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Abstract

The classi�cation of time series is a central problem in a wide range of dis-
ciplines. In this �eld, the state-of-the-art algorithm is COTE (Collective of
Transformation-Based Ensembles) which is a combination of classi�ers of dif-
ferent domains: time, autocorrelation, power spectrum and shapelets. The
weakest point of this approach is its high computational burden which prevents
its use in massive data environments. Shapelet Transform is one of the multiple
algorithms that compose this ensemble. It has been shown to achieve a good
performance over many reference datasets. Nevertheless, its computational com-
plexity is also too high to be used in massive data environments. On the other
hand, Big Data has emerged as an approach to manage massive datasets, which
also applies to time series. We propose an algorithm for time series classi�cation
in a Big Data environment, DFST. It is based on a combination of the Fast-
Shapelet and Shapelet Transform ideas and it is the �rst completely scalable
algorithm for time series classi�cation. We have shown that our proposal scales
linearly with the number of time series in dataset. In addition, the classi�cation
accuracy is equal to or higher than that of comparable sequential algorithms.

Keywords: Time Series, Big Data, Classi�cation, Shapelet.

1. Introduction

Nowadays, we are in the Big Data era. Huge loads of data are created, stored
and processed. Their features in many dimensions (volume, velocity, variety,
complexity, etc) exceed the computation capabilities of current computers. A
new approach to cope with them is necessary.

Advances in computing technologies allow to capture, store and process large
amounts of data from varied events and processes: changes in climate, tra�c
evolution, vital signs, etc. Many of these massive datasets are time series, e.g.
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the dataset �CCAFS-Climate Data� [7] [20], with up to 6TB of information on
temperature, solar radiation, etc, or �Federal Reserve Economic Data - Fred�
[16] [21], with up to 20,059 U.S. economic time series.

Time series processing for large datasets is a computationally expensive
and complex process [11], specially in the �eld of time series classi�cation.
The leading proposal of the current state-of-the-art is COTE [2] (Collective
of Transformation-Based Ensembles). This algorithm is based on the idea that
an ensemble made up of time series classi�ers from di�erent domains (time, au-
tocorrelation, power spectrum and shapelets) can o�er better results than each
classi�er individually. Through a comprehensive study, a recent work [1] has
demonstrated that for a given problem, the simplest algorithms of a domain
which adapt to the problem can o�er better results than the most complex
algorithms of other domains. We can also observe how the di�erent types of
time series classi�cation algorithms are described and classi�ed in this study
according to the type of processing they perform on the time series.

The shapelets and the Shapelet Transform (ST) algorithm [13] have gained
prominence in recent years due to the good results obtained in time series clas-
si�cation problems. Speci�cally, problems based on the search for independent
phase patterns. Shapelet primitive [22] was developed in order to obtain in-
terpretable results in the classi�cation of time series, while achieving the same
performance in accuracy than the state-of-the-art algorithms. ST is the data
transformation method that is used to convert the raw time series data using the
shapelets, allowing the use of any traditional classi�cation algorithm on the new
transformed data. Shapelet Transform algorithm obtains the best classi�cation
results in the �eld of shapelets, but it has sacri�ced some of the interpretabil-
ity of the results. In addition, it has the highest computational complexity,
O(n2m4), of the time series classi�cation algorithms based on shapelets. So
far, proposals have been made in two directions: improving accuracy and re-
ducing computational complexity. An example of proposals that reduce the
computational complexity of the shapelets search is the FastShapelet (FS) al-
gorithm, which is a heuristic algorithm search and classi�cation of time series,
which uses a traditional classi�cation tree and that obtains a computational
complexity of O(nm2). Nevertheless, this approach can not be applied to large
time series datasets or Big Data problems due to its complexity. A reasonable
improvement can be achieved through a Big Data processing approach.

In this paper, we propose a distributed and scalable time series classi�cation
algorithm based on the MapReduce paradigm for Big Data environments named
Distributed FastShapelet Transform (DFST). DFST is a hybrid algorithm that
uses a re-designed and distributed version of the shapelets search mechanism,
proposed by the FS algorithm [19]. DFST includes design elements to render
it of a reduced computational complexity enabling the application of the ST in
Big Data environments and making it the only completely scalable procedure
currently available: with the provision of adequate hardware resources it can
process a time series dataset of any size. Thus DFST enables the processing of
time series datasets that cannot be handled by a sequential approach. The major
changes in DSFT with respect to FS are focused on four points: the control of
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exponential growth in the generation of random projections, the simultaneous
selection of several shapelets at each thread, the use of a localized computation
of information gain and, the outcome, which allows the use of other classi�cation
algorithms, removing the tie to classi�cation trees. As a result of all of this,
DFST accuracy results are better than those obtained by FS. The practical
incarnation of the algorithm has been developed in Apache Spark and it is
available in SparkPackages1.

The rest of this proposal is structured as follows. Section 2 includes related
papers and background on shapelets. In Section 3 we explain our distributed
proposal. In Section 4 we show the experimental study carried out to test the
e�ectiveness of our proposal. The conclusions of this paper are presented in
Section 5.

