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Abstract: In this work, we show that if F is a positive integer, then Sat(F) = {S | S is a saturated nu-
merical semigroup with Frobenius number F} is a covariety. As a consequence, we present two
algorithms: one that computes Sat(F), and another which computes all the elements of Sat(F) with
a fixed genus. If X ⊆ S\∆(F) for some S ∈ Sat(F), then we see that there exists the least element
of Sat(F) containing X. This element is denoted by Sat(F)[X]. If S ∈ Sat(F), then we define the
Sat(F)-rank of S as the minimum of {cardinality(X) | S = Sat(F)[X]}. In this paper, we present an
algorithm to compute all the elements of Sat(F) with a given Sat(F)-rank.

Keywords: numerical semigroup; covariety; Frobenius number; genus; saturated numerical semigroup;
algorithm

1. Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a subset S of N
which is closed by sum 0 ∈ S and N\S is finite. The set N\S is known as the set of gaps of S
and its cardinality, denoted by g(S), is the genus of S. The largest integer not belonging to S
is known as the Frobenius number of S and it will be denoted by F(S).

Let A be a nonempty subset of N. Then

⟨A⟩ =
{

p

∑
i=1

αiai | p ∈ N, {a1, · · · , ap} ⊆ A and {α1, . . . , αp} ⊂ N
}

is a numerical semigroup if and only if gcd(a1, . . . , ap) = 1 and every numerical semigroup
has this form (see [1], Lemma 2.1). The set A is called a system of generators of a numerical
semigroup S if S = ⟨A⟩. In addition, if S ̸= ⟨B⟩ for every B ⊊ A, then we say that A is a
minimal system of generators of S.

In [1], Corollary 2.8, it is proven that every numerical semigroup has a unique minimal
system of generators which is also finite. We denote this by msg(S) for the minimal system
of generators of S. The cardinality of msg(S) is called the embedding dimension of S and is
denoted by e(S). Another invariant which we use in this work is the minimum of S\{0}. It
is called the multiplicity of S and it is denoted by m(S).

If S is a numerical semigroup S, the multiplicity, the genus, and the Frobenius num-
ber of S are three essential invariants in the theory of numerical semigroups (see for
example [2,3] and the references given there). These invariants will be fundamental tools
in this paper.

The Frobenius problem (see [3]) for numerical semigroups consists of obtaining for-
mulas for calculating the Frobenius number and the genus of a numerical semigroup from
its minimal system of generators. When the numerical semigroup has an embedding
dimension of two, the problem has been solved by J. J. Sylvester (see [4]). However, if
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the numerical semigroup has an embedding dimension greater than or equal to three, the
problem is still open.

To find a solution to the Frobenius problem, in [5] we study the set A (F) = {S |
S is a numerical semigroup with F(S) = F}, where F ∈ N\{0}. The generalization of A (F)
as a family of numerical semigroups that verifies certain properties lead us to introduce
the concept of covariety in [5]. That is, a covariety is a nonempty family C of numerical
semigroups that fulfills the following conditions:

(1) C has a minimum, denoted by ∆(C ) = min(C ), with respect to set inclusion.
(2) If {S, T} ⊆ C , then S ∩ T ∈ C .
(3) If S ∈ C and S ̸= ∆(C ), then S\{m(S)} ∈ C .

This concept has allowed us to study common properties of some families of numerical
semigroups. For instance, in [6] we have studied the set of all numerical semigroups which
have the Arf property (see for example [2]) with a given Frobenius number, showing some
algorithms to compute them.

In the semigroup literature, one can find a long list of works dedicated to the study
of one-dimensional analytically irreducible domains via their value semigroup (see for
instance [7–11]). One of the properties studied for this type of rings using this approach has
been to be saturated. Saturated rings were introduced in three different ways by Zariski [12],
Pham-Teissier [13], and Campillo [14]. These three definitions coincide for algebraically
closed fields of characteristic zero. The characterization of saturated rings in terms of their
value semigroups gave rise to the notion of saturated numerical semigroups (see [15,16]).

If A ⊆ N and a ∈ A, then we let dA(a) = gcd{x ∈ A | x ≤ a}. A numerical semigroup
S is saturated if s + dS(s) ∈ S for all s ∈ S\{0}.

If F ∈ N\{0}, then we also let

Sat(F) = {S | S is a saturated numerical semigroup and F(S) = F}.

The aim of this paper is to study the set Sat(F) by using the techniques of covarieties.
This work is structured as follows. Section 2 is devoted to recalling some concepts and
results which will be used in this work. Additionally, we show how we can compute some
of them with the help of the GAP [17] package numericalsgps [18]. In Section 3, we show
that Sat(F) is a covariety. This fact allows us to order the elements of Sat(F) making it a
tree; consequently, we can show an algorithm that allows us to calculate all the elements
belonging to Sat(F).

In Section 4, we show what the maximal elements of Sat(F) are. We compute the set
{g(S) | S ∈ Sat(F)} and we apply this result to give an algorithm which enables us to
calculate all the elements of Sat(F) with a fixed genus.

Now a set X is called a Sat(F)-set, if it verifies the following conditions:

(1) X ∩ {0, F + 1,→} = ∅, where the symbol → means that every integer greater than
F + 1 belongs to the set.

(2) There exists S ∈ Sat(F) such that X ⊆ S.

