
Técnicas de Machine Learning para
el tratamiento de series temporales
de Big Data en el ámbito energético

David Criado Ramón

Granada, Abril de 2024

Tesis doctoral realizada dentro del programa:
Doctorado en Tecnoloǵıas de la Información y la Comunicación.

Directora: Prof. Dra. Maŕıa del Carmen Pegalajar Jiménez
Grupo de investigación: TIC-111

Departamento de Ciencias de la Computación e Inteligencia Artificial
Universidad de Granada

Editor: Universidad de Granada. Tesis Doctorales
Autor: David Criado Ramón
ISBN: 978-84-1195-412-9
URI: https://hdl.handle.net/10481/94682

https://hdl.handle.net/10481/94682

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

Agradecimientos

Quisiera expresar mi más sincero agradecimiento a mis padres, Andrés y Paqui, y a mis
hermanas, Ana Maŕıa y Verónica, por todo el apoyo incondicional que me han dado du-
rante todos estos años.

A mi estimad́ısima directora de tesis, Maŕıa del Carmen Pegalajar, por su paciencia,
comprensión y dedicación, que han hecho que el desarrollo de esta tesis se convierta una
experiencia enriquecedera, agradable e interesante.

Y a mi compañero Luis, por todos los consejos y apoyo que me ha proporcionado durante
estos años.

2

Índice general

1. Introducción 1
1.1. Motivación . 1
1.2. Objetivos . 2
1.3. Metodoloǵıa . 3
1.4. Organización de la tesis doctoral. 3

2. Marco teórico 9
2.1. Series temporales . 9
2.2. Redes Neuronales Artificiales . 11
2.3. Reducción de la dimensionalidad . 15
2.4. Optimización con algoritmos metaheuŕısticos 16
2.5. GPU/CUDA . 18

3. Resumen de los trabajos desarrollados 21
3.1. La simbolización para la reducción de la dimensionalidad de series temporales 21
3.2. Reducción de dimensionalidad basada en la búsqueda de patrones 22
3.3. La paralelización de algoritmos de Machine Learning 23
3.4. El problema de la desagregación energética 26

4. Resultados. 27
4.1. La simbolización para la reducción de la dimensionalidad de series temporales 27
4.2. Reducción de dimensionalidad basada en la búsqueda de patrones 28
4.3. La paralelización de algoritmos de Machine Learning 29
4.4. El problema de la desagregación energética 31

5. Conclusiones y trabajos futuros 33

6. Copia de los trabajos publicados 43
6.1. Electric demand forecasting with neural networks and symbolic time series

representations. 44
6.2. An Application of Fuzzy Symbolic Time-Series for Energy Demand Fore-

casting. 69
6.3. An Improved Pattern Sequence-Based Energy Load Forecast Algorithm

Based on Self-Organizing Maps and Artificial Neural Networks 87
6.4. CUDA-bigPSF: An optimized version of bigPSF accelerated with Graphics

Processing Unit. 103

3

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.5. Accelerating neural network hyperparameter selection with CUDA for energy
forecasting. 130

6.6. Parallelized Neural Network Training with Metaheuristics for Energy Fo-
recasting in Buildings. 160

6.7. A Novel Non-Intrusive Load Monitoring Algorithm for Unsupervised Di-
saggregation of Household Appliances. 196

4

Índice de figuras

2.1.1.Generación de enerǵıa en la Red Eléctrica Española durante 16 horas a
través del uso fuentes eólicas, nucleares e hidráulicas. 10

2.2.1.Esquema de un perceptrón multicapa (MLP) usado para predicción los
siguientes 2 valores con 5 neuronas ocultas a partir de los 3 valores previos. 12

2.2.2.Esquema de una red neuronal de Elman con 2 neuronas ocultas que predice
el siguiente valor a partir de una secuencia de entrada de cualquier longitud. 13

2.2.3.Esquema de cómputo de una unidad LSTM para un instante de tiempo t. . 14
2.3.1.Ejemplo de simbolización mediante el uso de SAX con un tamaño de seg-

mento 3 y un alfabeto de 4 śımbolos. 15
2.4.1.Esquema genérico de la estructura de una metaheuŕıstica. 17
2.5.1.Resumen de la jeraqúıa de memoria y los eleméntos de computo de CUDA. 18

