
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 1

A Forecasting Methodology for Workload
Forecasting in Cloud Systems

Francisco Javier Baldán, Sergio Ramı́rez-Gallego, Christoph Bergmeir, Francisco
Herrera, Member, IEEE , and José M. Benı́tez Member, IEEE

Abstract—Cloud Computing is an essential paradigm of computing services based on the “elasticity” property, where available
resources are adapted efficiently to different workloads over time. In elastic platforms, the forecasting component can be considered
by far the most important element and the differentiating factor when comparing such systems, with workload forecasting one of the
problems to solve if we want to achieve a truly elastic system. When properly addressed the cloud workload forecasting problem
becomes a really interesting case study. As there is no general methodology in the literature that addresses this problem analytically
and from a time series forecasting perspective (even less so in the cloud field), we propose a combination of these tools based on
a state-of-the-art forecasting methodology which we have enhanced with some elements, such as: a specific cost function, statistical
tests, visual analysis, etc. The insights obtained from this analysis are used to detect the asymmetrical nature of the forecasting problem
and to find the best forecasting model from the viewpoint of the current state of the art in time series forecasting. From an operational
point of view the most interesting forecast is a short-time horizon, so we focus on this. To show the feasibility of this methodology, we
apply it to several realistic workload datasets from different datacenters. The results indicate that the analyzed series are non-linear in
nature and that no seasonal patterns can be found. Moreover, on the analyzed datasets, the penalty cost as usually included in the
SLA can be reduced to a 30% on average.

Index Terms—Cloud Computing, elasticity, workload forecasting, machine learning, time series forecasting.

F

1 INTRODUCTION

C LOUD COMPUTING (see, e.g., [1] for an introduc-
tion) is a trending topic. In Gartner’s 2013 CIO

Agenda [2], the term “Cloud” is in the third position
in the top ten technology priorities for that year, and
the term “Analytics and Business Intelligence” is first.
Cloud Computing is changing the way we think about
computing, and it is both a new field of research for the
scientific community, and a profitable area from which
new business models are emerging. In fact, Cloud Com-
puting makes feasible the idea of computing as a utility,
comparable to power, water, light, or communications
infrastructure [3]. The cloud paradigm can be defined
as a new paradigm of computing services, centering
its efforts in the characteristics of pay-per-use and the
ability to provide seemingly unlimited resources to end-
users.

Among the most outstanding underlying properties of
this paradigm, you can find “self-scaling” and “elastic-
ity,” which are based on the system’s ability to adapt
available resources to different workloads over time,
without resulting in inefficient use of these resources.
From a computational complexity point of view, this
problem is NP-hard. So the application of heuristic tech-

• F.J. Baldán, S. Ramı́rez-Gallego, F. Herrera, and J.M. Benı́tez are with
the Department of Computer Science and Artificial Intelligence of the
University of Granada, CITIC-UGR, iMUDS, Granada, Spain, 18071.
E-mails: {fjbaldan, sramirez, herrera, J.M.Benitez}@decsai.ugr.es

• C. Bergmeir is with the Faculty of Information Technology, Monash Uni-
versity, Melbourne, Australia. E-mail: christoph.bergmeir@monash.edu

niques is required to reach an automated and efficient
solution. A service that is provisioned in an inadequate
manner can yield two kinds of consequences for ser-
vice providers: over-provisioning (downward forecast-
ing) and under-provisioning (upward forecasting). Since
a cloud system often cannot react in an immediate way
to changes of variables, a predictive system is necessary
to manage resources in an intelligent way. This forecast-
ing component can be considered the most important el-
ement in those systems and a good forecaster can be the
differentiating factor when comparing elastic systems.

However, most real systems developed until now are
purely reactive. This means that these systems work
with near-future, ignoring information from past values.
Because of the fluctuating resource demand (e.g., e-
commerce applications) this kind of system does not
obtain satisfactory results, and problems such as sudden
Traffic surge or Slashdot effect [4] arise. Thus, a solution is
necessary which is capable of capturing more complex
patterns present in real life, and fundamentally focusing
attention on capturing trends, seasonality and other
features that may be present in real-world workloads.

In the literature, traditional regression methods and
more elaborate solutions have been used in many cloud
systems to forecast the workload. Moreover, Machine
Learning (ML) algorithms have also been used to model
this problem. However, current predictive systems offer
ad-hoc and specific solutions to forecast the workload
of a cloud system, typically applying a set of methods
without a thorough, state-of-the-art statistical evaluation
of the problem from a time series point of view. This

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 2

evaluation is important for any forecasting problem (as
in workload forecasting) since none of them can be prop-
erly addressed without a preliminar stage to analyze
and model properly the properties of the series before
applying any method. The benefits from the application
of a comprehensive forecasting process are well-known
in many fields, such as: health care, industry, science or
bussiness [5].

While there are many solutions in the literature based
on existing forecasting tools, there is no general frame-
work or methodology that addresses the workload fore-
casting problem analytically from a state-of-the-art time
series forecasting perspective. Besides in the cloud field,
we perceive a gap between forecasters and domain
experts in the sense that well-structured state-of-the-art
forecasting methodology is not commonly employed in
this area.

For example, one of the main results of the M3
forecasting competition is that simple methods often
outperform more complex ones [6], and model perfor-
mance depends on the underlying data of a forecasting
problem. More recently, the NN3 competition [7] yielded
as a result that none of the participating Machine Learn-
ing methods was able to outperform the theta method,
which is equivalent to simple exponential smoothing
with drift, which is a relatively simple standard method
in time series forecasting.

These findings lead us to affirm that a methodol-
ogy is necessary that assesses data characteristics and
chooses the most appropriate forecasting method accord-
ingly, i.e., that chooses complex methods only where
appropriate. So, this paper aims to provide three main
contributions in this field. First, this work is aimed at
developing a case study in a completely detailed and
rigorous way. The second objective is to promote the
use and apply a full, sound state-of-the-art forecasting
methodology to the workload forecasting problem in
Cloud Computing. The methodology entails a deeper
study for the workload analysis and modeling of time
series by analyzing the statistical properties (stationarity,
seasonality, trends, etc.) of the series, performing linear-
ity testing, and analyzing the auto-correlation structure
of the series. As for the third contribution the nature of
the problem will lead us to the proposal of a specific
cost function better suited than other error formulations
commonly used. This study will allow us to better
understand the properties of the series and to enhance
the results through fitter forecasting models.

Finally, to demonstrate the effectiveness of this ap-
proach, we apply this methodology to several real world
datacenter workload datasets, one of them from Google’s
clusters.

The rest of the paper is organized as follows. Section
2 presents a brief overview of elasticity and workload
forecasting in cloud systems, and reviews the most
relevant related works. Section 3 details the case study
targeted in this paper. Section 4 introduces a specific cost
function. Section 5 presents the proposal of a forecast-

ing methodology to address the workload forecasting
problem in elastic cloud systems. Section 6 introduces
our experimental framework, and Section 7 discusses the
forecasting methodology and the experimental results.
Finally, Section 8 concludes the paper.

2 PRELIMINARIES

In Section 2.1, we introduce the concept of elasticity
applied to Cloud Computing, a concept used to describe
the automatic scaling behavior of cloud systems. This
elastic reaction cannot be done in an automatic fashion
without a forecasting component, which is capable to
foretell with some degree of certainty the future demand
of resources in a cloud system.

Section 2.2 describes the related work in the literature
on the elastic cloud systems topic and how these propos-
als address the specific problem of workload forecasting
through a wide range of forecasting techniques.

2.1 Elasticity in Cloud

Frequently, a user of a cloud platform will not need to
acquire all the resources initially, but requires a variable
amount of resources which will be provided or released
by the provider in a dynamic fashion, according to the
actual demand. Thus, resources are provided in an elastic
manner [8].