In Section 5, we see that if X is a Sat(F)-set, then there exists the least element of Sat(F)
containing X. This element will be denoted by Sat(F)[X].

We say that X is a Sat(F)-system of generators of S if S = Sat(F)[X]. Additionally, we
show that every element of Sat(F) admits a unique minimal Sat(F)-system of generators.

The Sat(F)-rank of an element of Sat(F) is the cardinality of its minimal Sat(F)-system
of generators. In Section 6, we present an algorithmic procedure to compute all the elements
of Sat(F) with a given Sat(F)-rank.

2. Preliminaries

In this section, we present some concepts and results which are necessary for under-
standing the work. In [1], Proposition 3.10 reveals the proof of the following result.

Proposition 1. If S is a numerical semigroup, then e(S) ≤ m(S).
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We say that a numerical semigroup S has maximal embedding dimension (MED-semigroup)
if e(S) = m(S).

By applying the results of [1], Section 3, the next property arises.

Proposition 2. Every saturated numerical semigroup is a MED-semigroup.

An integer z is a pseudo-Frobenius number of a numerical semigroup S if z /∈ S and
z + s ∈ S for all s ∈ S\{0} (see [19]). The set formed by the pseudo-Frobenius numbers of
S is denoted by PF(S). Its cardinality is an important invariant of S (see [2,20]) called the
type of S, denoted by t(S).

For instance, let S = ⟨7, 8, 9, 11, 13⟩, and if we want to calculate the set PF(S), then we
use the following sentences:

gap> S := NumericalSemigroup(7,8,9,11,13);
<Numerical semigroup with 5 generators>
gap> PseudoFrobeniusOfNumericalSemigroup(S);
[ 6, 10, 12 ]

Let S be a numerical semigroup; we set SG(S) = {x ∈ PF(S) | 2x ∈ S}. The elements
of SG(S) will be called special gaps of S.

For instance, given the numerical semigroup S = ⟨6, 7, 8, 10, 11⟩, if we want to calculate
the set SG(S), then we use the following sentences:

gap> S := NumericalSemigroup(6,7,8,10,11);
<Numerical semigroup with 5 generators>
gap> SpecialGaps(S);
[ 4, 5, 9 ]

In [1], Proposition 4.33, the following result appears.

Proposition 3. Let S be a numerical semigroup and x ∈ N\S. Then x ∈ SG(S) if and only if
S ∪ {x} is a numerical semigroup.

Let S be a numerical semigroup and n ∈ S\{0}. The Apéry set of n in S (in honor
of [21]) is defined as Ap(S, n) = {s ∈ S | s − n /∈ S}.

For instance, to compute Ap(S, 8), with S = ⟨8, 9, 11, 13⟩, we use the following sentences:

gap> S := NumericalSemigroup(8,9,11,13);
<Numerical semigroup with 4 generators>
gap> AperyList(S,8);
[ 0, 9, 18, 11, 20, 13, 22, 31 ]

The following result follows from [1], Lemma 2.4.

Proposition 4. Let S be a numerical semigroup and n ∈ S\{0}. Then Ap(S, n) is a set with
cardinality n. Moreover, Ap(S, n) = {0 = w(0), w(1), . . . , w(n − 1)}, where w(i) is the least
element of S congruent with i modulo n, for all i ∈ {0, . . . , n − 1}.

The following result characterizes MED-semigroups. The proof can be deduced
from [1], Proposition 3.1.

Proposition 5. Let S be a numerical semigroup. Then S is a MED-semigroup if and only if
msg(S) = (Ap(S, m(S))\{0}) ∪ {m(S)}.

Given that S is a numerical semigroup, we define an order relation on Z as follows:
x ≤S y if y − x ∈ S. The following result appears in [19], Lemma 10.
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Proposition 6. If S is a numerical semigroup and n ∈ S\{0}, then

PF(S) = {w − n | w ∈ Maximals≤S Ap(S, n)}.

The next proposition has an easy proof.

Proposition 7. Let S be a numerical semigroup and n ∈ S\{0} and w ∈ Ap(S, n). Then
w ∈ Maximals≤S Ap(S, n) if and only if w + w′ /∈ Ap(S, n) for all w′ ∈ Ap(S, n)\{0}.

The following proposition has an immediate proof.

Proposition 8. If S is a numerical semigroup and S ̸= N, then

SG(S) = {x ∈ PF(S) | 2x /∈ PF(S)}.

Remark 1. Observe that as a consequence of Propositions 6–8, if S is a numerical semigroup and
we know the set Ap(S, n) for some n ∈ S\{0}, then we can easily calculate the set SG(S).

The following result is well known, as well as very easy to prove.

Proposition 9. Let S and T be numerical semigroups and x ∈ S. Then the following hold:

(1) S ∩ T is a numerical semigroup and F(S ∩ T) = max{F(S), F(T)}.
(2) S\{x} is a numerical semigroup if and only if x ∈ msg(S).
(3) m(S) = min(msg(S)).

The following result is Lemma 2.14 from [1].

Proposition 10. If S is a numerical semigroup, then F(S)+1
2 ≤ g(S).

3. The Tree Associated to Sat(F)

Our first goal in this section is to show that given F, a positive integer, the set
Sat(F) = {S | S is a saturated numerical semigroup and F(S) = F} is a covariety.