6.1.1.Autocorrelation function plots (ACF). On the left, ACF every 10 minutes.
In the middle, daily mean demand ACF. On the right, weekly mean demand
ACF. 48

6.1.2.Box plots. On the left, the hourly demand box plot. On the right, box plot
of the demand each day of the week. 48

6.1.3.Applied methodology flowchart. 52
6.1.4.Symbol distribution on training data for symbolization techniques with an

alphabet size of 7. 59
6.1.5.Comparison of intervals provided by SAX and aSAX. 60
6.1.6.Prediction plot over the span of one week of the test partition. 64
6.2.1.A general overview of the steps required to obtain the FPLS-Sym repre-

sentation. 75
6.2.2.An Example of the computation of FPLS-Sym for a segment using an

overlap b = 0,75 and the symbol centers G = {0,5, 1,5, 2,5, 3,5}. 76
6.2.3.Two weeks of demand data from REE. 76
6.2.4.Predictions of the best model for aSAX (on the left), FPLS-Sym (on the

middle) and the numeric representation (on the right) over the span of a
week of the test partition. 82

6.3.1.A visual summary of the PSF algorithm. 91
6.3.2.A visual summary of the GA-SOM-NNSF algorithm. 92
6.3.3.A week of load data from each of the TSOs. 94
6.3.4.Forecast provided by the best three methods for REE. 99
6.3.5.Forecast provided by the best three methods for NYISO. 99
6.3.6.Forecast provided by the best three methods for AEMO. 100

5

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.4.1.A schematic of the memory layout and multiprocessors of the GPU device
used in this research. 111

6.4.2.A general scheme of the steps done by the bigPSF algorithm for each pre-
diction. 112

6.4.3.An example of how the BigPSF algorithm calculates a prediction in a si-
mulated dataset for K=5 and W = 3. 114

6.4.4.A flowchart of the work executed by each thread in CUDA-bigPSF. 115
6.4.5.Box plot of the energy consumption each day of the week. 119
6.4.6.On the left, line plot of the time spent in training by each method. On the

right, speedup obtained by the Spark and CUDA versions over a sequential
implementation. 123

6.5.1.Relationship between the CUDA software-level abstractions and the GPU
hardware. 137

6.5.2.A simplified representation of the CUDA memory hierarchy for the RTX
6000 Ada. 138

6.5.3.Distribution in blocks and threads of the proposed method. 141
6.5.4.A visual representation of the work done by the threads inside a block to

train a neural network. 143
6.5.5.Evolution of metrics with batch size. 150
6.6.1.A streaming multiprocessor and the CUDA memory hierarchy. 171
6.6.2.A visual scheme of the memory layout for a MLP architecture. 173
6.6.3.Kernels and operations used for the forward pass of the ANNs in the GPU. 175
6.6.4.A flowchart of the kernels and methods use to implement each metaheuristic

in CUDA. 176
6.6.5.A summary of the memetic algorithm used for all metaheuristics. 179
6.6.6.Evolution of MSE with hidden neurons in the first two and last two building

studied. 188
6.7.1.Flowchart of the proposed algorithm. 200
6.7.2.Examples of events created in the matching phase. 201
6.7.3.Examples of events created in the pruning phase. 202
6.7.4.Load signature from two refrigerators during a day (dev 76C07C AND

dev D32131) taken from the tracebase dataset. 203
6.7.5.Load signatures from four different dishwashers taken from the tracebase

dataset and REDD. 205
6.7.6.Load signature from an oven from the REDD and an iron and clothes dryer

from tracebase. 207
6.7.7.Appliance disaggregation in the first two weeks of REDD House 1 with a

zoomed-in version for 23 April 2011. 211

6

Índice de cuadros

6.1.1.Best topologies found for SAX based training. Bold values represent best
metrics found for each alphabet size. 57

6.1.2.Best topologies found for aSAX. All models in this table use ordinal enco-
ding and a daily sliding window step. 58

6.1.3.SAX and aSAX breakpoints for our training data. 59
6.1.4.RMSE and MAPE on test partition for the best models without symboli-

zation. 61
6.1.5.Symbolic forecast metrics for the best models trained without symbolization. 62
6.1.6.Original time series forecast and training time for the best numeric and

symbolic models. 63
6.2.1.Hyperparameters of FPLS-Sym. 74
6.2.2.Wilcoxon signed-rank test. H0 : X1 −X2 are symmetric about µ < 0. . . . 80
6.2.3.Comparative of FPLS-Sym neural network training defuzzification strate-

gies making use of daily-step sliding window and ordinal encoding. Best
metrics per alphabet size in bold. 80