It is important not to confuse the terms scalability
and elasticity. Scalability requires a manual installation
and deployment of the resources. So, it depends on
an early detection of problems. Elasticity involves an
instantaneous and automatic response to problems, so
that elasticity can be seen as a synonym of self-scaling.
The resources are increased or decreased in an automatic
fashion, without human intervention.

This situation of dynamism becomes especially inter-
esting for systems which in certain times need to face
peak demands [9]. In these cases, it is more interesting
to have a cloud platform that can embrace this sort of
eventualities, instead of having an infrastructure that is
mainly underused. Indeed, the key is the ability of the
platform to assign or release resources in a timely and
fine-grained manner, so that we create a close alignment
between actual demand and the resources cap [10].

Accordingly, elasticity bears a great number of ad-
vantages, including: smaller self-provisioning cycles, an
easier maintenance of server applications, a quicker
adoption of new web-business models, a better user
experience, a reduced complexity, and higher integrity
and security levels.

Additionally, cloud clients, as users of a computing
service, sign a Service-Level Agreement (SLA) with a
service provider, which guarantees a specific service
quality. SLA and costs are typically in direct proportion,
but one would like to satisfy the SLA level while also
keeping low costs. Hence, we can conclude that capacity
and demand in a cloud platform must be planned both

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 3

for average load and peak load. Nevertheless, each one
of these approaches is somewhat different [11].

When provisioning Cloud resources for an average
load (under-estimation) the provider incurs in lower
costs because less hardware is acquired, but the perfor-
mance will suffer when a peak demand occurs (under-
provisioning). This bad performance will incur SLA
penalties, so that the benefit and prestige of the provider
will be undermined. On the other hand, if the sys-
tem’s capacity is established for the maximum (over-
estimation) so that a peak load does not affect system
performance, the resources will be underused for some
the time, incurring unnecessary expenses of infrastruc-
ture (over-provisioning). Both problems are among the
most important challenges in cloud workload forecast-
ing [1].

If we choose adding or removing resources every time
system load changes, this implies a wasteful additional
expenditure of resources to boot up or turn off ma-
chines. Furthermore, another variable to be considered
is the time it takes for a resource to become available
or unavailable: latency time. Comparing several public
cloud providers [12] [13] [14], we can observe that the
average scaling latency time to allocate a new virtual
resource instance is less than 10 minutes (typically 5
minutes), which is relatively small compared with non-
virtual computer paradigms.

Due to latency time used by leveraging resources,
it is mandatory that the elasticity decisions are made
as fast as possible. In addition, the decisions not only
have to be quick, but also effective, since if the result is
wrong, then the latency time is expanded and Quality of
Service (QoS) is downgraded. Accordingly, a desirable
solution requires to forecast system workload at any
time, and provisioning resources in advance and in a
fully automatic manner. Thereby, the system will be
able to manage input workloads in a near future. So, a
well-designed forecasting module that is able to forecast
accurately the resources required by the cloud system is
necessary.

2.2 Related work

There are currently two kinds of solutions to cope with
the problem of elasticity in cloud platforms. The first one
is basically reactive, based on the current state of the
workload in the system. This perspective is controlled
making use of scaling rules defined by a human expert
or the client in the SLA. The other choice is based on the
introduction of a component for workload forecasting.

In [15], a survey and classification of several elastic-
ity solutions, both reactive and predictive, for Cloud
Computing is presented. In this work, we center our
attention in the systems that may be defined as proactive
or predictive, namely solutions that use ML or mathe-
matical/analytical techniques to forecast the system load
before making scaling decisions. This section provides an
overview of predictive approaches.

2.2.1 Traditional regression methods
In the following we describe solutions which use tradi-
tional regression methods to forecast the system’s work-
load changes. These solutions are based on traditional
regression algorithms like linear or polynomial regres-
sion and auto-regressive models like ARMA.

Elastic VM [16] uses Virtual Machine (VM) resizing
as a method to maintain the SLA within its bounds. In
this case, the forecasting scheme is very simple, it only
depends on the last CPU allocation and consumption.

Iqbal et al. [17] present a mixed approach using a
reactive model for under-provisioning and a predictive
model for over-provisioning. Those authors use poly-
nomial regression to forecast the number of web and
database server instances for the current observed work-
load.

Tirado et al. [18] present an elastic web infrastructure
that adapts to workload variations by self-scaling dy-
namically. For this purpose, those authors use an ARMA
model capable of capturing seasonal patterns. Although
those authors present a general solution for elastic web
infrastructures, the forecasting part does not represent
a general framework for workload forecasting, which is
our aim.

Roy et al. [11] also use forecasting algorithms like
ARMA to forecast the workload of the application and
estimate the system behavior. The main objective of that
work is to solve a linear equation formed by variables,
such as: application QoS, used resources, and associated
costs.

2.2.2 Machine Learning algorithms
In this part, we present ML-based methods proposed in
the elastic cloud predictive literature.

Reig et al. [19] propose a system with two modules of
forecasting: one for short-term forecastings, and another
one for long-term forecasting. The latter makes use of
ML based models (M5P, REPTree, and a bagging ap-
proach) to forecast CPU load and memory usage.

Moore et al. [20] present a system that comprises of
three models running in parallel: a time series forecaster
based on the SVR algorithm and two incrementally
updatable naı̈ve Bayes models, learning online while the
system is acting.

In another work, Imam et al. [21] use a Time Delay
Neural Network (TDNN) which is a special type of
ANN for analysis of temporal data. In addition, they
also train a set of regression models like a non-linear
polynomial regression model. However, the developed
models are proven on grid computing workloads, not
on cloud traces, which are different in nature.

The closest approach to our work is presented by Islam
et al. [22], where some inherently efficient and effective
ML techniques like Error Correction Neural Network
(ECNN), and linear regression are used. Those authors
also incorporate additional data partitioning methods
in the training stage like sliding window and cross-
validation techniques.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 4

2.2.3 Related solutions
Finally, we discuss some other related proposals present
in the literature that do not fit the kinds of methods
commented on above.

PRESS [23] is a proposal of an elaborate solution based
on signal processing techniques, such as Fast Fourier
Transform (FFT), to identify repeating patterns called
signatures. The signatures are used to perform CPU load
forecastings.

CloudScale [24] is built on PRESS and contributes
two complementary ideas for the under-estimation error:
online adaptive padding and reactive error correction.

Kingfisher [25] is a cost-aware system that integrates
multiple elasticity mechanisms. Those authors formulate
a provisioning problem as an Integer Linear Program-
ming (ILP) problem to account for both infrastructure
and transition cost for deriving appropriate elasticity
decisions. Regarding the forecasting part, in their ex-
periments they assume a perfectly accurate (in practice
unrealistic) forecaster to evaluate their ILP equation.

A large set of solutions have been discussed above. In
contrast to those works, we use a forecasting method-
ology based on a wide variety of models and statisti-
cal tests. Likewise, we follow a statistical analysis and
forecasting process instead of simply and blindly apply-
ing forecasting models. Although other proposals have
also used models considered in our methodology (e.g.,
ARIMA or ANNs), these techniques have been applied
without performing an appropriate analysis or proven
methodology; ignoring, for example, some interesting
pattern information (seasonality, stationarity, etc.) that
could be used to improve the forecasting outcomes.

3 A FORECASTING CASE STUDY: WORKLOAD
IN CLOUD SYSTEMS

This section details a forecasting case study for workload
on cloud systems. The study highlights the most relevant
parameters and considerations to take into account in
these problems.

The general structure of an elastic cloud system is
depicted in Figure 1. This system has to efficiently man-
age a set of virtualized resources in an elastic manner.
Briefly, an elastic cloud system has as inputs the current
platform state (obtained from a real-time monitoring
process) as well as the forecast for the following states,
made by the workload forecasting module. This module
will use historical data to produce forecasts that are
sent to the resource provisioning system. In turn, this
module will make decisions that are forwarded to the
management component. Finally, the resource manage-
ment component will take actions (turning on/off virtu-
alized resources) on the resources pool according to the
received decisions.