The next result can be found in [22], Proposition 5.

Lemma 1. If S and T are saturated numerical semigroups, then S ∩ T is also a saturated numerical
semigroup.

The following result has an immediate proof.

Lemma 2. Let F be a positive integer. Then the following properties are verified as follows:

(1) If m ∈ N, then ∆(m) = {0, m,→} is a saturated numerical semigroup.
(2) ∆(F + 1) is the minimum of Sat(F).
(3) If S is a saturated numerical semigroup, then S\{m(S)} is also a saturated numerical

semigroup.

By applying Proposition 9 and Lemmas 1 and 2, we can easily deduce the follow-
ing fact.

Proposition 11. If F is a positive integer, then Sat(F) is a covariety.

A graph G is a pair (V, E) where V is a nonempty set and E is a subset of {(u, v) ∈
V × V | u ̸= v}. The elements of V and E are called vertices and edges, respectively. A path
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of length n, connecting the vertices x and y of G, is a sequence of different edges of the form
(v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y.

A graph G is a tree if there exists a vertex r (known as the root of G) such that for any
other vertex x of G, there exists a unique path connecting x and r. If (u, v) is an edge of the
tree G, we say that u is a child of v.

For a positive integer F we define the graph G(F) as follows:

• the set of vertices of G(F) is Sat(F);
• (S, T) ∈ Sat(F)× Sat(F) is an edge of G(F) if and only if T = S\{m(S)}.

By using [5], Propositions 2.6 and 11, we obtain the following result.

Proposition 12. Let F be a positive integer. Then G(F) is a tree with root ∆(F + 1).

A tree can be built in a recurrent way starting from the root and joining, by using an
edge, the vertices already built with their children. Therefore it is very necessary to charac-
terize who a given vertex’s children are in the tree G(F). This is the reason for introducing
the following concepts and results.

The following result is deduced from Proposition 11 and [5], Proposition 2.9.

Proposition 13. If S ∈ Sat(F), then the children of S in the tree G(F), is the set

{S ∪ {x} | x ∈ SG(S), x < m(S) and S ∪ {x} ∈ Sat(F)}.

Let S ∈ Sat(F) and x ∈ SG(S) such that x < m(S) and x ̸= F. The following result
provides us an algorithm to decide if S ∪ {x} belongs to Sat(F).

Proposition 14. Let S ∈ Sat(F), x ∈ SG(S) with x < m(S), and x ̸= F. Then S∪{x} ∈ Sat(F)
if and only if s + dS∪{x}(s) ∈ S for every s ∈ {m(S), · · · , m(S) + x}.

Proof. Necessity. Trivial.
Sufficiency. We have to prove that if s ∈ S and s > m(S) + x, then s + dS∪{x}(s) ∈
S. Hence, it is enough to show that dS(s) = dS∪{x}(s). But it is true because dS(s) =
gcd{m(S), · · · , m(S) + x, · · · , s} = gcd{x, m(S), · · · , s} = dS∪{x}(s).

Example 1. It is clear that S = {0, 8, 10, 12, 14, 16, 18,→} ∈ Sat(17) and 6 ∈ SG(S).
As

{8 + dS∪{6}(8), 10 + dS∪{6}(10), 12 + dS∪{6}(12), 14 + dS∪{6}(14)} =

{8 + 2, 10 + 2, 12 + 2, 14 + 2} ⊆ S,

by applying Proposition 14, we have that S ∪ {6} ∈ Sat(17).

The next proposition is Proposition 4.6 of [6].

Proposition 15. Let S be a numerical semigroup and x ∈ SG(S) such that x < m(S) and S∪ {x}
is a MED-semigroup. Then the following conditions hold.

(1) For every j ∈ {1, . . . , x − 1}, there exists a ∈ msg(S) such that a ≡ j (mod x).
(2) If λ(j) = min{a ∈ msg(S) | a ≡ j (mod x)} for all j ∈ {1, . . . , x − 1}, then msg(S ∪

{x}) = {x, λ(1), . . . , λ(x − 1)}.

Remark 2. Note that as a consequence of Propositions 2, 13, and 15, if S ∈ Sat(F) and if we know
the set msg(S), then we can easily compute msg(T) for every child T of S in the tree G(F).
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Algorithm 1 Computation of Sat(F).
INPUT: A positive integer F.
OUTPUT: Sat(F).

(1) ∆ = ⟨F + 1, . . . , 2F + 1⟩, Sat(F) = {∆}, and B = {∆}.
(2) For every S ∈ B, compute θ(S) = {x ∈ SG(S) | x < m(S), x ̸= F, and S ∪ {x} is a

saturated numerical semigroup} (by using Proposition 5 and 14, Remark 1).
(3) If

⋃
S∈B

θ(S) = ∅, then return Sat(F).

(4) C =
⋃

S∈B
{S ∪ {x} | x ∈ θ(S)}.

(5) For all S ∈ C compute msg(S) by using Proposition 15.
(6) Sat(F) = Sat(F) ∪ C, B = C, and go to Step (2).

Next, we illustrate this algorithm with an example.

Example 2. We calculate Sat(7) by using Algorithm 1.