6.2.4.Best topologies for all models trained with ordinal encoding. Best metric
per alphabet size in bold. 81

6.2.5.Original/Numerical time series forecast and training time for the best nu-
meric and symbolic models. 82

6.3.1.Quality metrics obtained for REE. 96
6.3.2.Quality metrics obtained for AEMO. 96
6.3.3.Quality metrics obtained for NYISO. 96
6.3.4.Quality metrics for training and test with the best GA-SOM-NNSF model. 97
6.4.1.Summary of related works using the GPU on the energy field. 108
6.4.2.MAPE (%) for the grid search during the training phase for CUDA-bigPSF

and bigPSF (enclosed in parentheses). Best values for each method in bold. 121
6.4.3.Summary of results obtained by the algorithms in quality metrics for the

test partition. 122
6.4.4.Execution time per version of the algorithm in hh:mm:ss. 122
6.5.1.Execution time and speedups between the different approaches for the MLP

architecture. 148
6.5.2.Execution time and speedups between the different approaches for the El-

man architecture. 148
6.5.3.Execution time and speedups between the different approaches for the

LSTM architecture. 148

7

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.5.4.Comparison of four quality metrics with previous works in the literature.
Best values per metric in bold . 151

6.6.1.List of parameters for each algorithm. 181
6.6.2.MSE of the best model for each algorithm with the MLP neural network. . 183
6.6.3.MSE of the best model for each algorithm with the Elman neural network. 184
6.6.4.MSE of the best model for each algorithm with the LSTM neural network. 185
6.6.5.MSE of the best model for each algorithm with the CNN. 186
6.6.6.Best baseline and metaheuristic model for each building. Best algorithm

per building in bold. 186
6.7.1.List of all hyperparameter default values. 204
6.7.2.Results for our algorithm in REDD House 1. 209
6.7.3.Results for our algorithm in REDD House 2. 209
6.7.4.Results for our algorithm in REDD House 3. 209

8

Índice de Algoritmos

1. Adam. 74
2. FPLS-Sym . 75
3. CUDA-bigPSF (Each thread). 116
4. Fridge detection and labeling optimizations. 204
5. Dishwasher program detection. 206
6. Spike-based appliance detection. 208

I

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

Resumen

En la actualidad, uno de los mayores desaf́ıos en el sector energético es el desarrollo de
sistemas de producción y distribución que permitan el uso de enerǵıa limpia, eficiente y
sostenible. Los avances en sensores y sistemas de almacenamiento han proporcionado una
gran cantidad de datos que facilitan el modelado del consumo energético. Los modelos
de Machine Learning, especialmente las Redes Neuronales Artificiales, se han convertido
en la herramienta principal para modelar el consumo energético, gracias a su alto nivel
de precisión. Sin embargo, el entrenamiento y la optimización de los hiperparámetros de
este tipo de modelos suelen ser computacionalmente costoso. Esta alta complejidad puede
dar lugar a grandes costes económicos y medioambientales en escenarios en los que sea
necesario desplegar nuevos modelos o reentrenarlos, situaciones que se pueden dar con
frecuencia debido a la naturaleza dinámica del consumo energético.

Con el objetivo de abordar estos desaf́ıos, esta tesis se centra en el estudio de técnicas
de reducción de dimensionalidad e implementaciones paralelizadas mediante el uso de
GPU. De esta manera, se pretende estudiar distintos métodos que nos permitan entrenar
y optimizar modelos de Machine Learning de forma rápida y eficiente, avanzando hacia
metodoloǵıas que habiliten un futuro energético más limpio, eficiente y sostenible.

II

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

Abstract

Currently, one of the greatest challenges in the energy sector is the development of pro-
duction and distribution systems that enable the use of clean, efficient, and sustainable
energy. Advances in sensors and storage systems have provided a wealth of data that fa-
cilitates modeling energy consumption. Machine Learning models, particularly Artificial
Neural Networks, have become the primary tool for accurately modeling energy consum-
ption due to their high precision. However, training and optimizing the hyperparameters
of these models can be computationally expensive. This high complexity can result in
significant economic and environmental costs when deploying new models or retraining
them, situations that frequently arise due to the dynamic nature of energy consumption.

