settings, these issues have been previously
studied, for example, in [129, 198]. Current notion of decomposition in ICs based on
non-Gaussianity founds a reasoning in the central limit theorem and in the framework
of information geometry [57].

Taking into account the preceding factors, pre-whitening the data –essentially, en-
suring linear independence by eliminating second-order correlations– is a common and
useful step to enhance the identification of the ICs. However, extending this procedure to
infinite-dimensional spaces carries certain problems due to the covariance operator hav-
ing unbounded inverse. This is discussed in the following sections, and the functional
ICA model will be presented afterwards.

§ 2.2. The Cameron-Martin space geometry

Next, we assume a common scenario in functional data where 𝐻 is a separable space of
real-valued functions on a closed interval I = [0,𝑇 ],𝑇 > 0 with inner product operator
⟨·, ·⟩ : 𝐻 × 𝐻 → R and norm ∥ · ∥ : 𝐻 → [0,∞). Given a probability space (Ω,A, 𝑃), a
𝐻-valued random functional variable is the mapping 𝑋 : Ω → 𝐻 that is B𝐻-measurable,
where B𝐻 is the 𝜎-field generated by the class of all open subsets of 𝐻 .

Suppose E∥𝑋 ∥2 < ∞. Then, 𝑋 has mean function 𝜇 = E𝑋 and covariance operator
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C𝑋 = E{(𝑋 − 𝜇) ⊗ (𝑋 − 𝜇)} admitting the spectral representation

C𝑋 =

∞∑︁
𝑗=1

𝜆 𝑗 (𝛾 𝑗 ⊗ 𝛾 𝑗 ) =
∞∑︁
𝑗=1

𝜆 𝑗P𝛾 𝑗 , (2.7)

where 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 is its set of non-negative eigenvalues converging to zero and
(𝛾 𝑗 ) 𝑗∈N an orthonormal basis of corresponding eigenfunctions. We employ the notation
P𝛾 𝑗 = 𝛾 𝑗 ⊗ 𝛾 𝑗 for the projection of 𝐻 into the one dimensional eigenspace spanned by 𝛾 𝑗 .
Unless otherwhise stated, we assume that C𝑋 has strictly positive eigenvalues, hence C𝑋
is injective. Furthermore, as C𝑋 is a self-adjoint positive operator, consider there exists
the operator C

1/2
𝑋

such that (C1/2
𝑋
)2 = C𝑋 .

Definition 5 (Vidal and Aguilera [298], Definition 1). The whitening operator Ψ transforms
a functional variable 𝑋 into a new element X = Ψ(𝑋 −𝜇) with zero mean and covariance operator
being exactly the identity.

We note that there is no convention in how mean-centering should be performed, if
before or after the transformation. In the sequel it will be assumed that 𝜇 = 0.

A natural way to produce a whitening operator is via factorization of the precision
(the inverse of C𝑋 ), which suggests the expression Ψ∗Ψ = C−1

𝑋
, where Ψ∗ is the adjoint of

Ψ. A priori, major drawbacks might arise in this context, as the precision operator turns
out to be unbounded and, in general, 𝑋 does not belong to its domain (see, for example,
[190, §2.2] ). One should therefore proceed with care, as even considering certain kinds
of regularization, Ψ(𝑋 ) may not exist in the sense of Definition 5. We discuss how Ψ can
also be correctly validated to lead to a number of whitening operators in the functional
setting through a particular space geometry.

The Cameron-Martin (CM) space can be defined as a certain completion of 𝐻 with
respect to the norm induced by a Gaussian measure. Originally, this space was associated
with a Wiener measure due to the investigations conducted by Cameron and Martin [53]
on its kernel. However, the name CM space has since been extended to encompass affine
transformations of Wiener measures as well as other Gaussian distributions. Following
the factorization Theorem [178, §4.2], the usual definition of a CM space is as follows:

M =

{
𝑦 ∈ 𝐻 :

∞∑︁
𝑗=1

〈
𝑦,𝛾 𝑗

〉2
𝜆 𝑗

< ∞
}

with ⟨𝑓 , 𝑔⟩M =

∞∑︁
𝑗=1

〈
𝑓 , 𝛾 𝑗

〉 〈
𝑔,𝛾 𝑗

〉
𝜆 𝑗

, (2.8)

for 𝑓 , 𝑔 ∈ M. Note the CM space is not only a Hilbert space but also a RKHS.
For𝑦 ∈ 𝐻 , the necessary and sufficient condition that𝑦 ∈ ran(C𝑋 ) belongs to ran(C𝑋 )

is that
∑∞
𝑗=1 𝜆

−1
𝑗

〈
𝑦,𝛾 𝑗

〉2
< ∞. Casting the current law is not a mere procedural step,

as the range space of C𝑋 only becomes closed under the norm induced by the RKHS
topology or finite dimensional dependency (see §2 and Proposition 2.2 in [211]). In a
more general scenario, the fact that the M norm must be finite is commonly referred to as
Picard’s condition. This condition is typically formulated with the covariance operator’s
eigenvalues squared (see [264, pp. 158]), making it more stringent.

Here, we will use of 2.8 to reparametrize the random variable 𝑋 to have the identity
as covariance operator in M, and through it define a family of whitening transformations.
Note that the inner product in 2.8 can be written as ⟨𝑓 , 𝑔⟩M = ⟨C1/2†

𝑋
𝑓 , C

1/2†
𝑋

𝑔⟩, where
C
1/2†
𝑋

denotes the Moore-Penrose inverse of C1/2
𝑋

[123, §3.5.7]. Some authors have added
a regularization term in the inner product to assure convergence in norm [32].
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§ 2.3. Optimal whitening transformations

Whitening operators
A whitening operator can be defined as a two-step transformation, with representation
Ψ : M → M, restricted to map elements in the range of C𝑋 . Therefore, the other part
of the mapping comprises a projection into the space generated by (𝛾 𝑗 ) 𝑗∈N, so that 𝑋
becomes entirely determined by the covariance operator C𝑋 before whitening. Unless
otherwise stated, in the following sections we reset 𝑋 to the range space of C𝑋 , hence
the proposed whitening operators map elements of the kind

∑∞
𝑗=1⟨·, 𝛾 𝑗 ⟩𝛾 𝑗 .

The most typical whitening transformation is obtained via square root factorization
of the precision operator C

†
𝑋

, which stands as a direct extension of the popular zero phase
component analysis multivariate whitening [26]. The aforementioned operator is here
denoted by Ψ𝛾⊗𝛾 , and its spectral decomposition is straightforwardly written as

Ψ𝛾⊗𝛾 = C
1/2†
𝑋

=

∞∑︁
𝑗=1

𝜆
−1/2
𝑗
(𝛾 𝑗 ⊗ 𝛾 𝑗 ). (2.9)

Now, we describe some properties of this mapping.

Proposition 2 (Vidal and Aguilera [298], Proposition 1). The covariance operator of X =

UΨ𝛾⊗𝛾 (𝑋 ) satisfies the identity in M for any unitary transformation U in ran(C1/2
𝑋
), the closure

of the range space of C
1/2
𝑋

.

The rotational freedom induced by the nature of a whitening transformation leads us to
the possibility of defining a family of whitening operators, as detailed below.

A slight modification in 2.9 alternatively yields the non-symmetric whitening oper-
ator

Ψ𝛾⊗𝑒 =
∞∑︁
𝑗=1

𝜆
−1/2
𝑗
(𝛾 𝑗 ⊗ 𝑒 𝑗 ), (2.10)

where (𝑒 𝑗 ) 𝑗∈N is a fixed orthonormal basis of 𝐻 . In fact, here we see the role of operator
Uas the agent of sending 𝛾 𝑗 to 𝑒 𝑗 3. Current operator follows the principles of [96], which
only considers a single rotation of the covariance matrix eigenvectors.

To further extend the class of whitening operators, one can consider a succinct form
of standardization by defining the diagonal operator V =

∑∞
𝑘=1 P𝑒𝑘 C𝑋P𝑒𝑘 , where P𝑒𝑘 =

(𝑒𝑘 ⊗𝑒𝑘). The operator V is not unique as it depends on an arbitrary orthonormal basis of
𝐻 . In other words, there is no privileged orthonormal basis on𝐻 to define V, and for each
one of them different operators can be obtained. This way, the notion of standardization
in multivariate analysis can be extended to the functional case by the operator V1/2†,
where V1/2† is the Moore Penrose inverse of V1/2. Further usefulness of this operator
will become clear in the following lines.

Two whitening procedures with appealing properties were defined in [145] by con-
straining the arbitrariness of the transformation to inherent autocorrelations. Next, we
will suppose that R : M→ M defined as R = V1/2†C𝑋 V1/2† is a self-adjoint HS operator,
with associated singular system (𝜌 𝑗 , 𝜑 𝑗 ) 𝑗∈N, with 𝜌1 ≥ 𝜌2 ≥ · · · > 0.

3Note, e.g.,
(
𝑒 𝑗 ⊗ 𝛾 𝑗

)
(𝛾𝑖 ) = 𝛿𝑖 𝑗𝑒 𝑗
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Remark 3. Suppose 𝑋 is expanded as 𝑋 =
∑∞
𝑘=1⟨𝑋, 𝑒𝑘⟩𝑒𝑘 and note the following:

V=

∞∑︁
𝑘=1

P𝑒𝑘 C𝑋P𝑒𝑘 =

∞∑︁
𝑘=1
⟨C𝑋𝑒𝑘 , 𝑒𝑘⟩P𝑒𝑘 =

∞∑︁
𝑘=1

E(⟨𝑋, 𝑒𝑘⟩2) (𝑒𝑘⊗𝑒𝑘) =
∞∑︁
𝑘=1

𝜂𝑘 (𝑒𝑘⊗𝑒𝑘). (2.11)

Now, consider the operator

R ≡ E
©­«
∞∑︁
𝑗=1

⟨𝑋, 𝑒 𝑗 ⟩
𝜂
1/2
𝑗

𝑒 𝑗 ⊗
⟨𝑋, 𝑒 𝑗 ⟩
𝜂
1/2
𝑗

𝑒 𝑗
ª®¬ . (2.12)

Observe that V1/2†C𝑋 V1/2† =
∑∞
𝑗=1 𝜂

−1/2
𝑗

E(P𝑒 𝑗𝑋 ⊗ P𝑒 𝑗𝑋 )𝜂
−1/2
𝑗

, where V† is the Moore-
Penrose inverse of V=

∑∞
𝑗=1 𝜂 𝑗P𝑒 𝑗 . This shows that V1/2†C𝑋 V1/2† is equivalent to the operator

R, as defined in 2.12, which bears resemblance to the classical correlation matrix in the multivariate
setting.

The operator R and its spectral decomposition leads to an eigenspace that will be of
use in combination to V1/2†. Thus, there is no loss of generality in assuming that

Ψ𝜑⊗𝜑 = R1/2†V1/2† =

{ ∞∑︁
𝑗=1

𝜌
−1/2
𝑗
(𝜑 𝑗 ⊗ 𝜑 𝑗 )

}
V1/2†, (2.13)

or analogously to 2.10,

Ψ𝜑⊗𝑒 =

{ ∞∑︁
𝑗=1

𝜌
−1/2
𝑗
(𝜑 𝑗 ⊗ 𝑒 𝑗 )

}
V1/2† (2.14)

satisfies the usual properties of a whitening transformation in the sense of Definition 5.
Both operators decline the span of C𝑋 by its diagonal, merging it with the spectral de-
composition of R, which leads to a non-symmetric operator. In turn, the operator Ψ𝜑⊗𝜑
is up to permutation or sign changes but also invariant under unitary transformations
within the subspace spanned by the eigenvectors of R. Again, we can write UΨ𝜑⊗𝜑 ,
where U denotes a unitary operator in the range of R1/2†V1/2†.

Triangular factorization of self-adjoint and positive operators, might provide us an-
other whitening procedure closely related to the Cholesky decomposition of the preci-
sion matrix. Due to a result of Krein (see Theorem 3.4.5 in [20]), the usual precision
operator can be factored as

(𝐼𝐻 + C𝑋 )−1 = (𝐼𝐻 − Δ∗) (𝐼𝐻 − Δ), (2.15)

where Δ is a triangular Volterra operator on 𝐻 = 𝐿2
I

and Δ∗ its adjoint. The factorization
in 2.15 leads to the operator ΨΔ = (𝐼𝐻 − Δ), which can be used for whitening. However,
the properties of these transformations are beyond the scope of this thesis.

Optimal functional whitening
Similarly to the multivariate case, optimality in a functional whitening transformation
can be identified in two different ways. The first corresponds to a problem aiming to find
a component wise transformation that is closer to the original functional variable using
some measure of adjustment or resemblance. The second is related to the ability of the
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whitening operator to compress the original functional variable and retain the maximum
information content.

The adjustment between the original projected and whitened functional variable is
measured by the minimization of

E∥𝑋 −X∥2 = tr(C𝑋 ) − 2tr(C𝑋X) + tr(CX), (2.16)

where C𝑋X = E(𝑋 ⊗X) is the cross-covariance operator between 𝑋 and X. As 2tr(C𝑋X)
is the only dependent between the original and the whitened variable, the minimization
problem can be reduced to the maximization of tr(C𝑋X). We implicitly assume that X
falls in a space with the usual inner product and that 𝑋 lies in the closure of M.

Proposition 3 (Vidal and Aguilera [298], Proposition 2). The whitening operator Ψ𝛾⊗𝛾 is
the unique transformation that minimizes E∥𝑋 −X∥2.

The least-squares problem in Proposition 3, however, is restrictive in the sense that it
only allows to quantify the goodness of fit of the whitening transformation without not
being further explanatory of correlations or level of compression. For a correlation-based
similarity objective, a scale-invariant measure is usually required. Here, we consider a
functional extension of the criteria used in [145], consisting of the minimization of the
mean squared error between the standardized functional variable and the whitened one.
The operator V1/2† scales the original variable without removing correlations, allowing
to construct a scale invariant measure without being necessary to compute derivatives.
The optimality objective is then expressed as

E∥V1/2†(𝑋 ) −X∥2 = tr{CV1/2† (𝑋 )} − 2tr{CV1/2† (𝑋 )X} + tr(CX), (2.17)

which corresponds to the maximization of tr{CV1/2† (𝑋 )X}.

Proposition 4 (Vidal and Aguilera [298], Proposition 3). The whitening operator Ψ𝜑⊗𝜑 is
the unique transformation that minimizes E∥V1/2†(𝑋 ) −X∥2.

Remark 4. Do note that in 2.16, 2.17, tr(CX) diverges (the trace of CX is an infinite sum of ones).
However, the aforementioned term is not accounted for in the proof. In order for these distances to
converge, one has to consider regularization, finite KL expansions or a weaker norm. Furthermore,
in 2.16, C𝑋X coincides with C

1/2
𝑋

if Ψ ≡ C
1/2†
𝑋

. Note we only know that this operator belongs
to the class of H-S operators ( from the trace property of the autocovariance operator), but this
fact does not necessarily imply C

1/2
𝑋

has finite trace. Hence, we further assume that under mild
conditions, tr(C1/2

𝑋
) < ∞ holds.

Robustness in small local changes is not necessarily guaranteed when a whitening
transformation is based on minimal least squared adjustment. To measure the degree of
compression of a whitening transformation, Kessy et al. [145] used the row sum of squared
cross-covariance and cross-correlations between the components of the whitened and the
original random vector. Then, a monotonically decreasing condition on the resultant
variance is established to be maximized. As one might suspect, a similar approximation
can be developed in the functional data setting.

First, note that the operators C𝑋X and CX𝑋 are not self-adjoint, whereas C𝑋X is the
adjoint of CX𝑋 . Define then the compound operator C𝑋X ◦ C𝑋X, which is self-adjoint
and compact.
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More formally, a way to measure how the whitening operator effectively compresses
the original functional variable in terms of a cross-covariance relation is by

𝜎cov = sup
∥𝑒𝑘 ∥=1

⟨𝑒𝑘 , CX𝑋 ◦ C𝑋X (𝑒𝑘)⟩ . (2.18)

We can similarly proceed for the cross-correlation operator, now defined in the same
sense of [162] as R𝑋X = C

1/2†
𝑋

C𝑋XC
1/2†
X

. Thus, if the aim is to maximize the compression
under a cross-correlation measure, we look for the maximization of the rate

𝜎corr = sup
∥𝑒𝑘 ∥=1

⟨𝑒𝑘 ,RX𝑋 ◦R𝑋X (𝑒𝑘)⟩ . (2.19)

Simulations conducted in [298] show that the whitening operators Ψ𝛾⊗𝑒 and Ψ𝜑⊗𝑒 maxi-
mize the proposed compression rates.

Finite dimensional approximation
Let 𝑋𝑖 (𝑖 = 1, . . . , 𝑛) be 𝑛 independent copies of 𝑋 not directly observable. The curves 𝑋𝑖
are reconstructed from a vector of measurements collected in a finite set of equidistant
time points 𝑡𝑖0, 𝑡𝑖1, . . . , 𝑡𝑖𝑚𝑖

, contaminated with additive independent errors, i.e., 𝑋𝑖𝑘 =

𝑋𝑖 (𝑡𝑖𝑘) + 𝜖𝑖𝑘 (𝑘 = 0, . . . ,𝑚𝑖). Suppose the observations are assumed in a 𝑞-dimensional
space𝐻 [𝑞] of𝐻 spanned by a collection of basis functions 𝜙 = (𝜙1, . . . , 𝜙𝑞)⊤ not necessarily
orthonormal in the usual sense. For two functions 𝑓 = 𝜙⊤f and 𝑔 = 𝜙⊤g, the inner
product is defined by ⟨𝑓 , 𝑔⟩ = f⊤Gg, where G∈ R𝑞×𝑞 is the Gram matrix of inner products
between pairs of basis functions. Then, 𝑋𝑖 can be expressed as the vector valued function
𝑋 (𝑡) = 𝐴𝜙 (𝑡), where 𝐴 ∈ R𝑛×𝑞 is a matrix of coefficients and 𝜙 (𝑡) = (𝜙1(𝑡), . . . 𝜙𝑞 (𝑡))⊤.

The 𝑞-dimensional sample covariance operator C
[𝑞]
𝑋

is defined for any 𝑓 ∈ 𝐻 [𝑞] as

C
[𝑞]
𝑋
(𝑓 ) = ⟨𝐶 [𝑞] (𝑠, ·), 𝑓 ⟩ (2.20)

where 𝐶 [𝑞] is the covariance kernel function of 𝑋 admitting the following matrix repre-
sentation

𝐶 [𝑞] (𝑠, 𝑡) = 𝑛−1𝑋 (𝑠)⊤𝑋 (𝑡)
= 𝜙 (𝑠)⊤G−1/2(𝑛−1G1/2𝐴⊤𝐴G1/2)G−1/2𝜙 (𝑡)
= 𝜙 (𝑠)⊤Σ𝐴G1/2𝜙 (𝑡).

(2.21)

Then, the coordinates of 𝐶 [𝑞] can be expressed in terms of an orthonormalized basis
𝜙 (𝑡) = G−1/2𝜙 (𝑡) as 𝑛−1G1/2𝐴⊤𝐴G1/2 = Σ𝐴G1/2 . The matrix Σ𝐴G1/2 ∈ R𝑞×𝑞 has the eigen-
decomposition Σ𝐴G1/2 = 𝑈Λ𝑈 ⊤ where𝑈 are eigenvectors and Λ is a diagonal matrix with
entries the eigenvalues of Σ𝐴G1/2 . The eigenfunctions of C

[𝑞]
𝑋

are then defined as 𝛾 (𝑡) =
𝐵𝜙 (𝑡) with 𝐵 = G−1/2𝑈 . Further, consider the decomposition Σ𝐴G1/2 = 𝐷1/2𝑅𝐴G1/2𝐷1/2,
where 𝐷 = diag(Σ𝐴G1/2)4 and 𝑅𝐴G1/2 is a matrix capturing the correlations of Σ𝐴G1/2 with
eigendecomposition 𝑅𝐴G1/2 = 𝑉Θ𝑉⊤. With this, we next derive the whitening proce-
dures described in the last subsection. Since the whitening operator described by the
relation 2.15 is not explicitly considered, alternatively, and in the same vein as in [145],
we propose to use a common Cholesky decomposition on Σ−1

𝐴G1/2 to derive a functional
whitening transformation. Normalization is omitted for the sake of clarity.

4See List of Symbols
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Proposition 5 (Vidal and Aguilera [298], Proposition 4). Let us consider the orthonormal-
ized basis 𝑒 (𝑡) = 𝜙 (𝑡) of 𝐻 [𝑞] . Using the functional representation 𝑋 (𝑡) = 𝐴G1/2𝜙 𝑗 (𝑡), the
coefficients of each functional whitening operator are obtained by their respective multivariate
whitening procedures of the orthonormalized coefficient matrix 𝐴G1/2 as follows:

Ψ𝛾⊗𝛾 {𝑋 (𝑡)} = (𝐴G1/2)Σ−1/2
𝐴G1/2𝜙 (𝑡),

Ψ𝛾⊗𝑒{𝑋 (𝑡)} = (𝐴G1/2)𝑈Λ−1/2𝜙 (𝑡),
Ψ𝜑⊗𝜑 {𝑋 (𝑡)} = (𝐴G1/2)𝐷−1/2𝑅−1/2

𝐴G1/2𝜙 (𝑡),

Ψ𝜑⊗𝑒{𝑋 (𝑡)} = (𝐴G1/2)𝐷−1/2𝑉Θ−1/2𝜙 (𝑡),
ΨΔ{𝑋 (𝑡)} = (𝐴G1/2)𝐿𝜙 (𝑡),

(2.22)

where 𝐿 is the solution to the Cholesky factorization 𝐿𝐿⊤ = Σ−1
𝐴G1/2 .

Overall, the proposed estimators can improve the applicability of subsequent reduc-
tion techniques under certain conditions. A whitening transformation based on a corre-
lation measure performs notably well when the aim is to maximize the similarity with
the original curves. However, the statistical interpretability of transformations that max-
imally compress the empirical functions is ambiguous, and routinely it may not be a re-
liable solution unless some high-frequency components of 𝑋 are aimed to be preserved.
Eventually, the use of these operators can enhance performance in functional classifica-
tion the through spectral decomposition of the kurtosis operator (see §2.8), or improve
spatial IC decompositions, particularly in scenarios with low spatial resolution.

§ 2.4. Functional ICA model based on kurtosis

Kurtosis extremization is a common problem addressed in the context of ICA, which is
often referred to by the name of fourth-order blind identification (FOBI); see, for exam-
ple, [219]. While multivariate ICA methods are based on various kinds of non-Gaussian
optimization, functional ICA has primarily been developed using FOBI or related fami-
lies of estimators. This limitation is probably due to the fact that the concept of a density
function is not straightforwardly defined in functional data spaces. Furthermore, in the
absence of a parametric form of the component distribution, one strongly relies on the
topological features of the data. Current functional ICA models are then defined through
functional PC reduction [175, 197, 307], or penalized versions of it to exploit and regulate
the level of smoothness [305] (see, §2.6). These approaches assume that the interesting
ICs lie in the subspace spanned by the first functional principal factors. However, some
ICs could be mixed with the discarded PCs, and there is also little room remaining to
investigate other non-linear structures underlying the original data because the afore-
mentioned models are constrained by the linearity of the PCs. To address this, a more
general approach is proposed in §2.5. It should be stressed that current functional IC
models exploit temporal independence, akin to early developments in ICA for time series
analysis [60, 226].

As has been previously outlined in [305], functional ICA can be summarized in the
following steps:

• Whitening the functional random variable;

• space rotation via scatter operators and spectral decomposition;
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• projection into the space generated by the operator’s eigenfunctions and expansion.

Typically, this procedure is described through a demixing and mixing transformation,
the latter mapping the Hilbert-valued functional independent components into the orig-
inal space of functions.

The model
The functional ICA aims to enhance the estimation of independent components via or-
thogonal rotations of X. Let 𝑈 (M) denote the class of all unitary operators in B(M).
Similarly as in [307], the functional IC model can be expressed as

𝛤 (𝑋 ) = UΨ(P𝛾𝑋 ) = 𝑍, (2.23)

where 𝛤 is commonly known as the demixing operator, U ∈ 𝑈 (M) and 𝑍 is a 𝐻-valued
element with independent component functions satisfying C𝑍 = Pran(Ψ) . Note that P𝛾

is the projection operator into the span of the 𝛾 𝑗 ’s. Another way to see model 2.23 is by
means of a mixing operator 𝐴 ∈ 𝑈 (M) which corresponds to

𝑋 = 𝐴𝑍 (2.24)

where 𝐴 = Ψ−1U. A key question in functional ICA is henceforth how to determine
U. We thus present the properties of the kurtosis operator, previously defined in [232],
whose spectral decomposition will provide us the operator of interest.

Assumption 1. E∥𝑋 ∥4 < ∞ and E∥X∥4 < ∞.

Remark 5. E∥𝑋 ∥4 < ∞ does not imply E∥X∥4 < ∞. In the classical example of whitening
operator defined by the inverse of the square root of the covariance operator, i.e., the operator
generating the bilinear form associated with the inner product in the RKHS, the norm of the
whitened functional random variable is almost surely larger than the norm of the original random
element 𝑋 in 𝐻 . Furthermore, as stated before

E(∥X∥2) = E

( ∞∑︁
𝑗=1

��〈𝑋,𝛾 𝑗 〉��2
𝜆 𝑗

)
=

∞∑︁
𝑗=1

1
𝜆 𝑗
⟨𝛾 𝑗 ,E(⟨𝑋,𝛾 𝑗 ⟩𝑋 )⟩ =

∞∑︁
𝑗=1

𝜆 𝑗

𝜆 𝑗
⟨𝛾 𝑗 , 𝛾 𝑗 ⟩ = ∞. (2.25)

Therefore, we cannot warrant the existence of finite second moments of X: only in finite dimen-
sions, or using a suitable regularization, CX will have finite trace. Nevertheless, observe that by
Parseval’s Theorem

E(∥X∥4) =
∞∑︁
𝑗=1

1
𝜆2
𝑗

⟨𝛾 𝑗 ,E(∥𝑋 ∥2⟨𝑋,𝛾 𝑗 ⟩𝑋 )⟩ =
∞∑︁
𝑗=1

1
𝜆2
𝑗

⟨𝛾 𝑗 ,K𝑋𝛾 𝑗 )⟩ =
∞∑︁
𝑗=1

𝜅 𝑗

𝜆2
𝑗

, (2.26)

where K𝑋 is the kurtosis operator of 𝑋 and 𝜅 𝑗 their corresponding eigenvalues. The convergence
of the above sum depends on the relative decay rates of 𝜅 𝑗 and 𝜆2𝑗 .

Under the above assumption, we can establish the existence of a mapping K : M→ M

with the action X ↦→ KX defined as E{(X ⊗ X)2}. This mapping is referred to as the
kurtosis operator of X and their properties are derived below.
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Proposition 6. The operator KX is self-adjoint, positive definite with finite trace. From the
Hilbert-Schmidt boundeness, KX admits the spectral decomposition

KX =

∞∑︁
𝑗=1

𝜅 𝑗𝜓 𝑗 ⊗𝜓 𝑗 , (2.27)

where (𝜅 𝑗 ) 𝑗∈N is a sequence of strictly positive eigenvalues in decreasing order and (𝜓 𝑗 ) 𝑗∈N the
associated eigenfunctions. The operator KX is unitary equivariant with respect to an unitary
operator U ∈ 𝑈 (M), that is, K(UX + 𝑏) = UKXU∗, for each 𝑏 ∈ M.
Proof. For any 𝑓 ∈ M one can verify that

⟨KX 𝑓 , 𝑓 ⟩ = E
〈
(X ⊗ X)2 𝑓 , 𝑓

〉
= E

(
⟨X,X⟩ ⟨X, 𝑓 ⟩2

)
= E

(
∥X∥2 ⟨X, 𝑓 ⟩2

)
≥ 0, (2.28)

so clearly, K(X) is nonnegative definite. Self-adjointness becomes apparent since, per
definition, KX = E{∥X∥2(X ⊗ X)}. Therefore KX = K∗

X
, where K∗

X
is the adjoint

of KX, and consequently ⟨KX 𝑓 , 𝑔⟩ = ⟨𝑓 ,KX𝑔⟩ with 𝑓 , 𝑔 ∈ M. Self-adjoint operators
are necessarily normal. To show that KX is trace class, consider any orthonormal basis
{𝑒1, 𝑒2, . . .} of M. Similarly as in 2.28, observe that

tr(KX) =
∞∑︁
𝑗=1

〈
KX𝑒 𝑗 , 𝑒 𝑗

〉
=

∞∑︁
𝑗=1

E
(
∥X∥2

〈
X, 𝑒 𝑗

〉2)
= E∥X∥4,

which is finite by our assumptions. According to the spectral theorem, operators satisfy-
ing the above properties are diagonalizable.

To conclude, consider a unitary operator U ∈ B(M) and a location function 𝑏 ∈ M.
Then, we can write

K(UX + 𝑏) = E{(UX ⊗ UX)2} = E{∥UX∥2(UX ⊗ UX)}.
Taking separately both factors of the last expression, we have that ∥UX∥2 =

⟨X, U∗UX⟩ = ∥X∥2 and UX ⊗ UX = U(X ⊗ X)U∗, which follows from the
tensor product properties. As a result, K(UX) = UK(X)U∗, showing that unitary
equivariance holds. ■

Note that the kurtosis operator naturally fosters the properties of the covariance op-
erator. This operator is uniquely determined by the relation

E (⟨𝑓 ,X⟩ ⟨X, 𝑓 ⟩⟨X,X⟩) = ⟨𝑓 ,KX 𝑓 ⟩ , (2.29)

which holds for all 𝑓 ∈ M.
The independent components are of the form ⟨X,𝜓 𝑗 ⟩, where the orthonormal family

(𝜓 𝑗 ) 𝑗∈N, called independent component weight functions, are obtained by solving 𝜓 𝑗 =
argmax𝑓 kurt(⟨X, 𝑓 ⟩) subject to ∥ 𝑓 ∥2 = 1, ⟨𝑓 ,𝜓 𝑗 ⟩ = 0. This way, the kurtosis based func-
tional ICA is determined by the solutions to the eigenproblem

KX

(
𝜓 𝑗

)
= 𝜅 𝑗𝜓 𝑗 . (2.30)

The independent component scores 𝜉 𝑗 = ⟨X,𝜓 𝑗 ⟩ are then generalized linear combinations
of X with maximum kurtosis satisfying kurt(𝜉 𝑗 ) = ⟨KX𝜓 𝑗 ,𝜓 𝑗 ⟩ = 𝜅 𝑗 . It is easy to see that
the model 2.23 is completed by defining U =

∑∞
𝑗=1(𝜓 𝑗 ⊗𝜓 𝑗 ).

Now, assume that 𝜅 𝑗 and𝜓 𝑗 satisfy equation 2.30. Then, lim𝑀→∞
∑𝑀
𝑗=1 𝜉 𝑗𝜓 𝑗 converges

uniformly to X, which is a direct consequence of Mercer’s Theorem for a symmetric
positive-definite operator. Since the correlation structure of 𝑋 is removed in X, note
that the additive sum of projections will be rather changeable if compared with the usual
KL expansion.
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§ 2.5. Kurtosis-based smoothed functional ICA

We next extend the method introduced by Silverman [278] for smoothing principal com-
ponent estimates to functional ICA by introducing the notion of penalized kurtosis. In
doing so, we aim at controlling the smoothness of the IC weight functions by applying
roughness penalties through a second order linear differential operator. The small per-
turbations produced by this type of penalty will presumably have a regularizing effect
on the lower order eigenelements by adjusting possible distortions.

In what follows, we shall consider that M𝜃 is a closed subspace of continuously differ-
entiable functions with weighted Sobolev inner product and corresponding norm

⟨𝑓 , 𝑔⟩𝜃 = ⟨𝑓 , 𝑔⟩ + 𝜃 ⟨𝑅𝑓 , 𝑅𝑔⟩ , ∥ 𝑓 ∥2
𝜃
= ⟨𝑓 , 𝑓 ⟩𝜃 , (2.31)

where 𝜃 ∈ R≥0 is a penalty parameter and 𝑅, a bounded self-adjoint differential operator
on M𝜃 with the action 𝑓 ↦→ 𝑓 ′′. Note that there can exist many smooth eigenspaces as
values are given to 𝜃 and if 𝜃 = 0, then M𝜃 = M.