• ∆ = ⟨8, 9, 10, 11, 12, 13, 14, 15⟩, Sat(7) = {∆}, and B = {∆}.
• By Proposition 5, we know that Ap(∆, 8) = {0, 9, 10, 11, 12, 13, 14, 15}. By using Remark 1,

we have that SG(∆) = {4, 5, 6, 7} and by using Proposition 14, θ(∆) = {4, 5, 6}.
• C = {∆ ∪ {4}, ∆ ∪ {5}, ∆ ∪ {6}} and by applying Proposition 15, we have that msg(∆ ∪

{4}) = {4, 9, 10, 11}, msg(∆ ∪ {5}) = {5, 8, 9, 11, 12} and msg(∆ ∪ {6}) = {6, 8, 9, 10,
11, 13}.

• Sat(7) = {∆, ∆ ∪ {4}, ∆ ∪ {5}, ∆ ∪ {6}} and B = {∆ ∪ {4}, ∆ ∪ {5}, ∆ ∪ {6}}.
• Ap(∆ ∪ {4}, 4) = {0, 9, 10, 11}, Ap(∆ ∪ {5}, 5) = {0, 8, 9, 11, 12} and Ap(∆ ∪ {6}, 6) =

{0, 8, 9, 10, 11, 13}. Then SG(∆ ∪ {4}) = {5, 6, 7}, SG(∆ ∪ {5}) = {4, 6, 7} and SG(∆ ∪
{6}) = {3, 4, 5, 7}. Therefore, θ(∆ ∪ {4}) = ∅ = θ(∆ ∪ {5}) and θ(∆ ∪ {6}) = {3, 4}.

• C = {∆ ∪ {3, 6}, ∆ ∪ {4, 6}}, msg(∆ ∪ {3, 6}) = {3, 8, 10} and msg(∆ ∪ {4, 6}) =
{4, 6, 9, 11}.

• Sat(7) = {∆, ∆ ∪ {4}, ∆ ∪ {5}, ∆ ∪ {6}, ∆ ∪ {3, 6}, ∆ ∪ {4, 6}} and B = {∆ ∪ {3, 6}, ∆ ∪
{4, 6}}.

• Ap(∆ ∪ {3, 6}, 3) = {0, 8, 10} and Ap(∆ ∪ {4, 6}, 4) = {0, 6, 9, 11}. Then SG(∆ ∪
{3, 6}) = {5, 7} and SG(∆ ∪ {4, 6}) = {2, 5, 7}. Therefore, θ(∆ ∪ {3, 6}) = ∅ and
θ(∆ ∪ {4, 6}) = {2}.

• C = {∆ ∪ {2, 4, 6}} and msg(∆ ∪ {2, 4, 6}) = {2, 9}.
• Sat(7) = {∆, ∆ ∪ {4}, ∆ ∪ {5}, ∆ ∪ {6}, ∆ ∪ {3, 6}, ∆ ∪ {4, 6}, ∆ ∪ {2, 4, 6}} and B =

{∆ ∪ {2, 4, 6}}.
• Ap(∆ ∪ {2, 4, 6}, 2) = {0, 9}. Then SG(∆ ∪ {2, 4, 6}) = {7} and θ(∆ ∪ {2, 4, 6}) = ∅.
• The algorithm returns

Sat(7) = {∆, ∆ ∪ {4}, ∆ ∪ {5}, ∆ ∪ {6}, ∆ ∪ {3, 6}, ∆ ∪ {4, 6}, ∆ ∪ {2, 4, 6}}.

4. The Elements of Sat(F) with a Fixed Genus

Given positive integers F and g, let

Sat(F, g) = {S ∈ Sat(F) | g(S) = g}.

From Proposition 10, the following result is deduced.

Lemma 3. With the previous notation, if Sat(F, g) ̸= ∅, then F+1
2 ≤ g ≤ F.

Let S be a numerical semigroup; then the associated sequence to S is recursively defined
as follows:

• S0 = S,
• Sn+1 = Sn\{m(Sn)} for all n ∈ N.
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Let S be a numerical semigroup. We say that an element s of S is a small element of S
if s < F(S). The set of small elements of S is denoted by N(S). The cardinality of N(S) is
denoted by n(S).

Clearly, the set {0, . . . , F(S)} is the disjointed union of the sets N(S) and N\S. Hence,
we have the following result.

Lemma 4. If S is a numerical semigroup, then g(S) + n(S) = F(S) + 1.

Let S be a numerical semigroup and {Sn}n∈N its associated sequence; then the set
Cad(S) = {S0, S1, . . . , Sn(S)−1} is called the associated chain to S. Note that S0 = S and
Sn(S)−1 = ∆(F(S) + 1).

Observe that, from Proposition 11, we know that if S ∈ Sat(F), then Cad(S) ⊆ Sat(F).
Therefore, we can present the following result.

Lemma 5. If S ∈ Sat(F), then Sat(F, g) ̸= ∅ for all g ∈ {g(S), · · · , F}.

Our next aim is to determine the minimum element of the set {g(S) | S ∈ Sat(F)}. For
this purpose we introduce the following notation. If {a, b} ⊆ N, then we denote this by

T(a, b) = ⟨a⟩ ∪ {x ∈ N | x ≥ b}.

For integers a and b, we say that a divides b if there exists an integer c such that b = ca,
and we denote this by a | b. Otherwise, a does not divide b, and we denote this by a ∤ b.

The next lemma is [23], Lemma 2.3, which shows a characterization of saturated
numerical semigroups.