To address these challenges, this thesis focuses on studying dimensionality reduction tech-
niques and parallel implementations using GPUs. By doing so, we aim to explore various
methods that allow us to efficiently train and optimize Machine Learning models, advan-
cing toward methodologies that enable a cleaner, more efficient, and sustainable energy
future.

III

Caṕıtulo 1

Introducción

1.1. Motivación

La producción y distribución de enerǵıa se han convertido en un aspecto fundamen-
tal en la vida moderna. Nuestra dependencia tecnológica en diversos dispositivos eléctricos
(electrodomésticos, sistemas de climatización, nuevas tecnoloǵıas, etc.) hace que mantener
nuestro estilo de vida dependa de una gran producción y consumo de enerǵıa eléctrica.
Sin embargo, la producción de este recurso, particularmente cuando se hace uso de com-
bustibles fósiles, acarrea efectos nocivos para el medioambiente, como es el caso de las
emisiones de carbono a la atmósfera. Según la Agencia Internacional de las Enerǵıas Reno-
vables (IRENA) [1], durante la última década las emisiones de carbono han aumentado en
un 1% al año. Debido a este gran impacto medioambiental y económico, existen diversas
poĺıticas a nivel nacional e internacional que buscan reducir las emisiones contaminantes
de gases de efecto invernadero, siguiendo lo acordado en el Acuerdo de Paŕıs [2].

A nivel nacional, el Plan Nacional Integrado de Enerǵıa y Clima (PNIEC) 2021-2030
[3], en cumplimiento con el Reglamento (UE) 2018/1999 del Parlamento Europeo y del
Consejo sobre la gobernanza de la Unión de la Enerǵıa y de la Acción por el Clima [4],
es una hoja de ruta estratégica que marca los objetivos de Transición Ecológica durante
la década actual. Algunos de los objetivos principales de este plan son la reducción de
emisiones de gases de efecto invernadero en un 23% con respecto a los niveles alcanzados
en 1990, lograr que el suministro de enerǵıa en España proceda al menos en un 81% de
fuentes renovables o mejorar la eficiencia energética en un 39.5%.

La consecución de estos objetivos no es una tarea trivial, requiriendo encontrar solu-
ciones a los diferentes retos que presentan los mismos. Dentro de este ámbito y, particular-
mente, en la eficiencia energética, los modelos de Inteligencia Artificial se han convertido
en una herramienta fundamental para planificar la producción y distribución de enerǵıa
[5], debido a que la precisión de estos modelos ayuda a evitar el derroche de enerǵıa que
puede ser causado por una sobreproducción de la misma y los problemas causados por
una infraproducción. Los avances producidos en tecnoloǵıas de sensores y almacenamien-
to, como es el caso de los smart meters [6], han propiciado la disponibilidad de una gran
cantidad de datos, lo que ha permitido mejorar considerablemente la calidad de estos mo-

1

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

delos en los últimos años si bien es cierto que todav́ıa hay un gran margen de mejora. No
obstante, esta gran cantidad y diversidad de datos, también pueden llegar a suponer un
problema para las técnicas de Machine Learning tradicionales, que pueden tener una esca-
labilidad limitada. Es por ello que ha surgido un gran interés durante los últimos años de
desarrollar técnicas espećıficas que permitan el tratamiento masivo de Datos (“Big Data”)
dentro del sector energético para hacer posible el entrenamiento de modelos de Machine
Learning precisos en un tiempo razonable [7]. Entrenar estos modelos lo suficientemente
rápido en el sector energético tiene una mayor relevancia que en otros sectores debido al
carácter dinámico del consumo energético, donde los cambios en los hábitos de consumo
reducen significativamente la precisión de modelos previos y requieren reentrenar el mo-
delo con datos más recientes que permitan modelar estos cambios. Situaciones especiales,
como el confinamiento durante el COVID-19 [8], han puesto claramente de manifiesto
este factor y es de esperar que la creciente inclusión de nuevas ideas y tecnoloǵıas en
el sector, como es el caso del autoconsumo, la respuesta a la demanda [9], los veh́ıculos
eléctricos [10] o las comunidades energéticas [11], hagan todav́ıa más prevalente la nece-
sidad de desarrollar soluciones para poder adaptar los modelos a las nuevas circunstancias.