2. Related and background work

Our work aims to address problems of classifying time series on large datasets.
In Section 2.1 we present the shapelet primitive, which provides interpretable re-
sults on time series classi�cation problems, the FS algorithm, that is a heuristic
shapelet search algorithm with reduced computational complexity, and the ST,
which is a transformation that obtains characteristics from the time series. In
Section 2.2 we introduce the MapReduce Model used in Big Data environments,
on which we have implemented our proposal.

2.1. Shapelet primitive, FastShapelet algorithm and Shapelet Transform

This section is structured as follows. In Section 2.1.1 we explain the prim-
itive shapelet. In Section 2.1.2 we show the concept and operation of the Fast
Shapelet algorithm. In Section 2.1.3 we explain the idea of the Shapelet Trans-
form.

2.1.1. Shapelet primitive

The shapelet is a primitive [22] used in time series classi�cation problems.
It is composed by a subsequence of the time series from which it comes and a
threshold distance. The shapelets are used to create a classi�cation tree, where
each internal node is composed by one shapelet. Each internal node separates
the training instances depending on whether or not they contain the internal
node's shapelet. The objective is to obtain a classi�cation tree in which the
leaf nodes have instances of a single class. If the shapelet is included in a time
series, that time series is classi�ed as belonging to the class of the time series
from which this shapelet comes from. We compute the distance between the
time series and the shapelet to know if a shapelet is included in a time series. If
that distance is less than the threshold distance we consider that the time series
contains the processed shapelet. We compute the distance between a time series

1Distributed FastShapelet Transform (DFST). https://spark-packages.org/package/

fjbaldan/DFST
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and a shapelet as the minimum distance between the shapelet's subsequence and
all possible subsequences of equal length of the time series.

2.1.2. FastShapelet algorithm

The FastShapelet algorithm (FS) [19] was proposed to improve the e�ciency
of the original extraction algorithm. This algorithm has a complexity ofO(nm2),
where n is the number of items or time series to process and m the length of the
longest time series. The original shapelet discovery algorithm has a complexity
of O(nm3). FS is a heuristic algorithm that faces the discovery of shapelet by
applying a change of representation. For this purpose, FS uses Symbolic Aggre-
gate approXimation (SAX) [12] converting the original real values to discrete
values with smaller dimensions. All the extracted sequences are transformed
into strings of length 16 with 4 discrete levels per value. This mechanism pro-
duces multiple SAX words for each time series. The creation of SAX words has
the disadvantage that two subsequences with small di�erences can generate two
di�erent SAX words. Random Masking [6] is used to solve this problem. In
this way very similar sequences with di�erent SAX words randomly mask some
of their values. After multiple iterations they can be identi�ed as similar even
if their SAX words are di�erent. After the generation of random projections a
frequency count histogram is built for each class. A score is calculated for each
SAX word based on its ability to discriminate between classes by processing the
frequency count histogram. The best k SAX words are selected and the actual
values of their respective shapelets are retrieved. These shapelets are evaluated
according to the following parameters and in this order: the gain of information
calculated, the separation achieved between instances of di�erent classes and
the number of correctly separated training instances. Once the input dataset
has been fully processed, the algorithm returns a decision tree. On this tree,
each internal node contains the shapelet and the threshold distance that will be
used to classify the new input data.

2.1.3. Shapelet Transform

The Shapelet Transform (ST) [13] does not use the extracted shapelets to
classify new time series, but as input characteristics for a classi�er. This allows
using almost any classi�cation algorithm.

At present, there are di�erent ways to extract the shapelets [22] [15] [19] [3]
but once extracted, the operation of the algorithm is the same. For a dataset of n
time series andm extracted shapelets, the minimum distance between each time
series and each shapelet is calculated, obtaining a new dataset with n instances
and m characteristics. This new dataset is the training set of any traditional
classi�cation algorithm that you decide to apply. This transformation has to be
applied to the test set as well.

It has been shown that this approach improves the results obtained by the
classi�cation algorithms based on shapelets [1] in most cases, in addition to
maintaining the original interpretability of the Shapelets.
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2.2. MapReduce Model

The exponential growth of data generated globally is popularizing the use of
Big Data technologies. Most of these technologies are based on the MapReduce
framework designed by Google in 2003 [8]. This framework allows creating clus-
ters of common machines that can process large amounts of data. The user does
not have to worry about tasks like partitioning the input data, handling machine
failures or the inter-machine communication, among others. The MapReduce
paradigm is based on two phases:

� The Map phase applies a transformation on each key-value pair of the
original dataset locally.

� The Reduce phase uni�es the results of the Map phase by means of asso-
ciative operations and returns a result.

Currently, Apache Hadoop [9] is the most popular framework based on the
MapReduce paradigm. This framework su�er from some weaknesses:

� Low memory usage, each executed phase must be written to disk.

� Iterative processes are di�cult to implement and have a poor performance.