The workload forecasting module component can be
considered as the most significant part in elastic systems.
In Figure 1, we present the diagram of a prototype

system, where our forecasting module is included as part
of it. Likewise, we describe the design of this important
component, detailing its inputs and outputs.

In elastic cloud systems, the main variables to con-
sider are usually related to the use of the main re-
sources offered by the platform, like CPU and memory
utilization, disk space, bandwidth, etc. These variables
must be properly studied, forecasted and managed so
that the system can make appropriate provisioning and
management of resources at any moment. CPU load and
memory use can be seen as the most important and
limited resources in a computer system, and the main
bottlenecks in cloud platforms. Due to the limited space
available in the paper we will focus on just one of them.
The study and subsequently defined methodology can
be derived in a similar fashion for other resources.

In this case study, we focus on CPU usage (also known
as CPU rate) as a measurement in units of CPU core per
time unit. We are using seconds as time unit, hence the
CPU quantum for billing is a core-second. The values of
CPU rate at each second composes a time series, which
is fed to our forecasting module.

It is also necessary to decide which is the most ap-
propriate time unit for modeling our time series, as this
depends on the latency period of given resources (e.g.,
VMs). This time unit will be used as the forecasting
horizon for one-step-ahead forecasting. As discussed in
Section 2.1, VM resources can be generally supplied
every 5 minutes. So the speed required in cloud systems
limits the granularity of the time series to be coarse-
grained, greater than or equal to the latency period. In
this paper, we choose two different time units as the
most appropriate ones:

1) 5-minute interval: we consider adjusting to the
latency period as much as possible is a good choice
to achieve accurate and efficient forecasts. This
could be named operational horizon.

2) hourly: normally, in many forecasting problems
hourly data is used to detect time patterns and
seasonality.

Hence, the output of the forecasting module can be
defined as the total amount of virtualized resources
(measured in number of cores for CPU) required by the
system in the next time step. This information will be
used by the resource provisioning component to manage
the available resources. As we measure the output in
terms of number of cores, the output is completely
independent of the studied system; it does not matter
whether it is a small group of machines or a data center
with thousands of machines.

Regarding the measurement of error, the loss associ-
ated with over-provisioning and under-provisioning will
be typically asymmetric. And while both of them could
be measured in monetary terms, i.e., penalty cost for
under-provisioning and energy cost for idle nodes, their
cost are rather imbalanced. Hence, while standardized
forecasting measures may provide indicative guidance

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 5

Fig. 1. Elastic Cloud System

for the forecaster evaluation, it is necessary to develop a
better suited measure for this problem.

4 EVALUATION CRITERIA

A number of different error measures are commonly
employed in time series forecasting [26]. To assess the
models considered in this work, we employ RelMAE and
sMAPE. However, as noted in Section 3 the cost of errors
in Cloud system Workload Forecasting (CWF) problems
is not symmetric. To have a more appropriate evaluation
for this regard, a specific cost measure is formulated
in this section. In the following, we describe all error
measures used and explain why they are used in the
experiments.

4.1 Error measures: RelMAE and sMAPE
A problem with error measures such as the root mean
square error is that they are not scale free and cannot be
used to compare forecasts for different series. For series
with strictly positive values, an effective alternative is
to normalize by the value of the series, which yields
percentage measures. We use the commonly employed
sMAPE measure [6]:

sMAPE = 1
n

∑n
t=1 100

|yt−ŷt|
mt

,

with mt = |yt|+|ŷt|
2 .

(1)

Furthermore, we use the RelMAE, which is the Mean
Absolute Error (MAE), normalized by the MAE of a
benchmark method. We use the naı̈ve forecast (where
forecasts are equal to the last observed value) as bench-
mark MAEB . The RelMAE indicates if the forecast per-
forms better than a trivial method, and therewith per-
forms a sanity check for the forecasts, and methods with
a RelMAE greater one are not reasonable for forecasting.
The RelMAE can be defined as:

RelMAE =
MAE

MAEB
. (2)

4.2 CWFR function
As noted in Section 3, the errors in CWF are not sym-
metric. On the one hand, an under-provisioning error
occurs when a user requires an increase in resources
and they cannot be provided immediately. In this case,
as a mean of prestige many cloud providers agree to

pay back a percentage of the fault rate. With respect to
the CPU usage, this error happens when the number of
cores supplied to a given user is smaller than the number
requested.

Let yt be the total number of cores required at time t
and zt be total number of cores supplied by the provider.
Let us assume the period under evaluation is from time
1 up to m. Then the cost for under-provisioning, Cup in
that period is:

Cup(1, ...,m) =

m∑
n=1

{
yi − zi, if yi > zi,

0, otherwise.
(3)

On the other hand, an over-provisioning happens
when the number of immediately available cores, i.e., is
active cores, is greater than the requested number. In this
case, the cloud supplier incurs in exploitation costs, just
like energy consumption, equipment degradation, and
so forth. Following the notation above, we can define
the cost for over-provisioning, Cop, as:

Cop(1, ...,m) =

m∑
n=1

{
0, if yi > zi,

zi − yi, otherwise.
(4)

Now, after establishing the corresponding weight we
we can add both terms together. Let p be the unit penalty
imposed when the number of cores is smaller than the
requested one —for example, it could be a percentage
(over 100% of the rate). Let r be the rate for unit time
usage, and let e be the cost of having one core active
—but not used— for one second. This would include
energy consumption —for both operation and cooling,
degradation cost, etc. Then the overall CWF cost function
is defined as:

CWFc(1..m) = p · r · Cup(1..m) + e · Cop(1..m) (5)

CWFc is defined for the actual usage, but it can be
readily adapted to obtain the performance of a forecaster
f, CWFc(f) by changing yi for the value predicted by the
forecaster. Finally, we can compare the relative perfor-
mance of the forecaster with the reactive approach (no
forecasting) by computing the ratio:

CWFR =
CWFc(f)

CWFc
(6)

This measure allows us to obtain a fast monetary
cost of the forecasting errors. Let us assume a platform

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 6

datacenter of size nc, number of cores. The amount saved
by using the forecaster f with respect to using just a
reactive approach is:

MC = CWFR · nc. (7)

Similar ratio definitions associated to Cup and Cop can
be straightforwardly defined, CupR and CopR.

5 A COMPLETE FORECASTING METHODOL-
OGY

Once the problem is well understood and a convenient
error measure is defined, we proceed to set the fore-
casting methodology. This section presents a thorough
forecasting methodology, based on the state-of-the-art
forecasting methodology to analyze and predict time
series data described in Hyndman and Athanasopou-
los [5]. We enhance and complete the methodology to
include, e.g., non-linear and ML forecasting procedures
and statistical tests for linearity to determine when to
use these more complex procedures.

The general scheme of this process is depicted in
Figure 2. In the following, we present the different steps
being part of this methodology:

Fig. 2. Forecasting Methodology - General Scheme

1) Visualize the time series, and analyze Auto-
Correlation Function (ACF) and Partial Auto-
Correlation Function (PACF) plots (Section 5.2).

2) Perform a non-seasonal study, constructing ETS
and ARIMA models as a first approach (Sec-
tion 5.3), and using the obtained results to build
other regression models.

3) Perform a similar study but focused on seasonality
(Section 5.4).

So, several models are built and evaluated on a given
dataset, to select and build the best final model.

Before we explain the aforementioned steps, we
present the forecasting methods (Section 5.1) which, like
the evaluation criteria previously seen (in Section 4), are
used in this methodology. All of them are employed in
both the non-seasonal and seasonal studies.