Aśı pues, este proyecto de tesis abarcará principalmente el desarrollo de técnicas
de Big Data en el sector energético con el fin de minimizar el tiempo de entrenamiento
necesario a la hora de desplegar un modelo nuevo o reentrenarlo. Más espećıficamente, el
estudio de estas técnicas se hará desde dos perspectivas. Desde el punto de vista de la
primera, se estudiará el uso de técnicas de preprocesamiento diseñadas para la reducción
de la dimensionalidad, con el fin de reducir la complejidad computacional necesaria pa-
ra entrenar los modelos y poder utilizar técnicas clásicas de Machine Learning. Desde el
punto de vista de la segunda, se estudiará el uso de la GPU como acelerador para desarro-
llar versiones paralelizadas de algoritmos de Machine Learning. Además, fruto de nuestra
colaboración con la distribuidora energética granadina “Cuerva Enerǵıa”, se incluirá un
último trabajo en la tesis destinado a la desagregación no supervisada del consumo eléctri-
co en viviendas residenciales.

1.2. Objetivos

A modo de resumen, esta tesis tiene como objetivo principal el desarrollo de
técnicas de Machine Learning basadas en reducción de dimensionalidad y/o paraleliza-
ción mediante el uso de la GPU para tratar series temporales energéticas de una forma
eficiente. Para alcanzar este objetivo, el mismo puede ser desglosado en los siguientes
objetivos espećıficos:

1. Estudiar, desarrollar e implementar los modelos deMachine Learning más relevantes
en la actualidad para el tratamiento de datos energéticos, como es el caso de las
Redes Neuronales Artificiales.

2. Recopilar, analizar y preprocesar las fuentes de datos para su posterior utilización
en la parte experimental.

2

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

3. Estudiar, desarrollar e implementar de algoritmos de preprocesamiento basados en
reducción de dimensionalidad, con el fin de evaluar su uso en conjunción con los
modelos de Machine Learning estudiados en el primer objetivo.

4. Estudiar e implementar técnicas para obtener los hiperparámetros óptimos de los
modelos a entrenar, como es el caso de los algoritmos metaheuŕısticos.

5. Desarrollar implementaciones paralelizadas mediante el uso de la GPU con el fin de
reducir el tiempo necesario para entrenar los modelos de Machine Learning estu-
diados.

1.3. Metodoloǵıa

Para lograr los objetivos planteados en esta tesis, es necesario seguir una metodo-
loǵıa basada en el método cient́ıfico que nos permita abordar los problemas a estudiar.
Dada la naturaleza de esta tesis, con una alta componente de investigación emṕırica, se
plantea la siguiente metodoloǵıa:

Análisis y observación — Comprobación, comprensión e interpretación del pro-
blema a abordar y sus particularidades, en este caso, el tratamiento de series tempo-
rales en el ámbito de la eficiencia energética y la predicción de consumo. Estudio y
evaluación de las técnicas existentes en el estado del arte para abordar el problema.

Formulación de hipótesis — Partiendo de la fase previa, diseñar nuevas técnicas
que permitan resolver el problema estudiado desde perspectivas diferentes a las
utilizadas en la literatura actual.

Experimentación — Análisis de los resultados obtenidos tras aplicar los modelos
energéticos desarrollados sobre fuente de datos reales. En este análisis se evaluará
la precisión de los modelos y el tiempo de entrenamiento necesario.

Contraste de hipótesis — Comparar los resultados obtenidos con los de otros
modelos presentes en la literatura actual en términos de precisión y tiempo de
entrenamiento.

Tesis o teoŕıa cient́ıfica — En base a los resultados obtenidos del proceso previo,
extraer, confirmar y formalizar las conclusiones del proceso experimental en una
teoŕıa cient́ıfica. Todos los modelos desarrollados en el proceso de investigación de
este trabajo serán reunidos para conformar la presente tesis doctoral.

1.4. Organización de la tesis doctoral.

Esta tesis doctoral se estructura en los siguientes caṕıtulos, en cumplimiento con la
normativa para la publicación de la tesis por compendio de publicaciones de la Universidad
de Granada.