For these reasons, new alternatives such as Apache Spark [10] have been
developed. Apache Spark uses in-memory workloads with memory-intensive us-
age, increasing the speed of computation by several orders of magnitude. It also
allows the implementation of iterative processes in a simple and substantially
more e�cient way than its predecessors.

Apache Spark [24] is an engine for large-scale data processing. It was devel-
oped with the aim of facing tasks that focus on applying parallel operations on a
input dataset that is constantly reused. One of its main features is the increase
in running speed compared to other options. Spark can run the same program
than Apache Hadoop up to 100 times faster. Its distributed processing archi-
tecture allows to increase the computing capacities of a cluster by adding new
computers transparently to the user. Resilient Distributed Datasets (RDDs)
[23] are the data structure on which Apache Spark distributed operations are
based. These operations are computed over the local data on each partition.
There are two types of operations: Transformations and Actions. The Transfor-
mations are not executed until an action is performed. These transformations
apply a function on each RDD instance and return a new RDD. The Actions
execute all transformations applied on an RDD returning a result. This result
depends on the action applied. The RDDs are stored in memory. They are
immutable and keep a checkpoint of all the transformations applied to them.
This checkpoint is known as �lineage� and it allows recovering any partition in
case of error.
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3. Distributed FastShapelet Transform proposal

In this section, we present our proposal DFST, for scalable time series clas-
si�cation. Our proposal is based on the MapReduce paradigm, which allows
it to be applied to massive time series datasets. In Section 3.1 we explain the
computational complexity of our proposal.

The proposal is expressed in terms of the following Spark primitives:

� map: A transformation that applies a function to all elements of the input
RDD, returning a new RDD.

� mapPartitions: A transformation that applies a function to every partition
of the input RDD. This transformation returns a new RDD.

� reduce: A transformation that merges the elements of the input RDD
using an associative and commutative binary operator.

� �lter : A transformation that returns a new RDD containing only the
elements that satisfy a predicate.

� sortBy : A transformation that returns the input RDD sorted by the given
key function.

� count : An action that returns the number of elements in the input RDD.

� take: An action that returns the �rst num elements of the input RDD.
num is the number of elements to return.

� lookup: An action that returns the list of values in the input RDD with
the speci�ed key.

The main objective of our proposal is to create an scalable algorithm that
can classify time series in Big Data environments. We set as a requirement that
the relationship between the increase in running time and the amount of data
to be processed must be linear. The second objective is that our proposal must
be able to extract and use interpretable features such as shapelets in the best
possible way. For this reason, our proposal uses the Shapelet Transform (ST).
In addition, our proposal must maintain an accuracy close to the one obtained
by similar sequential algorithms. Based on those requirements we have called
our proposal Distributed FastShapelet Transform (DFST).

DFST is based on the heuristic shapelet search made in the FS algorithm [18],
which is the shapelet search algorithm with the lowest computational complexity
of the shapelet search algorithms namely O(nm2).
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Figure 1: Distributed FastShapelet Transform (DFST) Schema
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The operation of DFTS is shown in Figure 1. The original ideas of the
SAX word creation, the generation of random projections and the score of the
SAX words of the FS algorithm have been used in the DFST algorithm, but
they have been redesigned to work in a distributed fashion. The main issues in
which DFST di�ers from FS are detailed in the following paragraphs.

A �rst step in the procedure is the application of a SAX transformation for a
simpli�ed representation of the time series. Next step is a generation of random
projections of the computed SAX words. This process is prone to exponential
growth. So when applied to larger datasets the overall set of word size must be
controlled. DFST reduces the length of SAX words as a function of the dataset
partition that is processed by each thread.

Another e�ective improvement is that instead of a single shapelet, DFST
selects the topK shapelets with the highest scores. Then, for each selected
shapelet and locally at each thread, it computes the information gain, the num-
ber of misclassi�ed time series, and the gap between the time series that have
this shape and those that do not. The search for the best shapelets has been
modi�ed so that multiple shapelets are obtained, in each node of the tree, and
saved for later use in the ST.

DFST applies the ST to the training and test sets, calculating the distance
of each time series to every selected shapelet. This vector of distances is used
as a representation of the time series. Thus, at this stage the output is not
a classi�cation result but a representation of the time series in terms of the
most relevant shape features discovered and with the same length for all. That
is, time series are represented in a new way that allows for an easy processing
with conventional data mining and machine learning algorithms. In particular,
almost any classi�cation algorithm can be used now, removing the tie to the
classi�cation tree in the FS algorithm.

The last step in DFST is to learn a model with the transformed training data,
ST_Train. It will be used to predict the transformed test data, ST_Test,
obtaining the �nal classi�cation results. So far, we have used Random Forest
[5], but this is no restriction of course.

An interesting analysis of the proposal is considering what parts of DFST
a sequential and what parts are parallel. In addition, the exchange of data
among threads also have a clear impact on the running time. DFST has a �rst
sequential part of reading and delivering the input data. The generation of SAX
words and the creation of random projections are performed in a fully parallel
fashion, by applying certain transformations independently to each input time
series. The score of each shapelet candidate, and its position based on this score,
require the overall exchange of information among threads as it is necessary to
count the presence or not of each shapelet candidate in all the time series of
the dataset and perform this sorting. There is another stage of data exchange
in the evaluation of the topK shapelets candidates as it needs to process and
collect the calculations of information gain for each of them.