5.1 Forecasting models
In this section, we describe the different forecasting
algorithms employed in this framework. Since there is
no single universally valid model and the time series
to be analyzed have different properties, we use a wide
range of forecasting models to obtain the fittest model
according to their features.

Firstly, we describe thoroughly the ARIMA and ETS
methods, which can be considered the de-facto standard
models in time series forecasting [27]. Besides these
state-of-the-art models, we also use an additional set of
general regression methods for comparison purposes.
5.1.1 Time series models: ARIMA & ETS
5.1.1.1 ARIMA
Combining an ARMA model and differencing, we obtain
the non-seasonal ARIMA model [28]. It is a workhorse
in time series analysis and modelling. ARIMA models
are denoted as ARIMA(p,d,q), where p is the number
of lagged values considered in the autoregressive part,
q is the number of lagged values considered for the
moving average part, and d is the number of differences
considered.

There is an established methodology to choose all pos-
sible parameters of an ARIMA model fully automatically.
In R [29], a language and environment for statistical
computing and graphics, this methodology, known as
the Hyndman-Khandakar algorithm [5], is implemented
in the auto.arima function from the forecast package [27].
5.1.1.2 Exponential Smoothing
The abbreviation ETS [5], which will be used in the
following, stands both for exponential smoothing and for
error, trend, and seasonality. ETS forecasts are computed
as weighted averages of past observations. They can be
applied to a wide set of series, so the key to properly do
so is to recognise key components of the series (trend and
sesonality) and how they are employed in the smoothing
method (in an additive or multiplicative way).

Nowadays, there is a whole family of ETS models,
with a solid theoretical foundation. The models can be
distinguished by the type of error, trend, and seasonality
they use. In total there are 15 models with different
combinations of trend and seasonality. For more detailed
descriptions, we refer to Goodwin [30].

In R, exponential smoothing is implemented in the
function ets from the forecast package, which can be used
to automatically fit models to the data provided. The
smoothing parameters and initial conditions are opti-
mized for maximum likelihood with a simplex optimizer.
Then, the best model is chosen using AIC.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 7

5.1.2 Standard regression methods
Besides these state-of-the-art forecasting models, we also
use a set of general regression models such as:

5.1.2.1 Linear auto-regression
Linear Auto-Regression (AR) is based on considering
each variable value as a linear combination of the previ-
ous ones [28], with the introduction of some noise. This
method is considered a special case of ARIMA and is
normally used as a benchmark method. We refer to this
as an AR(p) model.

5.1.2.2 Lasso
Lasso regression as proposed by Efron et al. [31], is a
well-known shrinkage method used to estimate coeffi-
cients in linear models, which pursues the removal of
the maximum number of coefficients turning them zeros,
as well as the minimization of the error.

5.1.2.3 Multi-adaptive regression splines
Multi-Adaptive Regression Splines (MARS), as proposed
by Friedman [32], performs a regression process on
input data obtaining an approximative function. MARS
uses some base functions, such as: constant function,
maximum function, or product of the previous ones.

5.1.3 Machine learning methods
5.1.3.1 Multi-layer perceptron with back-propagation
Multi-Layer Perceptron (MLP) is a feedforward neural
network formed by multiple layers, which allows it to
solve non-linearly separable problems [33].

Learning occurs in the perceptron by updating con-
nection weights after each instance has been processed,
based on the output error compared to the real value.
This is conducted by the backpropagation process: a
generalization of the least squares algorithm in the linear
perceptron.

5.1.3.2 Multi-layer perceptron trained with the BFGS algo-
rithm
A multi-layer perceptron trained with the BFGS algo-
rithm [34] (we call this NNET in the following). The
BFGS algorithm is a Quasi-Newton second-derivative
line search family method and one of the most powerful
methods to solve unconstrained optimization problem.
The BFGS method approximates Newton’s method, a
class of hill-climbing optimization techniques that seeks
a stationary point of a (preferably twice continuously
differentiable) function.

5.1.3.3 Elman recurrent network
Elman recurrent networks [35] have the same topology
as the aforementioned perceptron-based methods, how-
ever, they introduce recurrence on their layers. They
have a context layer available, which is a layer fed by
the hidden layer output. The Elman network then stores
these values and outputs them into the next run of the
neural network. These values are sent, using a trainable
weighted connection, back into the hidden layer. They
are very useful in forecasting since they implement a
limited short-term memory.

5.1.3.4 Support vector regression
Support Vector Machines (SVMs) are supervised learn-
ing models, based on Statistical Learning Theory, with
associated learning algorithms that analyze data and
recognize patterns, used for classification and regres-
sion tasks. Their main objective is to solve a quadratic
optimization problem finding a maximum separability
hyperplane in a higher dimensional space. In our exper-
iments, we use ε-SVR [36], which inherits an SVR stan-
dard implementation where the cost function ignores
any data according to a given threshold ε.

5.2 Time series analysis

Fig. 3. Forecasting Methodology - Analytical Process

In time series forecasting, it is important to analyze
the data before applying any method. There is a great
amount of information that can be used to improve the
forecasting performance. By plotting a series and its ACF,
we can look for significant lags to model our series and
extract other information from patterns like stationarity,
seasonality and trends. We can use this information to
model the series accordingly. In this section, we present
the first step of the methodology: an analytical process
which aims to analyze the series to extract relevant
information to the modeling stage.

This analytical process is described as follows: first
of all, we plot all time series in consideration and their
corresponding ACF and PACF to visually examine them,

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 8

looking for significant lags. The significant lags found
will be used to configure the forecasting methods. If
the plots do not show significant lags, we use a default
maximal lag value to explore the data. A frequent default
value is 5 (e.g., the auto.arima function uses this as a
default), so that we stick to this default value in our non-
seasonal studies. For seasonal studies, we can employ
typical seasonal lags, e.g., lags 12 or 24 for hourly data,
or 30 or 60 for minutely data. The forecasting methods
test if these potentially interesting lags are reasonable,
and therewith, effective for our forecasting problem. A
scheme of the whole process is depicted in Figure 3.

On the other hand, if we notice in the ACF that
the series are non-stationary (have an integrated be-
havior), differences on series can be used. We construct
models that use differencing by applying the following
procedure: firstly, we create the differenced time series
applying the diff function (also in R) on the original time
series. After that, we construct complementary models
using both the original and the differenced data, so that
we obtain as forecasts the difference of each value from
the last known value. To transform these values to the
input domain, we add to each differenced value the
corresponding t−1 value in the original time series, thus
obtaining the correct forecasts. We repeat the previous
process over the differenced version to find interesting
lag values.

5.3 Non-seasonal study

After analyzing the series, we use ETS and ARIMA to
construct models without seasonality as a first approach.
The entire process is represented in Figure 4.

As stated before, ARIMA parameter values can be set
automatically through auto.arima in R. This process is
based on the AICc measure. It is important to note that
non-seasonal models are incorporated at this stage in the
selection process. ETS has a similar process to choose
among models, which we also restrict to non-seasonal
models here. After that, we apply the evaluation criteria
to assess the quality of these models.

Furthermore, it is worthwhile to evaluate the inde-
pendence of the residuals. A common test for residual
diagnostics is the Box-Pierce test [37], and based on it
the Ljung-Box test [38]. Both of them test if the first h
auto-correlations are significantly different from a white
noise process.

If there is still auto-correlation left in the residuals, it
is highly recommended to continue the exploration of
models (for example, with non-linear alternatives).

We then check the linearity of the original time series,
performing a linearity test over all the series. This pro-
cedure is advisable as fitting flexible non-linear models
may lead to overfitting if there is no non-linearity present
or if it is not strong [39].

We use the function terasvirta.test from the package
tseries in R, which is an implementation of a well-known
non-linearity test of Teräsvirta [39]. The test is based

Fig. 4. Forecasting Methodology - Non-seasonal Study

on a single hidden-layer feedforward neural network.
It performs a regression of a Taylor series expansion of
the non-linear activation function of the neural network
to the data. Then, it tests the null hypothesis of linearity
of the data by testing if the coefficients of the non-linear
terms of this expansion are zero.