3

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

Caṕıtulo 1 - Introducción. En este caṕıtulo se presenta la motivación del trabajo
realizado de la tesis aśı como los objetivos que se espera lograr y la metodoloǵıa
seguida para ello.

Caṕıtulo 2 - Marco teórico. En este caṕıtulo se presentan los fundamentos de
las tecnoloǵıas y modelos utilizados durante el desarrollo de la tesis.

Caṕıtulo 3 - Resumen de las publicaciones. En este caṕıtulo se describen,
de forma resumida, los modelos y experimentos desarrollados en cada una de las
publicaciones cient́ıficas.

Caṕıtulo 4 - Resultados. En este caṕıtulo se presentan los resultados procedentes
de las publicaciones descritas en el capitulo previo.

Caṕıtulo 5 - Conclusiones y trabajos futuros En este caṕıtulo se presentan las
conclusiones y posibles ĺıneas futuras de trabajo con las que continuar la temática
de la tesis.

Caṕıtulo 6 - Copia de los trabajos publicados En este caṕıtulo se proporcionan
copias de cada uno de los art́ıculos cient́ıficos asociados a esta tesis, que son los
siguientes:

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Electric demand forecasting
with neural networks and symbolic time series representations, Applied Soft
Computing, Volume 122, 2022, 108871, ISSN 1568-4946.

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, An Application of Fuzzy Sym-
bolic Time- Series for Energy Demand Forecasting, International Journal of
Fuzzy Systems, 2024, ISSN 2199-3211.

� D. Criado-Ramón, L.G.B. Ruiz, M. C. Pegalajar, An Improved Pattern Sequence-
Based Energy Load Forecast Algorithm Based on Self-Organizing Maps and
Artificial Neural Networks, Big Data and Cognitive Computing, Volume 7, 92,
2023, ISSN 2504-2289

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, CUDA-bigPSF: An optimized
version of bigPSF accelerated with Graphics Processing Unit, Expert Systems
with Applications, Volume 230, 2023, 120661, ISSN 0957-4174.

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Accelerating neural network
hyperparameter selection with CUDA for energy forecasting, 2024 (En revi-
sión).

� D. Criado-Ramón, L.G.B. Ruiz, Lorenzo Servadei, Robert Wille, M.P. Cuéllar,
M.C. Pegalajar, Parallelized Neural Network Training with Metaheuristics for
Energy Forecasting in Buildings, 2024 (En revisión).

� D. Criado-Ramón, L.G.B. Ruiz, J.R.S. Iruela, M. C. Pegalajar, A Novel Non-
Intrusive Load Monitoring Algorithm for Unsupervised Disaggregation of Hou-
sehold Appliances, Information, Volume 15, 87, 2024, ISSN 2078-2489.

4

Introduction

Production and distribution of energy have become a fundamental aspect of modern
life. Our technological dependence on various electrical devices, appliances, climate control
systems, and new technologies like electric vehicles, means that maintaining our lifestyle
relies on the production and consumption of a large amount of electricity. However, the
production of this resource, particularly when using fossil fuels, carries harmful effects on
the environment, such as carbon emissions into the atmosphere. According to the Inter-
national Renewable Energy Agency (IRENA) [1], over the last decade, carbon emissions
have increased by 1% annually. Due to this significant environmental and economic im-
pact, there are various national and international policies aimed at reducing greenhouse
gas emissions, following the agreements outlined in the Paris Agreement [2].

At the national level, the National Integrated Energy and Climate Plan (PNIEC)
2021-2030 [3], in compliance with the Regulation (EU) 2018/1999 of the European Par-
liament and of the Council on the governance of the Energy Union and Climate Action
[4], serves as a strategic roadmap, setting objectives for Ecological Transition during the
current decade. These objectives include reducing greenhouse gas emissions by 23% com-
pared to 1990 levels, ensuring that at least 81% of energy supply in Spain comes from
renewable sources, and improving energy efficiency by 39.5%.

Achieving these objectives is not a trivial task, requiring solutions to various challen-
ges. Within this scope, and particularly in energy efficiency, Artificial Intelligence models
have become a fundamental tool for planning energy production and distribution [5]. This
is because the precision of these models helps prevent energy waste caused by overpro-
duction and the problems caused by underproduction. Advances in sensor and storage
technologies, such as smart meter [6], have provided a vast amount of data, significantly
improving the quality of these models in recent years, though there is still room for im-
provement. However, this large amount and diversity of data can also pose a problem for
traditional Machine Learning techniques, which may have limited scalability. Hence, there
has been significant interest in developing specific techniques to handle massive amounts
of data (Big Data) within the energy sector, making it possible to train accurate Machine
Learning models in a reasonable time [7].