DFST is depicted in Algorithm 1. In Algorithm 2 we present the core pro-
cedure of our proposal. In this process the best set of shapelets is selected. We
must di�erentiate between distributed and not distributed variables: as general
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nomenclature, we represent the distributed variables with their �rst letter in
capital.

In Algorithm 1, all original instances are introduced in node 1 (line 3). The
number of instances not correctly classi�ed are initialized with the number of
original instances (line 4). The algorithm processes a node as long as the number
of instances not correctly classi�ed is greater than the threshold (lines 5-34). For
each node, the algorithm selects the instances included in that node (line 6).
Then it starts to process subsequences of time series from the minimum to the
maximum introduced lengths (line 9-26). This process has 4 principal steps:

First, the algorithm obtains a list of all possible SAX words in the current
node data (lines 10-17). We use a map transformation over the node in order to
obtain a HashMap that contains all possible SAX word for each time series (lines
10-13). Each SAX word has a usax item associated with information about
that SAX word. Then, we use a reduce function (lines 14-17) for combining
identical SAX words. The usax item of the �rst SAX word is updated with extra
information about the second SAX word. Secondly, the algorithm computes
R random projections for each SAX word and then it counts matches among
projections of di�erent SAX words (line 18). The counted values are saved in
the match counter of the usax item of the corresponding SAX word. Third, the
algorithm computes a score for each SAX word based on their match counter
(lines 19-22). Fourth, our proposal selects the topK SAX words that have the
higher score and it computes the best shapelet among them (lines 23-24). If the
computed shapelet improves the last best case, this shapelet is selected as the
current best case (line 25). We increase the subsequence length by the desired
step (line 26).

Once the current node has been processed, the algorithm analyzes the results
and prepares the next iteration. With the best shapelet of the current node,
each time series is assigned to one of the possible next nodes (line 28). DFST
obtains the time series incorrectly classi�ed and the stopping threshold of the
algorithm (line 29) for the next nodes. The topK shapelets with the highest gain
are selected and added to the �nal list of shapelets (line 30). This list contains
the shapelets to be used in the ST. Finally, we increase the node indicator (line
31). After all the relevant shapelets have been extracted, ST is performed on
the training dataset. The minimum distance of each time series to each of the
selected shapelets is calculated (line 33). Transformed training data is used as
input for the classi�cation algorithm, e.g. RandomForest (line 34). Finally,
DFST returns the learning model obtained on the training data set and the list
of shapelets used in the ST (line 35).

In Algorithm 2, our proposal searchs for the best shapelet of the current SAX
word list. We take the topK best scored SAX words to process them (line 1).
Each shapelet is processed independently (lines 3-28). The algorithm retrieves
information about the original subsequence of the SAX word processed (line 4).
It uses this information to obtain the original values of this subsequence (line 5).
We use mapPartitions transformation to evaluate independently each shapelet
over each partition of the data (lines 6-22). Our proposal computes the local
frequency of each class in the partition (line 9). Then it computes the entropy of
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Algorithm 1 DFST Algorithm

Input:

OrgData: RDD with (TsId, LabeledPoint(features, label))
minLen: minimum length of shapelet processed
maxLen: maximum length of shapelet processed
step: the increment of length of shapelet processed
topK: number of best shapelets evaluated by iteration
R: number of random projections computed

Output:

RF_Model: RF learned model
list_ST_selected: list of shapelet selected for the ST

1: Node ← 1
2: bestSh, threshold, list_ST_selected ← 0
3: NodeTsList[Node] ← getAllTsId(OrgData)
4: incorrectlyClassi�edData ← count(NodeTsList[Node])
5: while incorrectlyClassi�edData > threshold do

6: NodeData ← �lter(OrgData, NodeTsList[Node]==getTsId(OrgData))
7: subSeqLen ← minLen
8: list_ST ← 0
9: while subSeqLen < maxLen do

10: SaxMapWords ←
11: map ts ∈ NodeData
12: HashMap[saxWord, usax] ← createSaxList(ts, subSeqLen)
13: end map

14: SaxMapWordsReduced ←
15: reduce (SaxListX, SaxListY) ∈ SaxMapWordsReduced
16: combineSaxList(SaxListX, SaxListY)
17: end reduce

18: RPWords ← createRP(SaxMapWordsReduced, R, subSeqLen)
19: ScoreList ←
20: map (word, usax) ∈ RPWords
21: (word, calScore(usax, labels(NodeData)))
22: end map

23: (sh, list_ST) ← �ndBestShapelet(topK, subSeqLen, ScoreList,
24: NodeData, list_ST)
25: if (sh > bestSh) then bestSh ← sh end if