The spectral decomposition of KX prevails in our model but now imposing orthonor-
mality in terms of ⟨·, ·⟩𝜃 . Analogously to Silverman’s method, the novel penalized IC
approach maximizes

kurt⟨𝑓 ,X⟩
⟨𝑓 , 𝑓 ⟩ + 𝜃 ⟨𝑅𝑓 , 𝑅𝑓 ⟩ =

⟨𝑓 ,KX 𝑓 ⟩
∥ 𝑓 ∥2𝜃

, (2.32)

for all 𝑓 ∈ M𝜃 , 𝑓 ≠ 0. Note that 𝜃 controls the roughness of the function 𝑓 as measured
by the penalty ⟨𝑅𝑓 , 𝑅𝑓 ⟩. Consequently, one can find a collection of smoothed functions
𝜓𝜃, 𝑗 ∈ M𝜃 that maximize 2.32 which is equivalent to solve the following optimization
problem:

𝜓𝜃,1 = argmax
𝑓
⟨𝑓 ,KX 𝑓 ⟩ s. t. ∥ 𝑓 ∥2𝜃 = 1,

𝜓𝜃,𝑘 = argmax
𝑓
⟨𝑓 ,KX 𝑓 ⟩ s. t. ∥ 𝑓 ∥2𝜃 = 1,

〈
𝑓 ,𝜓𝜃, 𝑗

〉
𝜃
= 0, for all 𝑗 < 𝑘, (𝑘 = 2, 3, . . .).

(2.33)

The orthonormal condition over the smoothed IC weight functions is fixed by the inner
product ⟨·, ·⟩𝜃 whereas the kurtosis of the independent components is given by ⟨·, ·⟩. In
this sense, the smoothed IC weight functions form an orthonormal system of M𝜃 .

Under Assumption 1, for any 𝑓 ∈ M𝜃 , 𝜃 ≥ 0, the solutions to the optimization problem
2.33 are given by the equation

⟨𝑓 ,KX𝜓𝜃, 𝑗 ⟩ = 𝜅𝜃, 𝑗
〈
𝜓𝜃, 𝑗 , 𝑓

〉
𝜃
. (2.34)

Proposition 3.1 establishes in same sense as Theorem 3.1 in [243] that the solutions to
2.33 exist almost surely; the details provided there can be succinctly deduced for the
present case. In order to get the main results given in the next section, consider from
Proposition 4.3 in [224] for the covariance operator (functional PCA) that, due to a con-
tinuous assumption on the usual inner product ⟨·, ·⟩ for the new inner product ⟨·, ·⟩𝜃 ,
there exists a positive definite, symmetric, continuous and bounded operator 𝑆2 such that
⟨𝑓 , 𝑔⟩ = ⟨𝑆2(𝑓 ), 𝑔⟩𝜃 (see [243] for a rigorous definition of the operator 𝑆).

Proposition 7. The eigensystem of the smoothed functional ICA, obtained as the solutions to
Equation 2.34 and denoted by (𝜓𝜃, 𝑗 , 𝜅𝜃, 𝑗 ) ∈ M𝜃 × R, is equivalent to the eigensystem of K𝑆2 (X)
with the inner product ⟨·, ·⟩𝜃 .
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Proof. This result is immediate from the relation between the two inner products ⟨𝑋, 𝑓 ⟩ =
⟨𝑆2(𝑋 ), 𝑓 ⟩𝜃 . As a consequence, the optimization problems 2.30 and 2.33 are the same. ■

Equivalently to the results provided in [224] for the smoothed functional PCA, this
algorithm can be regarded as an equivalence between the smoothed functional ICA and
the spectral decomposition of the kurtosis operator of the half-smoothed process 𝑆 (X)
with the usual inner product.

Proposition 8. (𝜓𝜃 , 𝜅𝜃 ) ∈ M𝜃 × R is an eigenelement of K𝑆2 (X) with ⟨·, ·⟩𝜃 iff (𝑆−1(𝜓𝜃 ), 𝜅𝜃 )
is an eigenelement of K𝑆 (X) with ⟨·, ·⟩.

Proof. Since the operator 𝑆2 is a symmetric positive definite operator, then there exists
its square root operator 𝑆 , which is also a symmetric positive definite operator verifying
𝑆2 = 𝑆𝑆, so that

⟨𝑓 , 𝑔⟩ = ⟨𝑆2(𝑓 ), 𝑔⟩𝜃 = ⟨𝑆 (𝑓 ), 𝑆 (𝑔)⟩𝜃 . (2.35)

Let us denote by K𝑆2 (X) the kurtosis operator of the random variable 𝑆2(X) with the
inner product ⟨·, ·⟩𝜃 and by K𝑆 (X) the kurtosis operator of 𝑆 (X) with ⟨·, ·⟩.

The equivalence between the two eigensystems is clearly deduced from the following
relationship between both kurtosis operators:

K𝑆2 (X) = 𝑆K𝑆 (X)𝑆
−1. (2.36)

In fact,

K𝑆2 (X) (𝑓 ) = E{⟨𝑓 , 𝑆2(X)⟩𝜃 ⟨𝑆2(X), 𝑆2(X)⟩𝜃𝑆2(X)}
= 𝑆 [E{⟨𝑆−1(𝑓 ), 𝑆 (X)⟩⟨𝑆 (X), 𝑆 (X)⟩𝑆 (X)}]
= 𝑆K𝑆 (X) (𝑆−1(𝑓 )) .

■

Then, we can establish the following equivalences which follows immediately from
Propositions 7 and 8.

Corollary 1. The smoothed independent components 𝜉𝜃, 𝑗 , 𝑗 ∈ N+ of 𝑋 satisfying E(𝜉𝜃, 𝑗𝜉𝜃, 𝑗 ′) =
𝛿 𝑗 𝑗 ′ are equivalently obtained by the following projections:

1.
〈
X,𝜓𝜃, 𝑗

〉
2.

〈
𝑆2(X),𝜓𝜃, 𝑗

〉
𝜃

3.
〈
𝑆 (X), 𝑆−1(𝜓𝜃, 𝑗 )

〉
.

As a consequence, the orthogonal representation for the half-smoothed whitened
variable 𝑆 (X) in terms of the independent components is obtained by the expansion

𝑆 (X) =
∞∑︁
𝑗=1

𝜉𝜃, 𝑗𝑆
−1(𝜓𝜃, 𝑗 ). (2.37)
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Basis expansion implementation
A general strategy for solving the continuous eigenproblem to an equivalent matrix eige-
nanalysis is to consider a representation of the empirical counterpart of 𝑋 with a finite
basis of functions. Let 𝑋 [𝑞] (𝑡) = (𝑋 [𝑞]1 (𝑡), . . . , 𝑋

[𝑞]
𝑛 (𝑡))⊤ be a vector-valued function con-

taining 𝑛 copies of 𝑋 assumed in a 𝑞-dimensional Hilbert space. Each function of 𝑋 [𝑞] (𝑡)
admits the basis function representation

𝑋 [𝑞] (𝑡) = 𝐴𝜙 (𝑡), (2.38)

where 𝐴 ∈ R𝑛×𝑞 is a matrix of coefficients and 𝜙 (𝑡) = (𝜙1(𝑡), . . . , 𝜙𝑞 (𝑡))⊤ their respective
vector of basis functions. The linear span of 𝜙 (𝑡) is denoted by 𝐻 [𝑞] with inner product
defined as ⟨𝑓 , 𝑔⟩ = f⊤Gg, where f, g are the coefficient vectors of the functions 𝑓 , 𝑔 ∈
𝐻 [𝑞] and G = ⟨𝜙 𝑗 , 𝜙𝑘⟩ ∈ R𝑞×𝑞, 𝑗, (𝑘 = 1 . . . 𝑞), that is, the inner products of each pair
of basis functions, so that possibly G ≠ 𝐼𝑞 when 𝜙 (𝑡) might be not orthonormal in the
usual sense. Recalling the computational algorithms in §2.3, we henceforth assume that
X[𝑞] (𝑡) = 𝐴̃𝜙 (𝑡) is a set of whitened functional data, i.e., a basis expansion with coefficient
matrix satisfying 𝑛−1𝐴̃⊤𝐴̃ = G (𝐴̃ have identity covariance matrix in the topology of the
space). Then, from expression 2.29, we can define the sample kurtosis operator as

KX[𝑞 ] (𝑓 ) (𝑠) = 𝑛−1
𝑛∑︁
𝑖=1

〈
X
[𝑞]
𝑖
,X
[𝑞]
𝑖

〉 〈
X
[𝑞]
𝑖
, 𝑓

〉
X
[𝑞]
𝑖
(𝑠) =

〈
𝑛−1

𝑛∑︁
𝑖=1




X[𝑞]𝑖 


2X[𝑞]𝑖 (𝑠)X[𝑞]𝑖 , 𝑓

〉
= ⟨𝐾 [𝑞] (𝑠, ·), 𝑓 ⟩,

(2.39)

where 𝐾 [𝑞] (𝑠, 𝑡) is a kurtosis kernel function admitting the following representation in
terms of an orthonormalized basis

𝐾 [𝑞] (𝑠, 𝑡) = 𝜙⊤(𝑠)G−1/2(𝑛−1G1/2𝐴̃⊤𝐷𝐴̃G1/2)G−1/2𝜙 (𝑡), (2.40)

where 𝐷 = diag(𝐴̃G𝐴̃⊤), i.e. 𝐷𝑖𝑖 = ∥X𝑖 ∥2.

Proposition 9. Given the basis expansion in 2.38, the functional ICA of 𝑋 [𝑞]
𝑖

with respect to the
inner product ⟨·, ·⟩ is equivalent to the multivariate ICA of matrix 𝐴G1/2 with the usual metric
in R𝑞 .

Proof. As indicated beforhand, the weight functions of the independent components are
obtained as the eigenfunctions of the sample kurtosis operator by solving the following
eigenproblem:

KX𝜓 (𝑡) = 𝜅𝜓 (𝑡). (2.41)

If we expand the independent component weight functions as 𝜓 (𝑡) = 𝜙 (𝑡)⊤𝑏, then the
problem turns in matrix form as

𝑛−1𝐴̃⊤𝐷𝐴̃G𝑏 = 𝜅𝑏, (2.42)

which is equivalent to

𝑛−1G1/2𝐴̃⊤𝐷𝐴̃G1/2𝑢 = 𝜅𝑢, (2.43)

with 𝑢 = G1/2𝑏. That is, Σ[4]
𝐴̃G1/2𝑢 = 𝜅𝑢. Taking into account that the matrix 𝐴̃G1/2 is the

whitening counterpart of the matrix 𝐴G1/2, we can conclude that the functional ICA is
equivalent to ICA of matrix 𝐴G1/2. ■
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Proposition 10. For any 𝜃 > 0, the penalized functional ICA of 𝑋 [𝑞]
𝑖

defined by the successive
optimization problem in 2.33 is equivalent to the multivariate ICA of the matrix 𝐴G1/2 using the
metric M = (𝐿−1G1/2)⊤(𝐿−1G1/2) in R𝑞, with 𝐿 defined by the factorization G𝜃 = G+ 𝜃P2 =

𝐿𝐿⊤, and P2 the matrix whose elements are ⟨𝑅𝜙 𝑗 , 𝑅𝜙𝑘⟩.

Proof. If we expand the weight functions in 2.32 as 𝑓 (𝑡) = ∑𝑞

𝑗=1 𝑏 𝑗𝜙 𝑗 (𝑡) = 𝜙 (𝑡)
⊤𝑏 where

𝑏 = (𝑏1, . . . , 𝑏𝑞)⊤, the coefficients of 𝜓𝜃, 𝑗 , are obtained by solving the penalized kurtosis
problem 2.32 expressed in matrix form as

𝑛−1𝑏⊤G𝐴̃⊤𝐷𝐴̃G𝑏

𝑏⊤G𝑏 + 𝜃𝑏⊤P2𝑏
=
𝑏⊤G1/2Σ[4]

𝐴̃G1/2G
1/2𝑏

𝑏⊤ (G+ 𝜃P2) 𝑏
. (2.44)

The above developments can be used to transform the eigenequation 2.34 into the matrix
eigenproblem

G1/2Σ[4]
𝐴̃G1/2G

1/2𝑏 = 𝜅𝜃G𝜃𝑏, (2.45)

where G𝜃 = G+𝜃P2. Then, by performing the factorization G𝜃 = 𝐿𝐿
⊤, the eigenequation

2.45 can be rewritten as

𝐿−1G1/2Σ[4]
𝐴̃G1/2G

1/2(𝐿−1)⊤𝑣 = 𝜅𝜃𝑣, (2.46)

where 𝑣 = 𝐿⊤𝑏, with 𝑣⊤𝑣 = 1.
Now, defining 𝑤 = (𝐿−1G1/2)−1𝑣, the eigenproblem turns on

Σ[4]
𝐴̃G1/2 (𝐿

−1G1/2)⊤(𝐿−1G1/2)𝑤 = 𝜅𝜃𝑤, (2.47)

with 𝑤⊤(𝐿−1G1/2)⊤(𝐿−1G1/2)𝑤 = 1. This means that the smoothed functional ICA is
equivalent to the ICA of matrix 𝐴G1/2 with a new metric in R𝑞 defined by ⟨𝑥,𝑦⟩M =

𝑥⊤M𝑦, for all 𝑥,𝑦 ∈ R𝑞 .

Therefore, solving 2.46 yields to 𝑏𝜃, 𝑗 = (𝐿−1)⊤𝑣𝜃, 𝑗 = (𝐿−1)⊤𝐿−1G1/2 such that𝜓𝜃, 𝑗 (𝑡) =
𝜙 (𝑡)⊤𝑏𝜃, 𝑗 is the solution to the eigenequation 2.45. By computing the successive opti-
mization problems in 2.33 we obtain a set of orthonormal eigenfunctions verifying

∥𝜓𝜃, 𝑗 ∥2𝜃 = 𝑏
⊤
𝜃, 𝑗

G𝜃𝑏𝜃, 𝑗 = 𝑣
⊤
𝑗 𝑣 𝑗 = 1; ⟨𝜓𝜃, 𝑗 ,𝜓𝜃,𝑘⟩𝜃 = 𝑏⊤𝜃, 𝑗G𝜃𝑏𝜃,𝑘 = 𝑣

⊤
𝑗 𝑣𝑘 = 0. (2.48)

■

From the relation between inner products given by 2.35, it can be deduced that the
operator 𝑆2 is defined as 𝑆2(𝑓 ) = 𝜙 (𝑡)⊤ (G+ 𝜃P2)−1 Gf, with 𝑓 = 𝜙 (𝑡)⊤f. Then, for
the smoothed whitened data 𝑆 (X), the independent component scores are obtained as
𝜉𝜃, 𝑗 = 𝐴

⊤G(𝐿−1)⊤𝑣𝜃, 𝑗 , and the kurtosis eigenfunctions as 𝜑 𝑗 = 𝑆−1(𝜓𝜃, 𝑗 ).

§ 2.6. Kurtosis-based functional ICA on smoothed KL expansions

Vidal et al. [305] introduced an alternative functional ICA build upon smoothed KL ex-
pansions. There, the covariance eigenfunctions are estimated using Silverman’s method
[278], which corresponds to the maximization problem

𝛾𝜃, 𝑗 = argmax
var(⟨𝛾, 𝑋 ⟩)

| |𝛾 | |2 + 𝜃 ⟨𝑅𝛾, 𝑅𝛾⟩
= max

⟨𝛾, C𝑋𝛾⟩
| |𝛾 | |2

𝜃

, s.t. ⟨𝛾,𝛾𝜃,𝑘⟩𝜃 = 0, for all 𝑘 < 𝑗 . (2.49)
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The functions (𝛾𝜃, 𝑗 ) 𝑗∈N form a complete orthonormal system in the subspace endowed
by ⟨·, ·⟩𝜃 , making this basis non-compatible for an IC model in 𝐻 . As previously men-
tioned, [224] developed a generalization of the Silverman’s method providing the fol-
lowing equivalences:

Proposition 11 (Ocaña et al. [224], Proposition 5.4; Vidal et al. [305], Proposition 1).
Assume for any 𝑓 ∈ 𝐻 , the derivatives of 𝑓 up to certain order are absolutely continuous in 𝐻.
Then, there exists a positive definite self-adjoint operator 𝑆2 such that the following functional
PCA decompositions are equivalent:

• The functional PCA of 𝑆2(𝑋 ) with respect to ⟨·, ·⟩𝜃 , 𝑆2(𝑋 ) =
∑
𝑗 𝜉 𝑗𝛾𝜃, 𝑗 ;

• The functional PCA of 𝑆 (𝑋 ) with respect to ⟨·, ·⟩, 𝑆 (𝑋 ) = ∑
𝑗 𝜉 𝑗𝑆

−1(𝛾𝜃, 𝑗 );

• The functional PCA of 𝑋 with respect to ⟨·, ·⟩𝑆 , 𝑋 =
∑
𝑗 𝜉 𝑗𝑆

−2(𝛾𝜃, 𝑗 ),
with ⟨𝑓 , 𝑔⟩𝑆 = ⟨𝑆 (𝑓 ), 𝑆 (𝑔)⟩ = ⟨𝑆2(𝑓 ), 𝑆2(𝑔)⟩𝜃 .

Therefore, the eigenfunctions of the covariance operator C𝑆 (𝑋 ) = 𝑆C𝑋𝑆 of 𝑆 (𝑋 ) are
given by 𝛽 𝑗 = 𝑆−1(𝛾𝜃, 𝑗 ), where 𝛾𝜃, 𝑗 are obtained by the penalized estimation procedure
2.49. Then, the basis 𝛽 𝑗 is orthonormal with respect to the usual inner product in 𝐻 , so
that the smooth random variable 𝑆 (𝑋 ) can be approximated by the KL expansion

𝑋 [𝑝] (𝑡) =
𝑝∑︁
𝑗=1

𝜉 𝑗𝛽 𝑗 , (2.50)

where 𝜉 𝑗 = ⟨𝛽 𝑗 , 𝑆 (𝑋 )⟩ = ⟨𝛾𝜃, 𝑗 , 𝑋 ⟩ and, by abuse of notation, 𝑋 [𝑝] (𝑡) denotes a truncated
representation of the smoothed random variable 𝑆 (𝑋 ). The functional IC model pre-
sented in the following subsection, consists in performing the functional ICA of 𝑋 [𝑝] (𝑡),
which is equivalent to the multivariate ICA of the 𝜉 𝑗 ’s. In this model, it is assumed that
the interesting non-Gaussian ICs lie in the space spanned by the first 𝑝 eigenfunctions of
the operator C𝑆 (𝑋 ) .

Basis expansion implementation
To derive smoothed KL expansions using basis functions, here we adopt the B-spline
functional PCA approach developed by Aguilera and Aguilera-Morillo [4], which in-
corporates a discrete penalty (P-spline penalty) on the orthonormality constraint de-
scribed above. Consider the B-spline basis expansion of the covariance eigenfunctions
𝛾 (𝑡) = 𝜙 (𝑡)⊤𝑏, with 𝑏 = (𝑏1, . . . , 𝑏𝑞)⊤ being its vector of basis coefficients, and a roughness
penalty function defined by pen

𝑑
(𝛾) = 𝑏⊤P𝑑𝑏, where P𝑑 ∈ R𝑞×𝑞 is the penalty matrix

P𝑑 = Δ⊤
𝑑
Δ𝑑 , with Δ𝑑 being a matrix representation of the 𝑑-order difference operator

𝑅 [𝑑] . As in §2.5, we assume second order differences (𝑅 ≡ 𝑅 [2]) for defining the penalty
function 𝑏⊤P2𝑏 = (𝑏1 − 2𝑏2 + 𝑏3)2+ · · ·+ (𝑏𝑞−2−2𝑏𝑞−1+𝑏𝑞)2. This way, the inner product
in 2.31 is given in terms of B-splines expansions as

⟨𝑓 , 𝑔⟩ 𝜃 = f⊤Gg + 𝜃f⊤P2g, (2.51)

with 𝑓 = 𝜙⊤f, 𝑔 = 𝜙⊤g and Gthe Gram matrix of inner products between basis functions
(see §2.5 for the notation). Then, the maximization problem in 2.49 is equivalent to solve
the following matrix problem:

𝑏𝜃, 𝑗 = argmax
𝑏⊤GΣ𝐴G𝑏

𝑏⊤ (G+ 𝜃P2) 𝑏
, (2.52)
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subject to the constraint 𝑏⊤ (G+ 𝜃P2) 𝑏𝜃,𝑘 = 0 for all 𝑘 < 𝑗, where Σ𝐴 = 𝑛−1𝐴⊤𝐴 and
𝜃 ≥ 0 is the penalty parameter used to control the trade-off between maximizing the
sample variance and the strength of the penalty.

Because a B-spline basis is not orthonormal by construction, one can apply Cholesky
factorization of the form 𝐿𝐿⊤ = G+ 𝜃P2 in order to derive an isometry that allows us
to operate in terms of usual geometrical structure. Then, the smoothed functional PCA
corresponds to solve the eigenvalue problem

𝐿−1GΣ𝐴G(𝐿−1)⊤𝑣 𝑗 = 𝜂 𝑗𝑣 𝑗 , (2.53)

where 𝑣 𝑗 = 𝐿⊤𝑏𝜃, 𝑗 , and the coefficients of 𝛾𝜃, 𝑗 are 𝑏𝜃, 𝑗 = (𝐿−1)⊤𝑣 𝑗 . We have obtained
a set of orthonormal functions with respect to the inner product ⟨·, ·⟩𝜃 . Then, the 𝑗th
smoothed principal component is given by

𝜉 𝑗 = 𝐴G𝑏𝜃, 𝑗 = 𝐴G(𝐿−1)⊤𝑣 𝑗 . (2.54)

Thus, the problem is reduced to the multivariate PCA of the matrix 𝐴G(𝐿−1)⊤, as dis-
cussed in [4]. From the results in [223, 224], we now deduce the expression of the
smoothing operator 𝑆 that provides the equivalence between such multivariate PCA and
the functional PCA of the smoothed data.

Proposition 12 (Vidal et al. [305], Proposition 2). Given the basis expansion𝑋 [𝑞] (𝑡) = 𝐴𝜙 (𝑡)
of a sample of curves, the PCA of the matrix 𝐴G(𝐿−1)⊤ is equivalent to all functional PCA’s in
Proposition 11 with the operator 𝑆2 defined as 𝑆2(𝑓 ) = 𝜙 (𝑡)⊤(G+𝜃P𝑑)−1Gf, with 𝑓 = 𝜙 (𝑡)⊤f.

As a result, the principal components of 𝑆 (𝑋𝑖) (𝑖 = 1, . . . , 𝑛) are given by 𝐴G(𝐿−1)⊤𝑉
where 𝑉 is the matrix whose columns are the eigenvectors 𝑣 𝑗 verifying Equation 2.53,
and thus, the eigenfunctions 𝛽 𝑗 are 𝛽 𝑗 = 𝑆−1(𝛾𝜃, 𝑗 ).

Having estimated the weight functions coefficients and principal components scores,
assume 2.50 is truncated at some 𝑝 ≤ 𝑞. Then, the vector of smoothed sample curves is
given by 𝑋 [𝑝] (𝑡) = Ξ[𝑝]𝛽 (𝑡) , where Ξ[𝑝] = (𝜉𝑖 𝑗 ) ∈ R𝑛×𝑝 is the matrix whose columns
are the first 𝑝 principal components scores with respect to the basis of smoothed weight
functions 𝛽 (𝑡) = (𝛽1(𝑡), . . . , 𝛽𝑞 (𝑡))⊤.

From now on, we only have to estimate the multivariate ICA of the matrix Ξ[𝑝] . Since
Ξ[𝑝] is uncorrelated, we can simply standardize this matrix as Ξ̃[𝑝] = Ξ[𝑝]𝐷𝜂 , where 𝐷𝜂
is a diagonal matrix with entries (𝜂1, . . . , 𝜂𝑝)−1/2. Then, for all ℎ = 𝛽 (𝑡)⊤h, the kurtosis
operator of the standardized curves X[𝑝] (𝑡) = Ξ̃[𝑝]𝛽 (𝑡) have the matrix expansion

KX[𝑝 ] (ℎ) = 𝑛−1(Ξ̃[𝑝]⊤𝐷Ξ̃[𝑝 ] Ξ̃
[𝑝]h)⊤𝛽 (𝑡), ∀ℎ = 𝛽 (𝑡)Th, (2.55)

where 𝐷Ξ̃[𝑝 ] = diag(Ξ̃[𝑝]Ξ̃[𝑝]⊤). The eigenanalysis of KX[𝑝 ] leads to the diagonalization
of the kurtosis matrix

Σ4,Ξ̃[𝑝 ]𝑢𝑙 = 𝜌𝑙𝑢𝑙 (𝑙 = 1, . . . , 𝑝), (2.56)

where Σ4,Ξ̃[𝑝 ] = 𝑛
−1(Ξ̃[𝑝]⊤𝐷Ξ̃[𝑝 ] Ξ̃

[𝑝]h)⊤. The eigenfunctions of KX[𝑝 ] are 𝛽 (𝑡)⊤𝑢𝑙 , and the
ICs are obtained as Ξ̃[𝑝]𝑢𝑙 . Alternatively one can consider Ξ[𝑝]𝑢𝑙 (projecting into the non-
whitened principal components) and build an expansion via the eigengunctions of KX[𝑝 ] ,
with any of the coefficient vectors previously discussed. See [305] for further details.
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§ 2.7. Theoretical properties of the kurtosis operator

Discriminative properties of the kurtosis operator
Suppose that𝑋 : Ω → 𝐻 can be observed as a mixture of two subpopulations Π𝑘 (𝑘 = 0, 1),
and the aim is to assign their sample paths into one of them. The two subpopulations are
identified by the binary variable 𝑌 = 𝑘 when 𝑋 ∈ Π𝑘 . We denote by 𝜋𝑘 = 𝑃 (𝑌 = 𝑘) with
𝜋1 = 1 − 𝜋0. The prior probability of classification is usually unknown and in practice
𝜋0 = 1/2 is often assumed. The estimation of the function that allows to optimally classify
𝑋 corresponds to Fisher’s discriminant problem. The purpose of this section is to show
that the eigendecomposition of KX provides solutions to it.

Shin [277] proposed a seamless extension of Fisher’s discriminant analysis in infinite
dimensional settings we shall take into account in the following lines. We henceforth
reset 𝑋 to ran(C𝑋 ), such the precision operator is possibly bounded under Picard’s rule.
Further, consider that class 𝑘 has mean function 𝜇𝑘 = E(𝑋 |𝑌 = 𝑘) and E𝑋 = 𝜇 = 𝜋0𝜇0+(1−
𝜋0)𝜇1. In principle, we do not impose distributional assumptions on 𝑋 , but we consider
𝜇0 ≠ 𝜇1 and equal class covariance operators. Within this functional framework, Fisher’s
discriminant problem consists in estimating a function 𝑓 that maximizes the ratio

𝐽 (𝑓 ) =
〈
𝑓 , C𝑊𝑋 𝑓

〉−1 〈
𝑓 , C𝐵𝑋 𝑓

〉
, (2.57)

where C𝐵
𝑋
= 𝜋0(1 − 𝜋0){(𝜇1 − 𝜇0) ⊗ (𝜇1 − 𝜇0)} and C𝑊

𝑋
= 𝜋0C𝑋 |𝑌=0 + (1 − 𝜋0)C𝑋 |𝑌=1 = E

are respectively, the between and within-class covariance operator. We note that, E ≡∑∞
𝑗=1 𝜆 𝑗P𝛾 𝑗 represents the common covariance operator in each population. Roughly

speaking, the idea is to give large separation to the group means while, at the same time,
keeping the variance between groups small. According to the law of the total covariance,
one can also write C𝑋 = C𝑊

𝑋
+ C𝐵

𝑋
. Then, for a function 𝑓 with expansion 𝑓 =

∑
𝑗 f 𝑗𝛾 𝑗 ,

the covariance operator can be written in its spectral form as

C𝑋 (𝑓 ) =
∞∑︁
𝑗=1
{𝜆 𝑗f 𝑗 + 𝜋0(1 − 𝜋0)v 𝑗

∞∑︁
𝑗 ′=1

v 𝑗 ′f 𝑗 ′}𝛾 𝑗 ,=
∞∑︁

𝑗 𝑗 ′=1
𝑠 𝑗 𝑗 ′f 𝑗𝛾 𝑗 ′, (2.58)

where v 𝑗 are the coefficients of the mean differences between classes in terms of 𝛾 𝑗 ’s (i.e.,
𝜇Δ = 𝜇0 − 𝜇1 =

∑∞
𝑗=1 v 𝑗𝛾 𝑗 ) and

𝑠 𝑗 𝑗 ′ =

{
𝜆 𝑗 + 𝜋0(1 − 𝜋0)v2𝑗 𝑗 = 𝑗 ′

𝜋0(1 − 𝜋0)v 𝑗v 𝑗 ′ 𝑗 ≠ 𝑗 ′.
(2.59)

Solutions to 2.57 are well-known. Here, we briefly debrief them for the sake of clarity.

Proposition 13 (Peña et al. [232], Lemma 1). For some constant 𝑐 , the function F with ex-
pansion F = 𝑐

∑∞
𝑗=1 𝜆

−1
𝑗 v 𝑗𝛾 𝑗 is the maximizer of 𝐽 in 2.57.

According to the above result, our goal is to show that the kurtosis operator has an
eigenfunction that is equivalent to the function found in Proposition 13. This is proved
in the next Proposition.

Proposition 14. Let 𝑋 be an 𝐻-valued functional random variable corresponding to a homo-
cedastic Gaussian mixture of two groups with different means. Then, KΨ(𝑋 ) has an orthogonal
spectral component that corresponds to

∑∞
𝑗=1 𝜆

−1
𝑗 v 𝑗𝛾 𝑗 .

Proof. See Theorem 1 in [232]. ■
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The duality of the kurtosis operator and near-perfect classification
In this subsection, we assume that (𝑋𝑖𝑘 , 𝑌𝑖𝑘) =

{
(𝑋1𝑘 , 𝑌1), . . . , (𝑋𝑛𝑘 , 𝑌𝑛𝑘 )

}
(𝑘 = 0, 1), is the

empirical counterpart of (𝑋,𝑌 ) defined above, with sample means denoted by 𝜇𝑘 .
Next, we concisely review the asymptotic centroid-based classifier proposed by [77]

which is constructed by projecting a newly observed function 𝑋 ∗ into a pre-chosen
square-integrable function F on I= [0,𝑇 ]. Although this classifier reaches optimal per-
formance in the case of a homoscedastic Gaussian mixture, here we focus on a more gen-
eral scenario. The centroid classifier is there defined as𝑇𝑛 (𝑋 ∗) = 𝐷2 (𝑋 ∗, 𝜇1)−𝐷2 (𝑋 ∗, 𝜇0) ,
where 𝐷 (𝑋 ∗, 𝜇𝑘) = |⟨𝑋 ∗,F⟩ − ⟨𝜇𝑘 ,F⟩|. Assuming 𝜇0 = 0 and denoting 𝜇1 ≡ 𝜇Δ =∑∞
𝑗=1 v 𝑗𝛾 𝑗 , the asymptotic version of this classifier, 𝑇 0, assigns 𝑋 ∗ to Π1 if

(⟨𝑋 ∗,F⟩ − ⟨𝜇Δ,F⟩)2 − (⟨𝑋 ∗,F⟩)2 < 0. (2.60)

Now, to elucidate our ideas we formulate Theorem 2 in [77] and discuss their impli-
cations with regard to Picard’s condition and the Hájek-Feldman dichotomy.

Theorem 5 (Delaigle and Hall [77] - Theorem 2). Assume 𝑋𝑖𝑘 (𝑖 = 1, . . . , 𝑛;𝑘 = 0, 1), are
non necessarily Gaussian, 𝜇0 ≠ 𝜇1 and C𝑋𝑘

= C𝑋 . If Π0 and Π1 have prior probabilities 𝜋0 and
1 − 𝜋0 respectively, and 𝜇0 = 0, then

1. The missclassification probability for the classifier 𝑇 0 equals err = 𝜋𝑃 (𝑄 > 𝜈/2𝜎𝑄 ) + (1−
𝜋)𝑃 (𝑄 < −𝜈/2𝜎𝑄 ), where 𝑄 = ⟨𝑋 − 𝜇,F⟩ and 𝜈 = ⟨𝜇Δ,F⟩.

2. If
∑∞
𝑗=1 𝜆

−1
𝑗 v2𝑗 = ∞, by taking a sequence of classifiers build from F[𝑞] =

∑𝑞

𝑗=1 𝜆
−1
𝑗 v 𝑗𝛾 𝑗

with 𝑞 → ∞, the minimal missclassification probability tends to err0 = 0, and perfect
classification is then possible.