A key advantage of the test is that it has power against
many types of nonlinearity [39], not only against the type
of nonlinearity modeled by the neural network, so that
it can be seen as a general test for non-linearity.

If the performance results are then unsatisfactory, we
can try to improve the results obtained so far using an
additional set of methods (general regression methods).
Thereby, we can use the number of lagged values de-
rived from the ARIMA results, or the significant (non-
seasonal) lags extracted from the analysis to create an
embedding scheme of lags; and afterwards, to build the
models. Likewise, we can use the degree of differencing
to create differenced versions of the models.

Finally, we apply again the evaluation criteria to assess
the quality of the new models.

5.4 Seasonal study

As a daily seasonality may be present in the series, we
perform additional experiments around seasonality. We
follow the same study used in the above part (Figure 2),
but focusing on seasonality and without applying a

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 9

further study in case of unsatisfactory results. Thereby,
we allow for choosing seasonal models, if appropriate.

The automatic building procedure for ETS does not
choose seasonal models. However, ARIMA can choose
new seasonal and differenced models. After modeling,
we use again the Ljung-Box test to evaluate the inde-
pendence of residuals, and we compare the new models
with the previous ones using the evaluation criteria. If
the results are unsatisfactory or the test rejects the null
hypothesis, we try to improve the results with the set
of general methods. Likewise, if the original series are
non-stationary, we also perform the seasonal process on
the differenced version of the series.

In this way, we can leverage the information from
ARIMA, or the significant seasonal lags (e.g., 24-lag
value for hourly data) obtained from the analysis to
create new models with a different embedding of lags.

At last, we repeat the calculation of evaluation criteria
over the new models to compare their performances
with those obtained from previous steps.

6 EXPERIMENTAL FRAMEWORK

This section describes the experimental framework used
in our experiments to demonstrate the feasibility of our
proposal. First of all, we present the data used in our
experiments as well as the preprocessing applied. Af-
terwards, we describe the experimental setup, including
the parameters for the used methods.

6.1 Dataset description
To evaluate the proposal we have gathered datasets from
four different cloud platforms. These are from Google
clusters [40], LANL Origin 2000 Cluster (Nirvana), Uni-
versity Gaia Cluster of Luxemburg, and Sharnet Whale,
[41]. Summary information of the datasets is shown in
Table 1. The datasets are original logs of these clusters,
which we have preprocessed to extract the data rele-
vant for the CPU usage, namely core-second values per
minute.

Log files are composed of historical resource usage
data. Measurements are usually taken at one second
intervals.

In the case of the Google dataset, the task resource
usage table contains the following fields: start and end
time, job ID, task index, machine ID CPU usage (mean),
memory usage, assigned memory, unmapped page cache
memory usage, page cache memory usage, maximum
memory usage, disk I/O time (mean), local disk space
used (mean), CPU usage (max), disk IO time (max),
Cycles Per Instruction (CPI), Memory Accesses per In-
struction (MAI), sampling rate and aggregation type. The
other three datasets have a similar log format.

As noted in Section 3, we focus on CPU usage. Data
are processed so that the total number of cores used by
all the tasks at a given one-second period is summed.
The resulting series represents the workload of the sys-
tem per minute. Finally, the data is normalized to zero

mean, variance one before applying methods, which has
practical considerations as many of the methods only
work well on normalized data. Predictions and error
information are then de-normalized and analyzed in the
input domain.

6.2 Experimental setup

All experiments are performed using R implementations
of the algorithms presented. Most of the methods used,
except ARIMA and ETS that fit their parameters in an
automatic way, have meta-parameters to set. We define
parameter grids for each method. For the ANN mod-
els, we consider as parameters the size of the hidden
layer and the weight decay rate with all combinations
of size={3, 5, 9, 15} and decay={0.00316, 0.0147, 0.1}.
SVR has the parameters cost, gamma, and epsilon. The
parameter grid for SVR contains the following configu-
ration: cost={10, 100}, gamma={0.001, 0.01, 0.2}, and ep-
silon=0.1. LASSO only has one free parameter (fraction),
which is chosen from fraction={0.1, 0.36, 0.63, 0.9}.

TABLE 2
Parameters chosen using parameter grids

Method Parameters
SVR cost = 100, gamma = 0.001, epsilon = 0.1
MLP size = 5, decay = 0.00316, maxit = 1,000
NNET size = 3, decay = 0.1, maxit = 1,000
ELMAN size = 5, decay = 0.00316, maxit = 1,000
LASSO fraction = 0.9
MARS –
AR –

To choose the most suitable parameter combination
for each method, we perform an initial study with a
smaller, comparable dataset from a similar domain. For
each method the parameter combination yielding the
lowest cumulative fitting error on all evaluation sets
is chosen. Furthermore, we also apply all forecasting
methods with all parameter combinations defined in the
parameter grids to train on all time series, to verify on
the training set that the initially chosen parameters are
reasonable choices. In this way, we avoid over-fitting
without loosing data for an additional validation set.

The models with the chosen parameter configurations
are executed over the respective test data. See Table 2
for the parameter configurations.

For every dataset the first 80% of data are used for
model training, and the remaining 20% compose the test
set. In addition, regarding the forecasting horizon, since
the most common usage scenario is one-step-ahead pre-
diction, every model has been designed for forecasting
with this horizon.

7 EXPERIMENTAL ANALYSIS

This section presents the experimental results as well
as their analysis. Due to space constraints, we show

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 10

TABLE 1
Summary information of the used datasets

Dataset name Google LANL O2K 1999 UniLu Gaia 2014 Sharnet Whale
Dataset file name clusterdata-2011-2 LANL-O2K-1999-2.swf UniLu-Gaia-2014-2.swf SHARCNET-Whale-2005-2.swf

Number of samples 42761 198352 128137 524608
Sampling interval 1 minute 1 minute 1 minute 1 minute

Sampling size 40GB 2.1MB 837KB 8.06MB
Length (s) 2565600 (29.69 days) 11901074 (137.74 days) 7694207 (89.95 days) 17529163 (202.88 days)

the most illustrative results and summaries of all other
results1.

7.1 Time series analysis
Figure 5 depicts the complete workload system series for
the Google dataset hourly CPU load 2. In the figure, we
see an oscillating pattern with a period length of approx.
one day, which could indicate a seasonal pattern of daily
fluctuation. However, in the ACF and PACF plots this
pattern is not reflected, which suggests that the cycles
change in length. In the PACF we see that lags 1, 2,
and 5 are significant. In the differenced version, we get
significant lags up to 12 and 16, respectively, in the ACF
and PACF plots.

The CPU 5-minute series is similar to the hourly
version; it shows an integrated behavior. Significant lags
are only present up to lag 10. Indeed, we do not expect
the 5-minute series to show a seasonality at lag 24.

To summarize, we observe in the plots that seasonal
patterns may be present in the time series, and we use a
lag value of 24 to evaluate daily patterns in the seasonal
study. ARIMA and ETS assess if there is daily seasonality
in the series and therewith if this lag choice is reasonable.
We also use a value of 5, as this is a maximal lag choice
commonly used in time series forecasting (as already
discussed in Section 5.2) and as most of the series’ auto-
correlation can be covered using the first 5 lags.

With respect to the other datasets, their plots display
shapes similar to the Google case. In general, the av-
erage time series value is much smaller and peaks are
more scattered and higher, which affects negatively its
predictability. The conclusion is again that no seasonality
pattern is observed.

7.2 Non-seasonal study
After having analyzed the series, we use ETS and
ARIMA to construct models without seasonality as a first
approach and use the Ljung-Box [38] test to evaluate the
independence of the residuals and therefore check the
quality of the models. Then, we check the linearity of
the original time series, performing a Teräsvirta [39] test
over all the time series.