26: subSeqLen ← subSeqLen + step
27: end while

28: NodeTsList ← setNextNodes(NodeTsList, Node, OrgData, bestSh)
29: (incorrectlyClassi�edData, threshold) ← evaluate(Node, OrgData, bestSh)
30: list_ST_selected ← addBestShapelets(topK, list_ST, list_ST_selected)
31: Node ← Node + 1
32: end while

33: ST_Train ← calcST(Org_Data, list_ST_selected)
34: RF_Model ← trainRF(ST_Train)
35: return (RF_Model, list_ST_selected)

local data given the number of instances of the partition and the class frequencies
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(lines 10-11). We compute the distance between the subsequence selected and
each time series in the partition (line 12). These results are sorted in ascending
order (line 13) and then it searches on these for the best shapelet (lines 14-
21). For this, we compute the information gain, the number of instances in
a di�erent position of the correct and the inter-class gap (lines 19-21). Then
it takes as the best shapelet of the partition the case that has the maximum
gain, the minimum number of di�erences and the maximum inter-class gap
(line 19), respectively. As DistributedShapeletCalculated RDD contains the
best shapelet of each partition, we must take the best of these cases following
the previous criteria. We take the �rst of those cases (line 23). Our proposal
saves the selected best shapelet for the ST afterwards (line 24). We compare
this shapelet with the best case at the moment and we take the best one (line
25). Therefore, the algorithm returns the best shapelet of the topK processed
and the list with the node's shapelets for the ST (line 28).

DFST uses the shapelet extraction mechanism proposed in the FS algorithm.
This proposal selects the topK shapelets extracted in each internal node as
shapelets to be applied in the ST. For example, for a tree with 4 internal nodes
and a topK value of 10, our proposal would extract 40 shapelets.

In DFST, for a dataset with n time series of length m from which it has been
extracted s shapelets, once already applied the ST we will obtain a dataset with
n instances of length s. This approach has proven to be the most recommended
within the �eld of time series classi�cation by shapelets. The main advantage
of this transformation is the possibility of applying any automatic learning al-
gorithms, e.g. decision trees, to classi�cation problems of time series. In our
proposal, we have chosen to use the Random Forest algorithm [5] included in
the MLlib of Spark with default parameters and 1000 trees.

3.1. Computational Complexity

COTE algorithm is the most popular and widely used algorithm for time
series classi�cation. This approach achieves excellent results in most cases.
However, COTE is a computationally expensive technique. The computational
complexity of COTE is set by the classi�er with greater computational complex-
ity that forms part of this ensemble. The algorithm with highest computational
complexity included in COTE is the ST, with a computational complexity of
O(n2m4). The computational complexity limits the number of time series that
this approach is capable of processing in conventional computers with limited
resources. This high computational complexity order prevents its use in Big
Data environments.

The DFST learning computational complexity in time is de�ned by the sum
of the complexity of the FS based search algorithm, the shapelet transforma-
tion applied to the training set and the computational complexity of learning
a Random Forest model. The computational complexity of the shapelet search
algorithm used, which is based on FS, is O(nm2), being n the number of time
series and m the length of time series. The transformed shapelet applied to the
training set calculates the distance of each shapelet to each time series. This
distance has a computational complexity O(timeSerieslength − shapeletlength),
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Algorithm 2 findBestShapelet

Input:

topK: number of better SAX words to consider
subSeqLen: length of shapelet processed
ScoreList: RDD with the scores for word
NodeData: RDD that contains the data of the current node
list_ST : list with the node's shapelets for the ST

Output:

bestSh: best Shapelet found
list_ST : updated list with the node's shapelets for the ST

1: ScoreListLocal ← take(sortBy(ScoreList, �score�, �decrescent�), topK)
2: k, bestSh ← 0
3: while k < topK do

4: tsCandInfo ← ScoreListLocal(k)
5: tsCand ← lookup(Data, tsIndex(tsCandInfo))
6: DistributedShapeletCalculated ←
7: mapPartitions DataPartition ∈ NodeData
8: localBestSh ← 0
9: localClassFreq ← countClassLabels(labels(DataPartition))
10: localClassEntropy ←
11: entropyArray(localClassFreq, size(DataPartition))
12: distTs ← calcNNDist(DataPartition)
13: orderedDistTs ← sortBy(distTs, �NNDist�, �ascending�)
14: i ← 0
15: while i < (size(orderedDistTs) - 1)
16: sh ← calcShInfo(tsCandInfo, orderedDistTs(i),
17: orderedDistTs(i+1), localClassFreq,
18: localClassEntropy)
19: if (sh > localBestSh) then localBestSh ← sh end if

20: end while

21: localBestSh
22: end mapPartitions

23: sh ← getBestShapelet(DistributedShapeletCalculated)
24: list_ST ← addShapelet(sh, list_ST)
25: if (sh > bestSh) then bestSh ← sh end if

26: k ← k+1
27: end while

28: return (bestSh, list_ST)

since the minimum distance between the shapelet is calculated to all the se-
quences of the time series of equal length to that of the shapelet. To simplify,
we replace (timeSerieslength − shapeletlength) with p in the following compu-
tational complexity equations. This calculation is repeated for each time series
of the training set, n, and as many times as shapelets have been extracted, s.
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Table 1: Classi�cation Problems Data