Geometrically, from Theorem 5 one deduces that asymptotic perfect classification is re-
lated to the divergence in norm induced by the metric ⟨Ψ(·),Ψ(·)⟩ = ⟨·, ·⟩M, as ∥𝜇Δ∥2M =∑∞
𝑗=1 𝜆

−1
𝑗 v2𝑗 = ∞. Note this is the same as assuming that Picard’s condition does not

hold (the squared coefficients v 𝑗 decay slower than the corresponding 𝜆 𝑗 ’s and there-
fore, 𝜇Δ ∉ ran(Ψ)). On the other hand, if ∥𝜇Δ∥2M < ∞, the minimum classification error
is strictly positive, and perfect classification cannot be reached. Exploring nonconver-
gent paths seems a viable option, as it can still provide optimal solutions considering that
err0 → 0 along these paths.

The reason of the behavior described in Theorem 5 has a probabilistic interpretation
by the Hájek-Feldman dichotomy. Two probability measures𝑚𝑘 (𝑘 = 0, 1), are said to be
equivalent (𝑚0 ∼ 𝑚1) if they are absolutely continuous with respect to one another: i.e.,
if𝑚0(𝐵) = 0 for every Borel set 𝐵 ∈ B, it holds𝑚1(𝐵) = 0 (they have the same zero sets).
Conversely, if𝑚0(𝐵) = 0 and𝑚1(𝐵) = 1, then we say that𝑚0 and𝑚1 are mutually singular
(𝑚0 ⊥𝑚1) as 𝐵 splits in two disjoint sets where𝑚0 and𝑚1 are respectively concentrated.
The Hájek-Feldman dichotomy states that in infinite dimensions, two Gaussian measures
have the critical property of being either equivalent or mutually singular.

Theorem 6 (Da Prato and Zabczyk [68], Theorem 2.25). Let 𝑚𝑘 = 𝑁 (𝜇𝑚𝑘
, C𝑚𝑘

), (𝑘 =

0, 1), be two Gaussian measures on 𝐻 . Then,𝑚0 ∼𝑚1 iff, it holds:

1. Both measures have the same Cameron-Martin space, i.e., ran(C1/2
𝑚 ) = ran(C1/2

𝑚0 ) =

ran(C1/2
𝑚1 ).

2. 𝜇𝑚0 − 𝜇𝑚1 ∈ ran(C
1/2
𝑚 ).
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3. (C−1/2𝑚0 C
1/2
𝑚1 ) (C

−1/2
𝑚0 C

1/2
𝑚1 )∗ − 𝐼𝐻 is a Hilbert-Schmidt operator on ran(C1/2

𝑚 ).
If one of the above conditions is violated, then𝑚0 ⊥𝑚1.

Now recall Theorem 5. Suppose that all functions of 𝑋𝑖 are Gaussian via the measures
𝑚𝑘 . In [34, Theorem 5], it has been proven that𝑚0 ∼𝑚1 ⇔ ∥𝜇Δ∥2M < ∞ and𝑚0 ⊥𝑚1 ⇔
∥𝜇Δ∥2M = ∞, thus explaining the mechanisms underlying the dichotomy found in [77].
This result follows from Theorem 6 and Parseval’s formula as 𝜇Δ ∈ ran(C𝑋 ) = ran(C1/2

𝑋
)

iff ∥𝜇Δ∥2M < ∞.
Assuming ∥𝜇Δ∥2M < ∞ under finite dimension space dependency, yet, it can be com-

putationally proven that kurt(⟨X[𝑞]
𝑖
,𝜓 𝑗 ⟩) → 3 ( 𝑗 = 1, . . . , 𝑞 − 1) and kurt(⟨X[𝑞]

𝑖
,𝜓𝑞⟩) → 1

if the means differ enough and 𝑛 diverges. This corresponds to the schematic of perfect
classification in the Gaussian homocedastic case (maximum bimodality is then reached).
By Theorem 5, it can be straightforwardly deduced that, in these cases, 𝜆 𝑗 → 0 rapidly,
such that 0 becomes an accumulation point of the spectrum of the corresponding non-
degenerate population covariance operator. One could further presume that ⟨𝑋 [𝑞], 𝛾1⟩
will also exhibit a kurtosis close to 1 in such cases. While solutions to choose the best
F are given by the last eigenfunction in the independent component expansion, they
also exist arbitrarily in the tails of the principal component expansion [77], and even-
tually (when 𝜆 𝑗 are strongly biased upwards due to multicollinearity in each group of
functions) they concentrate towards the first principal component.

The above results can be seen parallel to those of Theorem 5: in fact, in the Gaussian
case, half the absolute value of the kurtosis coefficient minus 3 will take values in [0, 1] and
can be interpreted as a probabilistic measure. It is insightful to give a formal argument
in the current operating context.
Corollary 2. Let ∥𝜈 ∥B = sup{|𝜈 (𝐵) | 𝐵 ⊆ B} define a norm on the space of Borel measures.
Then,𝑚0 ∼𝑚1 ⇔ ∥𝑚0 −𝑚1∥B = 0 and𝑚0 ⊥𝑚1 ⇔ ∥𝑚0 −𝑚1∥B = 1.
Proof. Is immediate from the properties described above. ■

Not surprisingly, low kurtosis has been previously associated, with some reservations,
to bimodality in symmetric distributions. Noting that kurt(𝜉 𝑗 ) = ⟨KX𝜓 𝑗 ,𝜓 𝑗 ⟩ = 𝜅 𝑗 , the
spectrum of KX provides a unique avenue for assessing the trade-off between equiva-
lence/singularity of two Gaussian measures on the sample paths of 𝑋 , as well as a way to
prospect the chances of correct classification, even in non-Gaussian scenarios.

§ 2.8. Simulated and real data examples

The following numerical studies correspond to the functional IC model in §2.5, which
is used for functional data classification purposes.

Simulated data
To investigate the empirical performance of the proposed estimators discussed in §2.5,
we conduct a study that extends the results of Simulation 2 in [232] using three possible
taxonomies of mean differences. Let 𝑋𝑖 (𝑖 = 1, . . . , 𝑛), be a mixture of two subpopulations
Π𝑘 , (𝑘 = 0, 1), with 𝑛𝑘 = 𝑛/2 curves sampled on a grid of 20 equispaced points on 𝑡 ∈
[1,𝑇 ] with 𝑇 = 20. Both groups have same quadratic covariance matrix cov(𝑡 𝑗 , 𝑡 𝑗 ′) =
exp{−(2ℓ2)−1(𝑡 𝑗 − 𝑡 𝑗 ′)2}, ( 𝑗, 𝑗 ′ = 1, . . . ,𝑇 ), with ℓ = 15. The data is then generated as

𝑋𝑖 𝑗 =

1∑︁
𝑘=0

(
𝑇∑︁
𝑗=1

𝜆
1/2
𝑗
𝑍𝑘,𝑖 𝑗𝛾 𝑗 + 𝜇𝑘 + 𝜖𝑘,𝑖 𝑗

)
I (𝑋𝑖 ∈ Π𝑘) , (2.61)
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where 𝑍𝑖 𝑗 are Gaussian random variables, 𝜖𝑘,𝑖 𝑗 is an additive error term and I denotes the
indicator function. Further extensions of the above model to non-Gaussian settings using
𝑍𝑘,𝑖 𝑗 ∼ exp(1) − 1 can be also found in our results.

We consider the following versions of the above model: in Example 1 we define 𝜇0 = 0
and 𝜇1 = 0.2 cos(3𝜋𝑡/𝑇 ), the means differ in shape; in Example 2, 𝜇0 = 0.3 cos(3𝜋𝑡/𝑇 )
and 𝜇1 = 0.2 cos(3𝜋𝑡/𝑇 ), the means have equal shape and slightly differ in amplitude; in
Example 3 we set 𝜇0 = 0.2 sin(3𝜋𝑡/𝑇 ) and 𝜇1 = 0.2 cos(3𝜋𝑡/𝑇 ), the means are equal in
shape but dephased 𝜋/2. In all cases, 𝑍𝑘,𝑖 𝑗 are sampled from a standard normal distribution
and 𝜖𝑘,𝑖 𝑗 ∼ N(0, 𝜎2). We generated 200 datasets for each experiment with sample sizes
𝑛𝑘 = 30, 50. The R package pfica [299] was used for the implementation of various
functional pre-whitening methods via B-spline expansions with 𝑞 = 5.

Results for 𝜎 = 0 are shown in Table A.1 in Appendix A. In all examples, the overall
good behavior of kurtosis classifiers based on the last independent component (mini-
mum kurtosis) is apparent, particularly for the smoothed kurtosis projections and large
sample sizes. In Example 3, the PC with the lowest kurtosis coefficient performed no-
tably well, similarly to their kurtosis peers and eventually outperforming the rates of the
non-smoothed kurtosis. Regarding functional whitening, results indicate that classifica-
tion optimization with the proposed operators is not that different, although Cholesky
whitening reaches good performance in Examples 1 and 3, while zero-phase components
analysis whitening does better in Example 2. In the non-Gaussian simulation, results are
more balanced between both functional ICA’s, although superior to the rest of competi-
tors. Figure 2.1 further illustrates the effect of modulating the noise in the performance
of the classifiers on a Gaussian scenario. Note that as 𝜎 grows, it exponentially wors-
ens the classification rate. Notwithstanding, results for the smoothed kurtosis are very
competitive for mild levels of noise. These analyses point to the importance of finding a
good trade-off between groups when smoothing the data, as both noise and the type of
smoothing (especially if it is homogeneous across curves) can undermine the effectiveness
of these classifiers.
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Figure 2.1: Comparison of the missclassification rate (mean values for training samples of size 200) for the three Examples 1-3 (from
left to right) and different levels of noise (𝜎) using ZCA whitening.

Real datasets
Our methods are now applied to well-known datasets in the functional data literature.
In the first example, we show that the smoothed kurtosis is able to find bimodality in the
Canadian Weather data, which is usually treated as a discrimination problem of more
than two groups. We consider a geographical division based on a west-east location dis-
tribution rather than the usual four climate regions. The whitening method and penalty
parameter was selected using cross-validation by minimizing the kurtosis coefficient of
the projections into 𝜓𝑞 (Figure 2.2A) with 𝑞 ∈ {5, . . . , 34}, 𝜃 ∈ {0, 100, . . . , 108}. Results
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suggest the presence of bimodality in these data, and the few missclasified observations
appear to be locations close to large bodies of water, commonly encountered in the west
zone. Due the representativeness of these data, we further asses the asymptotic behav-
ior of ∥ΔCX[𝑞 ] ∥𝐻𝑆 = ∥CX[𝑞 ] − 𝐼𝐻 [𝑞 ] ∥𝐻𝑆 as 𝑞 increases, to evaluate the consistency of the
whitening procedures. As shown in Figure 2.2B most of the whitening procedures are
(under mild conditions) consistent, with Cholesky whitening being the less consistent
albeit the one that provides more interesting results.
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Figure 2.2: Canadian Weather data results. (A) Kurtosis coefficient of 𝜉𝜃,𝑞, 𝜃 ∈ {0, 100, . . . , 3 · 104} for various B-spline basis
dimensions (𝑞) and whitening procedures. (B) The plot shows the asymptotic behavior of the whitening transformations when 𝑞

grows up to 𝑛 as evaluated by ∥ΔC
X [𝑞 ] ∥𝐻𝑆 , 𝑞 ∈ {6, . . . , 34} (C) Picard’s plot. The black line stands for the eigenvalues log(𝜆𝑗 ) and

the grey one, for the means of absolute values of principal component scores given by
∑𝑛

𝑖=1 | ⟨𝑋
[𝑞 ]
𝑖

, 𝛾 𝑗 ⟩ | expressed in a logarithmic
scale. (D) Scatter plots. From left to right: functional PCA, ICA and smoothed functional ICA using a basis expansion of 𝑞 = 14 (E)
Estimated densities of the vector 𝜉𝜃,𝑞 for each lambda, showing the effect of smoothing the kurtosis operator.

In a second example, we consider the phoneme dataset as analyzed in [77]. The
data were retrieved from the fds package [274] and consist of 400 log-periodograms
constructed from audio recordings of males pronouncing the phonemes ‘aa’ as in dark
and ‘ao’ as in water. The similarity between both groups of curves has been previously
reported to pose a challenging problem of classification. In fact, we were neither able
to find interesting projections with any of the proposed methods. As workaround, we
propose to perform a functional PCA on each sample and use the basis function expansion

𝑋
[𝑝]
𝑘,𝑖

=

𝑝∑︁
𝑗=1
⟨𝑋 [𝑞]

𝑘,𝑖
, 𝛾𝑘,𝑗 ⟩𝛾𝑘,𝑗 I (𝑋𝑖 ∈ Π𝑘) , (2.62)

which takes the matrix form

𝑋
[𝑝]
𝑘

= (𝐴𝑘G𝑏⊤𝑘 )𝑏𝑘𝜙 (𝑡), (2.63)

where 𝑏𝑘 = 𝑈𝑘G
−1/2, with 𝑈𝑘 ∈ R𝑝×𝑞 the matrix of eigenvectors of 𝑛−1G1/2𝐴⊤

𝑘
𝐴𝑘G

1/2

truncated at the 𝑝-row and 𝑋
[𝑝]
𝑘

= (𝑋 [𝑝]
𝑘,1 , . . . , 𝑋

[𝑝]
𝑘,𝑛𝑘
)⊤. Taking 𝑋 [𝑝] = (𝑋 [𝑝]1 , 𝑋

[𝑝]
2 ) and
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using the coefficients in terms of basis functions pooled by rows, one can perform the
functional ICA using these coefficients. However, the matrix𝐴 = {(𝐴𝑘G𝑏⊤𝑘 )𝑏𝑘}

1
𝑘=0 might

have non invertible covariance matrix. Although this could be reversed with a suitable
Tikhonov regularization, to avoid harming the whitening procedure, the best option is to
truncate and perform the functional ICA on the 𝑝-principal components. Therefore, we
use the first components up to the limit where the whitening transformation no longer
meets the orthonormality property. Results in Figure 2.2, taking 𝑝 = 8 components,
show the great improvement of performing functional ICA on these representations,
which achieves near-perfect classification with an error rate of 0.125 %.
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Figure 2.3: Phoneme data results. (A) Picard’s plot before and after a functional PCA per group. (B) Scatter plots. From left to
right: functional PCA (first component against component with lowest kurtosis), ICA (non-smoothed) after reduction. (C) Estimated
densities of the vector of scores with lowest kurtosis using different reduction techniques.

§ 2.9. Discussion

In this chapter, we present a comprehensive overview of the theory behind functional
ICA. We establish the necessary conditions for the existence of a whitening trans-
formation in infinite-dimensional spaces and define the class of whitening operators.
Additionally, we have introduced two smoothed functional ICA models. The model
discussed in §2.4 harnesses the infinite dimensionality of the estimates to evaluate the
extent of non-Gaussianity within the sample, paving the way for optimal classification
strategies. The discussed approaches recast on "Gaussianizing" the data using a suitable
whitening transformation, regularization, or a functional PCA reduction in order to
balance and minimize the kurtosis of the eigenprojections. We have shown the proposed
functional ICA framework has competitive operating features in binary classification
problems, both in Gaussian and non-Gaussian settings. The kurtosis operator and par-
ticularly its spectral attributes, offer a unique analytical pathway that can bring us nearer
to achieving near-perfect accuracy, as elucidated by the Feldman-Hájek dichotomy. In
contrast, the model discussed in §2.6 is primarily conceived to provide smooth estimates
of non-Gaussian components, potentially enhancing their irreducibility by regulating
the roughness of the estimates. Further simulations and applications not reported in
this dissertation can be found in [305]. A more advanced and alternative version of this
model is presented in the next chapter.
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3 | Functional ICA for EEG
artifact removal

The work presented in this chapter includes the manuscript:

• [301] VIDAL, M. AND AGUILERA, A. M. (2024). Wavelet thresholding on independent sub-
space factorizations of spatially indexed wide functional data for robust estimation of cor-
tical activity. Under review.

In the field of neurophysiology, electroencephalography (EEG) represents one of the
few techniques providing a direct measure of bioelectrical brain activity, as oscillations in
excitability of populations of cortical pyramidal cells [311] contribute to variations in the
electrical potentials over the scalp. Oscillations are characterized by intrinsic rhythms
conventionally grouped into frequency bands, which are by now validated as markers
of several neurocognitive phenomena [48]. However, despite the temporal resolution
achievable with its high sampling rate, EEG is a technique that suffers from low signal-
to-noise ratio. This is mainly due to the fact that the layers of tissue dividing the electrodes
from the cortex act as a natural filter attenuating genuine brain activity, resulting in a
combination of cortical and artifactual sources in the EEG signal. In addition, brain-
related spectral features often overlap with artifactual activity in higher frequency bands,
and particularly at lower frequencies most of the variance in the signal is explained by
physiological sources outside the brain. For these reasons, analyzing EEG signals can
ultimately be viewed as solving a source-separation problem with the goal of estimating
brain potentials of interest.

This chapter has a predominant focus on methodology, and can be seen as a bridge
between the theoretical and applied/experimental part of the dissertation. Here, we delve
into the mathematical and probabilistic principles behind the reconstruction of artifactual
activity from EEG signals. In [305], we attempted to provide a first approximation to this
problem from a functional data perspective. While the mathematical model (see §2.6)
itself is valuable, the application was limited to short time courses and artifacts assumed to
be basically smooth. The limited applicability of this model led to a new manuscript three
years after its initial publication, wherein more rigorous developments (both theoretical
and practical) were addressed. Results are presented in the current chapter. The proposed
methodology has been effectively applied in the investigation reported in Chapter 5,
where we also delineate a pipeline for pre-processing EEG data during complex motor
interactions.

Here, we argue the reconstruction of artifacts is related to the approximation of a
function in a Hilbert basis that is a realization of a random variable taking values in a two-
domain Hilbert space. A model for sparse optimization based on a fixed-point iteration
over the spatial domain and posterior optimization in the temporal domain via wavelet
thresholding is discussed under the paradigm of "wide functional data". Two criteria are
introduced for selecting wavelet expansion coefficients in scenarios where noise lacks of
a precise parametric specification: one based on multiplicative scaling and the other on
the entropic NID (ENID), as introduced in Bruni et al. [45]. Through comprehensive
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numerical simulations and real data analyses of EEG data, we showcase the effectiveness
of the proposed methods.

§ 3.1. Introduction

In the analysis of data assumed to be realizations of a random variable𝑋 taking values in a
separable function space endowed with Hilbert structure, certain considerations are fre-
quently made. These include assuming finite second moments and the Hilbert-Schmidt
boundedness of the covariance operator, along with considering independent and iden-
tically distributed realizations of 𝑋 . In practice, however, there are scenarios in which
the sample covariance operator poses certain challenges: it is often not injective, and low
sample sizes can lead to eigenvalues that are biased upwards, potentially lacking an upper
bound, especially in high-dimensional settings. Furthermore, assuming that all realiza-
tions of 𝑋 are independent is not always justifiable, especially when there exists repeated
measures in time or space.

Let 𝐿2
I

denote the space of square integrable functions defined over a real compact
interval I ⊂ R, equipped with inner product ⟨·, ·⟩ and norm ∥·∥. Consider {𝑋𝑖}𝑚𝑖=1 to be𝑚
realizations of a random variable 𝑋 = {𝑋 (𝑡), 𝑡 ∈ I} taking values in 𝐿2

I
with E∥𝑋 ∥2 < ∞,

i.e., the theoretical covariance operator is here assumed to exist [123]. Since separability
holds, for any orthonormal basis (𝑒 𝑗 ) 𝑗∈N of 𝐿2

I
, we can express these realizations of 𝑋

as 𝑋𝑖 ≈
∑𝑞

𝑗=1 𝑍𝑖, 𝑗𝑒 𝑗 , where 𝑍𝑖, 𝑗 = ⟨𝑋𝑖, 𝑒 𝑗 ⟩ are the expansion coefficients. This property
follows directly from the Projection Theorem which constitutes the fundamental tool
for functional data analysis [123, 179]. Spaces of smoother functions, such as reproducing
kernel or Sobolev spaces, are often preferred to better capture the underlying topological
features of 𝑋 .

While under mild conditions (i.e, for a reasonable 𝑚 < 𝑞) the sample covariance
function of 𝑋𝑖 is still computable, when𝑚≪ 𝑞, it becomes ill conditioned and computa-
tionally intractable. In such extreme cases, we categorize data with these characteristics
as wide functional data. One can envision these data as functions that exhibit fine detail
throughout their domain, which may not necessarily be related to noise. Importantly, we
assume our functions have finite energy in 𝐿2

I
, i.e. they are Lesbegue square-integrable,

although in practice wide data integration might get exhausted in common computers
due to memory requirements. Therefore, alternative approaches are needed to effectively
explore data over I.

In the current context, our attention is drawn to a specific type of data that may not
necessarily represent independent realizations of 𝑋 . Dependencies could potentially arise
in a parallel domain, such as space. These kind of data can be encountered in various
scenarios, with a notable occurrence in neuroscience, e.g., during the pre-processing of
artifacts or the analysis of long-term monitoring studies involving individual patients.
Note that, by assuming dependencies in a secondary domain, the covariance matrix of
𝑍⊤ = (𝑍 𝑗,𝑖)𝑞×𝑚 becomes a subject of interest.

Although not restricted to, here we consider a two-domain random variable

X= {𝑋 (𝑡, 𝑠) : 𝑡 ∈ I, 𝑠 ∈ S}, (3.1)

taking values in 𝐿2
I×S. We address the problem of approximating a single realization of X

denoted as 𝑋𝑘 ≡ 𝑋 (𝑡, 𝑠𝑘) (𝑘 = 1, . . . , 𝑝), where 𝑠𝑘 are indexed locations fixed on a compact
plane (or other manifold structures), where functions in I emerge.
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Now, suppose that 𝑋𝑘 is observed at 𝑛 equidistant points and has the form

𝑋𝑘,𝑖 = Φ(𝑡𝑖, 𝑠𝑘) +B(𝑡𝑖, 𝑠𝑘) + 𝜖𝑘,𝑖 (𝑖 = 1, . . . , 𝑛), (3.2)

where Φ is an artifactual function with non-Gaussian components in S and sparse in I,

B is anisotropic and follows an unknown Gaussian distribution in I and (𝜖𝑘,𝑖) is a noise
assumed to be independent in space, with each column following a (possibly correlated)
normal distribution. Note that both Φ and Bare random functions taking values in 𝐿2

I×S.
In this paper we are interested to estimate B considering estimates of Φ when 𝑝 ≪ 𝑛.
This problem is genuinely motivated by the analysis of contaminated EEG data, where
muscular artifacts (here represented byΦ) are exacerbated by volume conduction, leading
to challenges in isolating the brain activity of interest (i.e. B).

It has been argued that in the analysis of large-scale data, sparsity is meant to be re-
inforced to detect interpretable low-dimensional structures with statistical significance
[37]. Sparsity is an appealing property since it compressively encodes relevant infor-
mation in a few entries of the expansion coefficients of a function. Statistically, this is
a particular way of being non-Gaussian, reason why sparsity shares a close connection
with independent component techniques [57]. However, while sparsity implies a form of
non-Gaussian behavior, it does not guarantee independence [72] (independent variables
can indeed be present in datasets that do not exhibit sparsity). Here, we propose a model
(see Figure 3.1A) that consists of the analysis of subspaces emerging from the spatial struc-
ture of𝑋 = (𝑋𝑘,𝑖)𝑝×𝑛 and spanned by independent components (§3.2). Wavelet techniques
are then applied to find a sparse approximation of Φ among a variety of spatial factoriza-
tions of 𝑋 . We therefore review some concepts of wavelet theory and derive a suitable
method for multiresolution analysis to apply wavelet denoising techniques (§3.3). Two
non-parametric methods for the selection of expansion coefficients are then introduced
(§3.4). Both of them do not directly depend on the variance of the detail coefficients,
rather on the global regularity properties of the original signal, allowing the discrimi-
nation of coefficients that significantly reflect the signal of interest.

The outlined model can be viewed as an alternative method to the functional indepen-
dent component analysis (ICA) model in [305], offering the advantage of circumventing
the challenging task of estimating large covariance matrices. Additionally, it eliminates
the need for an excessive number of B-spline knots, providing more versatility for de-
noising and the potential to effectively handle a large number of covariates, all within a
reasonably fast computation time. It also extends prior wavelet ICA schemes that take
into account the spatial structure of the data; see [10] and references therein. We also
introduce a method for simulating EEG data (§3.6) and provide numerical evidence il-
lustrating why current pre-processing practices may not always be reliable. Finally, some
real data analyses are discussed.

Notation
For a particular matrix, take 𝐴 ∈ R𝑝×𝑝 , a selection of its vector-rows is denoted as 𝐴1:𝑝,•
and vector-columns as𝐴•,1:𝑝 . A single one of its vector rows or columns is written as𝐴1,•
or 𝐴•,1, respectively. The operator C : R𝑝 → R𝑝 performs cumulative sum. O stands for
the numerical order. By some abuse of notation, ∥ · ∥ will denote the 𝐿2 and Euclidean
norm.
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Figure 3.1: Wavelet functional ICA model for artifact reduction. (A) Main model representation (B) Exemplification of multiplicative
scaling (𝐽𝜃 was scaled for the sake of its representation).

§ 3.2. Factorization into subspaces spanned by spatial ICs

The spatial independent component model applied to wide data
Assume 𝑋 = (𝑋𝑘,𝑖)𝑝×𝑛 with 𝑝 ≪ 𝑛 can be expressed as linear transformation of an unob-
served matrix 𝑆 ∈ R𝑝×𝑛 of mutually spatially independent components, i.e. the probability
distribution of 𝑆1:𝑘,• factorizes as 𝑃𝑆1:𝑘,• =

∏𝑛
𝑘=1 𝑃𝑆𝑘,• . The spatial independent component

(spatial IC) model can be expressed as

𝑋 = 𝑋 +𝐴𝑆 (3.3)

where 𝐴 ∈ R𝑝×𝑝 is an unknown invertible square matrix containing vectors of spatial
weights for each 𝑆𝑘,• and 𝑋 = 𝑋1𝑛/𝑛 is the spatial mean. The task of spatial ICA is there-
fore to infer the matrix 𝑆 from 𝑋 . Due to the variance indeterminacy in the model 3.3,
a common pre-processing step is to "whiten" or map to orthogonality 𝑋 . This trans-
formation has some desirable properties to speed up the convergence of some ICA algo-
rithms. A whitening transformation Ψ(·) : R𝑝×𝑛 → R𝑝×𝑛 is derived from the factorization
Σ−1 = ΨΨ⊤ where Σ−1 = {(𝑋 −𝑋 ) (𝑋 −𝑋 )⊤/𝑝}−1 is the covariance of the transpose of the
original data. As a result, 𝑋̃ = Ψ(𝑋 −𝑋 ) becomes spatially decorrelated (or isotropic, i.e.,
the spatial covariance matrix of 𝑋̃ is 𝐼𝑝). Let us note that Ψ is not uniquely determined
and many whitening procedures can be devised due to the rotational freedom the trans-
formation possesses; see [298] for further details. This property is the basic principle of
ICA.

Under the above assumptions and assuming Ψ = Σ−1/2, the model 3.3 can be straight-
forwardly reformulated as

𝑋̃ = Ψ(𝑋 − 𝑋 ) = Ψ(𝐴𝑆) = (𝐴𝐴⊤)−1/2𝐴𝑆 = 𝐴̃𝑆 . (3.4)

Given that 𝑋̃ is isotropic and 𝑆 has independent components, the matrix 𝐴̃ is orthogonal.
At this point, we might further suppose that𝐴 is orthogonal in 3.3 when assuming𝑋 = 0.
Therefore, one can only recover 𝑆 up to a permutation and the sign [64], which means
there exists a demixing matrix 𝑊 ∈ R𝑝×𝑝 satisfiying 𝑊𝐴 = 𝐷𝑃 , where 𝐷 is a diagonal
matrix with diagonal elements being 1 or -1 and 𝑃 is a permutation matrix.
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Fixed-point iteration on isotropic data using non-linearities
After pre-whitening, the aim is to estimate a demixing matrix for 𝑋̃ , we denote by𝑊 ∗.
A fixed-point iteration based on a non-Gaussian optimization is then used. This iteration
is at the core of the popular FastICA algorithm [125], which is presented in its basic form
in the next lines.

Let 𝑔 : R → R be a function measuring non-Gaussianity that operates elementwise
to the entries of a scalar vector. We call the function 𝑔 nonlinearity, which is usually
defined as 𝑔(·) = 𝐺′(·), where 𝐺 is twicely differentiable nonlinear and non-quadratic
function with 𝐺 (0) = 0. Typical examples of 𝐺 (·) include x4/4 (kurtosis), − exp(−x2/2)
(gauss) or logcosh(x) (tanh). All of these nonlinearities are smooth and even, and can be
bounded by a polynomial function. The optimization problem in FastICA summarizes
in the contrast function

J
∥w∥=1
(w) = 𝑛−1𝐺

(
w⊤𝑋̃

)
1𝑛, (3.5)

where w is a vector of 𝑝 entries on the unit hypersphere S ≡ {w ∈ R𝑝 | ∥w∥ = 1}. Under
Langrangian conditions, the extreme value of 3.5 can be obtained via solutions to the
equation 𝑋̃𝑔(𝑋̃⊤w) +𝛽w = 0. This problem is solved using the following iterative method:

1. Chose an initial guess for w ∈ S.

2. Iterate

w+ ← 𝑋̃𝑔(𝑋̃⊤w) − 𝑛−1w𝑔′(w⊤𝑋̃ )1𝑛

w+ ← w+

∥w+∥ ,
(3.6)

until convergence.

3. An estimate ŵ = w+ of𝑊 ∗1,• is obtained.

Note the above algorithm only extracts one demixing vector. Therefore, a sequential
or deflationary orthogonalization procedure is usually conducted to estimate the rest of
vectors. One can add the following orthogonal constrain in between the two steps in
3.6:

w+ = w+ −
∑︁
𝑘

(v𝑘v⊤𝑘 )w
+, (3.7)

where v𝑘 are previously obtained demixing vectors ("deflated" observations). Each ex-
tracted ŵ in the fashion described above is a column of𝑊 ∗, and 𝑆 =𝑊 ∗Ψ(𝑋 − 𝑋 ) can be
finally obtained. This algorithm is called one-unit FastICA as it extracts one demixing
vector at a time in a similar vein to projection pursuit techniques.

Subspace reconstruction and expansion
Once the matrix𝑊 ∗ is obtained, finding the inverse of𝑊 =𝑊 ∗Ψ gives the mixing matrix
𝐴 to recover 𝑋 . Given that 𝑋 = 𝐴𝑆 assuming 𝑋 = 0, one can perform the following
factorization of 𝑋 as

𝑋 = {𝐴•,1𝑆1,•︸  ︷︷  ︸
𝑍1∈R𝑝×𝑛

+ · · · +𝐴•,𝑘𝑆𝑘,•︸  ︷︷  ︸
𝑍𝑘

+ · · · +𝐴•,𝑝𝑆𝑝,•︸  ︷︷  ︸
𝑍𝑝

}. (3.8)
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where {𝑍𝑘}𝑝
𝑘=1 are a set of subspaces spanned by each 𝑆𝑘,•. In the following lines, we dis-

cuss some of their statistical properties. All 𝑍𝑘 ’s are not necessarily isotropic while they
are spatially irreducible [109]: i.e., for any 𝑍𝑘 , the matrix 𝐴 in the model 𝑍𝑘 = 𝐴𝑆 vanishes,
indicating that 𝑍𝑘 is not separable into lower independent components. Having singular
covariance matrix is a necessary but not sufficient condition for irreducibility; however,
non-Gaussian random vectors often exhibit irreducibility under such conditions. Addi-
tionally, the 𝑍𝑘 ’s are pairwise orthogonal (i.e., 𝑍𝑘𝑍𝑘 ′⊤ = 0𝑝 for all 𝑘 ≠ 𝑘′) and any linear
combination of them, say 𝑍𝑘1 + · · · + 𝑍𝑘𝑚 (𝑚 < 𝑝 − 1), is orthogonal to the rest of 𝑍𝑘s
and of its complement. It is worth noting that applying wavelet denoising directly to 𝑆𝑘,•
would compromise these properties, thus failing to ensure the level of independence that
spatial ICA provides.

§ 3.3. Wavelet approach

A critical step before applying wavelet techniques is the selection of 𝑍𝑘 ’s, which is dis-
cussed in Sections 3.6 and 3.7. Assume some of these 𝑍𝑘 ’s, or linear combinations of
them, correspond to the function in 3.2 containing artifactual components. The next
step involves approximating each of the selected 𝑍𝑘 ’s using a suitable Hilbert basis in the
temporal domain with the aim of optimizing the irreducibility (consequently the inde-
pendence) of the selected components. We now recall some concepts of wavelet theory
to later present our wavelet thresholding approach.