Lemma 6. Let S be a numerical semigroup. Then S is a saturated numerical semigroup if and only
if there are positive integers a1, b1, · · · , an, bn verifying the following properties:

(1) ai+1 | ai for all i ∈ {1, · · · , n − 1}.
(2) ai < bi < bi+1 for all i ∈ {1, · · · , n − 1}.
(3) S = T(a1, b1) ∩ · · · ∩ T(an, bn).

The next lemma is an immediate consequence of Lemma 6.

Lemma 7. If S is a maximal element of Sat(F), then S = T(a, F + 1) for some a ∈ {1, · · · , F}
such that a ∤ F.

If n is a positive integer, then we denote A(n) = {x ∈ {1, · · · , n} | x ∤ n} and
B(n) = {x ∈ A(n) | x′ ∤ x for all x′ ∈ A(n)\{x}}.

The following result is a consequence of Lemmas 6 and 7.

Theorem 1. With the previous notation, S is a maximal element of Sat(F) if and only if S =
T(x, F + 1) for some x ∈ B(F).

In the following example, we illustrate how the previous theorem works.

Example 3. We are going to apply Theorem 1 to compute the maximal elements of Sat(30). As

A(30) = {4, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29},

we obtain B(30) = {4, 7, 9, 11, 13, 17, 19, 23, 25, 29}. Therefore, by applying Theorem 1, we have
that the set formed by the maximal elements of Sat(30) is {T(4, 31), T(7, 31), T(9, 31), T(11, 31),
T(13, 31), T(17, 31), T(19, 31), T(23, 31), T(25, 31), T(29, 31)}.
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Let q ∈ Q. Denote ⌊q⌋ = max{z ∈ Z | z ≤ q}. The following result is a consequence
of Theorem 1.

Corollary 1. If p is the least positive integer such that p ∤ F, then min{g(S) | S ∈ Sat(F)} =

F −
⌊

F
p

⌋
.

By using this corollary, in the following example we calculate the minimum genus of
the elements belonging to Sat(7), as well as the minimum genus of the elements of Sat(6).

Example 4. We have that

• minimum{g(S) | S ∈ Sat(7)} = 7 −
⌊ 7

2
⌋
= 7 − 3 = 4. Moreover, g(T(2, 8)) = 4.

• minimum{g(S) | S ∈ Sat(6)} = 6 −
⌊ 6

4
⌋
= 6 − 1 = 5. In addition, g(T(4, 7)) = 5.

We now have all the ingredients needed to present the following Algorithm 2.

Algorithm 2 Computation of Sat(F, g).

INPUT: Two positive integers F and g such that F+1
2 ≤ g ≤ F.

OUTPUT: Sat(F, g).

(1) Compute the smallest positive integer p such that p ∤ F.

(2) If g < F −
⌊

F
p

⌋
, then return ∅.

(3) ∆ = ⟨F + 1, · · · , 2F + 1⟩, H = {∆}, i = F.
(4) If i = g, then return H.
(5) For all S ∈ H, compute the set θ(S) = {x ∈ SG(S) | x < m(S), x ̸= F and S ∪

{x} is a saturated numerical semigroup}.
(6) H =

⋃
S∈H{S ∪ {x} | x ∈ θ(S)}, i = i − 1 and go to Step (4).

Next we illustrate this algorithm with an example.

Example 5. By using Algorithm 2, we are going to calculate the set Sat(7, 5).

• 2 is the smallest positive integer such that it does not divide 7 and 7 −
⌊ 7

2
⌋
= 7 − 3 = 4 < 5,

therefore we can assert that Sat(7, 5) ̸= ∅.
• ∆ = ⟨8, 9, 10, 11, 12, 13, 14, 15⟩, H = {∆}, i = 7.
• θ(∆) = {4, 5, 6}.
• H = {∆ ∪ {4}, ∆ ∪ {5}, ∆ ∪ {6}}, i = 6.
• θ(∆ ∪ {4}) = ∅, θ(∆ ∪ {5}) = ∅ and θ(∆ ∪ {6}) = {3, 4}.
• H = {∆ ∪ {3, 6}, ∆ ∪ {4, 6}}, i = 5.
• The algorithm returns {∆ ∪ {3, 6}, ∆ ∪ {4, 6}}.

5. Sat(F)-System of Generators

We will say that a set X is a Sat(F)-set if it verifies the following conditions:

(1) X ∩ ∆(F + 1) = ∅.
(2) There exists S ∈ Sat(F) such that X ⊆ S.

If X is a Sat(F)-set, then the intersection of all elements of Sat(F) containing X will be
denoted by Sat(F)[X]. As Sat(F) is a finite set, by applying Proposition 11, we have that
the intersection of elements of Sat(F) is again an element of Sat(F). Consequently we have
the following result.

Proposition 16. If X is a Sat(F)-set, then Sat(F)[X] is the smallest element of Sat(F) contain-
ing X.
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If X is a Sat(F)-set and S = Sat(F)[X], we will say that X is a Sat(F)-system of generators
of S. Moreover, if S ̸= Sat(F)[Y] for all Y ⊊ X, then X is called a minimal Sat(F)-system of
generators of S.

Our next aim in this section will be to prove that every element of Sat(F) has a unique
minimal Sat(F)-system of generators.

The following result appears in [22], Lemma 8.