Classi�cation Problem 1: Random sequences of 0 and 1 processed by 4 ARIMAs

Class Model Coe�
0 ARIMA(1,0,1) AR(0.6), MA(0.1)
1 ARIMA(1,0,2) AR(0.5), MA(-0.6,0.6)
2 ARIMA(2,0,2) AR(0.5,-0.7), MA(-0.6,0.5)
3 ARIMA(2,1,2) AR(0.5,-0.7), MA(-0.6,0.5)

Dataset size: 16,000,000 Time series length: 100

Classi�cation Problem 2: 6 Real Datasets with 10% of White Noise

Class Dataset
0 ECG5000
1 PhalangesOutlinesCorrect
2 Two_Patterns
3 Gun_Point
4 wafer
5 ElectricDevices

Dataset size: 8,000,000 Time series length: 150

For this reason, the computational complexity of the ST applied is O(pns). The
computational complexity of the Random Forest learning has been theoretically
demonstrated [14] as O(tkñ log ñ), being t the number of randomized trees, k
the number of variables randomly included at each node and n the number
of samples of the training partition. ñ = 0.632n due to the 63.2% of unique
samples, on average, [4] extracted by bootstrap. Finally, the DFST learning
computational complexity in time is: O(nm2) +O(pns) +O(tkñ log ñ).

The DFST prediction time complexity is de�ned by the sum of the com-
plexity of the ST applied to the testing set and the computational complexity
of Random Forest model for prediction. The computational complexity of the
ST applied to the test set is O(pls), being l the number of samples in the test
partition. The computational complexity of prediction of the Random Forest is
O(t log l). Finally, the DFST prediction time complexity is: O(pls) +O(t log l).

Comparing our proposal with FS, we see that our proposal can be applied
in Big Data environments and obtain better classi�cation results due to the
inclusion of ST in the training and classi�cation phase. The use of this trans-
formation together with traditional classi�cation algorithms has proven to o�er
better results than the use of a traditional classi�cation tree. If we compare our
proposal with the ST, which has a computational complexity O(n2m4), we see
that DFST obtains a lower order complexity, O(nm2)+O(pns)+O(tklog), which
allows it to be used in Big Data environments with similar accuracy results.

4. Empirical study

To asses the e�ectiveness and performance of our proposal, we have devel-
oped a thorough experimental setup. It is described in this section along with
the analysis of the experimental results. In Section 4.1, we present the exper-
imental framework as well as the details of the datasets and the parameters

13



Table 2: Experimentation Con�guration Values

Parameter Value
minLen 10
maxLen 100 (Problem 1) / 150 (Problem 2)
step 10
R 1

topK 10

used in the methods. In Section 4.2, we present the results of performance
over huge datasets in a Big Data environment. These datasets can not be pro-
cessed/handled by the original algorithm or typical computers. In Section 4.3,
we present the accuracy results of DFST on the datasets used in the previous
section. In Section 4.4, we show the utility of shapelets as input characteristics
to the classi�cation models created by DFST.

The source code of our proposal, the datasets creation �les, results and
additional material are available online 2.

4.1. Experimental Framework

Since no publicly available large time series classi�cation dataset could be
found, we have created two classi�cation problems3. For each problem, multiple
datasets have been created with di�erent numbers of instances. The number
of instances varies from 100,000 to 20 million. The length of the time series
created are 100, for �rst problem, and 150, for the second problem.

As a �rst problem, we have simulated 4 ARIMA models with arima.sim()

function from �stats� package of the R language [17] over random sequences
of 0 and 1. Each model has been assigned a classi�cation label, Table 1.
For the second problem, we have selected 6 datasets of time series classi�ca-
tion problems from the UCR repository: ECG5000, PhalangesOutlinesCorrect,
Two_Patterns, Gun_Point, wafer and ElectricDevices. These datasets are rep-
resentative of the large groups of existing problems: ECG (Electrocardiograms),
Image, Motion, Sensor, Simulated and Device, respectively. Each dataset has
been assigned a classi�cation label, Table 1.

For our experiments, we have used a Big Data cluster composed of one
master node and 20 computing nodes. The computing nodes hold the following
characteristics: 2 × Intel(R) Xeon(R) CPU E5-2620 processors, 6 cores per
processor with HyperThreading, 2.00 GHz, 2 TB HDD (1 TB HDFS), 64 GB
RAM. We have used the following software con�guration: CentOS 6.9, Hadoop
2.6.0-cdh5.4.3 from Cloudera open source Apache Hadoop distribution, Apache
Spark and MLlib 1.6.0, 23 threads/node, 1040 RAM GB (52 GB/node).

To obtain the sequential results in a comparable setting we have run the
sequential algorithm in one of the nodes.