Preliminaries: wavelet transform and multiresolution analysis of 𝐿2

A wavelet on R is an oscillatory function 𝜓 ∈ 𝐿2
R

satisfying
∫ +∞
−∞ 𝜓 (𝑡)d𝑡 = 0 (has zero

average), ∥𝜓 ∥ = 1 (is normalized at 1), centered in the neighbourhood of 𝑡 = 0 and
decaying to 0 as 𝑡 → ±∞. Other desirable properties of 𝜓 include regularity, having
𝑑 vanishing moments, i.e.,

∫ ∞
−∞ 𝑡

𝑝𝜓 (𝑡)d𝑡 = 0, 𝑝 = 1, . . . , 𝑑 − 1 (the ability to represent
polynomial functions) or compact support (for further details, see [71]). The continuous
wavelet transform of a function 𝑓 ∈ 𝐿2

R
with respect to 𝜓 is the linear functional

[W𝜓 𝑓 (𝑡)] (𝑏, 𝑎) = ⟨𝑓 (𝑏 + 𝑎𝑥),𝜓 ∗(𝑥)⟩ =
〈
𝑓 (𝑡), 1

𝑎
𝜓 ∗

(
𝑡 − 𝑏
𝑎

)〉
(𝑏, 𝑎) ∈ R ×R+, (3.9)

where 𝑎 is a scale parameter and 𝑏 a translation parameter and𝜓 ∗ is the complex conjugate
of 𝜓 . The above transform it is usually performed in a dyadic fashion (𝑎 and 𝑏 are based
on powers of 2), which gives rise to the notion of multiresolution analysis (MRA).

Definition 6. A function 𝜙 ∈ 𝐿2
R

is a scaling function of a MRA of 𝐿2
R

if the following
conditions hold:

1. The family of translated functions {𝜙 (· − 𝛿)}𝛿∈Z is a complete orthonormal system of 𝐿2
R

.

2. The linear spaces ℋ0 = span{𝜙 (· − 𝛿)}, . . . ,ℋ𝑗 = span{𝜙 (2 𝑗 · −𝛿)}, . . . are nested; i.e,
ℋ𝑗−1 ⊂ℋ𝑗 , ∀𝑗 ∈ N.

3. ∪ 𝑗≥0ℋ𝑗 = 𝐿
2
R

(the closure of ∪ 𝑗ℋ𝑗 is dense in 𝐿2
R

, i.e. ∩ 𝑗ℋ𝑗 = {0}).

Note that here, the index 𝑗 indicates the scale (or level of resolution) and, as it increases
to ∞, the precision of the approximation increases too. Further, observe that each sub-
space ℋ𝑗 consists of functions that are piecewise constant over intervals of exactly twice
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the length of those for ℋ𝑗−1. From points (𝑖) and (𝑖𝑖) it immediately follows that the
the functions 𝜙 𝑗,𝛿 (𝑥) = 2 𝑗/2𝜙 (2 𝑗𝑥 − 𝛿), 𝛿 ∈ Z, form an orthonormal basis of the space
ℋ𝑗 , 𝑗 ∈ N, as these spaces are just scalings of ℋ0.

The multiresolution approximations of a function 𝑓 ∈ 𝐿2
R

are given by the projections
𝑃 𝑗 into ℋ𝑗 , 𝑃 𝑗 𝑓 =

∑
𝛿 ⟨𝜙 𝑗,𝛿 , 𝑓 ⟩𝜙 𝑗,𝛿 , with ⟨𝜙, 𝑓 ⟩ =

∫ +∞
−∞ 𝑓 (𝑡)𝜙∗d𝑥 . The range of the differ-

ence between two successive approximations 𝑃 𝑗+1𝑓 −𝑃 𝑗 𝑓 corresponds to the orthonormal
complement of the space ℋ𝑗 in ℋ𝑗+1. The information contained in these subspaces are
relevant for reconstructing 𝑓 since

ℋ𝑗 = ℋ0 ⊕
(
𝑗−1⊕
ℓ=0

ℋ
⊥
ℓ

)
, (3.10)

where ℋ
⊥
ℓ ≡ ℋℓ+1 ⊖ ℋℓ with ℋℓ ⊥ ℋℓ ′, ℓ ≠ ℓ′. Thus, one would like to find basis

functions that span the spaces ℋ⊥ℓ . Using 𝜙 , it is possible to construct via standard ways
a corresponding wavelet function𝜓 , so that {𝜓 (· −𝛿)}𝛿∈Z is an orthonormal basis of ℋ⊥0 .
Similarly,𝜓ℓ,𝛿 (𝑥) = 2ℓ/2𝜓 (2ℓ𝑥−𝛿), 𝛿 ∈ Z will form an orthonormal basis forℋ⊥

𝑗>0, as these
spaces are mutually orthogonal and obtained (from each other) by scalings. We note that
the functions 𝜙 and𝜓 are roughly referred to as father and mother wavelet, respectively.

Under the above considerations, one can expand a function 𝑓 ∈ 𝐿2
R

as the convergent
series expansion

𝑓 =
∑︁
ℓ∈Z

∑︁
𝛿∈Z

𝑑ℓ,𝛿𝜓ℓ,𝛿 , ∥ 𝑓 ∥2
𝐿2
R

=
∑︁
ℓ,𝛿∈Z

𝑑2
ℓ,𝛿

< ∞, (3.11)

where 𝑑ℓ,𝛿 = ⟨𝑓 ,𝜓ℓ,𝛿⟩ =
∫ ∞
−∞ 𝑓 (𝑥)𝜓

∗
ℓ,𝛿
(𝑥)d𝑥 are the wavelet coefficients of 𝑓 in terms of the

wavelet basis. The relation of the wavelet transform in 3.9 with the wavelet coefficients is
then 𝑑ℓ,𝛿 = 2−

ℓ
2 W𝜓 𝑓

(
𝛿2−ℓ , 2−ℓ

)
. MRA has previously been used in functional data studies

to estimate a function-on-function linear regression model, elucidating the relationship
between lupus severity and stress levels in patients with this autoimmune disease [5].

Discrete non-decimated multiresolution analysis
As noted above, the dilation and translation parameters 𝑎, 𝑏 are assumed to vary contin-
uously over R (with the constraint 𝑎 ≠ 0). If these parameters take discrete values, then
the transform is called discrete wavelet transform (DWT). Here, the aim is to perform
MRA on z𝑖 ≡ 𝑍𝑘𝑖,•, for each 𝑖 and a fixed 𝑘, using Mallat’s pyramidal algorithm [185]
but without using dyadic subsampling (decimation). This corresponds to the maximal
overlap discrete wavelet transform (MODWT) [233, 309], in which the number of coef-
ficients at each resolution level end being 𝑛. The aforementioned technique offers several
advantages, including its insensitivity to vector length or circular translations as well as
improved frequency localization due to the redundancy introduced by the overlap, re-
sulting in enhanced denoising capabilities and better ability to mitigate the boundary
effects commonly encountered when decimation is conducted.

We use an even length scaling filter {𝑔𝑙 }𝐿−1𝑙=0 and wavelet filter {ℎ𝑙 }𝐿−1𝑙=0 with 𝐿 ≤ 𝑛, that
are discretely compactly supported filters of the Dauchebies class [71, Chapter 6]. By
definition, these filters sum zero, have unit square norm and are orthogonal to its even
translations. As in [309], filters are additionally selected to be quadrature mirror, ensuring
that they meet the orthogonality condition ℎ𝑙 = (−1)𝑙𝑔𝐿−𝑙−1 or 𝑔𝑙 = (−1)𝑙+1ℎ𝐿−𝑙−1 for
𝑙 = 0, . . . , 𝐿−1. Furthermore, filters are normalized as follows: 𝑔𝑙 = 𝑔𝑙/

√
2 and ℎ̃𝑙 = ℎ𝑙/

√
2.

47



This procedure allows to preserve the energy when the filters are upsampled by 2 𝑗−1,
which is achieved by padding out zeros between successive elements of the filter, that is,

ℎ̃ 𝑗 ≡ [ℎ̃0, 0, . . . , 0,︸   ︷︷   ︸
2𝑗−1−1 zeros

ℎ̃1, 0, . . . , 0,︸   ︷︷   ︸
2𝑗−1−1 zeros

. . . , ℎ̃𝐿−2, 0, . . . , 0,︸   ︷︷   ︸
2𝑗−1−1 zeros

ℎ̃𝐿−1] .

Observe that this operation is akin to dilating the wavelets, thereby enabling the for-
mation of a multiresolution analysis without decimation. If 𝑉0,𝑖 ≡ z𝑖 , the 𝑗th-level of the
pyramid algorithm is then given by the following circular filterings:

𝐷 𝑗,𝑖 =

𝐿−1∑︁
𝑙=0

ℎ̃𝑙𝑉𝑗−1,(𝑖−2𝑗−1𝑙) mod 𝑛, 𝑉𝑗,𝑖 =

𝐿−1∑︁
𝑙=0

𝑔𝑙𝑉𝑗−1,(𝑖−2𝑗−1𝑙) mod 𝑛,

where 𝐷 𝑗,𝑖,𝑉𝑗,𝑖 represent the 𝑗th-level wavelet and scaling coefficients, 𝑖 = 0, 1, . . . , 𝑛 − 1
the number of samples and mod the modulo operator. The reconstructing coefficients
are then

𝑉𝑗−1,𝑖 =
𝐿−1∑︁
𝑙=0

ℎ̃𝑙𝐷 𝑗,(𝑖+2𝑗−1𝑙) mod 𝑛 +
𝐿−1∑︁
𝑙=0

𝑔𝑙𝑉𝑗,(𝑖+2𝑗−1𝑙) mod 𝑛 .

The coefficients of both MODWT and DWT share the same nominal frequency band
at each level of resolution. Nevertheless, the MODWT is not an orthonormal transform
of z𝑖 and if 𝑛 is an integer multiple of 2𝐽 , the MODWT has a computational complexity
of O(𝑛 log2 𝑛) multiplications whereas the DWT solely of O(𝑛).

§ 3.4. Wavelet thresholding for non-necessarily white noise

Let 𝐷 = (𝐷 𝑗,𝑖)𝐽×𝑛 be the matrix that contains the coefficients of the MODWT performed
on z𝑖 . Considering that the wavelet transform of a well-behaved function typically ex-
hibits sparsity, only a small portion of the wavelet coefficients will have significant values,
while the rest will be relatively small and can be considered negligible. Therefore, when
a coefficient𝐷 𝑗,𝑖 is relatively small, it is justifiable to treat it as predominantly noise and set
it to zero; conversely, if it is significantly large, retaining it is a reasonable choice. This
corresponds to the shrinking policy/rule called hard thresholding [82, 83] and defined
here by the estimator 𝜂𝐻 (𝐷 𝑗,𝑖, 𝛼 𝑗 ) = 𝐷 𝑗,𝑖I{|𝐷 𝑗,𝑖 | > 𝛼 𝑗 } for some threshold values 𝛼 𝑗 . In this
paper, our focus centers on the aforementioned estimator in the context of the model
3.2. An intriguing aspect lies in the estimation of Φ, since the conventional reliance on
the assumption of a white noise for the selection of a suitable threshold no longer holds.
Two non-parametric solutions to chose level-dependent thresholds are presented in the
following lines.

Multiplicative scaling of Walden’s MODWT level-dependent threshold
Walden [309] proposed a robust alternative to the so-called universal threshold 𝛼 ≡
{2𝜎2𝜖 log(𝑛)}1/2, where 𝜎𝜖 is the standard deviation of the detail (or finest level) coef-
ficients, 𝐷1,•. It is therefore assumed that 𝐷1,• are noise dominated. While this approach
has been proven asymptotically optimal [82], it can erroneously set to zero certain coef-
ficients. The common estimator for 𝜎𝜖 is then replaced in [309] by

𝜎̂MAD ≡
median

{��𝐷1,0
�� , ��𝐷1,1

�� , . . . , ���𝐷1,𝑛2−1

���}
0.6745

, (3.12)
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where 0.6745 is a rescaling factor, so that the correct variance can be returned in case
of Gaussian white noise. The resultant threshold is typically levelwise adjusted as 𝛼 𝑗 ≡
{2𝜎2𝑗 log(𝑛)}1/2 with 𝜎2𝑗 = 𝜎

2
𝜖 /2 𝑗 , and adapted to the MODWT considering the estimator

21/2𝜎̂MAD, where the scaling factor 21/2 accounts for the relation 𝐷1,𝑖 = 21/2𝐷1,2𝑖+1.
The current approach may indeed be effective in optimizing the reduction of the error

term in 3.2. However, it may not be as efficient in separating latent components of Φ from
B. Some packages offer the possibility to heuristically tailor the denoising level by either
scaling 𝛼 𝑗 or by incrementing the median value in 3.12. However, finding a good trade-
off between both parameters is not an easy task. Here, we concentrate on estimating a
multiplicative scaling factor for Walden’s MODWT level-dependent threshold via cross-
validation schemas without altering 3.12.

For 𝜃 ∈ R+, consider 𝛼𝜃
𝑗
≡ 𝜃 {2𝜎2𝑗 log(𝑛)}1/2 where the estimator for 𝜎2𝑗 is given by

21/2− 𝑗 𝜎̂MAD. We then aim at finding a 𝜃 that maximizes the cumulative variance of the
loss function

𝐽𝜃 ≡
1
𝑝

𝑝∑︁
𝑘=1

{
1
𝑛

𝑛∑︁
𝑖=1

(
𝑍𝑘
𝑘,𝑖
− 𝑍𝑘,𝜃

𝑘,𝑖

)2}1/2

, (3.13)

where𝑍𝑘,𝜃 is a "denoised"𝑍𝑘 using 𝛼𝜃
𝑗

for different values of 𝜃 . The optimization problem
is then defined as

argmax
𝜃∈R+CVAR(𝐽𝜃 ), (3.14)

where CVAR(x) = (𝑛 − 1)−1{C(x2) − 𝑛−1C(x)2} is the cumulative variance calculated for
any x ∈ R𝑛.

We now discuss the rationale underlying this approach. The function 𝐽𝜃 is assumed
monotonically increasing and grows fast as we progressively move away from 𝑍𝑘 by
increasing 𝜃 . Nonetheless, 𝐽𝜃 starts growing slowly as 𝑍𝑘,𝜃 becomes sparser. As a result,
CVAR(𝐽𝜃 ) reaches a peak and decreases along with the first derivative of 𝐽𝜃 converging to
0 (indicating that no significant variance is added to the model, see Figure 3.1B). This
peak (depicted by a grey vertical line) can be interpreted as a stability/fixed point where
the behavior of 𝐽𝜃 starts changing. Investigating the vicinity of this maximum can lead
to optimal outcomes, as shown by our simulations.

Entropic normalized information distance
We now present an alternative coefficient selection approach based on a paper by Bruni et
al. [45]. There, it is assumed that the expansion coefficients originate from two separate
and independent sources, namely, the most "representative" and the "less representa-
tive" coefficients. This method boasts a distinctive advantage: there is no prerequisite
knowledge needed about the statistical nature of the noise, a requirement often taken
into account in other approaches [18]. The method is established within an information-
theoretic framework, introducing a novel measure called entropic normalized informa-
tion distance (ENID), which is fundamented the so-called Vitanyi’s normalized infor-
mation distance and shaped by the notion of differential entropy. Although ENID is
formulated in terms of the detail coefficients, it can be applied, without loss of general-
ity, to coarser levels or the whole coefficient set, as proposed here.

Consider the vectorization of the matrix 𝐷, d 𝑗 = vec(𝐷) ( 𝑗 = 0, . . . , 𝑝 × 𝑁 ). Suppose
that the absolute value of d 𝑗 are rearranged in decreasing order and normalized on [0, 1],
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i.e, d̃ 𝑗 = {1 ⩾ d̃𝑝×𝑁−1 ⩾ · · · ⩾ 0}. Then, for all 𝛽 ∈ {1, . . . , 𝑝×𝑁 −1}, the ENID is defined
as

ENID𝛽 =

����𝐸 [0,1] �� −min
{
𝛽
��𝐸 [0,𝛽] �� , (1 − 𝛽) ��𝐸 [𝛽,1] ��}��

max
{
𝛽
��𝐸 [0,𝛽] �� , (1 − 𝛽) ��𝐸 [𝛽,1] ��} , (3.15)

where 𝐸 [·,·] denotes the differential entropy at a predefined interval. Numerical schemes
for the approximation of 𝐸 are provided in [45] §2.3. The index entry that realizes the
minimum of ENID𝛽 allows to identify in d̃ 𝑗 (when not normalized) the wavelet coeffi-
cient used for thresholding. Then, in 𝛼 𝑗 ≡ {2𝜎2𝑗 log(𝑛)}1/2 we define the estimate for 𝜎2𝑗
as |d 𝑗 |/2 𝑗 where d 𝑗 represents the wavelet coefficient related to the minimum ENID𝛽 .

Remark 6. In order to speed up computation when handling wide data, one can model d̃ 𝑗 as a
𝐿2
I

function using some basis functions representation. Given that the approximation coefficients
maintain the probabilistic properties of the functional approximation (due to the existence of an
isometric isomorphism between 𝐿2

I
and the coefficient space), 𝐸 can be computed on them. Note

that ENID will be drastically reduced to a few data points, therefore some interpolation technique
has to be used to identify the wavelet coefficient of interest.

In essence, ENID gauges the dissimilarity between two coefficient sets as the differ-
ence between the overall complexity and the less complex of the two subsets concerning
the regularity of the signal, as reflected by the decreasing rearrangement of the coeffi-
cients. When ENID reaches a minima, this indicates that the entropy of one coefficient
set is close to the overall entropy and therefore the remaining one has little impact on the
randomness of the other.

§ 3.5. Model summary

An overview of the proposed algorithm is depicted in Figure 3.1.
Input: a wide data matrix 𝑋 ∈ R𝑝×𝑛 (𝑝 ≪ 𝑛). Output: B(𝑡𝑖, 𝑠𝑘) ∈ R𝑝×𝑛.

1. Perform spatial ICA (e.g. using FastICA) on 𝑋 and derive 𝑍 1, . . . , 𝑍𝑝 to make a
selection of them.

2. For each selected 𝑍𝑘 perform the MODWT to each of its rows. Extract the corre-
sponding matrices of coefficients.

3. Use one of the techniques described in §3.4 to conduct hard thresholding on the
wavelet coefficients.

4. Invert all MODWT transforms and subtract the denoised 𝑍𝑘 ’s from 𝑋 .

5. Repeat until no artifactual components are left.

The above algorithm is not restricted to a fixed number of iterations (in our data
analyses we consider a single one); rather, it can be performed until the residual signals
meet a predefined criterion.

Proposition 15. Let 𝑍𝑘 = 𝐴•,𝑘𝑆𝑘,• be the expansion of an arbitrary spatial IC and V(𝑍𝑘) a
non-linear mapping that uniformly denoises the rows of 𝑍𝑘 . Then, V(𝑍𝑘) = 𝐴•,𝑘V(𝑆𝑘,•).
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Proof. The proof is trivial since in the inner product 𝐴•,𝑘𝑆𝑘,•, each entry of the vector
𝐴•,𝑘 is multiplied by each of the corresponding rows of 𝑆𝑘,•, therefore weighting 𝑝 times
the vector 𝑆𝑘,•. If, however, V(·) applies non-uniformly to each row of 𝑍𝑘 , the above
relation does not hold. ■

We observe that Proposition 15 allows to notably reduce the computational cost by
applying the denoising procedures to 𝑆𝑘,• instead of 𝑍𝑘 . While there seem to be no ap-
parent disadvantages in directly denoising 𝑆𝑘,•, note that the spatial weights in 𝐴•,𝑘 do
not correspond to those of V(𝑆𝑘,•) and ∥V(𝑆𝑘,•)∥ < 1. Ultimately, the problem reduces
to whether selecting or not an orthonormal basis for projection, since the proposed pro-
cedures for denoising are scale invariant. For the subsequent simulations and analyses,
we adhere to our original approach.

§ 3.6. Numerical simulations

In this section, various numerical simulations are conducted to show the performance of
the proposed methods. The artificial data is generated from the following model:

𝑋𝑖 𝑗 = sin(𝜏1;𝑖, 𝑗 ) + 𝐴̃𝑖, 𝑗 cos(𝜏2;𝑖, 𝑗 ) + 𝐾̃𝑖, 𝑗 + 𝜖𝑖, 𝑗 (𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑝), (3.16)

where, for all 𝑖, 𝜏1; 𝑗 = 𝜋C( |x 𝑗 |), x ∼ N(0, 0.02); 𝐴̃𝑖, 𝑗 = 𝐴𝑖, 𝑗c1; 𝑗 , where c1; 𝑗 is a vector of
weights of 𝑝 equidistant observations in [−90, 90] and 𝐴•, 𝑗 contains log-normal densities
(Nlog(3, 𝜎), 𝜎 ∼ U[0.2, 0.8]) generated in varying intervals ranging from 1 in the lower
bound at the extremals; 𝜏2, 𝑗 = 2𝜋C( | ⌊x 𝑗⌋ |)/12500, x ∼ N(80, 180), where x 𝑗 changes of
value (phase) at each 250 observations; 𝐾̃𝑖, 𝑗 = 𝐾𝑖, 𝑗c2; 𝑗 where c2; 𝑗 is a vector of weights
with 𝑝 equidistant entries and 𝐾•, 𝑗 are linear combinations of two artifacts generated
from modified functions detailed in [82] (artifact 1 "Bumps"; artifact 2 "Doppler"); 𝜖 𝑗 ∼
N(0, 0.05). Note that the vectors c1; 𝑗 , c2; 𝑗 are used as spatial weights of current spiking
oscillations and artifacts. For artifact 1, c2; 𝑗 is a set of 𝑝 equidistant observations in [15, 5]
and for artifact 2, c2; 𝑗 ∈ {0, 0, . . . , 3}. In this paper, we consider 𝑝 ≪ 𝑛 to be defined by
2𝐽 = 𝑛, 𝐽 ∈ N0 with 𝑝 ⩽ 2 log2(𝑛), thus we take 𝑛 = 215 in our simulations.

The data generated by model 3.16 bears certain similarities to multichannel EEG sig-
nals. In EEG, brain signals are typically aperiodic and exhibit intricate variability in
amplitude characterized as local bursts with exponential decay [49]. These characteris-
tics are effectively captured by the phase configurations of the trigonometric terms in
3.16 and their respective scalings using the log-normal density generator. Contamina-
tion of EEG brain signals (by blinks, muscular activity, cable movements...) is roughly
represented by the artifacts contained in 𝐾̃ = {𝐾̃𝑖, 𝑗 }. Artifact 1 appears at all channels with
modulated amplitudes that become less pronounced for a higher 𝑝, eventually merging
with the large scale processes (Figure 3.2A - first row). This artifact is sparse in time,
strongly correlated in space/time while assumed independent of the rest of processes. In-
stead, artifact 2 appears at one single channel, thus, it is uncorrelated in space and not
assumed spatially independent, at least within the first regions of its temporal domain
(Figure 3.2A - second row).

Our simulations are assessed using four key performance metrics described below.
The first, and the simplest one, is a multichannel RMSE defined as

MRMSE =
1
𝑝

𝑝∑︁
𝑘=1

{
1
𝑛

𝑛∑︁
𝑖=1

(
G𝑘,𝑖 − 𝑋̂𝑘,𝑖

)2}1/2

, (3.17)
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Figure 3.2: Simulation Results (A) Estimation of Artifact 1 and 2 in Simulation 1 (l4), displaying three spatial components. (B)
Estimation of Artifact 3 in Simulation 3 (l6).

where Gis the ground truth signal and 𝑋̂ is an estimate of Gafter the model is applied. To
analyze the level of residual noise in 𝑋̂ and the degree of similarity with G, we employ
a variance- and correlation-based signal-to-noise ratio (SNR) measures adapted from
[288]. Here, the multichannel SNR variance measure is defined through RMS as

SNRvar =


1
𝑝

𝑝∑︁
𝑘=1

10 log10
(
𝜎2
G𝑘,·

𝜎2
𝑋𝑘,·

)
− 10 log10

©­«
𝜎2
G𝑘,·

𝜎2
𝑋̂𝑘,·

ª®¬

2

1/2

, (3.18)

where 𝜎2
G𝑘,·

is variance of the ground truth signal, 𝜎2
𝑋𝑘,·

is the variance of the original signal
and 𝜎2

𝑋̂𝑘,·
the estimate of 𝜎2

G𝑘,·
after the model is applied. Conversely, the SNR correlation

measure is defined as

SNRcor =
1
𝑝

𝑝∑︁
𝑘=1

(
1 −

𝜌G𝑘 − 𝜌 (G𝑘 ,𝑋𝑘 )
𝜌G𝑘 − 𝜌 (G𝑘 ,𝑋̂𝑘 )

)
. (3.19)

where 𝜌G𝑘 denotes the autocorrelation of G𝑘 at lag 1, 𝜌 (G𝑘 ,𝑋𝑘 ) and 𝜌 (G𝑘 ,𝑋̂𝑘 ) are, respectively,
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the cross-correlation between G𝑘 with the original signal and the estimate of G𝑘 . We note
that the mean of all correlations obtained in 3.19 is estimated via Fisher transformation.
As SNRcor : R𝑝 → [0, 1] decreases to 0, this means that the shape of 𝑋̂ diverges from the
shape of the ground truth signal. Further, one can intuitively observe that an increase
in the level of SNRvar suggests the presence of residual noise in 𝑋̂ when SNRcor is also
high. Finally, we used the normalized compression distance (NCD) as defined in [45].

Model configurations: deflation FastICA with tanh (see [308]). We used PCA whiten-
ing as it tends to enhance data compression [298], which can be advantageous for lower
spatial resolutions.

• Simulation 1. Objective: We investigate the quality of extracting artifacts 1 and 2
and reconstructing the underlying process after artifact subtraction. Two scenarios
are considered: one involving subspace factorization as depicted in Figure 3.1 (single
iteration), and the other consisting of the direct application of wavelet thresholding
to the original data. Remarks: the metrics for the residual process after subtraction
of artifacts are calculated using the corresponding thresholding methods on the de-
tail coefficients. Artifacts 1 and 2 where detected using the correlation coefficient
between the ground truth artifact and denoised versions of 𝑆 . Results: as reported in
Table A.2, the direct application of wavelet thresholding significantly degrades all
performance metrics when compared to the selective removal of artifacts through
spatial factorization. The SNR levels also suggest that the residual process is spu-
riously modulated when direct wavelet thresholding is employed, with this issue
appearing to be less pronounced when using multiplicative scaling (MSC). Regard-
ing the artifact estimation, it is evident that both MSC and ENID outperform uni-
versal thresholding by a significant margin, while MSC reaches an overall higher
performance. We found an aliasing effect after subspace reconstruction of artifact
2 which was overcome in our analyses (metrics are derived only for the channel
containing the artifact). As expected, our methods for denoising artifact 2 partially
failed due to mixings with the residual process. See also Figure 3.2A.

• Simulation 2. Objective: We investigate the quality of extracting artifact 1 in the
following setting: the number of bumps increase and are randomized in location,
amplitude and frequency; artifact 2 is randomly changing of channel. Within this
scenario, we forsee that a prior PCA reduction could help improve the the re-
sults. Remarks: We compare performing FastICA using in the fixed-point iteration
Ψ1:𝑟,•(𝑋 − 𝑋 ) (with 𝑟 = 2) instead of using all rows of Ψ. Results: As shown in
Table A.3, an increase in the number of bumps leads to an exponential increase in
MRMSE. However, restricting FastICA to the first components notably improves
these rates, as demonstrated in Table A.4, for both MSC and ENID.

• Simulation 3. Objective: In this third simulation we investigate the extraction of
a new artifact that is characterized by white noise amplification during a short
temporal period (Figure 3.2B) affecting the the whole spatial domain (we use the
weights determined for artifact 1) in a homogeneous way (the noise is the same
across all channels). We study the ability of our method to estimate artifact 3 and
the residual process after artifact subtraction. Remarks: Again, the metrics for the
residual process are calculated using the corresponding thresholding methods on
the detail coefficients. ISNRcor is calculated for the region of the domain where
noise amplification occurs. Results: See Table A.5 and Figure 3.2B. The large values
for ISNRvar indicate that our methods are relatively inefficient in denoising this
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artifact. Meanwhile, the low ISNRcor values suggest that the shape of the artifact
is almost unrecoverable. This observation holds for the residual process as well,
although MSC appears to outperform ENID to some extent.

§ 3.7. Applications to EEG data

(A) Blinking

(B) Hard chewing

(C) Swaying, 
moving arms

MIN

MAX

Motor action

Figure 3.3: A selection of brain topographies illustrating target areas related to potential artifacts in the different recordings of motor
actions. These topographies are built by interpolating the entries of 𝐴•,𝑘 across a circular field, i.e., the channel coordinates on
the hemisphere projected into a compact circular field. Blinking and chewing artifacts (A,B) are usually characterized by strong
prefrontal and localized dorsolateral prefrontal activations, respectively. More complex motor tasks, such as swaying (C) –which
might involve eventual blinking as well (C-3)– also show clear spatial activations in the medial frontal/dorsolateral prefrontal and
occipital cortices (C-1,2,4). Observe that the artifactual activity is mostly originated and localized at the extremals of the field.

Arguably, the pre-processing of EEG data stands out as one of the most intricate chal-
lenges, requiring a rather crafted practices or intelligently driven approaches concerning
the selection and removal of artifacts. A common practice involves the manual selection
of artifacts, either through spatial representations of each vector in 𝐴 or by examining 𝑆.
In contrast to our simulations, the ground truth of the artifact is now unknown. Further,
an artifact may overlap in multiple spatial components, and while we assume they are
temporally sparse, its occurrence is often unknown.

The data used in this section was recorded at ASIL lab as part of the project with pro-
tocol no. 2022-33, which received approval from the local ethics committee at the Faculty
of Arts and Philosophy (Ghent University). The participant provided written consent to
take part in the study. A 64 channel EEG device recording at 10 KHz was used in the ex-
periment. During the recording, the participant performed several movements and was
asked to synchronize them with four auditory beats, each lasting 2 seconds. The task
was divided into two separate time frames, with pauses in between. The beat appeared
four times with a different sound during the pauses to give a sign to the participant of the
beginning/end of the task. The recorded motor actions included blinking (Art1), inten-
sive chewing (Art2), and swaying while moving the arms (Art3). We will be working
with three multivariate discrete signals represented by matrices of size 64 × 𝑛. Our goal
is to derive a suitable representation of EEG cortical activity by mitigating the artifactual
components as estimated through the application of the proposed model. Artifacts were
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visually selected, as the use of semi- or automated detection methods was beyond the
scope of this paper.

Data were solely demeaned and band-pass filtered between 0.5 Hz and 45 Hz to re-
move slow drifts and attenuate muscular activity. To assess the results, we use an SNR
measure defined as the quotient between the mean of the maximum absolute voltage
across channels in the original signal and the cleaned signal, expressed in decibels. Cal-
culations were confined to the time frames with artifactual activity. We selected the best-
localized wavelet family based on the artifact characteristics, utilizing wavelets with ei-
ther 2 or 6 vanishing moments. For Art1 (l2), SNR values were SNRMSC = 1.457681 and
SNRENID = 1.145932; for Art2 (l2), SNRMSC = 4.742761 and SNRENID = 1.056919, and
(l6) SNRMSC = 0.2877005 and SNRENID = 0.8506382; for Art3 (l2), SNRMSC = 4.327495
and SNRENID = 0.9719538. Visual inspection (see Online Supplementary Material) re-
vealed satisfactory results for Art1; however, for Art2 (l2), residual artifacts persisted with
both methods, albeit reduced when using higher vanishing moments. Notably, ENID
outperformed MSC in reducing lower frequency artifacts in Art3. Here, SNR levels can
be interpreted as indicators of artifactual activity, particularly regarding the low fre-
quency artifacts.

§ 3.8. Discussion

In this paper, we concentrate on the mathematical and statistical principles underlying
the reconstruction of artifactual activity from EEG signals. We approach this problem by
considering artifacts belong to a high-dimensional space dominated by sparsity. Typical
pre-processing techniques primarily involve spatial covariance estimation while over-
looking the temporal dimension of the data. This has inherent drawbacks because spatial
and temporal structures are related but fundamentally distinct, with critical topologi-
cal information residing in the time domain. Although in [305] we aimed to address
this concern, the proposed model does not take into account the spatial structure while
lacks of asymptotic robustness, leaving significant gaps. Instead, here we present a model
that captures linear information in the spatial domain while also exploiting the temporal
structure in a non-linear fashion using wavelet techniques on the spatial IC expansions.
Our spatial approach relies on FastICA due to its simplicity and common usage in ar-
tifact detection problems [79]. Additionally, FastICA is known for its good asymptotic
behavior [253], while is likely to outperform other estimators such as FOBI [219]. Other
ICA methods as well as different FastICA configurations can certainly be considered in
future comparative studies.