Lemma 8. Let S be a saturated numerical semigroup and x ∈ S\{0}. Then the following conditions
are equivalent.

(1) S\{x} is a saturated numerical semigroup.
(2) If y ∈ S\{0} and y < x, then dS(y) ̸= dS(x).

Lemma 9. Let S ∈ Sat(F) and s ∈ S such that 0 < s < F and dS(s) ̸= dS(s′) for all s′ ∈ S with
0 < s′ < s. If X is a Sat(F)-system of generators of S, then s ∈ X.

Proof. By using Lemma 8, S\{s} is an element of Sat(F). If s /∈ X, then X ⊆ S\{s} and, by
applying Proposition 16, we have that S = Sat(F)[X] ⊆ S\{s}, which is absurd.

The following result can be found in [22], Theorem 4.

Lemma 10. Let A ⊆ N such that 0 ∈ A and gcd(A) = 1. Then the following conditions are
equivalent.

(1) A is a saturated numerical semigroup.
(2) a + dA(a) ∈ A for all a ∈ A.
(3) a + k · dA(a) ∈ A for all (a, k) ∈ A ×N.

Lemma 11. Let S ∈ Sat(F) and X = {x ∈ S\{0} | dS(x) ̸= dS(y) for all y ∈ S with
y < x and x < F}. Then Sat(F)[X] = S.

Proof. Let T = Sat(F)[X]. As X ⊆ S, by applying Proposition 16, we have that T ⊆ S.
Now we will show the reverse inclusion; that is, S ⊆ T. Assume that X = {x1, . . . , xn},
s ∈ S\{0} and x1 < · · · < xk ≤ s < xk+1 < · · · < xn. Then dS(s) = dS(xk) = dT(xk) and
s = xk + a for some a ∈ N. We deduce that dS(xk) | a and so s = xk + t · dS(xk) for some
t ∈ N. Consequently, by applying Lemma 10, s = xk + t · dT(xk) ∈ T.

The minimal Sat(F)-system of generators is unique. This is the content of the following
proposition.

Proposition 17. If S ∈ Sat(F), then the unique minimal Sat(F)-system of generators of S is
the set

{x ∈ S\{0} | x < F and dS(x) ̸= dS(y) for all y ∈ S such that y < x}.

Proof. By Lemma 11, the set X = {x ∈ S\{0} | x < F and dS(x) ̸= dS(y) for all
y ∈ S such that y < x} is a Sat(F)-system of generators of S.

Let Y be a set such that S = Sat(F)[Y] with Y ⊆ X. Let x ∈ X. As Y is a Sat(F)-system
of generators of S, by Lemma 9, we have x ∈ Y and therefore X = Y.

Let S ∈ Sat(F); we denote by Sat(F)msg(S) the minimal Sat(F)-system of generators
of S. The cardinality of Sat(F)msg(S) is called the Sat(F)-rank of S and it will be denoted
by Sat(F)-rank (S). Let us illustrate these two concepts with an example.

Example 6. It is clear that S = {0, 4, 8, 10, 12, 14, 16, 18, 20, 22,→} ∈ Sat(21). By applying
Proposition 17, we ascertain that Sat(21)msg(S) = {4, 10}. Therefore, Sat(21)-rank (S) = 2.
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Lemma 12. Let n1 < n2 < · · · < np < F be positive integers, d = gcd{n1, · · · , np} and
d ∤ F. For every i ∈ {1, · · · , p}, let di = gcd{n1, · · · , ni}, and for each j ∈ {1, · · · , p − 1},
let k j = max{k ∈ N | nj + kdj < nj+1} and kp = max{k ∈ N | np + kdp < F}. Then
Sat(F)[{n1, · · · , np}] = {0, n1, n1 + d1, · · · , n1 + k1d1, n2, n2 + d2, · · · , n2 + k2d2, · · · , np−1,
np−1 + dp−1, · · · , np−1 + kp−1dp−1, np, np + dp, · · · , np + kpdp, F + 1,→}.

Proof. Let S = {0, n1, n1 + d1, · · · , n1 + k1d1, n2, n2 + d2, · · · , n2 + k2d2, · · · , np−1, np−1 +
dp−1, · · · , np−1 + kp−1dp−1, np, np + dp, · · · , np + kpdp, F+ 1,→}. By Lemma 10, S ∈ Sat(F).
As {n1, · · · , np} ⊆ S, then by Proposition 16, we have Sat(F)[{n1, · · · , np}] ⊆ S. By using
similar reasoning to the proof of Lemma 11, we obtain the reverse inclusion.

As a consequence of Proposition 17 and Lemma 12, we present a characterization of the
minimal Sat(F)-system of generators of Sat(F)[{n1, · · · , np}] in the following proposition.

Proposition 18. Let n1 < n2 < · · · < np < F be positive integers, d = gcd{n1, · · · , np} and
d ∤ F. Then {n1, · · · , np} is the minimal Sat(F)-system of generators of Sat(F)[{n1, · · · , np}] if
and only if gcd{n1, · · · , ni} ̸= gcd{n1, · · · , ni+1} for all i ∈ {1, · · · , p − 1}.