2Additional material on the Distributed FastShapelet Transform (DFST) proposal. http:
//dicits.ugr.es/papers/DFST/

3Popular dimensions datasets for benchmark, for example UCR datasets, lacks behind the
values that currently qualify as starting Big Data dimensions
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Table 3: Sequential FS and DFST Running Time vs Number of Time Series Problem 1

Number of time
series

Sequential FS
Running time (s)

DFST
Running time (s)

100,000 2,088.06 12,190.91
200,000 4,119.02 12,310.29
300,000 6,699.75 9,748.17
400,000 7,909.84 11,222.16
500,000 11,643.08 9,025.84
600,000 13,407.48 12,057.48
700,000 16,317.37 8,965.22
800,000 18,454.49 9,798.00
900,000 20,764.48 12,226.55
1,000,000 22,513.41 11,855.29
1,100,000 24,622.18 9,651.16
1,200,000 26,634.61 11,536.39
1,300,000 30,618.57 13,686.43
1,400,000 30,524.07 13,741.24
1,500,000 33,556.26 13,075.48
1,600,000 36,532.96 14,814.28
1,700,000 38,695.64 14,998.85
1,800,000 41,606.93 15,583.09
1,900,000 35,099.40 16,625.55
2,000,000 49,435.64 15,128.27
2,100,000 48,421.24 15,692.12
2,200,000 53,036.16 15,667.97
3,000,000 NC 20,560.59
4,000,000 NC 26,823.02
5,000,000 NC 27,244.44
6,000,000 NC 33,295.01
7,000,000 NC 35,709.65
8,000,000 NC 42,389.48
9,000,000 NC 44,831.42
10,000,000 NC 52,685.68
11,000,000 NC 61,208.60
12,000,000 NC 67,723.17
13,000,000 NC 75,183.40
14,000,000 NC 75,973.21
15,000,000 NC 98,655.94
16,000,000 NC 103,155.57

NC indicates cases not computable by sequential algorithm.

4.2. Performance in Big Data environments

We are mainly concerned with accuracy and scalability of the proposed ap-
proach. Since no other scalable algorithm is available we will compare DFST to
the FastShapelet algorithm, because they share some basic ideas.

The experimental con�guration used is presented in Table 2. In Table 3 and
4 we show the total running times of our proposal for Big Datasets. In both
cases we can see that starting from 500,000 time series onwards our distributed
proposal needs lower running times than those obtained by the sequential al-
gorithm. From this point on, as the number of time series processed increases,
so does the di�erence between the two algorithms. Figures 2 and 3 show these
results graphically. In both �gures we can see the point from which the DFST
improves over the sequential algorithm. We can also appreciate a linear relation-
ship between the running time and the number of time series. The expressions
of the line that de�nes the execution time behavior of each algorithm have been
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Figure 2: Sequential FS and DFST Running Time vs Number of Time Series Graph Problem
1

included. The execution times of problem 2 show increments in each step greater
than those obtained in problem 1. This is mainly due to the fact that the time
series of problem 2 have a length of 150, which is 50% greater than that of
problem 1, that is 100.

Regarding the amount of data, for the �rst problem we have done experi-
ments with DFST on the cluster with up to 16 millions of time series with a
length of 100. The sequential algorithm can process with up to 2,200,000 time
series with a length of 100. For the second problem, DFST on the cluster with
up to 8 millions of time series with a length of 150. The sequential algorithm
can process with up to 1,100,000 time series with a length of 150. Sequential or
iterative algorithms have limitations in terms of the amount of data they can
process. DFST has shown to be able to cope with datasets of any size. This is
the de�nition of scalability.

A complementary view of the proposal could be provided through the speedup.
Because of di�erent issues this value is not very meaningful in this case. To be-
gin with, the large di�erence between the size of the dataset processable by the
sequential approach with respect to the parallel one. In addition, the e�ective
gain in performance for the parallel approach is better realized for bigger case
sizes, where the sequential approach cannot be applied �we would have to wait
for it to �nish an unacceptably long time or we would run out of main memory.

Next, the di�erence between the platforms. Big Data platforms are designed
with scalability and easiness of use in mind, with high performance at a second
level of importance. A completely parallel solution (based on communications
through main memory) is scalable up to a limited size. A distributed approach,
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Table 4: Sequential FS and DFST Running Time vs Number of Time Series Problem 2

Number of time
series

Sequential FS
Running time (s)

DFST
Running time (s)

100,000 3,801.29 13,608.42
200,000 8,155.19 24,660.67
300,000 13,564.75 18,829.35
400,000 17,335.96 19,032.37
500,000 22,330.90 20,188.38
600,000 28,371.62 16,507.55
700,000 35,450.22 21,773.58
800,000 36,850.60 16,073.29
900,000 39,122.43 16,882.79
1,000,000 47,092.72 20,669.58
1,100,000 51,151.38 28,544.63
2,000,000 NC 27,774.42
3,000,000 NC 39,545.70
4,000,000 NC 70,036.37
5,000,000 NC 71,690.11
6,000,000 NC 72,842.22
7,000,000 NC 88,590.94
8,000,000 NC 112,239.49

NC indicates cases not computable by sequential algorithm.

e.g. based on message passing, is more scalable although the required design and
code e�ort is larger. In addition, its deployment is more troublesome and not
feasible for the average programmer. Instead, Big Data platforms have become
very popular at the price of lower performance with respect the optimal usage
of resources. We selected a Big Data platform to implement DFST with idea of
having a wider set of potential users.