We introduced two approaches for thresholding wavelet coefficients, both of which
have demonstrated their effectiveness especially in scenarios where the definition of
noise (or what is meant to be denoised) lacks of a clear parametric specification. After
the spatial factorization, these methods aim to enhance the irreducibility of the spatial
ICs, thereby providing genuine independent spatial representations. The MSC method
has been shown to be notably effective in estimating stereotyped artifacts. Nevertheless,
its success relies on selecting an appropriate scaling series, as well as a suitable number
of vanishing moments, to ensure proper convergence. The advantage of ENID is that
it always converges regardless of any parameter configuration, although in certain cases
it can be less effective in recovering stereotyped artifacts. The performance of both
techniques when applied to EEG data depends on their adaptability to the complex
temporal topology of the artifact taxonomy and the type of embedded noise (if one
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assumes the presence of negligible white/coulored noise, reverting to the methods’
original formulation may be convenient). Our simulations and real data analyses yield
three crucial insights for practitioners: (𝑖) the direct application of denoising techniques
to estimate artifactual activity can lead to spurious modulation of brain activity when
artifact attenuation/removal is conducted (𝑖𝑖) if artifacts are not suitably denoised, their
subtraction will lead to brain activity loss (𝑖𝑖𝑖) identifying certain artifacts may rely
on knowledge of the covariance structure in the temporal domain, which is not easily
estimable in wide data settings.
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4 | Study I: Modeling pupil data during
musical tasks of variable emotionality

This chapter includes the paper:

• [304] VIDAL, M., ONDERDIJK, E., K., AGUILERA, A. M., SIX, J., MAES, P.-J., FRITZ, T. H.,
AND LEMAN, M. (2023). Cholinergic-related pupil activity reflects level of emotionality
during motor performance. European Journal of Neuroscience, 59(9):2193–2207.

Pupillometry has gained increased attention in recent years, driven partly by research
linking pupil activity to axonal diffusion of several neurotransmitter systems [136]. This
technique offers a cost-effective and portable means of measurement, making it partic-
ularly versatile for use during various motor activities. Unlike EEG recordings, it does
not suffer from typical artifact effects caused by muscular activity. However, the ma-
jority of pupil dilation changes can be attributed to autonomic regulation in response to
luminance variations; for instance, a basic eye blink reflex can induce turbulent effects
in the mid- and high-frequency band of the pupil signal, as shown in §4.4. Therefore,
estimating cognitive/neurotransmitter-related pupil activity is not straightforward, and
prior pre-processing of pupil data is mandatory to derive reliable scientific results. For a
comprehensive and up-to-date guide to pupillometry, we refer to [93].

In this chapter, we present a paper that integrates both methodological and experi-
mental results related to estimating pupil activity during musical tasks of variable emo-
tionality. Emotional motor control, which involves the neural mechanisms regulating
physical responses to emotions, is in its neurological organization substantially distinct
from voluntary motor control [118, 297]. Here, we aim to identify its neurological sig-
nature with pupillometry, examining slow and phasic fluctuations previously related to
the activity of cholinergic and noradrenergic axons. We conducted pupillometry in a
population of trained singers who sequentially performed different motor tasks deter-
mined by the structure of a musical piece and designed to vary according to the degree
of emotional engagement. We hypothesized that actively engaging in musical behavior
by singing and moving along with the music (movement+singing) would elicit stronger
emotional responses from participants, resulting in a qualitatively distinct pattern of base-
line and phasic pupil activity compared to control conditions that were comparable but
designed to be less emotionally engaging. The proposed paradigm is investigated within
the framework of the generalized arousal (GA) hypothesis [236–238]. GA is here defined
through the estimation of dominant dynamics using a multivariate functional PCA (§4.4)
of pupil data.

Abbreviations: LC, locus coeruleus; NE, norepinephrine; BF, basal forebrain; Ch,
cholinergic; ACh, acetylcholine; GA, generalized arousal; CWT, Continuous Wavelet
Transform; KL, Karhunen–Loève; ROE, response to ocular event; NM, no movement
only listening; M, body sway to music; NMS, singing but no body sway allowed; MS,
body sway plus singing.
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§ 4.1. Introduction

Optimal levels of arousal are critical for perceptual and cognitive functions, given that
arousal modulates entire classes of responses to various events, for example making an
organism more responsive to sensory stimuli, more ready to execute voluntary motor
activity and more emotionally responsive [236]. Physiologically, regulation of arousal
and autonomic function are related to the activity of the locus coeruleus norepinephrine
(LC-NE) and basal forebrain cholinergic (BF-Ch) systems [16, 27, 28, 35, 89, 176, 266].
The LC-NE activity plays an important role in enhancing the processing of information
salience [296, 310] and has been shown to have an influence on decision making [74,
84]. BF-Ch activity is a key component to promote sensory perception [240] and in
emotion regulation [21, 29, 30, 193, 239]. Furthermore, its engagement is particularly
characteristic as an integral aspect of motor activity, for example during locomotion [252]
or other types of body movements independent of locomotion [214].

Prior studies in humans and non-human animals have demonstrated that, under iso-
luminance conditions, there exists a causal relationship between pupil fluctuations and
the activity in the LC and the BF-Ch neurons [44, 74, 136, 137, 205, 214, 252]. However,
neuromodulatory mechanisms underlying movement control and their corresponding
effects on pupil behavior are not yet well understood. Neurophysiological work in ro-
dents has shown that the pupil tends to dilate concurrently with activity of the NE and
Ch axons before locomotion onset [251]. This dilation is prolonged along with a sustained
Ch axonal activity until motor offset, showing a hallmark latency to reach baseline lev-
els [194, 251, 306]. BF-Ch inputs have also been related to microdilations induced by small
body movements [214]. NE phasic activity tracks transient and differential dilations dur-
ing motor and passive states [137, 252]. A recent study has shown, however, that these
projections are more likely to be related to infrequent and large dilation events, suggest-
ing that inferencing on repeated measures could increase the accuracy of the NE axonal
estimates [196]. Note that, while arousal and motor activity have been shown to be to
some degree independent in how they modulate firing in cortical circuits [306], their
interplay seems to notably contribute to functional plasticity in the cortex, for example
enhancing learning [11].

The behavior of BF-Ch and LC-NE systems in humans with respect to motor func-
tionality and how it relates to pupillary changes have been less investigated. Nevertheless,
several studies on visuo-motor tasks have reported that modulation of pupil size is domi-
nated by the motor response rather than other cognitive factors; see [189] and references
therein. The intensity of physical exercise in the absence of visual cues has been previ-
ously associated with an increased baseline pupil diameter [115, 325], which when per-
formed with moderate intensity was comparable to when participants performed mental
arithmetic tasks [115]. Subsequent studies have corroborated these findings using mea-
sures of peak oxygen consumption ( ¤𝑉𝑂2) and minute ventilation ( ¤𝑉𝐸), further demon-
strating that exercise-intensity-dependent pupil dilation was exponentially correlated to
these physiological measures [163]. Other studies have tested the effects of single bouts
of exercise on cognitive inhibitory control as measured by pupillometry following the
physical activity, suggesting that task enhancement was independent to some degree of
LC-related pupil activity [195, 276]. Instead, findings have shown that choline supple-
ments for boosting cholinergic activation enhanced performance accuracy over velocity
during visuo-motor aiming tasks, which translated into a relative decrease in pupil size
compared to when movements were faster and less accurate [208, 209].

Here, we investigate the inverse problem of inferring the activity of brainstem arousal
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systems from a blinded-inference paradigm perspective, using pupil recordings in hu-
mans. We formulate a frequency-specific schema of analysis based on prior investiga-
tions on motor tasks in rodents [252] that is determined by the structure of a musical
piece. Our analytical methodology is motivated by the “generalized arousal” (GA) hy-
pothesis [236–238]. Several components of the nervous system such as the medullary
reticular formation, thalamus and cortex contribute to GA, which is crucial for initia-
tion of any behavior during arousal states. The relevance of nucleus gigantocellularis
neurons, whose activity is related to serotonin and ACh, together with adrenergic pro-
jections from LC have been reported to play a role in modulating GA [52, 180, 187, 289].
Here, we assume that the confluence of these neural mechanisms makes pupil activity
a potential candidate whose latent dynamics might serve to model GA function. The
proposed methodology extends previous efforts of GA analysis to functional data [249]
through a reduction method that allows capturing variability in a population who se-
quentially perform different motor tasks in a musical context that are designed to vary
with the degree to how emotionally engaging they are.

Participants with musical training were recruited to perform under different move-
ment conditions, to emotionally engage the performers in various degrees during their
motor tasks. Four conditions were compared: (i) no movement (NM), only music lis-
tening, (ii) body sway to music (M), (iii) singing but no body sway allowed (NMS), (iv)
body sway plus singing (MS). We hypothesize that actively engaging in musical behav-
ior while singing and moving along to the music will more strongly engage participants
emotionally and lead to a qualitatively different pattern of tonic and phasic pupil activity.
Given the relevance of GA for emotional motor control in the basal forebrain [187], we
speculate that GA modeling of BF-ACh pupil related activity might be a way of objec-
tively quantifying emotional response whereas transient fluctuations related to LC-NE
activity occurring in parallel in higher subbands might reflect other cognitive parameters
possibly related to attention.

§ 4.2. Results

GA levels of pupil related low frequency cholinergic function change with emo-
tionality of motor performance. The MFPCA of the smoothed pupil data reported
a 36.29% of explained variance for the GA component, which has previously been re-
ported to account for less than half of the variance [52]. Levels of GA were quantified by
calculating the 𝐿2 log-norm (from the baseline) of the KL curves. We found higher dila-
tion rates of tonic activity in all motoric conditions compared to NM (Figure 4.1E), with
MS leading to a significant increase compared to the other conditions. By contrast, no
differences were found between the pupil dilation rates of M and NMS, despite levels of
motor activity being highly differentiated (Figure 4.1F,G). Motor activity rates (at least
in terms of body sway) did not differ between M and MS.

Amplitude of sensorimotor engagement determines change in LC related pupil
behavior during chorus recapitulation. It can be argued that the human fascination
with music to a great degree relates to music’s capacity to dynamically vary expectation
[155]. A systematic variation of such aspects of stimulus property over time is an inherent
quality of the stimulus material used in the present study. Accordingly, we looked at
LC-related pupil behavior in relation to musical structures that are known to systemat-
ically influence expectations, verse and chorus (Figure 4.2A). This also corresponds to
predictive coding theories [17, 97] that state that the brain is a solver of likelihood func-
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tions, leading to the neuronal codes that predict sensory perception, so that cognitive
processing is influenced by previous exposure. We accordingly investigated if pupil in-
dices are modulated with chorus recapitulation. We used Pfaff’s GA formula for MFPCA
reduction, although now applied to each part of the musical structure. Dominant fast and
transient dilations can be seen as GA approximations in a lower time scale. Pupil behavior
differences between chorus and chorus recapitulation were observed. As shown in Fig-
ure 4.2B, an overall decrease in pupil dilation was found during the movement conditions
along the different parts of the formal structure. A higher level of dilation was observed in
the singing conditions during chorus and first verse compared to NM, which was signif-
icantly higher for 𝜃1, 𝜃2 during the chorus. In the recapitulation, M, NMS and MS were
more prominently lowered in 𝜃2, 𝜃3. This is apparent in the scatterplots (Figure 4.2C),
where the singing conditions shifted left in the axis of the KL log-norms as a function of
the velocity rate measured with the movement sensors. We also found evidence of this
pupil constriction in a post-hoc analysis testing differences across subbands by pooling
all scores of each respective chorus part as a single variable. Results suggest a general
decrease of dilation indices in NMS and MS (Figure 4.2D). No significant differences
were reached in M and NM.

behavioral data. The discrepancy between the two experts’ evaluations of the singer’s
performance was small (𝑇 2 = 1.922, 𝑝 = 0.0941), and differences between the singing
conditions were not significant (𝑇 2 = 1.0622, 𝑝 = 0.396). The averages across conditions
of each item to be evaluated were generally high (Intonation: NMV = 8.333 ± 1.582,
MV = 8.566±1.006; Rhythm: NMV = 9.466±1.008, MV = 9.6±0.723; Fluency: NMV
= 9.233 ± 0.971, MV = 9.466 ± 0.571. The analysis contrasting the voice recordings
between the NMV and MV conditions show that the quality of the performance in both
conditions was similar (cosine similarity: 0.97 ± 0.01; Pearson’s correlation: 0.87 ± 0.05
- means and SD across participants using a suitable score transformation).

Participant’s subjective ratings of the level of excitement and absorption (Figure 4.2E)
show that a significant percentage of participants had a higher emotional experience
when singing and moving along to the music compared to when they were only listening
(𝑝 < 0.05, Wilcoxon signed-rank test with Bonferroni-Holm correction, with respective
effect sizes of 0.730 and 0.819, using rank-biserial correlation).

§ 4.3. Discussion

Musical activities are known to readily evoke emotional experiences, and singing as other
expressive vocalizations can be regarded to often be a rather intense emotional activ-
ity [98, 104, 120, 270, 273]. Body movement and sway has been described to happen
automatically during intense musical engagement [58, 169], possibly through so-called
empathic gestural attuning [168], where musical features such as beat, rhythm, melody,
timbre may trigger body gesture associations. Introducing additional constraints on
physical movement is often compulsory in Western classical professional musicians, and
it also demonstrates to the audience an enhanced control that is perceived as an attribute
of professionalism. Very relevant for the current study design, using musical engage-
ment allowed for experimentally structuring the investigation of emotionality of task.
At the same time, introducing the requirement to inhibit body sway during the task,
more specifically, singing while additionally having the constraint not to move along
and sway, allowed for less emotional experience of the performer than singing while
being allowed to move freely with the body.
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Our analyses suggest that inhibition of body sway during singing results in an en-
hanced pupil baseline tone that is comparable to when participants did not sing but only
swayed along to the music. It might be that synchronizing with either voice or body for a
musician engages similar cognitive processes to a comparable degree, and that engaging
in synchronization of both voice and body sway does combine to a different quality of
immersive and emotional experience. This corresponds to the behavioral findings show-
ing higher level of emotionality during MS. Notably participants performed singing
with a similar quality with and without body sway as assessed by evaluators, supporting
the notion that the observed differences were indeed due to differences in emotionality
and not to other parameters such as task difficulty. Current analyses rather show that
cognitive load corresponds to values of LC-NE subbands (Figure 4.2B, chorus), where
singing led to an increased pupil rate compared to no singing conditions. No differences
were found between pupil rates in conditions NMS and MS, which reflects participants’
musical proficiency and further supports this interpretation of the results.

Following the discussion in [252], a modulation of slow frequency cholinergic ac-
tivity and related pupil activity could be associated with pre-motor planning, arousal or
both. While certainly controlling only voice and controlling body sway correspond to
an involvement of different somatotopically organized pre-motor representations [174]
and selective neural populations in the auditory cortex [221, 284], their effect in terms of
pupil activity is comparable (Figure 4.1E). This rather seems to indicate that the choliner-
gic associated pupil activity reflects arousal level. As shown in Figure 4.1C, level of pupil
dilation increases from no movement during music listening, to singing while not mov-
ing along to the music, to singing while moving along to the music. Given that arousal is
a consistent dimension of emotion in arousal models, and musical activities readily evoke
emotion, we argue that in this musical context a variation of action as part of musical
tasks systematically vary level of emotionality. Supporting this hypothesis, cholinergic
contributions to emotion regulation are well-known in the literature [21, 29, 30, 193]
also during diverse musical and motor experience [39, 133, 152]. We are aware that per-
forming different motor acts, for example singing or swaying, involves a different set of
physiological resources that correspond to a different set of neural activation patterns that
cannot only be regarded emotional. However, from a perspective of our knowledge of
a dichotomy of voluntary and emotional motor control [118, 120], we know that move-
ment and emotionality are entwined. The current findings on the variability of the slow
pupil dynamics are therefore congruent with the GA hypothesis and related theories on
the emotional motor system which associate mitigation of emotional cues with action
[187].

Musical structure and musicians’ sway during performance has been previously de-
scribed to covary systematically [81]. Because body sway was one major aspect of the
task, we took into account the formal structure of the musical piece when investigat-
ing the time-course of pupil dilation. Furthermore, pupil behavior in relation to musical
structure is applicable to understand rapid pupil fluctuations (0.06-1 Hz) that have been
observed to relate to LC activity, which is often modulated during changes in stimula-
tion, especially if such changes relate to the task. We observed that the pupil first dilated
and then attenuated over time and repetition of the music. Larger and rapid pupil dila-
tions have been associated to cortical desynchronization (suppression of low-frequency
fluctuations), a form of attentional state required to accurately process sensory infor-
mation [113, 194, 306], also in the auditory domain [231, 263]. Although this pattern of
dilation and posterior attenuation when musical sections repeated was apparent in all mo-
tor conditions (Figure 4.2B), it was particularly robust during the singing conditions as
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shown in our post-hoc analyses (Figure 4.2D).
Such attenuation might correspond to the pupil’s ability to respond to information

from dynamic environments, possibly reflecting a process of active inference [155] in
musical performance, even when visual information is controlled for. Pupil activity in
correspondence to multimodal cognitive rather than visual processing has previously
been shown. For example, higher learning rates in a prediction task were associated
with a smaller baseline pupil diameter [212], or biases on subject’s internal beliefs re-
lated to higher pupil dilation in dynamic environments [92, 160]. In addition, motor
engagement during performance seems to enhance this aspect of pupil activity given
that attenuation of LC related pupil indices occur mainly during motor conditions as
shown in our analyses (Figure 4.2B,D). Similar results have also been reported during
motor tasks, reflecting motor control and learning [209, 316].

Furthermore, we have introduced an unsupervised algorithm that allows to detect
ROE of different duration and amplitude regardless of the artefact benchmark. The
method works in a nonlinear fashion, which makes it suitable for non-stationary en-
vironments and only recasts on a dispersion parameter that can be relaxed according to
the levels of contamination. Turbulence due to ROE is then minimised, providing a more
precise estimate of the neurological processes under investigation. With this, dissociable
traits in the pupil behavior related to the LC and BF-ACh activity found in previous
research can be discovered. However, simultaneous measurements of neuroimaging and
pupillometry techniques are necessary to corroborate how pupil size and the activity of
these neuromodulators, and possibly others, are related and interact during motor per-
formance of variable emotionality.

§ 4.4. Materials and methods

Participants
Fifteen participants (all female, aged 21-50), with formal and/or informal musical educa-
tion (mean = 11.46 years; SD = 6.51), gave written consent for taking part in the study,
approved by the local ethics committee (Faculty of Arts and Philosophy, Ghent Uni-
versity). They were right-handed and had normal vision, or vision correction, normal
hearing and were neurologically healthy. All participants were screened on their expe-
rience with singing in a choir, which ensured they had experience with singing a steady
part in the presence of other voices. They received voucher credit for their participation.

Acquisition of pupil data and other modalities
Pupil diameter was recorded at 30 Hz frequency rate using Pupil Lab’s wearable headset
with integrated cameras (Logitech C930e) directed towards the right eye. A force sen-
sor platform with 59 cm radius was used to control for body movement. This platform
consists of a plate with four sensitive weight sensors underneath (one at each corner) to
register variations in pressure related to body movement. Each sensor is captured with
the 13bit Analog Digital Converter of a micro-controller (Teensy 3.1, PJRC) at 120Hz.
The sensor data is wrapped into MIDI packets. This allows recording audio and sen-
sor values in sync using standard digital audio workstation software: in this case, Ableton
Live 9 was used. The participant’s singing voice was recorded with a Shure Beta 87A mi-
crophone. Next to this, a decibel meter (UNI-T UT352) was used to monitor and review
the volume level before the start of the experiment (to limit the effect of loudness).
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Procedure and rating of perceived level of emotionality
The experiment was conducted in a dark room with steady LED luminance of less than
about 30 cd/m2 (Uni-T Luminometers UT381). The participants stood on the platform,
facing three speakers at a distance of 2 meters. During conditions NM and NMS they
had to stand still looking at a white cross placed on the middle speaker whereas in con-
ditions M and MS, gaze movement was allowed facing forward horizontally where the
speakers were located. Gazing upwards or downwards was advised against. Five-point
calibration and validation were performed before the start of the experimental session.
Hereafter, we asked participants to stand on their assigned spot in the room and to sing
the rehearsed melody by heart. This allowed us to check whether participants learned
the melody to complete the various tasks with fluency. Participants performed with an
instrumental music piece including a three-part vocal harmony. In conditions NMS,
MS, they were singing the middle voice from the three part harmony, which was in the
singing conditions not audible in the music presentation. The order in which every con-
dition was presented was randomized for all participants. For further details concerning
the experimental setting and stimuli, see Supplementary Material.

After performing each task, participants were asked to rate their perceived level of
excitement and absorption (degree of correspondence with the activity) on a Likert scale
from 1 “low” to 7 “high level”. We used the terms absorption and excitement as attributes
of positive emotionality.

Analysis of the singing performance
Recordings of the singers were evaluated by two experts with more than 20 years of
musical training and teaching experience in musical institutions. They were asked to rate
on a scale from 1 (very inaccurate) to 10 (very accurate) the following items: intonation,
rhythm and fluency (smootheness of the performance, as in [222]). The recording files
were blinded and randomized before their presentation to the evaluators. Furthermore,
acoustic similarity between NMS and MS conditions was measured on the recordings
with the singing part isolated from the instrumental by calculating cosine-similarity and
Pearson’s correlation on spectrogram-like representations (frequencies were in Mel).

General data pre-processing and statistics
Outlying data produced by blinks taking values of zero (or close to it) were removed
from 100 ms before until 200 ms after the observation (6.962% ±6.158 of missing data).
As an alternative to interpolate the removed values, we imputed them using an algo-
rithm based on a vector autoregressive model with heavy-tailed Student’s 𝑡 distributed
innovations that is robust against outliers [322]. This procedure reconstructs the missing
data using stochastic parameters amenable for heavy-tailed and sparse high-dimensional
data. Subsequently, the pupil time series were mean-centered and normalized to unit
variance. Standardization across subjects allowed to control for differential sensitivity to
the ambient luminance, as to compute higher-order moments. Unless otherwise stated,
the median pupil size of the interval from 200 ms to the start of the auditory stimuli was
used as baseline. Similarly, the data recorded with the force platform was downsampled
at 30 Hz, low-pass filtered (1.5 Hz) and normalized. To express this data as dynamic
firing rates, we calculated the first derivative and its Hilbert envelope or instantaneous
amplitude.

All data and statistical analyses were performed using custom-made R scripts [245]
(ver. 4.2.0). Statistical significance was measured against an alpha level of 0.05.
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Estimation of cognitive-related pupil activity
Turbulent-like dynamics can be encountered in many physiological phenomena, such
as in cardiac [271] or brain imaging signals [76, 87]. In the current research scenario it
can be understood as chaotic dynamics that appear as a distortion of a more parsimonious
state by various physiological parameters. More precisely, in pupillometry turbulence is
observed after changes in retinal illuminance (for example, when blinking), as the pupil
tends to rapidly constrict and re-dilate transiently to tonic levels, drawing the shape of
a negative gamma function in the signal (Figure 4.3A,E). Luminance-related changes
directly modulate the feedforward response of V1 (striate cortex) that is independent of
psychological factors like attentional load [41], suggesting that changes in pupil size due
to autonomic regulation also affect visual perception to some degree. Note that while
blinks are often considered informative of attentional or other arousal states [80, 144, 272],
their effect on pupil size is probably rather related to basic visual function.

Pupil responses produced by subtle changes in luminosity can act as confounders,
notoriously biasing the results of a subsequent data reduction [150, 319]. The intensity,
duration and frequency of pupil occlusion together with abrupt visual changes resulting
from movement, can generate turbulent flows in the signal hampering estimating pupil
behavior related to cognitive processes. We observed that blinks are more likely to occur
during movement and vocalization tasks compared to the control task NM (𝑝 < 0.05 us-
ing permutation test for location based on means applying the Box–Cox transformation;
see [61]), which is consistent with previous findings reporting an increasing blink rate
due to complex motor activity during speaking [46]. Furthermore, responses to ocular
events (ROE) might overlap with other ROE in such conditions, which can lead to a non-
linear distortion of the signal. Taking into account all these facts, a systematic correction
of ROE is necessary to provide reliable results about levels of pupil-linked arousal.

To detect these turbulent flows, we applied a novel unsupervised algorithm that ac-
counts for slow and high frequency ocular responses. The model uses nonlinear internal
vector spaces of the pupil signal reconstructed by a third-order Butterworth band-pass
filter with a fixed higher cutoff frequency and variable low pass frequency cutoff to grad-
ually remove localized abnormal oscillations.

ROE reduction algorithm
Let 𝑥1, 𝑥2, . . . , 𝑥𝑡 , . . . , 𝑥𝑛 be an univariate time series of 𝑛 pupil diameter measurements
and denote by BP𝜔,𝜔 𝑗

(·) a battery of third-order band-pass Butterwoth filters with fixed
cutoff frequency 𝜔 and variable low pass frequency cutoff 𝜔 𝑗 ( 𝑗 = 1, . . . ,𝑚). Then, the
ROE reduction consists in the following iterative process.

For each filtering step 𝜔 𝑗 , we repeat:

1. Calculate 𝑥𝑡 = BP𝜔,𝜔 𝑗
(𝑥𝑡 ) and determine the set of turbulence onsets

𝑡𝜏𝑙 (𝑙 = 1, . . . , 𝐿 𝑗 ) such that Δ𝑥𝑡𝜏𝑙 < MdnΔ𝑥 − 𝑘 · 𝜎Δ𝑥 , where Δ denotes the
differencing operator and 𝑘 is a dispersion hyperparameter.

2. For each 𝑡𝜏𝑙 at the 𝑗th filtering step, let {𝑡𝑎𝑙 , . . . , 𝑡𝜏𝑙 , . . . , 𝑡𝑝𝑙 } be the set of observed
time points where 𝑡𝑎𝑙 , 𝑡𝑝𝑙 represent the index positions related to the smallest nearest
neighbouring peak of 𝑥𝜏𝑙 and the relative position of this peak before or after 𝑡𝜏𝑙 .
Then, the subtraction can be performed using baseline correction as

(𝑥𝑡𝑎𝑙 :𝑡𝑝𝑙 − 𝑥𝑡𝑎𝑙 ) − (𝑥𝑡𝑎𝑙 :𝑡𝑝𝑙 − 𝑥𝑡𝑎𝑙 ) + 𝑥𝑡𝑎𝑙 , (4.1)

where 𝑥𝑡𝑎𝑙 :𝑡𝑝𝑙 is the snippet containing the ROE.
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Figure 4.3: Removal of ROE: toy simulation and real data examples showing how the ROE algorithm works. (A) Simulated contami-
nated pupil data. (B) Downwards oscillations corresponding to ROE are detected using a battery of band pass filters and progressively
removed at each smoothing step subtracting the area of the curve generated below the nearest low-peak of the oscillation period to the
turbulence onset.(C) CWT before and after the application of the ROE correction (with final low-pass filter at 1.6 Hz). Zones shaded
in grey depict the ROE phase changes during the blinking task (4 blinks) with contours enclosing turbulent flow fields (regions with
a significance level > 0.95% according to a 𝜒2 test). (D) Series showing the row sums of the matrix containing significance levels of
the CWT for the different zones marked in the CWT before ROE correction. (E) Application of the algorithm (with 𝑘 = 3) to real
data retrieved from the Python package FIRDeconvolution [151].

3. Update 𝑥𝑡 for each 𝜏𝑙 and then go to the next filtering step.

Parameter selection and validation
To determine the parameters 𝜔,𝜔 𝑗 , 𝑘, we recorded a participant who was asked to blink
four times synchronized with an auditory beat (of 2 s duration) in two time frames sep-
arated by pauses. The beat appeared 4 times with a different sound during the pauses to
alert the participant of the beginning/end of the blinking task. Blinks were intentionally
performed longer to see their effect on the signal. During the pauses, eventual and faster
blinks also occurred. We recorded pupil activity in a dark environment where a white
fixation cross was projected during the experiment. This produced a slow ROE related
to changes in the luminance level (Figure 4.3C). For further details, see Supplementary
Material Online.

The continuous wavelet transform (Morlet wavelet) was performed on the data to ex-
amine the pseudo-frequency scales characterizing the dynamics of turbulence produced
by ROE. Time-power spectra bias-corrected [181] and levels of significance (𝜒2 test, see
[292]) are shown in Figure 4.3. The ROE algorithm was applied in two steps from the
baseline frequencies𝜔1 = 0, 𝜔2 = 0.25 and𝜔1, 𝑗 = (0.03, 0.045, . . . ), 𝜔2, 𝑗 = (0.5, 0.515, . . . )
that allowed to detect slow and rapid ROE, respectively. We chose 𝜔2 guided by the
CWT (continuous wavelet transform) results analyzing the series obtained by summing
the values of each row of the matrix containing significance levels (zone 1, Figure 4.3D).
The minima found (0.278 Hz) after the first local maximum (0.175 Hz), which roughly
delimits the upper frequency range for the low-frequency ROE observed in zone 1, served
as a point of reference. The value of 𝜔1,1 was determined by Reimer’s top frequency
threshold for the slow ACh activity, and 𝜔2,1 again summing the values of each row of
the matrix containing significance levels, but now selecting the second peak of frequency
(∼ 0.5 Hz) which was noticeable across all zones analyzed with blinking activity, whether
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voluntary or not. The𝑚th values of the 𝜔 𝑗 ’s vectors can be chosen based on a frequency
limit above which pupil activity is rarely attributable to physiological sources (e.g. 4 Hz
as suggested in [150, 234]). Lastly, the corrected pupil data can be low-pass filtered at 4
Hz or at lower frequencies for subsequent analyses (we used 1.6 Hz, see Figure 4.3C).

The dispersion hyperparameter (𝑘) from the filtered signal’s first derivative median
value is fixed to identify the abnormal oscillatory changes. Because blink responses con-
tribute more variance to the signal in movement-controlled conditions [150], a lower
value than 𝑘 = 3 (which is often conventionally used) provided more realistic estima-
tions. Thus, for 𝜔2, we modeled the dispersion hyperparameter as the decreasing expo-
nential function 𝑘 = 3 · 𝑒−𝑏 , where 𝑏 denotes the participants’ blink rate. The turbulence
onset is then defined as a low peak of velocity that surpasses the established dispersion
threshold. Application of the ROE algorithm to the data and other external data (Fig-
ure 4.3C) shows that the algorithm is capable to identify all ROE turbulence right after
the blink artifact but also others that occur directly after ROE indistinctly of the artifact
benchmark, possibly due to autonomic regulation [192]. More research is needed to re-
fine parameter selection, for example, in different or even variable luminosity conditions
assessed by multiple recording devices.

Hilbert space modeling of generalized arousal function
Fourier basis approximations of slow BF-Ch pupil related activity
Axonal projections from the cholinergic neuromodulatory neurons during locomotion
have been found to be coherent with pupil oscillations in low frequencies (< 0.03 Hz)
[252]. These frequencies operate on a timescale beyond what is often described as
moment-to-moment changes/fluctuations, therefore we examined pupil data across the
duration of the entire musical excerpt. To characterize cholinergic activity through
pupil measurements, in a first step pupil curves are regressed out as smooth functions
using a Fourier basis. The choice of a Fourier basis instead of other systems (B-splines,
Wavelets) is supported by the assumption that the shape of the pupil is a perfect circle
as well as the apparent periodic behavior of the data. The dimension of the basis was
selected in order to minimize the root mean square error (RMSE) between the observed
data and the evaluated Fourier basis approximation (discrete predicted values). To shape
the baseline modulations of interest, we selected the basis dimension on a low range
(𝑝 < 11). This allowed to find a RMSE trade off between middle and low-frequency
rhythmicity, notably reducing oscillatory activity (> 0.05 Hz, see Figure 4.1D) to levels
of coherency previously found [252].

Fourier basis approximations of phasic LC-NE pupil related activity
To quantify variations of noradrenergic activity through pupil diameter, we bandpass-
filtered the data from 0.06 to 1 Hz (𝜃1). This frequency band includes part of Reimer’s sub-
band for NE axonal activity (0.03-0.4 Hz) and ranges upwards with the high-frequency
threshold determined in a recent study in humans [200] that is based on previous re-
search in rodents [194, 251]. Above 1 Hz, results might be more accurately quantifiable
in a more fine grained time scale. Note, however, that human pupillary oscillations in
higher subbands have been linked to luminance effects rather than other cognitive factors
[207, 234].