Example 7. By applying Lemma 12, we deduce that Sat(51)[{8, 28, 42}] = {0, 8, 16, 24, 28, 32,
36, 40, 42, 44, 46, 48, 50, 52,→}. Moreover, as gcd{8} > gcd{8, 28} > gcd{8, 28, 42}, by
Proposition 18, we know that {8, 28, 42} is the minimal Sat(51)-system of generators of Sat(51)
[{8, 28, 42}].

The following result is a direct consequence of Proposition 17.

Lemma 13. If S ∈ Sat(F) and S ̸= ∆(F + 1), then m(S) ∈ Sat(F)msg(S).

Proposition 19. If S ∈ Sat(F), then the following conditions are verified as follows:

(1) Sat(F)-rank (S) ≤ e(S).
(2) Sat(F)-rank (S) = 0 if and only if S = ∆(F + 1).
(3) Sat(F)-rank (S) = 1 if and only if Sat(F)msg(S) = {m(S)}.

Proof. (1) By definition of Sat(F)-rank of S, Lemma 8, and Propositions 9 and 17, we
have Sat(F)-rank (S) = # Sat(F)msg(S) ≤ # msg(S) = e(S), where #A means the
cardinality of A.

(2) As ∆(F + 1) = {0, F + 1,→}, by Proposition 17, we obtain the assert.
(3) By applying Proposition 17, we obtain the result.

Corollary 2. Under the standing notation, the following conditions are equivalent:

(1) S ∈ Sat(F) and Sat(F)-rank (S) = 1.
(2) There exists m ∈ N such that 2 ≤ m < F, m ∤ F, and S = T(m, F + 1).

Proof. (1) implies (2). If S ∈ Sat(F) and Sat(F)-rank (S) = 1, then, by Proposition 19,
Sat(F)msg(S) = {m(S)}. By taking m = m(S), we have the assert.

(2) implies (1). If there exists m ∈ N such that 2 ≤ m < F, m ∤ F, and S = ⟨m⟩ ∪ {x ∈
N | x ≥ F + 1}, the assert is trivially true.

6. Sat(F)-Sequences

Given k ∈ N\{0}, a Sat(F)-sequence of length k is a k-sequence of positive integers
(d1, d2, . . . , dk) such that d1 > d2 > · · · > dk, di+1 | di for all i ∈ {1, · · · , k − 1} and dk ∤ F.
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Theorem 2. If (d1, d2, . . . , dp) is a Sat(F)-sequence and t1, t2, · · · , tp are positive integers such

that t1d1 + · · ·+ tpdp < F and gcd
{

di
di+1

, ti+1

}
= 1 for all i ∈ {1, . . . , p − 1}, then {d1, t1d1 +

t2d2, · · · , t1d1 + t2d2 + · · ·+ tpdp} is the minimal Sat(F)-system of generators of an element of
Sat(F) with Sat(F)-rank equal to p. Moreover, every minimal Sat(F)-system of generators of an
element of Sat(F) with Sat(F)-rank equal to p, has this form.

Proof. It is easy to see that gcd{d1, t1d1 + t2d2, · · · , t1d1 + t2d2 + · · · + tidi} = di for all
i ∈ {1, · · · , p}. By applying Proposition 18, we obtain that {d1, t1d1 + t2d2, · · · , t1d1 +
t2d2 + · · ·+ tpdp} is the minimal Sat(F)-system of generators of an element of Sat(F) with
Sat(F)-rank equal to p.

Conversely, if {n1 < n2 < · · · < np} is the minimal Sat(F)-system of generators
of an element of Sat(F) and di = gcd{n1, · · · , ni} for all i ∈ {1, · · · , p}, then by apply-
ing Proposition 18 and Lemma 12, we have that (d1, . . . , dp) is a Sat(F)-sequence. To
conclude the proof, we will show that there are positive integers t1, · · · , tp such that

n1 = d1, n2 = t1d1 + t2d2, · · · , np = t1d1 + t2d2 + · · ·+ tpdp and gcd
{

di
di+1

, ti+1

}
= 1 for

all i ∈ {1, . . . , p − 1}. Let t1 = 1 and ti+1 =
ni+1−ni

di+1
for all i ∈ {1, · · · , p − 1}. Let us prove,

by induction on i, that ni = t1d1 + · · ·+ tidi for all i ∈ {2, . . . , p}. For i = 2, the result is true
since t1d1 + t2d2 = 1 · n1 +

n2−n1
d2

d2 = n2. As ni+1 = ni + ti+1di+1, by the induction hypoth-
esis, we have ni+1 = t1d1 + · · ·+ tidi + ti+1di+1. To conclude the proof, it suffices to show

that gcd
{

di
di+1

, ti+1

}
= 1 for all i ∈ {1, . . . , p − 1}. In fact, di+1 = gcd{n1, · · · , ni+1} =

gcd{gcd{n1, · · · , ni}, ni+1} = gcd{di, t1d1 + · · ·+ tidi + ti+1di+1} = gcd{di, ti+1di+1} =

di+1 · gcd
{

di
di+1

, ti+1

}
. Therefore, gcd

{
di

di+1
, ti+1

}
= 1.

As a direct consequence of the previous theorem, we have the following result.

Corollary 3. If (d1, d2, . . . , dp) is a Sat(F)-sequence and d1 + d2 + · · ·+ dp < F, then {d1, d1 +
d2, · · · , d1 + d2 + · · ·+ dp} is a minimal Sat(F)-system of generators of an element of Sat(F).