Finally, the programming language also has an impact. The sequential al-
gorithm is coded in C++, allowing for an e�ective usage of the underlying
hardware platform. On the other hand, Big Data platforms are coded either
on Java or languages that compile to Java Virtual Machine. Their performance
falls behind that of C++, and while this e�ect in terms of complexity would fall
under a constant term it is usually a large one.

After the considerations made above, we made a computation of the running
times ratios sequential vs MapReduce for the largest size that the sequential
approach can handle and obtained a value of 4. This entails us to conclude the
following advice: when the running time of the sequential approach is acceptable
use it, otherwise use DFST.

4.3. Accuracy

To the best of our knowledge, there is currently no other proposal that can
be applied to such massive time series datasets. As there are no time series
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Figure 3: Sequential FS and DFST Running Time vs Number of Time Series Graph Problem
2

classi�cation algorithms in Big Data environments, the comparison of accuracy
is not feasible. Instead, the accuracy of our proposal has been compared with
that obtained by the FS algorithm, which has been the basis of the shapelet
search process implemented in our proposal. This comparison has only been
possible up to the processing limit of this algorithm on current computers.

Accuracy is measured in terms of the rate of correctly classi�ed time series,
as a percentage. In the ARIMAs problem, the sequential FS algorithm has
obtained an average accuracy of 93.11% for the problems that has been able to
process. For these problems DFST has obtained an average accuracy of 99.32%,
being higher than average accuracy obtained by the sequential algorithm. Over
all processed datasets, 100,000 to 16,000,000,000 time series, DFST has achieved
an average accuracy of 99.40%. Finally, DFST has obtained 99.66% accuracy
on the largest dataset processed.

For the second problem, the sequential FS algorithm has obtained an average
accuracy of 80.07% for the problems that has been able to process. For these
problems, DFST has obtained an average accuracy of 82.60%, again higher
than average accuracy obtained by the sequential algorithm. Over all processed
datasets, 100,000 to 8,000,000,000 time series, DFST has achieved an average
accuracy of 81.92%. Finally, DFST has obtained 74.17% accuracy on the largest
processed dataset.

4.4. Interpretability of models

The learning model used in our proposal is a Random Forest that uses as
input a distance matrix created from the extracted shapelets. Each row refers
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Figure 4: Example of shapelets interpretability.

to an input time series and each column contains the distance from that time
series to a shapelet. It is logical that the distance between a shapelet of a class
and a time series of the same class is close to 0. On the other hand, the distance
between a shapelet and a time series of di�erent classes will be distant to 0.
Since we have a large number of shapelets of di�erent classes, there are a large
number of combinations that allow a machine learning algorithm to �nd the
relationships between the di�erent shapelets that de�ne the di�erent classes.
Figure 4 shows an example of the distances from di�erent shapelets to a time
series.

At the top of Figure 4, you can see how di�erent class 0 shapelets are similar
to time series of the same class. In this example we obtain two Euclidean
distances equal to 0 and one of 1.39. In the lower part of Figure 4, you can
see how the shapelets of classes 1 and 2 are quite dissimilar to the time series
of class 0, obtaining distances equal to 2.21 and 2.77, respectively. In both
examples, the shapelets have been placed at points where the distance between
the shapelet and the time series is minimized.

To summarize, shapelets are graphical features that adapt to time series
shapes. They are the building blocks (input features) to the classi�cation models
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built with DFST.
The online resource4 includes some examples for the di�erent classes of the

2 problems proposed in this paper.

5. Conclusions

In this work, we have proposed the Distributed FastShapelet Transform al-
gorithm (DFST), based on the MapReduce paradigm. It is the �rst proposal
of a completely scalable algorithm for time series classi�cation. The state of
the art of time series classi�cation problems is dominated by algorithms such
as COTE, very e�ective but also with a very high computational complexity,
i.e. O(n2m4). However, complexities this high prevent their application in a
Big Data environment. Alternative proposals, like FS, reduce the complexity
to the levels of O(nm2), at the price of a lower accuracy. DFST addresses
both issues providing a linear complexity (with respect to the number of time
series) approach with comparable accuracy results. Inspired on the shapelets
search procedure of the FS algorithm, a number of decisive steps have been
redesigned like the use of gain of information measures, the selection from mul-
tiple shapelets, or the generalization to allow the use of di�erent classi�ers, not
being tied to classi�cation trees.

The proposed algorithm has been implemented in the Apache Spark frame-
work and is now available as an open-source contribution to the MLlib, making
it available for any practitioner o researcher to use. We have carried out a
thorough empirical study focused on scalability and accuracy. The accuracy of
DFST is higher than that obtained by FS in all the cases were both could be
applied. The linear complexity of the �nal algorithm allows for the application
of the algorithm on datasets of any size.
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