Crucially, we are interested in representations of the pupil data less susceptible to base-
line effects, as activity in noradrenergic projections in cortex, which is characterized by
localized bursts, tracks phasic changes in pupil diameter with an observable causal effect
on the pupil size gain [137, 196, 252, 296]. Therefore we selected a high-pass cutoff of
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0.06 Hz to ensure certain degree of stationarity, while also preventing overlap with slow
BF-Ch pupil related activity. To this end, here we further propose a form of deconvolu-
tion by narrowbanding the signal into two additional subbands, from 0.2 to 1 Hz (𝜃2) and
from 0.4 to 1 Hz (𝜃3). This technique is used as an alternative to taking first differences,
which although it has previously allowed to establish a number of correlations with NE
axonal activity [137, 252], after a first normalisation of the pupil data, statistical effects are
more unlikely to survive when differentiating (which is also a kind of normalization); see
Discussion in [298].

To enhance the functional representations of the data filtered above 0.06 Hz given
their high density rhythmicity, we cut the data into four parts according to the formal
structure described in Figure 4.2A. In order to accurately represent the shape of the rapid
oscillations that were observed, we fitted a standard Fourier basis with a larger dimension
(𝑝 = 19). Since the filtered curves tend to be rather stationary when slow oscillations are
reduced (𝑝 > 0.01 on 83.88% of the data, augmented Dickey-Fuller test) the pupil series
were mean-corrected instead of baseline aligned.

Multivariate functional GA model of pupil data
Within this setting, we resort to Pfaff’s GA form, an elementary form of arousal we
denote by 𝐴1 expressed in combination to other specific forms 𝐴2, . . . , 𝐴𝑛 as

Arousal = 𝐹 (𝐾1𝐴1 ∔ 𝐾2𝐴2 ∔ · · · ∔ 𝐾𝑛𝐴𝑛), (4.2)

where 𝐹 is a mapping (non necessarily linear) and 𝐾1, 𝐾2, . . . , 𝐾𝑛 are scores reflecting
traits of the individual [236]. Eq. 4.2. can also be expressed dynamically as a differential
equation [52]. Statistically, we interpret Eq. 4.2 by means of a multivariate functional
principal component analysis (MFPCA), which takes into account response dependencies
through the pairwise cross-covariance functions [2, 132]. This modeling strategy nat-
urally extends previous linear formulations of the problem [102, 244] to the functional
case. In our approach, however, 𝐾1 is a vector of scores obtained from the projection of
the original functional data on to a vector of weight functions (one for each condition)
with a major variance contribution. The GA we define in this context is then the set of
random functions 𝑿𝐺𝐴 (𝑡) = 𝐾1𝒇 1(𝑡), where 𝒇 1 is a vector of weight functions and 𝑿𝐺𝐴

is a one factor representation of the original data (see Figure 4.1B), also known as the
truncated Karhunen-Loève (KL) expansion.

Next we formalize the above interpretation of Pfaff’s GA model. We assume that the
pupil data have been approximated by a finite linear combination of non-linear Fourier
functions (see, for example, [249]). Consider a sample of multivariate functional obser-
vations over a closed interval,

𝑿 𝑖 (𝑡) = (𝑋𝑖1(𝑡), . . . , 𝑋𝑖𝐻 (𝑡))⊤; (𝑖 = 1, . . . , 𝑁 ; 𝑡 ∈ I), (4.3)

containing the pupillometric curves of𝑁 individuals in𝐻 experimental conditions. These
functional approximations have the basis expansion 𝑿 𝑖 (𝑡) = 𝚽(𝑡)c⊤𝑖 , where 𝚽(𝑡) is a
diagonal matrix of 𝑝 dimensional vector valued Fourier functions with dimension 𝐻 ×
(𝑝1 + 𝑝2 + · · · + 𝑝𝐻 ), that is,

𝚽(𝑡) =
©­­­­«
𝜙11(𝑡) · · · 𝜙1𝑝1 (𝑡) 0 · · · 0 · · · 0 · · · 0
0 · · · 0 𝜙21(𝑡) · · · 𝜙2𝑝2 (𝑡) · · · 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · 𝜙𝐻1(𝑡) · · · 𝜙𝐻𝑝𝐻 (𝑡)

ª®®®®¬
,

(4.4)
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and c𝑖 = (𝑐𝑖11, . . . , 𝑐𝑖1𝑝1, 𝑐𝑖21, . . . , 𝑐𝑖2𝑝2, . . . , 𝑐𝑖𝐻1, . . . , 𝑐𝑖𝐻𝑝𝐻 ), its vector of coefficients. If all
coefficients 𝑐𝑖 are pooled together by rows, we can rewrite the above expression as 𝑿 (𝑡) =
𝑪𝚽⊤(𝑡). The MFPCA is then obtained by solving the eigenequation

𝚽(𝑠)Σ𝑪𝑮𝒃
⊤
𝑚 = 𝜆𝑚𝚽(𝑠)𝒃⊤𝑚, (4.5)

where Σ𝑪 = 1
𝑛
𝑪⊤𝑪 , 𝑮 =

∫
I
𝚽(𝑡)⊤𝚽(𝑡)d𝑡 and 𝒃⊤𝑚 is the vector of coefficients of 𝒇𝑚 (𝑡) =

𝚽(𝑡)𝒃⊤𝑚, a vector of weight functions obtained from the spectral decomposition of the
variance-covariance function 𝛤 (𝑠, 𝑡) = 𝚽(𝑠)Σ𝑪𝚽

⊤(𝑡), and 𝜆𝑚 ∈ R its associated eigenval-
ues. This problem has the algebraic solution in the matrix eigenproblem Σ𝑪𝑮𝒃

⊤
𝑚 = 𝜆𝑚𝒃

⊤
𝑚,

where 𝒃𝑚 are in turn the eigenvectors of the matrix Σ𝑪 provided that 𝑮 is the identity
matrix. This way, the principal component scores are𝐾𝑖𝑚 = c⊤𝑖𝑚𝒃𝑚 and the corresponding
KL expansion for the GA component is

𝑿𝐺𝐴
𝑖 (𝑡) = 𝝁 (𝑡) + 𝐾𝑖1𝒇 1(𝑡), (4.6)

where 𝝁 (𝑡) is a vector of mean functions of 𝑿 𝑖 (𝑡) and 𝒇 1(𝑡) is a vector of eigenfunctions
(one per condition). Specific forms of arousal are then similarly obtained as

{𝑿 (2)
𝑖
(𝑡) = 𝝁 (𝑡) + 𝐾𝑖2𝒇 2(𝑡), . . . }. (4.7)

Note that the MFPCA is reduced to the multivariate PCA of the Fourier coefficients
concatenated across trial conditions within each subject.

As the MFPCA (or second order models) are based on a Gaussian assumption, some
unusual observations might significantly influence the estimation of the covariance and
the quality of the estimators of its spectrum. Therefore, prior application of the method
we checked whether this assumption was satisfied. After ROE removal, no multivariate
functional outliers were detected [15], meaning that these dominant dynamics we
retrieved from our data are robust and consistent for inferencing. Computational
implementations of the MFPCA can be found in the R packages fda, funHDDC and
MFPCA.
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5 | Study II: Turbulence modeling of
EEG signal during embodied virtual
interactions

The current chapter includes the manuscript:

• [303] VIDAL, M., MOURA, N., AGUILERA, A. M., FRITZ, T. H., AND LEMAN, M. (2024b).
Geometric-based turbulence analysis of EEG signals for modeling emotional arousal during
active immersive virtual interactions. Under review.

The current investigation’s contribution is critical for understanding the neurology of
emotion and emotional motor control, and can be regarded as an extension of the re-
search conducted in [304] (Chapter 4). The study emphasizes the relevance of embodied
musical interactions in comprehending the brain’s operations under emotional states and
reveals that brain function, operating at a less turbulent level, can be facilitated through
virtual external agents, thereby engaging in a more parsimonious/homeostatic state that
characterizes the sense of emotionality. We assessed turbulence of dominant brain dy-
namics in EEG recordings of 30 healthy participants during musical tasks in a virtual
reality setup, allowing for variation in both task demand and degree of emotionality.
Conditions included singing, swaying, responding to a virtual conductor of variable ex-
pressivity, having your own body movements mirrored by a virtual agent, and combi-
nations thereof. In §5.4, we introduce multivariate functional ICA based on [302, 305]
that is sequentially performed throughout the signal, allowing to quantify the degree
of turbulence intensity in large time courses. This model aligns with the one outlined
in [304], yet it emphasizes the analysis of generalized arousal function from a spatio-
temporal perspective, while benefits from the finer temporal resolution EEG recordings
offer.

Abbreviations: ENID, entropic normalized information distance; EE, emotional en-
gagement; GA, generalized arousal; GOF, goodness of fit; LL, log-likelihood; MEM,
mixed-effects model; MVR, movement velocity rate; TD, task demand; NM.S.NA, no
movement singing, no avatar; M.S.NA, movement singing no avatar; M.NS.Mir, move-
ment no singing avatar mirroring; NM.S.Rob, no movement singing robotic avatar;
NM.S.Exp, no movement singing expressive avatar; M.S.Mir, movement singing avatar
mirroring; VA, virtual agent.

§ 5.1. Introduction

Singing is one of the most archaic and refined forms of human emotional expression.
From an evolutionary perspective, the intimate relationship between singing and emo-
tion can be explained by the adaptive functions of music [94, 107], ranging from mating
selection [116, 131] to social bonding [43, 267, 315] or care giving [62, 138, 172]. If, on
the one hand, the act of singing embodies intense affective responses which facilitate
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performers experiencing emotions themselves, it also induces an emotionally contagious
effect that amplifies interpersonal interactions.

Intricately connected to the emotional motor system [118], vocal production crucially
engages premotor interneurons in the nucleus retroambiguus, a region of the brainstem
connected to nuclei and higher brain regions controlling motor functions [119]. This
process is influenced by two neural pathways: one through the anterior cingulate cortex
and the midbrain periaqueductal gray for voluntary initiation and emotional control,
and the other involving the primary motor cortex and subcortical loops that modulate
vocal motor commands [140, 230]. Singing (or listening to human singing) elicits unique
neurological patterns, involving specific brain areas such as the insula and parietal regions,
anterior superior temporal gyrus, among others potentially influencing interactions with
networks of selective neural populations in sensory-motor areas beyond the auditory
cortex [148, 149, 174, 221, 284, 320]. Research in humans and non-human animals suggest
that brainstem neurotransmitters play a significant role in shaping singing behavior [133,
267, 304].

Given that vocal production engages both voluntary and emotional motor systems,
with singing being perceived as a rather emotional experience, we believe that the cur-
rent paradigm is adequate to investigating neurological signatures of emotional arousal
states. We hypothesize that active participation in musical tasks, including singing and
moving along to the music, will more strongly involve participants emotionally, hence
constituting an optimal scenario to study the neurology of emotion and emotional motor
control. In this study, we use the context of an immersive virtual reality experience in-
cluding several singing and expressive movement task combinations. We experimentally
introduce three different task-specific conditions: (1) singing (singing vs. non-singing),
(2) moving (moving vs. non-moving), and (3) virtual agent (VA) interaction (expressive
vs. robotic vs. mirroring vs. no VA). Combined, the previous conditions produce six
different tasks: without VA, non-movement singing (NM.S.NA) and movement singing
(M.S.NA), and with VA, movement non-singing mirroring VA (M.NS.Mir), movement
singing mirroring VA (M.S.Mir), non-movement singing robotic VA (NM.S.Rob), and
non-movement singing expressive VA (NM.S.Exp). The dual movement paradigm has
been widely adopted in music research [23, 153, 258, 304], to cite a few. We further incor-
porate virtual reality as novel means to explore the social dimension underlying music
experience, ensuring an environment that closely mimics real-world conditions while
allowing for the use of complex physiological apparatus.

Modeling brain arousal through a geometric-based turbulence approach
The relevance of brainstem function to singing brings forth the notion of generalized
CNS arousal (GA) [52, 146, 188, 236, 237]. GA is considered the composite result of
multiple neuromodulatory systems operating at a high hierarchical level in the brain,
commonly manifested through behavioral activation. This phenomenon has been widely
investigated using electrophysiological measures [52, 101, 124, 254]. While existing studies
have proposed several quantitative descriptors for GA [52, 237, 242, 244, 304], our work
introduces a Hilbertian framework for analyzing turbulent EEG dynamics, capturing
dominant spatio-temporal brain activity patterns aimed at reflecting GA function.

In recent years, differential equation modeling using ensembles of Stuart-Landau
(Hopf ) oscillators have been applied to characterize turbulence in fMRI and MEG
datasets [75, 76, 87], with limited exploration in the context of EEG studies. These
approaches, however, provide a compact interpretable model in terms of the relationship
between derivatives, while other reduction techniques achieve more effective dimension
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reduction from a geometric point of view [9, 31, 256]. Nuanced variability can be
further enhanced through multivariate considerations [257], encompassing models
that factor in multiple dimensions, including time, space, and experimental conditions
altogether, facilitating precise characterization of dynamic interdependencies inherent
in neuroscientific data.

Here, we work under the paradigm of second-generation functional data [157]. In
the analysis of these data, typically assumed to belong to an infinite-dimensional Hilbert
space, complex dependencies between functional observations are considered. Given the
non-Gaussian nature of turbulence, we propose a functional independent component
analysis (ICA) [86, 305] extended to high-dimensional multivariate functional data that
vary in spatial and temporal location to analyze turbulent flows on the cortical field. The
model bears resemblance to methods that use the Karhunen-Loève decomposition for an-
alyzing turbulent dynamics [31], although here adapted to the functional ICA paradigm
and the notion of GA. We aim to uncover the presence of turbulent-like brain dynamics
through the spectral analysis of a kurtosis kernel function, examining its temporal effects
on dominant spatial representations of EEG brain activity. We also anticipate that the
latent temporal dynamics under study, represented by the kernel eigenfunctions, operate
within a regime of near-criticality. The model is depicted in Figure 5.1D.

§ 5.2. Results

This experimental study adopted a naturalistic neuroscience approach to preserve par-
ticipants’ organic singing and motor behavior. Six conditions (see Figure 5.1A) were
compared varying in the degree of emotional engagement during embodied virtual in-
teractions. We selected the alpha (8-13 Hz) and high gamma (50-80 Hz) frequency bands
due to their significance in emotional processing (see Discussion).

Self-reports. Graphical representation of the self-report results is shown in Fig-
ure 5.1B,C. Emotional engagement was rated higher in the mirroring (M.S.Mir,
𝑝 = 0.01, and M.NS.Mir, 𝑝 = 0.0005) and expressive (NM.S.Exp, 𝑝 = 0.01) conditions,
when compared to the robotic condition (NM.S.Rob). Similar results were found for
mirroring (M.S.Mir, 𝑝 = 0.005, and M.NS.Mir, 𝑝 = 0.018) and expressive conditions
(NM.S.Exp, 𝑝 = 0.027) compared to the non-movement singing no avatar condition
(NM.S.NA). Absorption was rated higher in the singing mirror (M.S.Mir, 𝑝 = 0.006)
and expressive conditions (NM.S.Exp, 𝑝 = 0.012) compared to the robotic condition
(NM.S.Rob). Absorption was also rated higher in the mirroring (M.S.Mir, 𝑝 = 0.002,
and M.NS.Mir, 𝑝 = 0.022) and expressive conditions (NM.S.Exp, 𝑝 = 0.003) compared
to the non-movement singing no avatar condition (NM.S.NA). In both variables, no
effects were found with the movement singing no agent condition (M.S.NA). For the
variable control, no significant effects were found. Interaction levels with the virtual
avatar were rated higher for the mirroring (M.S.Mir, 𝑝 < 0.0000, and M.NS.Mir,
𝑝 < 0.0000) and expressive conditions (NM.S.Exp, 𝑝 < 0.0000) in comparison to the
robotic condition (NM.S.Rob). Among the participants, 21 reported that the expressive
VA had a positive impact on their performance, while 9 preferred the VA mirroring their
movements.

Dominant brain dynamics during motor-related emotional arousal states exhibit
scale invariance patterns. Music is often perceived as timeless, having the power to
evoke intense emotions and transiently mediating a subjective experience to be connected
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Table 5.1: The table shows the results of fitting a continuous log-normal distribution to the temporal structure of the data. The
parameters 𝜇 and 𝜎 are the estimated mean and standard deviation. The 𝑝-value and goodness of fit (GOF) are obtained on a basis of
a bootstrapping procedure from the Kolmogorov-Smirnov test (𝑝 > 0.05 indicates that one can not rule out the log-normal model).

Condition (alpha band) 𝑝-value GOF 𝜇 𝜎

NM.S.NA 0.0060 0.1254 2.3412 0.0181
M.S.NA 0.0960 0.1150 2.3479 0.0061
M.NS.Mir 0.1320 0.0922 2.2919 0.0294
NM.S.Rob 0.1290 0.0960 2.3145 0.0198
NM.S.Exp 0.0660 0.0967 2.2988 0.0278
M.S.Mir 0.8140 0.0868 2.3333 0.0017

Condition (gamma band) 𝑝-value GOF 𝜇 𝜎

NM.S.NA 0.7350 0.1090 2.5173 0.0010
M.S.NA 0.1910 0.1165 2.5505 0.0026
M.NS.Mir 0.6000 0.1072 2.5442 0.0015
NM.S.Rob 0.2850 0.1098 2.5669 0.0024
NM.S.Exp 0.3370 0.1110 2.5660 0.0021
M.S.Mir 0.7280 0.0916 2.5532 0.0017

with others. This distinctive quality of music is explored here by investigating the scale
invariance of EEG brain dynamics during the temporal course of the musical piece. We
reconstructed the curves𝜓 𝑗

1 (·) across all the domain and followed the method in [69] who
divides the time series into non-overlapping segments at different time scales: a total of 54
levels, factors of 56 s (the duration of the musical piece) ranging from 28 to 0.002 s. We
then calculated the mean fluctuation for each segment (see formula no. 4 in [69]) and av-
eraged them at each level. To study the presence of scale invariance, we opted for fitting
a continuous log-normal distribution instead of a power law. This choice was motivated
by the fundamental nature of lognormal behavior in reflecting the complex structural
and functional organization of the brain [50]. Additionally, log-normal distributions of-
fer improved modeling of tail behavior, particularly in the presence of extreme values.
Results suggest that dominant brain dynamics during motor-related emotional arousal
states are (in general) scale invariant (Table 5.1). Levels of significance were derived fol-
lowing goodness of fit (GOF) tests based on the Kolmogorov-Smirnov statistic [63], via
bootstrapping (1000 iterations) on the data. We observe that the results for the gamma
band are statistically more consistent, exhibiting an overall better GOF and showing less
sensitivity to the level of significance.

Dominant brain dynamics during motor-related emotional arousal states are
distinctly turbulent. As a kurtosis value of 3 corresponds to that of a Gaussian
distribution, this specific threshold can be taken to determine a cutoff point to discern
the transition from the stability inherent in a Gaussian scenario to a turbulent state
of non-Gaussian behavior. To investigate the presence of turbulence, our approach
involves an information measure based on the differential entropy called Entropic NID
(ENID) [45], that aims to separate realizations of a random variable in two (as much as
possible) statistically independent subsets: here, those kurtosis coefficients of 𝜉𝑖 𝑗

ℓ
’s > 3

(for all 𝑖, 𝑗) attracted to the vicinity of 3, and those who depart from it. By applying
ENID to the inverse of the coefficients (the result should then reflect the optimal
separation point after 3), divergence from a Gaussian equilibrium occurs at a kurtosis
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Table 5.2: Mean turbulence velocity levels on the alpha and gamma band. Comparisons and consistency.

Condition (alpha band) 𝐹 𝑝-value adj. Power [0-1] 𝑁

NM.S.NA - M 794 0.0000 0.8660 10
NM.S.NA - M.NS.Mir 740 0.0001 0.9550 20
NM.S.NA - NM.S.Exp 669 0.0090 0.9090 30
NM.S.NA - M.S.Mir 812 0.0000 0.8830 10
M - NM.S.Rob 113 0.0000 0.8360 10
M.NS.Mir - NM.S.Rob 178 0.0003 0.9160 20
NM.S.Rob - NM.S.Exp 656 0.0160 0.8240 30
NM.S.Rob - M.S.Mir 810 0.0000 0.8670 10
NM.S.Exp - M.S.Mir 645 0.0250 0.5690 30

Condition (gamma band) 𝐹 𝑝-value adj. Power [0-1] 𝑁

NM.S.NA - M.NS.Mir 698 0.0020 0.8200 20
NM.S.NA - NM.S.Exp 793 0.0000 0.8080 10
M.S.NA - M.NS.Mir 639 0.0430 0.7400 30
M.S.NA - NM.S.Exp 751 0.0000 0.9470 20
M.NS.Mir - M.S.Mir 178 0.0004 0.8450 20
NM.S.Rob - NM.S.Exp 693 0.0020 0.8600 20
NM.S.Exp - M.S.Mir 101 0.0000 0.8780 10

coefficient threshold of 8.2453 and 6.6926 for the alpha and gamma bands respectively.
This indicates that turbulence is more prominent in the gamma band, as evidenced by
ENID separating faster from 3. Given that our model yields the maximized kurtosis
in time-space for each condition rather than each participant, the counts of values
exceeding this threshold are reported on a per-condition basis (proportion of counts
alpha; gamma): NM.S.NA 82.2025; 54.9400%; M.S.NA 28.2024; 52.3809%; M.NS.Mir
33.2257; 52.3809%; NM.S.Rob 68.8168; 59.5272%; NM.S.Exp 58.1586; 35.9873%; M.S.Mir
30.9515; 39.0046%.

Lower turbulence intensity reflects higher level of motor-related emotionality.
We initially compared potential differences in turbulence intensity within the alpha and
gamma bands (results are reported on Table 5.2 and Figure 5.2). Our analysis across
both bands revealed varying significance levels, particularly noteworthy in the cases of
NM.S.NA and NM.S.Rob, which exhibited elevated contributions to turbulence inten-
sity with respect to the rest of conditions. Further, turbulence intensity was higher
for the mirroring conditions (M.NS.Mir, M.S.Mir) and M.S.NA in the gamma band,
while NM.S.Exp exhibited the lowest level. For the current results, empirical power of
Wilcoxon tests was assessed using simulations on non-Gaussian data exp(1)−1 to validate
the sensitivity of the effects (in Table 5.2, if 𝑁 < 30 it means 100% of reliability) which
proved to be highly reasonable. Subsequently, we used a mixed-effects model (MEM)
via restricted maximum likelihood leveraging subject/condition variation, focusing ex-
clusively on the singing conditions (only M.NS.Mir was excluded). The response variable
was turbulence intensity, while the predictors included the rated level of emotional en-
gagement (EE) and the movement velocity rate (MVR) (see Materials and Methods), all
in a log-scale. For the alpha band, the model output (AIC = 239.5063, Log-Likelihood/LL
= -114.7531) indicates a significant effect of EE (𝛽 = −0.0487, 𝑝 = 0.048) and strong effect
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of MVR (𝛽 = −0.2194, 𝑝 < 0.000) on turbulence intensity with intercept correlation (IC)
of −0.728 for EE and −0.219 for MVR. Note that IC measures the degree of association
between the intercept and each fixed effect; no random slopes were included in our mod-
els to avoid complexity and overfitting. For the gamma band, the model output (AIC =
183.3267, LL = -86.6633) indicates a significant effect of EE (𝛽 = −0.3622, 𝑝 = 0.0063) and
MVR (𝛽 = 0.0987, 𝑝 = 0.0001) with a IC of −0.736,−0.224 respectivelly. Figure 5.2C
shows current interactions in 3D scatterplots.

Lower turbulence intensity in higher gamma band corresponds to level of emo-
tionality and emotional motor control. In the current MEM, we introduced a com-
bined effect of (MVR + Task Demand), where Task Demand (TD) is a predictor that
assigns values of 1, 2, or 3 to the conditions according to level of demand (moving,
singing, interacting with the VA or any combination of them). For the alpha band,
the model output (AIC = 230.794, LL = -110.3972) indicates a strong effect of MVR +
TD (𝛽 = −0.2066, 𝑝 < 0.000) on turbulence intensity with an IC of −0.191. No sig-
nificant effects were found for EM (𝛽 = 0.0274, 𝑝 = 0.1737). For the gamma band,
the model output (AIC = 188.8453, LL = -89.4226) indicates significant effects of EE
(𝛽 = −0.3442, 𝑝 = 0.0085) and MVR + TD (𝛽 = 0.0716, 𝑝 = 0.001) on turbulence inten-
sity with an IC of −0.726 for EE and −0.202 for MVR + TD . By adding the interaction
term EM:Control to the model (AIC = 191.5129, LL = -90.7564), we found effects of
EE:Control (𝛽 = −0.2143, 𝑝 = 0.0204) and MVR + TD (𝛽 = 0.0617, 𝑝 = 0.0014) on
turbulence intensity with an IC of −0.569 and −0.328, respectively.

§ 5.3. Discussion

We have shown that dominant dynamics of EEG oscillatory activity during motor-
related emotional arousal are turbulent, scale invariant and therefore working at a dy-
namical regime of near-criticality. Evidence presented here suggests that turbulence
modulation in alpha band activity (8-13 Hz) is fundamentally mediated by motor func-
tion and associated level of task demand. We found a duality between alpha and high
gamma band (50-80 Hz) dynamics that suggests that, even in the absence of overt bodily
movement, emotionality is revealed by the integrated interpretation of both bands.

While alpha-band activity has been a longstanding subject of psychophysiological
investigations, its systematic examination in relation to motor-specificity of alpha emo-
tional modulation has only emerged in few studies [103, 117, 280, 312], see also [313].
Extensive work suggests that alpha oscillations play a crucial role in optimizing cogni-
tive resources by selectively dampening neural responses to non-pertinent information
[95]. Decline of alpha power in the extended motor system has been shown to engage
in neuronal spiking whereas increased alpha power exhibits phase synchronization due
to rhythmic inhibition of neuronal firing. This supports the idea that alpha oscillations
serve as an informative reflection of the motor system’s state, acting as predictive markers
of the overall performance [110, 111]. Our findings suggest that alpha turbulence down-
modulation, at least in terms of the dominant dynamics under study, is produced by the
influences of motor functionality in relation to the level of task demand. This is clearly
illustrated by the gradual decrease in turbulence intensity, progressing from no move-
ment during singing, to singing while observing the VA conducting, and ultimately
singing while mirroring the movement on the VA (Figure 5.2A). We speculate that this
phenomenon could possibly be linked to volume conduction effects arising from low-
frequency cholinergic axonal diffusion during states of motor planning and movement
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[182, 252, 304], or to recent evidence on the control of inhibitory neurons by the cholin-
ergic system [210]. The observed enhancement of alpha turbulence intensity in the NM
conditions (Figure 5.2A) is in agreement with previous findings [103, 258] suggesting that
synchronization of mu activity (8–12 Hz) in left and midline somatomotor area indicates
active inhibition of motor urges, which here aligns with participants’ inclination to move
during the various singing tasks (25 out of 30 participants reported levels ≥ 3 of involun-
tary urge to move in restricted movement conditions). The influence of motor afferents
in alpha modulation is reinforced by the fact that motor brain regions, particularly basal
ganglia, cerebellum, and premotor cortices including area 55b (a restricted region in the
right hemisphere), are consistently activated during music listening, even in the absence
of overt bodily movement [279].

Although our study did not generate ample statistical evidence to validate turbulence
alpha down-modulation as a robust signature of emotional arousal, we found that high
gamma activity, as supported by current investigations [55, 318], was a more suitable
candidate for this purpose. Aside from the effects of movement and task demand, results
in gamma turbulence modulation suggest balanced contributions of emotional engage-
ment and emotional motor control. Particularly relevant to these findings is that high-
frequency brain activity supports the existence of GA function [52, 101], often evidenced
in humans as a surge of gamma power linked to conscious processing during comatose
states [317]. Based on our results (Figure 5.2A), we hypothesize that GA function plays a
complex role in shaping motor-related emotional arousal, reflecting a mind-body inter-
play as proposed in [106] (i.e., coordinating and integrating motor functions to convey
emotional expression). Remarkably, participants’ sense of emotion (Figure 5.1C) was sig-
nificantly correlated to down-modulation of turbulence in the gamma range, apparently
implying a process of embodiment [168], considering that this was observed in condi-
tions with movement and/or watching natural movement (M.NS.Mir, NM.S.Exp). In
complement, NM.S.Exp was the condition in which participants perceived the greatest
increase in their performance level, reinforcing the connection between gamma turbu-
lence down-modulation and emotional motor control. The observed contrast in condi-
tion M.S.Mir, where alpha turbulence decreases while gamma activity intensifies, sug-
gests an increase in attentional demands resulting from more complex social interactions
[147, 287, 313], and possibly linked to heightened noradrenergic axonal activity [70, 217].
Interestingly, this duality appears to be compatible with participants’ reported level of
emotional engagement. Recent investigations have established connections between at-
tention and emotion employing models that link noradrenergic and cholinergic activity
to distinct pupillary signatures [22, 304].

Some limitations were identified in the current research. While current results in the
high-gamma band are consistent and interpretable, one should not rule out the possi-
bility that they are, to some extent, sensitive to the presence of residual muscle artifacts.
Furthermore, due to the complexity of the cognitive processes under study, which in-
volve intricate motor activities, separating the emotional from the motor contributions
becomes more challenging. Results should therefore be interpreted with these consid-
erations in mind. We also found challenging to find precise topographical descriptors of
the turbulent states under study due to the intermittent and chaotic nature of turbulence.
Future efforts may aim to establish tailored measures of dissipation, metastability, func-
tional connectivity, among others, as well as possibly extending the proposed modeling
on manifold structures [56, 229] contributing to a better understanding of the spatio-
temporal aspects of GA function. Secondly, considering that lower turbulence levels
occurred in conditions involving just singing or just watching movement hence imply-
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ing lower cognitive workload, our study emphasizes the need for further clarification
of the role of attention in emotional processing during motor tasks. Using immersive
VR is necessary to enhance the tradeoff between internal and external validity in psy-
chophysiological research. Although current VR still constitutes a reductionist version
of in-person musical interactions, our work unveils that it can evoke emotionality in
simulation contexts when genuine ones are intangible, offering promising clinical and
educational applications [54, 241].

§ 5.4. Materials and methods

Participants
We recruited 31 healthy volunteers (mean age, 27.6451 ± 6.5347 years; 21 female) based
on the inclusion criteria of being right-handed, having normal or corrected-to-normal
vision, normal hearing, and no history of neurological or psychiatric disorders. Partic-
ipants reported a median of 10 years of musical education (range 1-10 years) despite not
being music professionals or trained singers, fulfilling the required musical skills to per-
form the task. Musical scores were sent to the volunteers 48h prior to the experiment.
All of them were requested to restrict caffeine intake or other stimulants in the data col-
lection day. The experiment took ∼2h and a compensation of 20€ voucher was given
upon completion. After screening, data from one participant was discarded due to bad
electrode conductivity leading to a sample of 𝑁 = 30 (mean age, 27.9333 ± 6.443 years;
20 female). Although not included, 4 extra participants took part in pilot tests to asses the
feasibility of the experimental procedure. This study was approved by the Ethics Com-
mittee of the Faculty of Arts and Philosophy of Ghent University (protocol no. 2022-33).
Written informed consent was obtained from all subjects involved in the study.

Screening
Before the experiment, all 31 initial recruits took part in a training and screening session
with a laboratory technician and a musical expert. This was done to make sure subjects
were capable of singing the music stimuli correctly by heart and moving under a reason-
able degree of freedom while using the equipment (mocap suit and VR headsets). After
short testing their ability to move, participants were asked to sing the song with the mu-
sical accompaniment under the guidance of the musical expert to check whether they
were able to perform with fluency. Participants were naive to the purposes of the study,
although they were informed that performance quality would not be under analysis, but
rather their engagement and perceptions about the activity. Afterwards, instructions
were read to the participants before starting the experiment.

Post-hoc performance quality assessment
Following the same procedure as in [304], two musical experts performed an a poste-
riori quality assessment of the singing recordings. Audio recordings were presented in
randomized order and evaluators rated them on a scale from 1 (very inaccurate) to 10
(very accurate) in the following items: intonation, rhythm, fluency, and memory. The
discrepancy between the two evaluators on the singers’ performance was not significant
(𝑇 2 = 2.875, 𝑝 = 0.095). Following Koo and Li’s reliability levels [158], we found good
reliability of absolute agreement (Intraclass Correlation Coefficient = 0.864) and con-
sistency (ICC = 0.865). No differences were found between the singing performance
comparing the two experimental blocks (𝑇 2 = 1.0896, 𝑝 = 0.3544), therefore the eval-
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uators reached the consensus that all participants were able to keep good performance
levels.