After that, we try to improve the results obtained so
far, using an additional set of general forecasting models.

1. Detailed results as well as additional information is available at
the paper webpage: http://dicits.ugr.es/papers/CWF.

2. The full series plots, as well as the full ACF and PACF plots were
omitted here due to space constraints.

0 100 200 300 400 500

2
0

0
0

3
0

0
0

4
0

0
0

Time (hours)

N
u

m
b

e
r

o
f

c
o

re
s

CPU 1h

0 100 200 300 400 500

−
1

0
0

0
0

5
0

0

Time (hours)

D
if
fe

re
n

c
e

CPU 1h diff

0
.0

0
.4

0
.8

Lag

A
C

F

CPU 1h

0 5 10 15 20 25 30

−
0

.2
0

.0
0

.1

Lag

A
C

F

CPU 1h diff

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

P
a

rt
ia

l
A

C
F

CPU 1h

0 5 10 15 20 25 30

−
0

.2
−

0
.1

0
.0

0
.1

Lag

P
a

rt
ia

l
A

C
F

CPU 1h diff

0 5 10 15 20 25 30

Fig. 5. Google CPU 1h time series. The first row depicts
the original workload system series (“tserie” label) and its
differenced version (“diff” label). Here, the x-axis repre-
sents the time index (1h), and the y-axis represents the
CPU rate prediction. The second and third rows show the
corresponding ACF and PACF plots.

We use the number of lagged values derived from the
ARIMA results and the Ljung-Box test on the residuals
derived.

As stated before, ARIMA is a method which does not
need any parameter configuration in its automated ver-
sion (auto.arima) in R. ETS has a similar process to choose
among models which we also restrict to non-seasonal
models here. Table 3 shows non-seasonal models which
have been chosen using the automated selection process.

Regarding the models obtained, ETS does not choose
models with trend in any time series, and ARIMA
chooses generally models with the maximal lag 5 (the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 11

maximum is a parameter of the method) and with first
differencing. Table 3 shows the parameters used to build
the models that we use in the following sections.

TABLE 3
ARIMA/ETS results without seasonality

ARIMA
Google Lanl UniLu Sharnet

CPU 5min CPU 5min CPU 5min CPU 5min
RelMAE 0.972 0.987 1.259 0.952
sMAPE 3.150 13.473 22.900 3.961
Models ARIMA(4,1,4) ARIMA(1,1,2) ARIMA(5,1,2) ARIMA(5,1,3)

ETS
RelMAE 1.000 1.000 1.219 0.992
sMAPE 3.221 10.017 21.925 4.159
Model ETS(M,N,N) ETS(A,N,N) ETS(A,Ad,N) ETS(A,Ad,N)

Table 3 displays the RelMAE and sMAPE values for
ARIMA and ETS. The RelMAE indicates that ARIMA
models outperform the naı̈ve forecaster for the Google,
Lanl and Sharnet datasets. In addition, ARIMA provides
a lower RelMAE and a lower sMAPE than ETS in the
Google and Sharnet cases. ETS values indicate that this
technique is not suitable for the CWF series, and can
be safely discarded. As noted above the peculiar peak
distribution of UniLu hinders ARIMA and ETS from
performing well.

As regards the Ljung-Box test, results are shown in
Table 4. We see that both for ARIMA and ETS, there
is still auto-correlation left in the residuals. Thereby, it
is highly recommended to continue the exploration of
models. On the one hand, we have to check linearity of
the series, and on the other hand, the lag structure needs
to be expanded.

TABLE 4
Ljung-Box test

p-value
ARIMA

Google Lanl UniLu Sharnet
CPU 5min 0.0002893 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16

Models ARIMA(4,1,4) ARIMA(1,1,2) ARIMA(5,1,2) ARIMA(5,1,3)
ETS

CPU 5min 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16

Model ETS(M,N,N) ETS(A,N,N) ETS(A,Ad,N) ETS(A,Ad,N)

So, we use the Teräsvirta test to assess the linearity
of the original time series. As we can see in Table 5, the
null hypothesis is rejected in all cases. Thus, we can state
that it is highly desirable to use a complementary set of
general methods.

TABLE 5
Teräsvirta test

p-value
ARIMA

Google Lanl UniLu Sharnet
CPU 5min 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16 2.2 · 10−16

Using 5 lagged values and differenced time series to
train complementary regression methods, we obtain the

results shown in Table 6. To construct models that use
differencing, we have followed the procedure described
in Section 5.2.

TABLE 6
Non-seasonal results for general methods (model order

5)

Model Google Lanl UniLu Sharnet
RelMAE

AR 0.983 0.983 1.213 0.937
LASSO 0.987 0.982 1.194 0.961
MARS 0.979 0.978 1.167 0.972
NNET 0.973 0.969 1.109 0.973
ELMAN 1.308 0.997 1.288 1.560
MLP 0.977 0.983 1.122 0.956
SVR 0.969 1.001 1.447 1.762

sMAPE
AR 3.164 12.720 22.998 4.532
LASSO 3.177 13.715 22.617 4.463
MARS 3.157 13.211 21.264 4.218
NNET 3.131 13.001 21.170 4.188
ELMAN 4.269 13.383 27.393 10.613
MLP 3.145 13.238 20.929 4.463
SVR 3.125 14.379 34.409 10.482

In Table 6, we can see how there is no method that
always outperforms the others. We can see how methods
that offered very good results both in terms of RelMAE
and sMAPE on the Google dataset, namely SVR, show
the worst performance in almost all cases.

7.3 CWFR cost

Table 7 displays under-provisioning and over-
provisioning costs, Cup (upper part of the table)
and Cop (lower part of the table) for each model
expressed as ratio with respect to reactive behavior
without forecasting. The results are clear: for all the
datasets an improvement in Cup is reached by using a
forecaster. Even the simple naı̈ve forecast is better than
a primitive reactive approach. There is improvement
in both, Cup and Cop, with a better achievement for
Cup, whose average is around 30%. This is even more
interesting since the component of the cost with the
higher economic weight is Cup.

7.4 Seasonal study

As a daily seasonality may be present in the series, we
perform additional experiments with the hourly series.
We follow the same process used in the previous part,
but focus on seasonality.

A daily seasonality in hourly series means a lag differ-
ence of 24. So, we allow for choosing seasonal models,
if appropriate. The automatic building procedure for
ETS does not choose seasonal models in our cases, so
that Table 8 shows only the newly chosen models for
ARIMA. We can observe that automatic ARIMA now
chooses seasonal models for three series, as well as first
differencing for the “CPU 1h” series.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 12

TABLE 7
Under-provisioning and over-provisioning costs (model

order 5) 5 min

Model Google Lanl UniLu Sharnet
Under-provisioning cost ratio CupR

AR 89.117 83.997 92.639 80.131
LASSO 89.095 83.690 92.166 83.595
MARS 88.134 83.554 94.129 84.802
NNET 87.675 83.684 90.959 85.154
ELMAN 73.482 92.518 76.329 103.212
MLP 87.820 95.905 92.774 81.603
SVR 90.898 81.603 71.886 128.993
ARIMA 83.406 82.664 98.189 84.033
ETS 85.582 74.387 106.410 90.916
Naı̈ve 85.584 74.398 77.244 60.225
No prediction 100 100 100 100

Over-provisioning cost ratio CopR
AR 80.360 82.781 101.947 85.283
LASSO 80.225 101.752 98.892 84.828
MARS 81.374 82.697 99.680 86.105
NNET 87.431 81.865 93.482 89.029
ELMAN 120.577 77.884 129.72 119.784
MLP 85.131 75.705 89.573 94.336
SVR 84.931 86.197 138.591 93.520
ARIMA 86.613 82.767 99.041 84.063
ETS 86.300 75.427 106.636 90.947
Naı̈ve 86.373 74.410 77.297 60.247
No prediction 100 100 100 100

TABLE 8
ARIMA results with seasonality

ARIMA
Google Lanl UniLu Sharnet
CPU 1h CPU 1h CPU 1h CPU 1h

RelMAE 0.921 1.062 1.134 1.021
sMAPE 6.315 30.222 44.390 30.070
Model ARIMA(5,1,4)(1,0,0)[24] ARIMA(4,1,4)(0,0,2)[24] ARIMA(1,1,1) ARIMA(2,1,1)(2,0,0)[24]

In Table 8, we see how LANL and Sharnet show better
RelMAE and sMAPE in the non-seasonal case, on the
other hand UniLu has a better RelMAE in the non-
seasonal case although in the seasonal case UniLu has a
higher sMAPE, as occurs in the case of the Google data.