As a consequence of Theorem 2 and Corollary 3, if we want to compute all the elements
belonging to Sat(F) with Sat(F)-rank equal to p, it will be enough to perform the following
steps:

(1) To compute

L(F, p) = {(d1, . . . , dp) | (d1, . . . , dp) is a Sat(F)-sequence and d1 + · · ·+ dp < F}.

(2) For every (d1, . . . , dp) ∈ L(F, p), compute

C(d1, . . . , dp) = {(t1, . . . , tp) ∈ (N\{0})p | t1d1 + · · ·+ tpdp < F and

gcd
{

di
di+1

, ti+1

}
= 1 for all i ∈ {1, . . . , p − 1}}.

A characterization of a Sat(F)-sequence appears in the following result.

Proposition 20. If {a1, a2, · · · , ap} ⊆ N\{0, 1} and a1 ∤ F, then (a1a2 · · · ap, a1a2 · · · ap−1, · · · ,
a1) is a Sat(F)-sequence of length p. Moreover, every Sat(F)-sequence of length p is of this form.

Proof. If we take di+1 = a1 · · · ap−i with i ∈ {0, · · · , p − 1}, the result follows trivially.
Furthermore, by definition, every Sat(F)-sequence of length p has the above form.

Corollary 4. Let a be the smallest positive integer that does not divide F. Then Sat(F) contains at
least one element of Sat(F)-rank equal to p if and only if a(2p − 1) < F.
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Proof. By applying Theorem 2 and Corollary 3, we deduce that Sat(F) contains at least an
element of Sat(F)-rank equal to p if and only if L(F, p) ̸= ∅. By applying Proposition 20
now, we have that L(F, p) ̸= ∅ if and only if there exists {a1, a2, · · · , ap} ⊆ N\{0, 1} such
that a1 ∤ F and a1a2 · · · ap + a1a2 · · · ap−1 + · · ·+ a1 < F. To conclude the proof, it suffices to
note that this is verified if and only if a · 2p−1 + a · 2p−2 + · · ·+ a < F. By using the formula
of the sum of a geometry progression, we obtain that a · 2p−1 + a · 2p−2 + · · ·+ a < F if and
only if a(2p − 1) < F.

Example 8. We can assert, by using Corollary 4, that Sat(18) does not have elements with
Sat(F)-rank equal to 3, because 4(23 − 1) > 18.

We finish this work by showing an Algorithm 3 which allows us to compute the set
C(d1, . . . , dp) from (d1, . . . , dp) ∈ L(F, p).

For the first time we note that to computing the set

{(t1, . . . , tp) ∈ (N\{0})p | t1d1 + · · ·+ tpdp ≤ F − 1}

is equivalent to computing the set

{(x1, . . . , xp) ∈ Np | d1x1 + · · ·+ dpxp ≤ F − 1 − (d1 + · · ·+ dp)}.

Additionally, observe that

{(x1, . . . , xp) ∈ Np | d1x1 + · · ·+ dpxp ≤ F − 1 − (d1 + · · ·+ dp)} =

{(x1, . . . , xp) ∈ Np | d1x1 + · · ·+ dpxp = k for some

k ∈ {0, · · · , F − 1 − (d1 + · · ·+ dp)}.

If (x1, . . . , xp) ∈ Np and d1x1 + · · · + dpxp = k, then dp | k. Hence, k = a · dp and
consequently, {(x1, . . . , xp) ∈ Np | d1x1 + · · ·+ dpxp = k} = {(x1, . . . , xp) ∈ Np | d1

dp
x1 +

· · ·+ dp
dp

xp = a}.
Finally, observe that Algorithm 14 from [24] allows us to compute the set {(x1, . . . , xp) ∈

Np | d1
dp

x1 + · · ·+ dp
dp

xp = a}.

Algorithm 3 Computation of C(d1, . . . , dp).

INPUT: (d1, . . . , dp) ∈ L(F, p).
OUTPUT: C(d1, . . . , dp).

(1) α = F − 1 − (d1 + · · ·+ dp).
(2) For all k ∈ {0, · · · , ⌊ α

dk
⌋}, by using Algorithm 14 from [24], compute Dk = {(x1, . . . , xp) ∈

Np | d1
dp

x1 + · · ·+ dp
dp

xp = k}.

(3) For all k ∈ {0, · · · , ⌊ α
dk
⌋}, let Ek = {(x1 + 1, . . . , xp + 1) | (x1, . . . , xp) ∈ Dk}.

(4) A =
⋃⌊ α

dk
⌋

k=0 Ek.

(5) Return {(t1, · · · , tp) ∈ A | gcd
{

di
di+1

, ti+1

}
= 1 for all i ∈ {1, . . . , p − 1}}.

Thereby, given (d1, . . . , dp) ∈ L(F, p), by using [24], Algorithm 14, the previous algo-
rithm computes the set C(d1, . . . , dp). Consequently, we have a procedure to compute all
the elements belonging to Sat(F) with Sat(F)-rank equal to p.
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7. Conclusions

The fact that Sat(F) is a covariety has allowed us to present three algorithms:

(1) An algorithm which calculates all the elements of Sat(F).
(2) An algorithm to compute the elements belonging to Sat(F) with a fixed genus.
(3) An algorithm that calculates all the elements of Sat(F) with a fixed Sat(F)-rank.
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