Task
At the beginning of each trial, key instructions appeared in the virtual environment,
such as "Move. Sing along." or "Do not move. Do not sing.", at 3.7 m distance from the
participant virtual view and 14 s before starting singing. A cue of 4 beats was included
to signal the start of the music performance. Participants had to sing pronouncing "la"
(instead of "ta") in order to limit artifactual effects in the EEG signal.

The experimental task was divided in two blocks, respectively, without and with VA.
In the first block, there were two conditions: non-movement singing (NM.S.NA) and
movement singing (M.S.NA). Prior to the VA block, participants had a training famil-
iarization with the VA, both conducting and mirroring their movements. In the second
block, there were four conditions: movement non-singing mirroring VA (M.NS.Mir)
and movement singing mirroring VA (M.S.Mir), non-movement singing robotic VA
(NM.S.Rob), and non-movement singing expressive VA (NM.S.Exp). After performing
each trial, participants were asked to rate their perceived level of emotional engagement,
absorption (degree of correspondence with the activity), control and interaction (only
second block) on a Likert scale from 1 "low level" to 5 "high level". They also rated their
levels of stress at the beginning and the end of each block, with the intention of discard-
ing trials in which levels above 3 were reported. No participant reported levels of stress
> 3. The distribution of the ratings was: level 1 - 60.4838%, level 2 - 25.8064%, level 3 -
13.7096%. As in [117], we further asked participants to indicate us if they felt general dis-
comfort, nausea, dizziness, headache, blurred vision, and difficulty concentrating. Some
participants felt discomfort in the nasal area due to the headset’s weight, which was cau-
tioned by accommodating a cushion between the nose and the headset’s support zone. At
the end of the experiment, participants were asked a forced-choice question, "Which of
the agent behaviors (robotic, expressive, mirror, or none of them) do you believe had the
most positive impact on your singing performance?" to reiterate their VA preferences.
Lastly, we ask them to rate the involuntary urge to move during the conditions they
were not allowed to.

Data acquisition
Participants’ movement was recorded with a 16 -infrared camera optical motion capture
system (Qualisys, Sweden) using a sampling rate of 120 Hz. The acquisition software
was the Qualisys Track Manager (QTM) 2023. Participants wore a suit where 42 reflec-
tive markers were placed following the Qualisys full body biomechanical model. This
model was adopted due to its capability of producing realistic projections of the subjects’
movements.

EEG data was recorded at 1 kHz with ANT-Neuro eegTM mylab systems using a 64
channel headset (10-10 system, with Ag/AgCl electrodes). One electrooculogram (EOG)
electrode was placed below and next to the right eye. Recordings were conducted using
a referential montage, with electrode CPz as reference. To reduce tension on electrode
cables and allow unrestricted movements, the amplifier was positioned on an elevated
table behind 1 m distance of the participant. Mobility was measured to freely sway (with
sufficient cable length) one step ahead and laterally. Impedance levels were monitored
using the eegoTM software to ensure they remained below 20 kΩ.

The VR headset was carefully placed over the EEG cap. Participants were equipped
with HTC Vive Pro 2 headsets and followed the standard calibration procedure recom-
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mended by the manufacturer. The mocap data were streamed to a standard digital audio
workstation software (Ableton Live 9) for synchronization with Unity (Unity Technolo-
gies, consumer version 2023.2.13) allowing the VA to mirror participant’s movements.
Vocal performance was recorded using a Shure Beta 87A microphone placed in the ceil-
ing above the participant. Additionally, a decibel meter (UNI-T UT352) was employed
to oversee and assess the volume levels before the commencement of the experiment,
aiming to mitigate the impact of loudness.

Stimuli
The virtual environment was designed in Unity. We used a gender-neutral VA in a room
with plane size limited at 5×10 m with low visual impact colors [260]. Participants were
standing in the middle of the room 3.7 m distance from the VA. Initially, a light grey
cross was projected on to the middle of the scene to help participants fix their gaze on a
point. The movements of the VA conducting robotically or expressivelly were recorded
previously from a professional conductor instructed to perform the gesturing accord-
ingly. Auditory stimuli were the same as in our previous experiment (see Supplementary
Material in [304]), where participants found it easy to memorize and adapt to their tonal
range. See supplementary material.

Pre-processing of neuroimaging data
All pre-processing was performed in R [245] using custom made scripts. Routines were
conducted separately for data recorded per participant and condition.

Detecting and removing artifacts in EEG signals during vocal tasks and body sway
poses a complex challenge. Particularly, singing implies generation of artifacts from hy-
poglossal movement, involuntary clenching and by contractions of the neck and facial
muscles. In addition, blink activity tends to be more prevalent in such conditions [304].
On the other hand, body movements can induce cable sway, muscle tension, and height-
ened heart rate variability. The critical mixture of artifactual potentials over the scalp
field due to volume conduction, rather requires that the method used for identifica-
tion and removal suitably adjusts to their topological features in time and space. The
approach considered here bears resemblance to a multi-band component analysis [135],
which allows to target artifacts according to the band-width in which they arise more
predominantly. In a first stage, line noise interference was removed using a fourth-order
Pei-Tseng notch filter centered at 50 Hz on the raw signal and FastICA (PCA whiten-
ing, parallel extraction with logcosh) was performed on the data high-pass filtered at 20
Hz (forward-backward 4th order Butterworth filter - 4Bw), a common low threshold
for the spectral bandwidth of muscle activity [206]. In order to select artifactual com-
ponents, we inspected spatial topographies and applied wavelet shrinkage (MODWT-l4
[233]) to the vectors of the source matrix and visualized them using line references of the
timmings when the participants pronounced "la" to change pitch. We enhanced their
selection considering a median standard deviation threshold (as weighted by the number
of channels containing absolute voltages > 100𝜇V) of the norm of the transformed source
vectors with the Teager-Kaiser operator (TKO) [141]. The selected components were in-
dividually backprojected for removal and denoised through wavelet shrinkage, as per the
methodology outlined in [300], aiming to minimize modulation and preserve brain ac-
tivity to the greatest extent possible. On average, 19.0776 denoised and temporally-sparse
high-frequency components per subject were removed, which is considered a reasonable
number according to current investigations in the area [177, 206].

Subsequently, adaptive notch (bandwidth: 0.1) filtering [25] was performed on the
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data around spectral peaks exceeding the default threshold of 8 standard deviations using
non-overlapping widows of a 50 Hz step from 48 Hz via FFT. We followed this proto-
col since muscle activity can mask sources of line noise (possibly produced by the VR
headset system [314]) while induce their spectral distortion. Channels containing abso-
lute voltages > 100𝜇V above 20 Hz were denoised (MODWT-Cl4) on the four coarsest
decomposition levels (> 30 Hz) by shrinking to 0 the coefficients surpassing the universal
threshold of their related TKO transformation. For the sake of smoothness, a Gaussian
kernel was applied to these decomposition levels using Scott’s bandwidth after perform-
ing the shrinkage. Pathological cases of noise corrupted channels were visually inspected
and reconstructed via spline spherical interpolation.

In a second stage the data was referenced to robust average and FastICA was con-
ducted on the broad-band pre-processed signal after a PCA reduction. A PCA usually
enhances the estimation of high amplitude components corresponding to blinks, body
movements or cable sway, by restricting their mixture with other PCs when ICA is
performed. Outlying and sparsest spatial components were semi-automatically detected
using the norms and the index of sparsity defined in [324] on the vector columns of the
estimated mixing matrix. To minimize the impact on brain activity, wavelet denoising
(l4) was once again applied. The removal process was evaluated using a depth statistics
[65] on the median absolute voltage and the norm of the Fourier spectrum (1-15 Hz) pool-
ing all channels across subjects and conditions. Outlying channels and associated trials
were inspected to further detect artifactual ICA components which were removed un-
til sufficient depth consistency was achieved (only mastoids were left as residual outliers,
which were not used in our analyses). Results were visually validated and, on average,
1.7583 artifactual components were removed from the signal. In a last round, the signal
was again examined with ICA to identify residual artifactual activity and cardiogenetic
components, whose detection is known to be improved under more stationary condi-
tions.

Robust subband estimation and EEG data representation
The pre-processed EEG data was filtered (4Bw) in the alpha (8-13 Hz) and high gamma
(50-80 Hz) bands using spatio-spectral decomposition (SSD) [215]. This technique aims
to find linear filters maximizing power in the frequency band of interest while mini-
mizing power in the neighboring "flanking" frequency bins. Prior studies have shown
the ability of the technique to enhance the robustness and interpretability of results
[51, 117, 269], as well as to increase classification accuracy in BCI applications [114]. The
SDD parameters were set as follows: bandpass signal ±2 Hz, bandstop noise ±1 Hz, band-
pass noise ±4 Hz. The number of SDD components (filters) were selected via perpen-
dicular line method, resulting in an average of 35.9222 and 37.8388 filters being retained
for each band. Subsequently, Cauchy robust PCA [90] was applied to the filtered sig-
nal to represent the data in terms of the dominant spatial eigenvector. This technique,
well-suited for high-dimensional data, utilizes a Cauchy likelihood instead of a Gaussian
likelihood to ensure maximum robustness in component estimation, thereby notably re-
ducing the leakage of possible artifact residual.

Hilbertian spatio-temporal model of dominant dynamics for turbulence analysis
Suppose we have the EEG data {𝑋𝑖 𝑗 (𝑡1, 𝑠1), . . . , 𝑋𝑖 𝑗 (𝑡𝑚, 𝑠𝑘), . . . 𝑋𝑖 𝑗 (𝑡𝑀 , 𝑠𝐾 )}𝑁,𝐽𝑖, 𝑗=1,where 𝑁 are
the number of participants, 𝐽 the number of experimental conditions and 𝐾 the number
of channels. The matrices (𝑋𝑖 𝑗 )𝐾×𝑀 had been filtered using the spatio-spectral decom-
position at the frequency band of interest and then expressed in terms of the first spatial
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Cauchy principal component. Although the data is observed at 𝑡1, . . . , 𝑡𝑀 time points,
we assume these are realizations of 𝐽 spatio-temporal random variables taking values on
the space of square integrable functions 𝐿2

𝑇×𝑆 . Given that our data comes in a wide for-
mat (𝑁 ≪ 𝑀), the interval 𝑇 ⊂ R representing the temporal domain is partitioned in
T1, . . . ,Tℓ , . . . ,T𝜏 subintervals, possibly intersecting in a region of its domain.

Consider the basis expansions approximations at any I of 𝑁 · 𝐾 curves 𝑋 𝑗 (𝑡) =

𝐴 𝑗𝜙 (𝑡), 𝑡 ∈ Iwhere 𝐴 𝑗 is 𝑁 · 𝐾 × 𝑝 coefficient matrix of the participant’s curves pooled
per channel and 𝜙 (𝑡) = (𝜙1(𝑡), . . . , 𝜙𝑝 (𝑡))⊤ is a basis of 𝑝 functions. Note 𝐴 𝑗 represent
sequences of matrices in the direction of the experimental conditions and 𝑋 𝑗 their re-
spective vector of functions. We will work with the expansion X (𝑡) = A𝚽(𝑡) where
X (𝑡) = [𝑋 1(𝑡); . . . ;𝑋 𝐽 (𝑡)]𝑁 ·𝐾×𝐽 , A= [𝐴1; . . . ;𝐴𝐽 ]𝑁 ·𝐾×𝑝 ·𝐽 and 𝚽(𝑡) is matrix of size 𝑝 · 𝐽 × 𝐽
with 𝐽 𝑝-dimensional basis functions in its diagonal.

Following [298], we can map X (𝑡) to orthogonality, i.e, X (𝑡) → X(𝑡) : cov(X(𝑡)) =
Id., using the factorization of the matrix G=

∫
I
𝚽(𝑡)𝚽(𝑡)⊤d𝑡 and its inverse. Then, we

consider the projections

𝜉 𝑗 =

∫
I

𝑋 𝑗 (𝑡)𝜓 𝑗

1 (𝑡)d𝑡, (5.1)

where 𝜓 𝑗

1 (𝑡) is a function embedded in the dominant eigenfunction 𝜓1(𝑡) obtained via
spectral decomposition of the kurtosis kernel function admitting the basis expansion

kurt(X) (𝑡, ·) = 𝚽(·)⊤G−1/2
(

1
𝑁 · 𝐾 G1/2Ã⊤𝐷ÃG1/2

)
︸                          ︷︷                          ︸

Σ
ÃG1/2

G−1/2𝚽(𝑡), (5.2)

where 𝐷 = diag
(
ÃGÃ⊤

)
, Ã is the a coefficient matrix A after whitening and ΣÃG1/2 is

its kurtosis matrix.
By solving the eigenvalue problem 𝚽(𝑡)⊤ΣÃG1/2G𝒃⊤𝑠 = 𝜅𝑠𝚽(𝑡)⊤b⊤𝑠 , we get a set

of eigenvalues 𝜅1 ⩾ · · · ⩾ 𝜅𝑝 ·𝐽 and associated eigenvectors b𝑠 which allow to com-
pose 𝜓𝑠 (𝑡) = 𝚽(𝑡)⊤G−1/2b⊤𝑠 , the eigenfunctions of kurt(X) which have unit norm
and are pairwise orthogonal. If we take the following division of the coefficients
[𝑏1, . . . , 𝑏𝑝 ;𝑏𝑝+1, . . . , 𝑏2·𝑝 ; . . . ;𝑏 (𝑁 ·𝐾−1)·𝑝+1 . . . , 𝑏𝑁 ·𝐾 ·𝑝], one can easily obtain the dominant
functions 𝜓 𝑗

1 (𝑡) by expanding each coefficient trunk by 𝜙 (𝑡) and obtain Equation 5.1.
In our model, the functions 𝜓 𝑗

1 (𝑡) are projected on to each univariate functional
dataset 𝑋 𝑗 , thus preserving the participant’s dimension across conditions, albeit at the
cost of having non-uncorrelated projection scores. By subsequently performing at each
Iℓ the above operations, we will get 𝜏 realizations of a discrete spatio-temporal random
field, i.e, Ξ𝑖 𝑗 ≡ {𝜉𝑖 𝑗1 ; . . . ; 𝜉

𝑖 𝑗

ℓ
; . . . ; 𝜉𝑖 𝑗𝜏 } where 𝜉𝑖 𝑗

ℓ
is a univariate vector of 𝐾 entries that has

been reorganized participant wise. The differentiation of Ξ𝑖 𝑗 in time gives the gradient
flow or fluctuation matrix and for all ℓ > 1, the turbulence intensity is defined as〈

∥𝜉𝑖 𝑗
ℓ
− 𝜉𝑖 𝑗

ℓ+1∥
2
〉
ℓ
, (5.3)

where ⟨·, ·⟩ℓ indicates average in the temporal direction.

Turbulence model setup
For a system of overlapping windows, we determined a hop size of 20 ms according to
the latencies that characterize interneuronal information transmission [130]. Window

84



sizes of 500 and 100 ms for the alpha and gamma band were respectively used to per-
form multivariate functional ICA (with ZCA whitening [298]). This choice aimed to
uphold a consistent ratio of neural fluctuations in each window while mitigating the risk
of numerical instabilities in the estimation of the covariance function in the functional
ICA model. We regressed out the data using B-spline basis functions keeping towards
0 the RMSE in the approximation. For the reconstruction of 𝜓 𝑗

1 (·) across all domain,
an overlapping Gaussian window with width factor of 4 was used, and the hop size was
determined as half the window size.

Pre-processing of motion capture data
Motion capture data was initially pre-processed in QTM 2023 (Qualisys AB, Sweden)
for marker labeling, gap-filling and trajectory smoothing (10 Hz low pass Butterworth
filter). Marker trajectories were exported and movement velocity was then calculated as
the first-order time-derivatives of the marker positions. Velocity data was then normal-
ized across the three axis to produce the magnitude velocity of each marker. We then
applied the Minimum Covariance Determinant estimator [259] to the pre-processed
spatial data, obtaining location estimates for each marker. These estimates were then
median-averaged to calculate the movement velocity rate per participant and condition.
Data from two participants were excluded from the MEM analyses due to technical
issues with tracking.
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6 | Conclusions and
research perspectives

§ 6.1. Contributions in mathematical and applied statistics

The research presented in this dissertation represents a notable step forward in the field
of functional ICA, building upon and extending the findings of previous studies [175,
197, 232, 307]. One of the main contributions lies in the utilization of Sobolev norms
to regulate the smoothness level of the ICs estimates within the subspaces generated by
the covariance/kurtosis eigenfunctions. Concurrently, we have developed an extension
of functional ICA for wide functional data in the presence of spatial dependencies us-
ing wavelet expansions and customized shrinkage techniques for denoising. Overall,
the proposed smoothing/denoising techniques have demonstrated efficacy in functional
classification and representation of functional anomalies. By controlling the noise of the
estimates, we effectively enhance the irreducibility of the components, a quality that has
been described critical in estimating true independent components [109]. The success
of the separation in ICs strongly depends on both the characteristics of the data and the
whitening method employed. In this regard, we have generalized typical multivari-
ate whitening procedures to infinite-dimensional function spaces, offering versatility to
optimally explore functional data beyond second-order correlations. In functional clas-
sification, previous research has shown that methodologies achieving effective variance
reduction per group, such as partial least squares [3, 6, 77, 78], variable selection [33, 34],
or group-wise smoothing as shown in §2.8, tend to yield superior outcomes. Guided by
our theoretical insights (§2.7), classification strategies should probably align towards the
principles of Feldman-Hájek Theorem and its derivations to attain acceptable levels of
accuracy. Nevertheless, in unsupervised settings things become more complicated. We
foresee that a rigorous stochastic study of the definition of Hilbertian independence, IC
separability and moment operators could pave the way for understanding relationships
among linear/non-linear independent structures in the data critical to unveil significant
low-dimensional projections. Our research on functional ICA has further motivated us
to accommodate our methodologies to more complex structures, encompassing different
kinds of multivariate functional data (as, for example, we do in Chapter 5) as well as on
manifold structures [56, 229]. After the results here obtained, it also would be interesting
to explore avenues for inference with functional ICA, similarly as in [1, 2, 261].

Regarding the asymptotic behavior of the proposed functional IC models, there are
various points to take into consideration. Functional ICA is commonly defined in the
RKHS generated by the covariance operator (i.e., the covariance operator’s closed range),
and therefore based on functional PCA estimates. While the asymptotic convergence of
functional PCA has been extensively studied, see for example [38, 42, 73, 112, 121], ad-
dressing the smoothed case demands a more nuanced approach. Following [278] or [122],
which extended Silverman’s results on smoothed functional PCA consistency by incor-
porating additional Tikhonov regularization, most remarkably, Lakraj and Ruymgaart
[166] derived its asymptotic properties using results on the perturbed eigensystem of a
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sample smoothed covariance operator to further investigate the consistency and asymp-
totic distributions for the first smoothed principal components and corresponding eigen-
values. Nevertheless, in smoothed functional ICA models, finite sample bounds (inter-
mediate regimes) seem to be a more realistic choice of study, as all covariance eigenvalues
exceeding 𝑛 are consistently zero, thus hindering a straightforward application of typi-
cal asymptotic results. Further, Picard’s law is likely to hold under particular regularity
conditions. In this vein, Virta et al. [307] suggested that asymptotic convergence of func-
tional ICA estimates could be obtained by leveraging the rank of P𝛾 together with the
sample size via the operator norm | |𝛤𝑗 (𝐹𝑛) − 𝛤𝑗 (𝐹 ) | |HS = O𝑝 (ℎ𝑛) ( 𝑗 = 1, · · · , 𝑞), where
𝛤 (𝐹 ) = (𝜓 𝑗 ⊗ 𝜓 𝑗 )Ψ(P𝛾𝑋 ), 𝐹𝑛 is the empirical distribution function of a sample of size
𝑛 from the distribution 𝐹 , and ℎ𝑛 is some sufficient rate of convergence. Alternatively,
one can also build upon prior consistency results in functional canonical correlation (see,
e.g., [59, 66, 100]), or other sibling techniques [12, 32, 262]. Parallel to this, Li et al.
[175] studied the Fisher consistency of the kurtosis operator, similar as in [128, 235] for
the multivariate case. This is closely related to the approach we have employed to study
the consistency of the proposed whitening procedures (§2.8). We hope to provide more
extensive and rigorous results in the future.

Finally, we wish to emphasize that our methods, including all whitening procedures
and functional ICA models, have been implemented in the R package pfica [299], which
is available on CRAN.

§ 6.2. Some remarks on pre-processing neuroscientific data during
embodied interactions

One of the most challenging objectives of this dissertation was to design an effective
method for pre-processing neuroscientific data collected from non-invasive devices dur-
ing complex motor tasks. This involved conducting numerous tests in the laboratory,
and performing thorough examinations of the recorded data across multiple motor con-
ditions to determine the extent of our capabilities. Undoubtedly, pre-processing data
collected from neurophysiological monitoring techniques is currently one of the pri-
mary challenges confronting the development of embodied music neuroscience.

In Chapter 4 and Chapter 5, we provided an algorithm for unsupervised removal of
ROEs in pupil signals based on non-linear polynomial optimization, and a wavelet-based
spatial functional ICA for detecting and characterizing artifacts in EEG signals. Both
methods yielded satisfactory results, enhancing to a great extent the estimation qual-
ity of brain signal and the applicability of subsequent statistical techniques. Results in
simulations and real-data analyses speak for themselves: the use of smoothing/denoising
(or FDA) techniques is indispensable for deriving reliable neuroscientific results. How-
ever, there are some points of discussion. During the pre-processing of the EEG data
from Study II (Chapter 5), we observed a notable improvement in the application of the
method described in Chapter 3 when applied independently across multiple frequency
bands, thereby assuming artifacts can be stereotyped frequency-wise. Considering the
highly complex mixture of artifacts in the signal during motor tasks, effectively estimat-
ing certain artifacts in a single spatial ICA decomposition proved to be nearly unfeasible.
Conducting spatial ICA in frequency sublayers and integrating it with a PCA reduction-
s/wavelet techniques offered more precise artifact estimates. However, more thorough
study on the filtering methods and frequency ranges is needed to improve, validate and
generalize the procedure. We wonder whether it is possible to integrate current develop-
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ments into rigorous theoretical precepts that allow us to design a functional ICA covering
all these aspects discussed. Future comparative and validation studies can certainly help to
this endeavor, further simplifying the laborious (and often subjective) task of manually
selecting artifacts. We believe the methods developed in this dissertation provide robust
starting tools for researchers aiming to analyze brain signals under movement conditions.
The proposed methodologies have however raised additional questions regarding their
suitability for real-time estimation of brain signals, particularly for neurofeedback opti-
mization oriented towards action-control and emotion regulation. A primary concern
revolves around the adequacy and minimization of computational time needed for pre-
processing in real-time scenarios, ensuring the usability of the neurofeedback system.

From a more fundamental perspective, our concern lies in understanding how con-
current repeated motor actions (e.g., walking or tapping) modulate the EEG signal, and
in distinguishing genuine brain activity from artifact-induced activity. Preliminary anal-
ysis indicates that certain oscillatory features, temporally associated with these types of
motor actions, may be either artifactual or represent basic neuroanatomical responses, po-
tentially rendering them spurious or prone to over-interpretations. This is because EEG
signals not only capture muscular activity originating from areas beyond the immedi-
ate recording area but also reflect volume conduction effects, such as produced by low-
frequency axonal diffusion involved in the functionality of pre-motor areas [303]. This
activity could be mixed with typical artifactual volume conduction effects making even
more complex to accurately separate both processes in a spatio-temporal sense. There-
fore, a rigorous study is expedient, possibly exploiting joint analyses with mocap data
and the assessment of the EEG signal with more sophisticated spatio-temporal/source lo-
calization techniques [184, 227], or approaches that can provide cross-frequency insights
[105, 216, 321]. Nevertheless, and to be realistic, we anticipate that invasive techniques
will play a crucial role in addressing some of these questions in the coming years.

§ 6.3. Understanding brain behaviour during embodied musi-
cal interactions: preliminary contributions to the field of
embodied music neuroscience

Efforts undertaken in this investigation have been primarily aimed at uncovering neu-
roscientific evidence supporting the postulates of embodied music cognition (EMC), a
paradigm spearheaded by Prof. Marc Leman over the past 20 years of his career. Often,
embodiment is thought to be best investigated in terms of synchronization [47, 168, 170,
171, 295]. However, here we describe a different approach to investigating the neuro-
science of embodiment, focusing on a broader spectrum of effects that can be measured
when engaging with music. We all know that music is more than just a metronome, and
that listening to music is driven by inherently emotional motivations. Therefore, in-
vestigating emotional effects mediated through music, along with the associated motor
responses evoked by music listening and music making, in our opinion, is better suited
for studying the neurology of embodiment in these scenarios. As a result, a paradigm
was developed, viewing emotion as an isomorphism of embodiment. This idea came up
after long discussions with Prof. Thomas H. Fritz on the relevance of both emotional and
voluntary motor systems in shaping embodied interactions (see [118, 297], also §4.1, 4.3,
5.1 ). It was natural to investigate CNS arousals to elucidate the neurological underpin-
nings of EMC, here understood as a construct of complex brain-CNS-body interactions,
seemingly as postulated in the theory of constructed emotion by Barrett [24].
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In our initial study (Chapter 4), we were among the first to propose analyzing pupil
dilation at specific frequencies, building on prior research relating pupil signals to puta-
tive neurotransmitter activity during motor tasks. This way of modeling the data, often
referred to as a blinded inference methodology [285], was bolstered by the principles of
the generalized CNS arousal hypothesis (see §4.1, 5.1). We introduced a framework for
data reduction based on multivariate functional data and Pfaff’s GA. This method over-
comes common dimensionality reduction problems by using expansion coefficients, pro-
vides smooth curve representation, and accounts for multivariate dependencies between
experimental conditions. With this, we aimed at quantifying emotional response dur-
ing embodied interactions and examining potential relations with agency/control. We
found that the inferred cholinergic-related pupil activity reflected the perceived level
of emotionality as well as, possibly, the level of physical task demand, and that nora-
drenergic pupil-related activity consistently scaled down during conditions varying in
emotionality of motor task, which is often interpreted as a signature of agency. Another
intriguing aspect of the results was the comparable modulation of low-frequency pupil
activity observed during conditions where only bodily sway or singing was permitted,
but not during a combination of both. This suggests that slow pupil frequencies are also
sensitive to different motor afferents.

The findings from this initial study prompted a second investigation (Chapter 5),
where we intentionally maintained the basic experimental design to validate our previous
findings. Indeed, Study I generated questions around the role of physical task demand in
relation to the perceived level of emotionality. Following some recent studies [54, 199],
we were further interested in how musical interactions in immersive virtual reality could
have an impact on the level of emotionality. Specifically, we examined interactions with a
virtual agent (VA) conducting music in different expressive fashions, with the expectation
that neural engagement would decrease as a result of an embodiment process. To prove
this, we used EEG recordings and formulated a turbulence model that combines domi-
nant spatial representations with functional data. This model, along with our developed
pre-processing pipeline, represents one of the primary applied contributions of our the-
oretical advancements on FICA discussed in previous chapters. We chose this turbulence
modelling approach since neuromodulatory activity is often described to be spatially dif-
fuse [21], therefore the examination of a turbulent behaviour in the cortical field was a
potential way to measure GA function. Our analyses provided evidence that turbulence
down-modulation of alpha band reflected physical arousal, a factor undoubtedly related
to the perceived level of emotionality as observed in Study I, which may easily be mis-
understood as a signature of emotionality. Instead, down-modulation of turbulence in
the high gamma band consistently corresponded to emotionality conditional to level of
agency, here induced by the processing of expressive gestures from the VA.

Put together, our findings suggest that embodiment arises from complex bidirec-
tional interactions between the CNS/brain and body behavior in response to environ-
mental cues. Modulation of higher frequencies of pupil and EEG signals reflect this phe-
nomenon, evidenced through a negative scaling or down-modulation of neural activity
during embodied interactions. Nevertheless, embodiment is contingent to the quality of
the interaction being able to ensure optimal brain functionality by allocating resources
efficiently, which may include, say, delegating tasks to the body (under minimal motor
processing) or other external agents (social, virtual, etc.) that ultimately facilitate neural
processing and a fluent experience of music. This enhancement seems to occur partic-
ularly when interactions are emotionally engaging, emphasizing that while movement
synchronization to music may be significant in these processes, it is not a sufficient con-
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dition for embodiment to be experimentally validated. Current notion of embodiment
echoes key principles discussed in Leman’s 2016 book [170], highlighting the essential
role of expressivity in musical interactions, but now reflected through neurological pa-
rameters. Future research aims to uncover the physiological underpinnings of our find-
ings, elucidating the role of particular brain regions, as well as sensory receptors and
their corresponding neural pathways, in shaping embodied music interactions. Looking
ahead, the insights gained from our research have the potential to facilitate further studies
in this field and pave the way for optimizing neurofeedback applications across clinical,
educational, and recreational settings.
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Results (%) for the centroid classifiers:
Data 𝑛𝑘 PC1 PC𝑚 Whitening IC𝑞 SIC𝑞

Scenario I (Gaussian)
Example 1 30 45.49 (3.295) 6.167 (10.43) PCA 2.583 (3.698) 2.520 (5.193)

PCA-cor 2.583 (3.698) 2.540 (5.869)
ZCA 2.592 (3.709) 1.590 (2.632)

ZCA-cor 2.592 (3.709) 1.955 (3.234)
Cholesky 2.575 (3.702) 1.219 (2.083)

50 45.47 (3.382) 3.985 (7.754) PCA 0.970 (1.662) 0.588 (1.058)
PCA-cor 0.970 (1.662) 0.885 (2.122)

ZCA 0.965 (1.661) 0.531 (1.051)
ZCA-cor 0.970 (1.671) 0.678 (1.066)
Cholesky 0.965 (1.661) 0.490 (1.266)

Example 2 30 44.83 (4.103) 17.35 (15.10) PCA 4.500 (4.971) 1.716 (2.318)
PCA-cor 4.492 (4.960) 1.766 (2.411)

ZCA 4.475 (4.969) 0.876 (1.431)
ZCA-cor 4.475 (4.969) 0.903 (1.455)

Chol 4.492 (4.966) 1.688 (2.342)
50 45.98 (3.047) 11.35 (11.32) PCA 1.750 (2.198) 0.758 (1.308)

PCA-cor 1.755 (2.200) 0.969 (1.451)
ZCA 1.755 (2.200) 0.397 (0.790)

ZCA-cor 1.750 (2.203) 0.420 (0.787)
Cholesky 1.740 (2.202) 0.942 (1.517)

Example 3 30 45.16 (3.810) 2.975 (4.474) PCA 3.525 (4.031) 1.667 (2.472)
PCA-cor 3.533 (4.026) 1.988 (4.355)

ZCA 3.533 (4.026) 2.264 (4.476)
ZCA-cor 3.525 (4.018) 2.004 (4.214)
Cholesky 3.517 (4.023) 1.286 (2.117)

50 45.54 (3.230) 1.910 (1.560) PCA 1.530 (1.974) 0.941 (1.541)
PCA-cor 1.535 (1.974) 1.129 (1.775)

ZCA 1.535 (1.974) 1.043 (1.700)
ZCA-cor 1.535 (1.974) 0.867 (1.505)
Cholesky 1.530 (1.974) 0.663 (1.044)

Scenario II (non-Gaussian)
Example 1 30 45.40 (3.592) 6.742 (10.45) PCA 3.917 (3.967) 3.909 (5.068)

PCA-cor 3.917 (3.967) 4.167 (5.950)
ZCA 3.900 (3.970) 3.438 (2.643)

ZCA-cor 3.900 (3.970) 3.452 (2.602)
Cholesky 3.908 (3.967) 3.563 (2.543)

50 45.97 (3.271) 4.875 (9.073) PCA 3.075 (3.547) 2.920 (3.190)
PCA-cor 3.075 (3.547) 2.819 (2.889)

ZCA 3.075 (3.547) 3.010 (3.448)
ZCA-cor 3.075 (3.547) 3.071 (3.936)
Cholesky 3.075 (3.547) 2.678 (2.864)

Example 2 30 45.208 (4.058) 7.45 (10.58) PCA 8.250 (9.897) 8.349 (10.48)
PCA-cor 8.250 (9.897) 8.063 (10.77)

ZCA 8.250 (9.889) 7.155 (9.419)
ZCA-cor 8.242 (9.892) 6.800 (9.561)
Cholesky 8.233 (9.897) 7.343 (9.434)

50 46.29 (2.748) 7.805 (11.97) PCA 7.145 (10.48) 6.053 (8.575)
PCA-cor 7.150 (10.50) 5.840 (8.591)