TABLE 9
Ljung-Box test

p-value
ARIMA

Google Lanl UniLu Sharnet
CPU 1h 2.2 · 10−16 2.28 · 10−11 0.2134 3.13 · 10−06

Furthermore, Ljung-Box test results for the residuals
are shown in Table 9. We see that there is a lot of
auto-correlation left which the models do not adequately
exploit. These results show that there seems not to be a
clear 24-hour seasonality present in the data. However,
as it was shown before a lag structure of 5 may not
be sufficient as there is auto-correlation also in higher
lags. Thereby, we decided to use the general models
in a further experiment with a lag structure of 24. The
results for this experiment show a slight improvement in
terms of RelMAE and sMAPE of the models for Google

and Lanl with respect to the corresponding non-seasonal
results displayed in Table 6.

Next, we evaluate the impact of seasonal models with
increased lag terms. Table 10 presents the cost of under-
provisioning and over-provisioning in terms of ratios
for these models. Again, a clear reduction in both Cup

and Cop is reached when using forecasting models with
respect to the reactive approach. The size of reduction,
however, is smaller than in the non-seasonal model
cases.

TABLE 10
Under-provisioning and over-provisioning costs (model

order 24) 5 min

Model Google Lanl UniLu Sharnet
Under-provisioning cost ratio CupR

AR 93.206 95.340 99.436 98.775
LASSO 92.972 95.288 99.072 98.755
MARS 92.996 95.371 101.005 98.425
NNET 91.224 95.675 98.352 98.772
ELMAN 89.603 100.416 72.750 99.767
MLP 91.022 93.700 93.237 99.896
SVR 94.996 95.301 90.714 105.016
ARIMA 90.172 84.732 89.905 96.712
ETS 96.305 96.190 94.224 98.193
Naı̈ve 98.123 98.001 98.550 95.516
No prediction 100 100 100 100

Over-provisioning cost ratio CopR
AR 91.485 94.932 101.475 99.014
LASSO 91.593 94.497 101.177 99.006
MARS 92.583 94.957 101.772 98.844
NNET 93.722 95.246 99.416 98.988
ELMAN 112.496 92.982 154.536 114.268
MLP 99.074 95.782 106.863 98.343
SVR 94.008 97.732 115.831 99.167
ARIMA 90.546 84.922 89.931 96.730
ETS 96.834 94.242 94.227 98.216
Naı̈ve 98.796 98.028 98.715 95.535
No prediction 100 100 100 100

In conclusion, the application of the proposed method-
ology has led us to gain some useful insight regarding
CWF time series properties, i.e., no seasonality, nor trend
is found, and they are non-linear. This helps to discard
some models and focus on others. In addition, by using
the forecasting models developed here, a significant re-
duction in under-provisioning and over-provisiong costs
can be achieved.

7.5 Forecasting for longer time horizons
While the concern of this paper is providing an effective
method for the short-term workload forecasting (so-
called operational horizon), at the request of one of the ref-
erees, we have performed some experiments for longer
horizons. Hence, we have defined similar prediction
problems considering 10, 15, 30, 45 and 60 minutes ahead
and built the corresponding models. Due to space con-
straints, we cannot include complete empirical results,
just some conclusions. The general conclusion is that, as

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 13

expected, the cost increases as the time horizon grows
longer. Although not in every case, because the average
cost at 15 minutes is smaller than at 10 minutes. The
averages cost increase percentage, expressed in % with
respect to the cost obtained at a 5-minute, are 43.211,
44.083, 20.077, 15.597, and 19.664, for 60, 45, 30, 15, and
10 minutes, respectively.

8 CONCLUSIONS

In this paper, we have discussed the concept of elasticity
in Cloud Computing, as well as the relevance of having
a proper forecasting module, as part of a complete elastic
system. We have seen that workload forecasting in cloud
platforms is a problem that needs a preliminary stage to
analyze and model properly the properties of the time
series.

As there is no general framework or methodology in
the literature that addresses the CWF problem analyti-
cally from a time series point of view, we propose a com-
bination of tools based on a state-of-the-art forecasting
methodology, which we have enhanced and completed.
This methodology comprises a deeper study through the
analysis and the modeling of workload series to better
understand the intrinsic properties of the series.

Since the error in CWF is clearly asymmetric we have
proposed a new measure to assess the cost of under-
provisioning and over-provisioning. These measures al-
low for a better visualization of the performance of the
elastic provisioning module of cloud platforms.

The effectiveness of this approach has been evaluated
through its application to workloads of four different
cloud datacenters. The insights gained from the empir-
ical results have allowed to find the best model archi-
tecture, so that the best forecasts from the viewpoint of
the current state of the art in time series forecasting have
been achieved.

Finally, we found that the use of forecasting algo-
rithms leads to significant cost reductions in both under-
provisioning and over-provisioning, which is of great
importance to the industry that provides cloud comput-
ing. A reduction around 30% was observed in our study
cases.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor
and anonymous reviewers for their insightful comments,
which have led to a much improved version of the paper.

This work was partially supported by the Span-
ish Ministry of Science and Technology under projects
TIN2011-28488, TIN2013-47210, and the Andalusian Re-
search Plans P11-TIC-7765, P10-TIC-6858 and P12-TIC-
2958.

REFERENCES

[1] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing
Principles and Paradigms. Wiley Publishing, 2011.

[2] Gartner, “Gartner’s 2013 CIO agenda report,” 2013.
[Online]. Available: http://www.gartner.com/imagesrv/cio/
pdf/cio agenda insights2013.pdf

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility.” Future
Generation Comp. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[4] A. Halavais, “The Slashdot Effect: analysis of a large-scale public
conversation on the World Wide Web,” Ph.D. dissertation, Uni-
versity of Washington, 2001.

[5] R. Hyndman and G. Athanasopoulos, “Forecasting: Principles
and practice,” 2013. [Online]. Available: http://otexts.org/fpp/

[6] S. Makridakis and M. Hibon, “The M3-competition: Results,
conclusions and implications,” International Journal of Forecasting,
vol. 16, no. 4, pp. 451–476, 2000.

[7] S. Crone, M. Hibon, and K. Nikolopoulos, “Advances in fore-
casting with neural networks? empirical evidence from the NN3
competition on time series prediction,” International Journal of
Forecasting, vol. 27, no. 3, pp. 635–660, 2011.

[8] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou,
“Elastic admission control for federated cloud services,” IEEE
Transactions on Cloud Computing, vol. 2, no. 3, pp. 348–361, 2014.

[9] S. Tang, B.-S. Lee, and B. He, “DynamicMR: A dynamic slot
allocation optimization framework for mapreduce clusters,” IEEE
Transactions on Cloud Computing, vol. 2, no. 3, pp. 333–347, 2014.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of Cloud Computing,” Commun. ACM, vol. 53, no. 4, pp.
50–58, 2010.

[11] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in
the Cloud using predictive models for workload forecasting,” in
Proceedings of the 2011 IEEE 4th International Conference on Cloud
Computing, ser. CLOUD ’11, 2011, pp. 500–507.