ZCA 7.155 (10.50) 6.694 (10.56)
ZCA-cor 7.155 (10.50) 6.640 (10.69)
Cholesky 7.150 (10.48) 6.075 (8.519)

Example 3 30 45.15 (4.049) 10.92 (11.87) PCA 6.858 (7.936) 5.951 (6.266)
PCA-cor 6.858 (7.936) 6.516 (7.232)

ZCA 6.867 (7.934) 7.060 (8.419)
ZCA-cor 6.867 (7.934) 6.425 (7.626)
Cholesky 6.858 (7.936) 5.654 (6.642)

50 45.94 (3.092) 10.92 (11.69) PCA 5.085 (6.098) 4.832 (5.616)
PCA-cor 5.085 (6.098) 5.119 (6.249)

ZCA 5.095 (6.120) 4.935 (6.120)
ZCA-cor 5.100 (6.119) 4.873 (5.696)
Cholesky 5.095 (6.095) 4.173 (4.228)

Table A.1: Simulation results for the mean and standard deviation (in parentheses) of the classification errors obtained with 200
repetitions of the experiment for different sample sizes and zero error variance. PC1, first principal component; PC𝑚 , principal
component with lowest kurtosis coefficient; IC𝑞 , 𝑞th independent component (minimal kurtosis); SIC𝑞 , 𝑞th smoothed independent
component; PCA, principal component analysis whitening; PCA-cor, principal component analysis correlated whitening; ZCA,
zero-phase component analysis or Mahalanobis whitening; ZCA-cor, zero-phase component analysis or Mahalanobis correlated
whitening; Cholesky, Cholesky whitening.
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Method Universal Multiplicative scaling ENID
Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

Space factorization via FastICA
Estimation of artifact 1

d4 0.657841
(0.054892)

0.463164
(0.060811)

0.747474
(0.048975)

0.997745
(0.014261)

0.14744
(0.024254)

0.527069
(0.071056)

0.989449
(0.003292)

1.004141
(0.003844)

0.165179
(0.020554)

0.546836
(0.069524)

0.986186
(0.003157)

1.003312
(0.003796)

d8 0.654121
(0.049689)

0.456799
(0.057024)

0.75094
(0.042332)

0.997804
(0.010781)

0.146762
(0.022762)

0.516577
(0.066261)

0.989174
(0.003035)

1.003399
(0.00425)

0.169321
(0.017953)

0.534618
(0.064933)

0.984854
(0.002682)

1.003698
(0.003009)

d12 0.664732
(0.062922)

0.467959
(0.06702)

0.741682
(0.056257)

0.997843
(0.010855)

0.158773
(0.033939)

0.531458
(0.080123)

0.987699
(0.003974)

1.003011
(0.003537)

0.187063
(0.025776)

0.547876
(0.078217)

0.981829
(0.002979)

1.002668
(0.00314)

s4 0.674182
(0.069498)

0.465488
(0.065459)

0.733095
(0.065597)

0.995529
(0.010776)

0.149827
(0.029964)

0.533555
(0.08142)

0.989299
(0.003555)

1.004635
(0.003541)

0.165849
(0.025953)

0.552471
(0.078376)

0.986335
(0.003442)

1.00337
(0.004673)

s8 0.662008
(0.070549)

0.461941
(0.068915)

0.745201
(0.061283)

0.996788
(0.010722)

0.147735
(0.043849)

0.524252
(0.087342)

0.989401
(0.004757)

1.00347
(0.005009)

0.152865
(0.050574)

0.53012
(0.083029)

0.987959
(0.007949)

1.003197
(0.00403)

s12 0.689355
(0.162002)

0.478221
(0.138828)

0.737399
(0.06731)

0.995632
(0.011597)

0.168446
(0.109922)

0.550704
(0.21001)

0.985715
(0.017965)

1.002996
(0.006368)

0.17984
(0.14963)

0.554262
(0.17579)

0.976944
(0.070141)

1.001929
(0.003731)

l2 0.653949
(0.075971)

0.45909
(0.061999)

0.751058
(0.065643)

0.999594
(0.00668)

0.174939
(0.035771)

0.537958
(0.081046)

0.985109
(0.004112)

1.003979
(0.003385)

0.175247
(0.039638)

0.559213
(0.075559)

0.985085
(0.004854)

1.003903
(0.00421)

l4 0.658251
(0.089136)

0.455168
(0.048934)

0.750035
(0.059427)

0.996658
(0.011368)

0.150381
(0.054262)

0.519542
(0.068559)

0.987702
(0.01367)

1.002709
(0.004035)

0.168047
(0.050643)

0.53917
(0.0648)

0.984441
(0.013343)

1.003644
(0.004307)

l6 0.682652
(0.141768)

0.478555
(0.117798)

0.740986
(0.065049)

0.995317
(0.0117)

0.154036
(0.096781)

0.549401
(0.175358)

0.987827
(0.0174)

1.003927
(0.004826)

0.161814
(0.125562)

0.549477
(0.14955)

0.980589
(0.062262)

1.003116
(0.003972)

Estimation of artifact 2 after removal of artifact 1
d4 0.448573

(0.080736)
7.058343
(1.5539)

0.206537
(0.091623)

0.994474
(0.01221)

0.179966
(0.043525)

13.08566
(2.08737)

0.94488
(0.013193)

0.988835
(0.005719)

0.219096
(0.034826)

11.30297
(2.346056)

0.752741
(0.105738)

1.001098
(0.003419)

d8 0.478646
(0.114056)

6.231146
(1.848091)

0.190032
(0.086348)

0.994389
(0.011764)

0.165698
(0.051095)

12.07822
(2.01196)

0.954331
(0.028477)

0.990374
(0.004926)

0.229771
(0.058317)

10.01514
(2.374593)

0.685261
(0.132237)

1.002501
(0.003344)

d12 0.463715
(0.117373)

7.195422
(2.538593)

0.212163
(0.097225)

0.997188
(0.012264)

0.174244
(0.053313)

13.40127
(3.739797)

0.960158
(0.020007)

0.990068
(0.006701)

0.228199
(0.053029)

11.39044
(3.863455)

0.690974
(0.151923)

1.000551
(0.002689)

s4 0.481191
(0.094494)

6.876887
(2.964637)

0.182231
(0.08988)

0.996344
(0.011589)

0.166153
(0.049944)

13.08194
(3.678795)

0.938575
(0.020764)

0.988792
(0.007044)

0.221005
(0.059506)

11.25547
(4.291475)

0.736291
(0.101049)

1.001947
(0.004974)

s8 0.477981
(0.122649)

6.148436
(2.141086)

0.184581
(0.086663)

0.999877
(0.011393)

0.162497
(0.054183)

12.09902
(2.521667)

0.938797
(0.02968)

0.989764
(0.006364)

0.228402
(0.066671)

10.22325
(2.781534)

0.718982
(0.123985)

1.002124
(0.003841)

s12 0.450076
(0.121299)

6.908305
(1.750583)

0.195547
(0.102384)

0.9948
(0.011853)

0.171401
(0.051476)

12.83481
(2.106197)

0.941029
(0.024431)

0.990128
(0.004157)

0.222343
(0.0637)

11.16996
(2.443443)

0.758519
(0.130586)

1.001261
(0.003741)

l2 0.474286
(0.116032)

6.38784
(1.973903)

0.201856
(0.095818)

0.991828
(0.014245)

0.158886
(0.051663)

12.63274
(2.028879)

0.920712
(0.035078)

0.987492
(0.008565)

0.204492
(0.059059)

11.19462
(2.486581)

0.831017
(0.113073)

1.001821
(0.004013)

l4 0.481977
(0.108547)

6.526081
(1.519683)

0.177943
(0.105206)

0.995067
(0.011407)

0.16754
(0.047464)

12.85754
(1.828242)

0.938471
(0.025187)

0.989671
(0.005161)

0.222795
(0.06059)

10.80704
(2.158874)

0.713172
(0.107712)

1.002276
(0.003537)

l6 0.475801
(0.135504)

6.688158
(2.230017)

0.194956
(0.102018)

0.994838
(0.011626)

0.170529
(0.068397)

12.56913
(2.374871)

0.947924
(0.020882)

0.989334
(0.005779)

0.23031
(0.075192)

10.77806
(2.841559)

0.725982
(0.130428)

1.001989
(0.004048)

Residual process
d4 0.738246

(0.080425)
14.0968
(1.017869)

0.776452
(0.054885)

1.000071
(0.00061)

0.218931
(0.035644)

12.41901
(0.125124)

0.987847
(0.00525)

1.000045
(0.000278)

0.653094
(0.205282)

17.4102
(2.876577)

0.841971
(0.140961)

1.003297
(0.00401)

d8 0.765165
(0.098509)

14.39541
(1.194617)

0.75228
(0.081967)

1.000145
(0.000653)

0.211383
(0.044286)

12.41617
(0.140848)

0.986339
(0.00924)

1.000007
(0.000391)

0.585683
(0.198107)

16.2318
(2.572425)

0.869526
(0.124406)

1.005189
(0.009544)

d12 0.758087
(0.087336)

14.13698
(1.216202)

0.76204
(0.065671)

1.000044
(0.000344)

0.22903
(0.055803)

12.39145
(0.160723)

0.983142
(0.011898)

1.000076
(0.000479)

0.558872
(0.207715)

15.76073
(2.633102)

0.876353
(0.123663)

1.003598
(0.005857)

s4 0.777628
(0.08824)

14.1943
(1.17767)

0.749269
(0.062649)

1.000078
(0.000555)

0.2191
(0.042485)

12.42149
(0.136114)

0.984919
(0.008589)

0.999975
(0.000469)

0.659411
(0.212358)

17.63971
(3.49145)

0.836779
(0.149657)

1.003288
(0.003653)

s8 0.779329
(0.115211)

14.2918
(1.231617)

0.743803
(0.082314)

1.000183
(0.000737)

0.214661
(0.054557)

12.4172
(0.153326)

0.984814
(0.015237)

1.000042
(0.00038)

0.601071
(0.220126)

16.52397
(2.94092)

0.857555
(0.134843)

1.004735
(0.007739)

s12 0.77373
(0.187424)

14.03099
(1.601392)

0.760316
(0.088662)

1.000289
(0.001056)

0.235843
(0.1075)

12.35732
(0.304361)

0.97791
(0.041909)

1.000045
(0.000472)

0.589722
(0.229105)

16.08278
(3.070026)

0.866431
(0.12719)

1.005028
(0.007345)

l2 0.757961
(0.121074)

14.47602
(1.253644)

0.758431
(0.089847)

1.00242
(0.002298)

0.233153
(0.040547)

12.54336
(0.14477)

0.985532
(0.009437)

1.002417
(0.002354)

0.9726
(0.172043)

16.0039
(3.10405)

0.57697
(0.224512)

1.008963
(0.004623)

l4 0.765353
(0.119101)

14.41742
(1.142444)

0.752045
(0.085337)

1.00012
(0.000413)

0.21357
(0.053796)

12.43673
(0.1391)

0.986281
(0.018187)

0.999979
(0.000322)

0.664585
(0.20677)

17.60278
(3.086074)

0.834492
(0.143537)

1.003279
(0.004079)

l6 0.777206
(0.153319)

14.11338
(1.480863)

0.7524
(0.087891)

1.000212
(0.000855)

0.225024
(0.100507)

12.37257
(0.268305)

0.975033
(0.045931)

1.000096
(0.000488)

0.620489
(0.208674)

16.61105
(2.811296)

0.856105
(0.130395)

1.00448
(0.005421)

Direct wavelet thresholding without space factorization
Residual process

d4 5.224387
(6.7e−05)

0.001952
(3.9e−05)

0.000859
(1.9e−05)

1.007742
(0.005988)

0.350488
(0.032121)

12.63689
(0.112317)

0.959848
(0.008763)

1.016823
(0.000997)

4.655145
(0.014108)

0.975732
(0.023955)

0.027352
(0.003129)

1.002533
(0.003737)

d8 5.224411
(6.8e−05)

0.001385
(2e−05)

0.000621
(1.1e−05)

1.010126
(0.008669)

0.364778
(0.032564)

12.55015
(0.11611)

0.954875
(0.009424)

1.016263
(0.001566)

4.959671
(0.015523)

0.488918
(0.028622)

0.01033
(0.001262)

1.001518
(0.003497)

d12 5.224431
(6.8e−05)

0.001346
(2e−05)

0.000623
(1.1e−05)

1.007699
(0.006925)

0.392122
(0.033239)

12.47344
(0.117539)

0.945953
(0.010439)

1.016001
(0.001352)

5.092638
(0.073315)

0.367497
(0.475808)

0.008612
(0.015257)

1.001061
(0.003151)

s4 5.224387
(6.7e−05)

0.001952
(3.9e−05)

0.000859
(1.9e−05)

1.007742
(0.005988)

0.350488
(0.032121)

12.63689
(0.112317)

0.959848
(0.008763)

1.016823
(0.000997)

4.655145
(0.014108)

0.975732
(0.023955)

0.027352
(0.003129)

1.002533
(0.003737)

s8 5.22441
(6.8e−05)

0.001377
(2e−05)

0.000616
(1.1e−05)

1.009041
(0.008097)

0.361796
(0.031641)

12.55376
(0.118119)

0.95602
(0.008998)

1.016371
(0.000831)

4.27154
(0.02344)

1.628292
(0.037872)

0.056054
(0.005375)

1.003574
(0.005942)

s12 5.224425
(6.8e−05)

0.001339
(2e−05)

0.000614
(1e−05)

1.008357
(0.006263)

0.366345
(0.033106)

12.53038
(0.122384)

0.954428
(0.009598)

1.016139
(0.000905)

4.588933
(0.201799)

1.093925
(0.331744)

0.033573
(0.015406)

1.003898
(0.005626)

l2 5.224434
(6.8e−05)

0.008067
(0.000318)

0.003731
(0.000162)

1.011359
(0.008578)

0.356622
(0.035124)

12.67734
(0.120713)

0.957368
(0.010016)

1.01729
(0.001456)

4.530846
(0.204702)

1.253825
(0.363926)

0.033993
(0.014062)

1.001847
(0.002889)

l4 5.224387
(6.7e−05)

0.001952
(3.9e−05)

0.000859
(1.9e−05)

1.007742
(0.005988)

0.350488
(0.032121)

12.63689
(0.112317)

0.959848
(0.008763)

1.016823
(0.000997)

4.655145
(0.014108)

0.975732
(0.023955)

0.027352
(0.003129)

1.002533
(0.003737)

l6 5.224397
(6.8e−05)

0.001463
(2.5e−05)

0.000643
(1.1e−05)

1.008026
(0.006987)

0.366042
(0.031447)

12.57657
(0.120449)

0.954616
(0.009027)

1.016468
(0.000706)

4.217773
(0.024888)

1.73342
(0.037461)

0.059514
(0.005928)

1.001965
(0.002704)

Table A.2: Simulation 1. Results for the mean and standard deviation (in parentheses).
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Method Multiplicative scaling ENID
Bumps Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

6 d4 0.159291
(0.069863)

0.358825
(0.144347)

0.984507
(0.016588)

1.002765
(0.004964)

0.193867
(0.063698)

0.379448
(0.144599)

0.979141
(0.01601)

1.005223
(0.010008)

d8 0.163211
(0.070968)

0.356399
(0.143688)

0.983955
(0.017346)

1.005484
(0.011355)

0.199216
(0.06538)

0.372693
(0.148255)

0.978004
(0.016922)

1.00467
(0.013603)

d12 0.164168
(0.071788)

0.355782
(0.142736)

0.983331
(0.01806)

1.005512
(0.013642)

0.195436
(0.061398)

0.367613
(0.147055)

0.978602
(0.016409)

1.004877
(0.013144)

s4 0.161111
(0.070123)

0.358263
(0.143787)

0.984421
(0.016788)

1.005032
(0.008621)

0.194974
(0.064198)

0.378684
(0.143937)

0.978802
(0.0162)

1.005997
(0.012937)

s8 0.162521
(0.071738)

0.356998
(0.143806)

0.984027
(0.017515)

1.00451
(0.014427)

0.191091
(0.064118)

0.372247
(0.144607)

0.980151
(0.016253)

1.003506
(0.014803)

s12 0.166472
(0.069998)

0.356361
(0.144719)

0.983452
(0.017627)

1.003101
(0.014161)

0.192127
(0.06193)

0.368337
(0.146528)

0.979802
(0.016172)

1.002007
(0.008341)

l4 0.159557
(0.069042)

0.357821
(0.144692)

0.984501
(0.016638)

1.003891
(0.010418)

0.193677
(0.06453)

0.378221
(0.144862)

0.979103
(0.016428)

1.00473
(0.010382)

l6 0.159694
(0.070206)

0.356714
(0.143863)

0.984282
(0.016722)

1.001941
(0.006664)

0.187241
(0.059847)

0.370021
(0.146461)

0.981099
(0.015089)

1.0053
(0.012834)

l14 0.167355
(0.069427)

0.355992
(0.143556)

0.984022
(0.017148)

1.002998
(0.01267)

0.205929
(0.05885)

0.369595
(0.147001)

0.976907
(0.015745)

1.000983
(0.013902)

12 d4 0.724685
(1.612114)

0.685095
(2.102155)

0.901374
(0.129116)

1.006923
(0.020861)

0.591157
(0.856144)

0.343955
(0.512492)

0.890397
(0.134923)

1.010199
(0.018469)

d8 0.551384
(0.987695)

0.457148
(1.194392)

0.910466
(0.116887)

1.006886
(0.018809)

0.627072
(1.205259)

0.350894
(0.604046)

0.90271
(0.115208)

1.006781
(0.022956)

d12 0.703307
(1.532512)

1.11241
(4.914024)

0.90176
(0.123371)

1.001302
(0.01846)

0.60838
(1.009288)

0.34754
(0.585179)

0.900579
(0.108871)

1.002743
(0.019389)

s4 0.641476
(1.154969)

0.55715
(1.348479)

0.920366
(0.092921)

1.006083
(0.018532)

0.732812
(1.409297)

0.41983
(0.732078)

0.918276
(0.079527)

1.006933
(0.013144)

s8 0.55633
(0.873282)

0.458521
(1.149952)

0.893676
(0.155817)

1.002721
(0.017266)

0.621449
(1.037493)

0.363579
(0.627734)

0.898906
(0.127887)

1.004279
(0.018832)

s12 0.513823
(0.767747)

0.364192
(0.867869)

0.911304
(0.110165)

1.004306
(0.017468)

0.56101
(0.90929)

0.314307
(0.465586)

0.902988
(0.109343)

1.0024
(0.0171)

l4 0.448391
(0.605762)

0.335321
(0.819777)

0.903447
(0.134264)

1.004411
(0.016742)

0.488141
(0.6715)

0.307291
(0.498307)

0.897219
(0.130477)

1.005373
(0.019825)

l6 0.483993
(0.900187)

0.346639
(0.913789)

0.912547
(0.112069)

1.003771
(0.02029)

0.532507
(1.039031)

0.29606
(0.468976)

0.904181
(0.110642)

1.003258
(0.014893)

l14 0.617499
(1.408627)

1.014224
(4.871136)

0.907653
(0.114166)

1.002906
(0.022153)

0.504228
(0.650793)

0.290652
(0.426294)

0.899666
(0.110273)

1.000883
(0.018175)

18 d4.2 2.289305
(3.78737)

3.704562
(8.783911)

0.782068
(0.191837)

1.006454
(0.019372)

1.117433
(1.203409)

0.417781
(0.593175)

0.771339
(0.181056)

1.003642
(0.019137)

d8 2.321636
(3.864667)

4.126944
(10.05845)

0.805676
(0.179522)

1.00599
(0.017931)

1.147826
(1.207275)

0.406517
(0.537533)

0.798205
(0.167418)

1.005686
(0.017435)

d12 3.235971
(4.531725)

5.977425
(11.170955)

0.816142
(0.171087)

1.005847
(0.019492)

1.443686
(1.746928)

0.561799
(0.917904)

0.797775
(0.171935)

1.00421
(0.014973)

s4 2.745307
(3.962096)

4.076504
(8.834003)

0.786004
(0.186007)

1.006435
(0.0184)

1.651523
(2.170198)

0.615613
(0.878697)

0.779281
(0.181533)

1.006058
(0.015548)

s8 2.575273
(3.951517)

3.86153
(9.080391)

0.822613
(0.153616)

1.003017
(0.018229)

1.68199
(2.230744)

0.625587
(0.922405)

0.810139
(0.141282)

1.006552
(0.014503)

s12 2.638055
(4.057873)

4.638803
(10.229077)

0.801158
(0.185309)

1.007601
(0.01738)

1.338485
(1.56303)

0.470911
(0.674924)

0.810442
(0.156894)

1.005819
(0.016086)

l4 2.995763
(4.36862)

5.353475
(11.095618)

0.79115
(0.177379)

1.005817
(0.01713)

1.573052
(2.083158)

0.638905
(1.008776)

0.795401
(0.159402)

1.008974
(0.016238)

l6 2.695803
(4.228284)

4.760014
(10.92135)

0.805486
(0.174724)

1.006337
(0.018507)

1.470696
(2.008197)

0.537353
(0.833422)

0.810694
(0.154772)

1.004203
(0.016277)

l14 2.310197
(3.785727)

3.618736
(8.676085)

0.795568
(0.188833)

1.004359
(0.019337)

1.196305
(1.219698)

0.407566
(0.518579)

0.791504
(0.174445)

1.004859
(0.017136)

Table A.3: Simulation 2. Results for the mean and standard deviation (in parentheses).
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Method Multiplicative scaling ENID
Bumps Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

6 d4 0.278977
(0.075478)

0.310165
(0.153355)

0.956232
(0.022263)

1.003926
(0.009127)

0.295637
(0.066051)

0.332025
(0.158492)

0.951295
(0.020952)

1.002317
(0.005758)

d8 0.381498
(0.710254)

0.834804
(3.74196)

0.955144
(0.023296)

1.002774
(0.005705)

0.366557
(0.475057)

0.361546
(0.325496)

0.94925
(0.02421)

1.003113
(0.007367)

d12 0.286015
(0.078918)

0.308136
(0.152218)

0.953715
(0.023619)

1.003407
(0.007132)

0.300079
(0.071558)

0.320898
(0.161124)

0.949205
(0.022617)

1.002044
(0.005747)

s4 0.366373
(0.630382)

0.43806
(0.899154)

0.95649
(0.022628)

1.001635
(0.006477)

0.395209
(0.71569)

0.393364
(0.442472)

0.95164
(0.02111)

1.00322
(0.008703)

s8 0.36444
(0.585368)

0.431208
(0.869336)

0.954911
(0.023046)

1.001013
(0.006736)

0.374136
(0.572328)

0.402068
(0.562952)

0.951229
(0.022525)

1.00259
(0.005957)

s12 0.284629
(0.07721)

0.308566
(0.152475)

0.954309
(0.022996)

0.999097
(0.008341)

0.295098
(0.071145)

0.320162
(0.154227)

0.951062
(0.021983)

0.99951
(0.008496)

l4 0.279207
(0.075893)

0.310101
(0.153201)

0.956123
(0.022487)

1.002857
(0.00571)

0.295626
(0.066044)

0.33199
(0.158229)

0.951294
(0.020947)

1.00422
(0.005852)

l6 0.3794
(0.718319)

0.453815
(1.026379)

0.956133
(0.023038)

1.002638
(0.006066)

0.390604
(0.704092)

0.377876
(0.397596)

0.951748
(0.022917)

1.003278
(0.005562)

l14 0.360668
(0.534311)

0.431371
(0.877391)

0.953921
(0.023169)

1.00117
(0.007913)

0.389645
(0.598784)

0.381469
(0.427141)

0.946951
(0.023886)

0.999426
(0.007593)

12 d4 0.53741
(1.482123)

1.057295
(6.257677)

0.943494
(0.037982)

1.001305
(0.011715)

0.483093
(0.947932)

0.243026
(0.410164)

0.936155
(0.036315)

1.00155
(0.013933)

d8 0.576363
(1.289214)

0.432287
(1.299278)

0.944652
(0.03944)

1.002677
(0.017383)

0.626345
(1.430758)

0.28966
(0.545162)

0.935713
(0.039442)

1.000418
(0.018353)

d12 0.324535
(0.1045)

0.167582
(0.0788)

0.944216
(0.038764)

0.999009
(0.02012)

0.354507
(0.096669)

0.176342
(0.081029)

0.933003
(0.038674)

1.000247
(0.020905)

s4 0.325248
(0.101277)

0.170678
(0.07947)

0.944425
(0.037728)

1.002563
(0.016044)

0.346576
(0.092593)

0.184544
(0.083682)

0.937145
(0.03608)

1.003901
(0.017645)

s8 0.321038
(0.103521)

0.168496
(0.078943)

0.945582
(0.038128)

0.998785
(0.017964)

0.34569
(0.098836)

0.180468
(0.082236)

0.936463
(0.037626)

0.999636
(0.014431)

s12 0.628834
(1.524998)

0.773952
(3.139666)

0.943981
(0.039028)

0.99604
(0.01692)

0.575311
(1.161048)

0.292821
(0.583894)

0.935015
(0.039318)

0.99919
(0.014637)

l4 0.324999
(0.101587)

0.170399
(0.079182)

0.944444
(0.037812)

1.00159
(0.017377)

0.34633
(0.092664)

0.184288
(0.08348)

0.937204
(0.036112)

1.005251
(0.017332)

l6 0.322387
(0.10313)

0.16838
(0.079303)

0.945189
(0.038304)

0.996719
(0.017164)

0.345075
(0.09709)

0.180264
(0.083373)

0.936968
(0.037112)

0.99962
(0.017637)

l14 0.327088
(0.104244)

0.16813
(0.078912)

0.9434
(0.038998)

0.997651
(0.014466)

0.356428
(0.101977)

0.177906
(0.082459)

0.931794
(0.040157)

0.997215
(0.018032)

18 d4 0.905044
(2.261311)

1.605199
(7.186142)

0.919071
(0.071803)

1.008833
(0.020804)

0.780203
(1.442554)

0.272594
(0.518534)

0.909313
(0.066224)

1.005734
(0.022098)

d8 0.610808
(1.355359)

0.300605
(1.093299)

0.91782
(0.081938)

1.007045
(0.021838)

0.678018
(1.422401)

0.213704
(0.464417)

0.897264
(0.09483)

1.005309
(0.022458)

d12 0.458799
(0.410554)

0.165084
(0.199359)

0.920552
(0.074049)

1.008349
(0.023205)

0.513442
(0.46369)

0.163986
(0.170019)

0.904851
(0.07156)

1.002686
(0.021561)

s4 0.866828
(2.039579)

1.394554
(6.129677)

0.918756
(0.074621)

1.007634
(0.021973)

0.76726
(1.359431)

0.287662
(0.599528)

0.909053
(0.069523)

1.007725
(0.020853)

s8 0.449803
(0.401718)

0.16601
(0.198488)

0.924418
(0.070533)

1.00834
(0.021393)

0.50325
(0.453814)

0.166742
(0.168517)

0.910259
(0.065097)

1.006501
(0.021204)

s12 0.852483
(1.972862)

0.479465
(1.544905)

0.920621
(0.072136)

1.004966
(0.020075)

0.925264
(2.032946)

0.283825
(0.581927)

0.901148
(0.073822)

1.004148
(0.020672)

l4 0.661345
(1.423682)

0.510414
(2.411068)

0.918585
(0.072485)

1.004082
(0.018574)

0.640855
(1.017962)

0.235268
(0.476841)

0.908977
(0.067377)

1.00565
(0.02271)

l6 0.451066
(0.402885)

0.167089
(0.201114)

0.924094
(0.070665)

1.003885
(0.022509)

0.501066
(0.460699)

0.165798
(0.167181)

0.911239
(0.067503)

1.008086
(0.019978)

l14 1.024389
(2.455579)

1.058305
(4.1202)

0.919855
(0.075064)

1.004743
(0.020503)

0.928163
(1.838425)

0.305748
(0.640235)

0.902548
(0.072899)

1.00622
(0.019914)

Table A.4: Simulation 2 (with PCA reduction). Results for the mean and standard deviation (in parentheses).
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Method Multiplicative scaling ENID
Wavelet MRMSE ISNRvar ISNRcor NCD MRMSE ISNRvar ISNRcor NCD

Estimation of artifact 3
d4 0.32449

(0.110405)
19.666781
(16.022239)

0.375898
(0.345606)

0.996752
(0.011416)

0.307209
(0.015833)

35.087096
(59.891356)

0.161303
(0.074897)

1.001241
(0.009637)

d8 0.300474
(0.019488)

10.396631
(1.956171)

0.194692
(0.038094)

0.98356
(0.010629)

0.313112
(0.014667)

27.166834
(37.185624)

0.174632
(0.071993)

1.002353
(0.010394)

d12 0.297385
(0.021813)

10.592946
(1.744777)

0.194671
(0.037912)

0.983509
(0.012712)

0.318688
(0.017602)

37.031991
(57.92455)

0.176195
(0.067008)

0.998639
(0.009202)

s4 0.329951
(0.114453)

20.220228
(16.274081)

0.376508
(0.345268)

0.998346
(0.011645)

0.30677
(0.017629)

30.073986
(49.705099)

0.155408
(0.059579)

1.001806
(0.009501)

s8 0.30127
(0.020871)

10.380395
(1.510583)

0.195429
(0.040296)

0.987409
(0.013945)

0.315699
(0.021737)

33.968198
(48.685646)

0.163204
(0.041023)

0.999826
(0.008382)

s12 0.297059
(0.022694)

10.519902
(1.719476)

0.192203
(0.041188)

0.983148
(0.011443)

0.316246
(0.016719)

35.200289
(59.096552)

0.17844
(0.062609)

1.001565
(0.00913)

l4 0.330069
(0.112139)

20.686284
(16.420751)

0.441564
(0.368488)

0.997428
(0.01235)

0.311746
(0.025501)

44.478047
(68.038811)

0.154451
(0.058194)

1.001661
(0.011234)

l6 0.295269
(0.019324)

10.202649
(1.146886)

0.195629
(0.039621)

0.986915
(0.011474)

0.311885
(0.017601)

24.357743
(31.35387)

0.163433
(0.049073)

0.999569
(0.01018)

l14 0.295777
(0.038664)

10.93541
(5.039836)

0.235729
(0.200106)

0.98914
(0.014021)

0.312929
(0.010345)

24.031415
(29.78275)

0.172338
(0.037118)

1.002093
(0.009656)

Residual process
d4 0.3279

(0.109782)
0.826845
(0.465825)

0.450759
(0.402703)

1.000108
(0.000364)

1.124316
(0.022943)

27.945365
(58.116577)

0.318605
(0.072596)

1.008613
(0.001926)

d8 0.304247
(0.019222)

1.141014
(0.101401)

0.783703
(0.097536)

1.000022
(0.000333)

1.099346
(0.02275)

15.605888
(27.662141)

0.304468
(0.09202)

1.024867
(0.007719)

d12 0.301585
(0.021501)

1.108117
(0.10845)

0.773917
(0.107725)

0.999997
(0.000387)

1.096181
(0.025846)

21.588673
(49.320924)

0.280452
(0.076679)

1.015238
(0.007331)

s4 0.333332
(0.113818)

0.807657
(0.478003)

0.411115
(0.407524)

0.999946
(0.000404)

1.124426
(0.022933)

32.274049
(65.581258)

0.325612
(0.076183)

1.008835
(0.002014)

s8 0.305048
(0.020596)

1.128588
(0.131168)

0.790893
(0.109763)

0.999959
(0.000448)

1.098626
(0.027366)

24.567193
(59.515188)

0.296483
(0.080671)

1.019395
(0.00525)

s12 0.301153
(0.022367)

1.113911
(0.108619)

0.795174
(0.119217)

1.000086
(0.000428)

1.089849
(0.024621)

26.34881
(58.767608)

0.277901
(0.05723)

1.019431
(0.007893)

l4 0.333439
(0.111529)

0.802553
(0.477065)

0.373569
(0.388143)

0.99997
(0.000382)

1.128657
(0.023591)

42.141073
(89.750224)

0.322659
(0.075404)

1.008547
(0.002108)

l6 0.298853
(0.019067)

1.137067
(0.113262)

0.838727
(0.082222)

1.000004
(0.000374)

1.107698
(0.022136)

15.021812
(32.288008)

0.318269
(0.105439)

1.013479
(0.003051)

l14 0.300058
(0.038306)

1.0931
(0.176757)

0.772466
(0.205443)

0.999987
(0.000418)

1.084504
(0.020424)

9.642752
(0.466005)

0.279749
(0.086515)

1.023144
(0.007724)

Table A.5: Simulation 3. Results for the mean and standard deviation (in parentheses).
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