[12] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: com-
paring public cloud providers,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, ser. IMC ’10, 2010,
pp. 1–14.

[13] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, A Performance Analysis of EC2 Cloud Computing Services
for Scientific Computing. Springer Berlin Heidelberg, 2010, Online
ISBN 978-3-642-12636-9.

[14] M. Mao and M. Humphrey, “A performance study on the vm
startup time in the cloud,” Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pp. 423–430, 2012.

[15] G. Galante and L. C. E. d. Bona, “A survey on cloud computing
elasticity,” in Proceedings of the 2012 IEEE/ACM Fifth International
Conference on Utility and Cloud Computing, ser. UCC ’12, 2012, pp.
263–270.

[16] W. Dawoud, I. Takouna, and C. Meinel, “Elastic VM for cloud
resources provisioning optimization,” in ACC (1), ser. Communi-
cations in Computer and Information Science, A. Abraham, J. L.
Mauri, J. F. Buford, J. Suzuki, and S. M. Thampi, Eds., vol. 190,
2011, pp. 431–445.

[17] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive
resource provisioning for read intensive multi-tier applications in
the Cloud,” Future Generation Computer Systems, vol. 27, no. 6, pp.
871 – 879, 2011.

[18] J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero, “Predictive
data grouping and placement for cloud-based elastic server infras-
tructures,” in Proceedings of the 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, ser. CCGRID ’11,
2011, pp. 285–294.

[19] G. Reig, J. Alonso, and J. Guitart, “Prediction of job resource
requirements for deadline schedulers to manage high-level slas
on the Cloud,” in Proceedings of the 2010 Ninth IEEE International
Symposium on Network Computing and Applications, ser. NCA ’10,
2010, pp. 162–167.

[20] L. R. Moore, K. Bean, and T. Ellahi, “Transforming reactive
auto-scaling into proactive auto-scaling,” in Proceedings of the 3rd
International Workshop on Cloud Data and Platforms, ser. CloudDP
’13, 2013, pp. 7–12.

[21] M. Imam, S. Miskhat, R. Rahman, and M. Amin, “Neural net-
work and regression based processor load prediction for efficient
scaling of grid and cloud resources,” in Computer and Information
Technology (ICCIT), 2011 14th International Conference on, 2011, pp.
333–338.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, MONTH 2014 14

[22] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the Cloud,” Future
Gener. Comput. Syst., vol. 28, no. 1, pp. 155–162, 2012.

[23] Z. Gong, X. Gu, and J. Wilkes, “PRESS: predictive elastic resource
scaling for cloud systems,” in CNSM, 2010, pp. 9–16.

[24] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: elastic
resource scaling for multi-tenant cloud systems,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing, ser. SOCC ’11, 2011,
pp. 5:1–5:14.

[25] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware
elasticity provisioning system for the Cloud,” in Proceedings of the
2011 31st International Conference on Distributed Computing Systems,
ser. ICDCS ’11, 2011, pp. 559–570.

[26] R. Hyndman and A. Koehler, “Another look at measures of
forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4,
pp. 679–688, 2006.

[27] R. Hyndman and Y. Khandakar, “Automatic time series forecast-
ing: The forecast package for R,” Journal of Statistical Software,
vol. 27, no. 3, pp. 1–22, 2008.

[28] G. Box and G. Jenkins, Time series analysis: Forecasting and control.
Holden-Day, 1970.

[29] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2009. [Online]. Available: http://www.R-project.
org

[30] P. Goodwin, “The Holt-Winters approach to exponential smooth-
ing: 50 years old and going strong,” Foresight: The International
Journal of Applied Forecasting, vol. 19, pp. 30–33, 2010.

[31] B. e. Efron, “Least angle regression,” Annals of Statistics, vol. 32,
no. 2, pp. 407–499, 2004.

[32] J. H. Friedman, “Multivariate adaptive regression splines,” The
Annals of Statistics, vol. 19, pp. 1–67, 1991.

[33] C. Bergmeir and J. M. Benı́ez, “Neural networks in R using the
Stuttgart Neural Network Simulator: RSNNS,” Journal of Statistical
Software, vol. 46, no. 7, pp. 1–26, 2012.

[34] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S.
Springer, 2002.

[35] J. L. Elman, “Finding structure in time,” COGNITIVE SCIENCE,
vol. 14, no. 2, pp. 179–211, 1990.

[36] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, software available at http://www.csie.ntu.edu.
tw/∼cjlin/libsvm.

[37] S. Makridakis, S. Wheelwright, and R. Hyndman, Forecasting:
Methods and Applications. Wiley, 1997, ISBN 0471532339.

[38] G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in time
series models,” Biometrika, pp. 297–303, 1978.

[39] T. Teräsvirta, C.-F. Lin, and C. W. J. Granger, “Power of the neural
network linearity test,” Journal of Time Series Analysis, vol. 14,
no. 2, pp. 209–220, 1993.

[40] Google, “Google Cluster Data: traces of Google work-
loads,” 2013. [Online]. Available: http://code.google.com/p/
googleclusterdata/wiki/ClusterData2011 1/

[41] T. R. The Hebrew University of Jerusalem, S. B. S.
of Computer Science, and Engineering, “Logs of real parallel
workloads from production systems,” 2015. [Online]. Available:
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

Francisco Javier Baldán Telecommunications
engineer in 2014 from the University of Granada,
Spain. He received the Official Master degree
in Data Science and Computer Engineering in
2015 from the University of Granada, Spain.
He is currently a member of the Department
of Computer Science and Artificial Intelligence,
University of Granada, Spain. His research in-
terests include time series data mining, big
data and cloud computing with parallel and dis-
tributed computing.

Sergio Ramı́rez-Gallego received the M.Sc.
degree in Computer Science in 2012 from the
University of Jaén, Spain. He is currently a Ph.D.
student in the Department of Computer Science
and Artificial Intelligence, University of Granada,
Spain. His research interests include data min-
ing, cloud computing, big data and parallel and
distributed computing.

Christoph Bergmeir received the M.Sc. degree
in Computer Science from the University of Ulm,
Germany, in 2008, and the Ph.D. degree from
the University of Granada, Spain, in 2013. He
is currently working at the Faculty of Informa-
tion Technology, Monash University, Melbourne,
Australia, as a Research Fellow (Applied Ma-
chine Learning). He has published in journals
such as IEEE Transactions on Neural Networks
and Learning Systems, Journal of Statistical
Software, Computer Methods and Programs in

Biomedicine, and Information Sciences.

Francisco Herrera received his M.Sc. in Math-
ematics in 1988 and Ph.D. in Mathematics in
1991, both from the University of Granada,
Spain. He is currently a Professor in the Depart-
ment of Computer Science and Artificial Intelli-
gence at the University of Granada. He has been
the supervisor of 36 Ph.D. students. He has
published more than 290 papers in international
journals. He currently acts as Editor in Chief
of the international journals ”Information Fusion”
(Elsevier) and ”Progress in Artificial Intelligence”

(Springer). He acts as editorial member of a dozen of journals. His cur-
rent research interests include among others, soft computing (including
fuzzy modeling and evolutionary algorithms), decision making, biblio-
metrics, biometric, data preprocessing, data mining, cloud computing
and big data.

José Manuel Benı́tez (M’98) received the M.S.
and PhD. degrees in Computer Science both
from the Universidad de Granada, Spain. He
is currently an Associate Professor at the De-
partment of Computer Science and Artificial In-
telligence, Universidad de Granada. He is the
head of the Distributed Computational Intelli-
gence and Time Series (DiCITS) lab. His re-
search interests include Cloud Computing and
Big Data, Data Science, Computational Intelli-
gence and Time Series. He has published in the

leading journals of the “Artificial Intelligence” and Computer Science
field.