Training these models quickly in the energy sector is more relevant than in other
sectors due to the dynamic nature of energy consumption, where changes in consumption
habits significantly reduce the accuracy of previous models, requiring retraining with more
recent data to model these changes. Special situations such as the COVID-19 lockdowns

5

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

have clearly highlighted this factor [8], and it is expected that the increasing inclusion
of new ideas and technologies in the sector, such as self-consumption, demand response
[9], electric vehicles [10], or energy communities [11], will further emphasize the need to
develop solutions to adapt models to new circumstances.

Therefore, this thesis project will focus on developing Big Data techniques in the
energy sector to minimize the training time required to deploy a new model or retrain it.
More specifically, the study of these techniques will be conducted through two avenues. In
the first avenue, the use of preprocessing techniques designed for dimensionality reduction
will be studied to reduce the computational complexity required for training models and
enable the use of classical Machine Learning techniques. In the second avenue, the use
of GPUs as accelerators to develop parallelized versions of Machine Learning algorithms
will be explored. Additionally, as a result of our collaboration with the energy distributor
“Grupo Cuerva” in Granada, a final research work will be included in the thesis aimed at
the unsupervised disaggregation of electricity consumption in residential households.

1.1 Objectives

In summary, the main objective of this thesis is the development of Machine Lear-
ning techniques based on dimensionality reduction and/or parallelization using GPUs to
efficiently handle energy time series data. To achieve this objective, it can be broken down
into the following specific objectives:

1. To study, develop, and implement the most relevant Machine Learning models cu-
rrently used for energy data processing, such as Artificial Neural Networks.

2. To gather, analyze, and preprocess data sources for later use in the experimentation.

3. To study, develop, and implement preprocessing algorithms based on dimensionality
reduction to evaluate their use in conjunction with the Machine Learning models
studied in the first objective.

4. To study techniques for obtaining optimal hyperparameters of the models to be
trained, such as metaheuristic algorithms.

5. To develop parallelized implementations using GPUs to reduce the time required to
train the studied Machine Learning models.

1.2 Methodology

To achieve the objectives outlined in this thesis, it is necessary to follow a methodo-
logy based on the scientific method that allows us to address the problems under study.
Given the nature of this thesis, with a high component of empirical research, the following
methodology is proposed:

6

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

Analysis and observation — Verification, understanding, and interpretation of
the problem to be addressed and its particularities, in this case, the treatment of
time series in the field of energy efficiency and consumption prediction. Study and
evaluation of existing techniques in the state of the art to address the problem.

Formulation of hypotheses — Building upon the previous phase, design new
techniques that allow solving the studied problem from perspectives different from
those used in the current literature.

Experimentation — Analysis of the results obtained after applying the developed
models on real data sources. This analysis will evaluate the accuracy of the models
and the necessary training time.

Hypothesis testing — Compare the results obtained with those of other models
present in the current literature in terms of accuracy and training time.

Thesis or scientific theory — Based on the results obtained from the previous
process, extract, confirm, and formalize the conclusions of the experimental process
into a scientific theory. All models developed in the research process of this work
will be brought together to form the present doctoral thesis.

1.3 Thesis structure.

This doctoral thesis is structured into the following chapters, in compliance with
the regulations for thesis publication by compilation of publications at the University of
Granada.

Chapter 1 - Introduction. This chapter presents the motivation behind the thesis
work, as well as the objectives to be achieved and the methodology followed for that
purpose.

Chapter 2 - Theoretical Framework. This chapter presents the fundamental
concepts of the technologies and models used during the development of the thesis.

Chapter 3 - Summary of Publications. This chapter provides a summary des-
cription of the models and experiments developed in each of the scientific publica-
tions.

Chapter 4 - Results. This chapter presents the results derived from the publica-
tions described in the previous chapter.

Chapter 5 - Conclusions and Future Work. In this chapter, conclusions and
potential future lines of work to continue the thesis theme are presented.

Chapter 6 - Copy of Published Works. In this chapter, copies of each of the
scientific articles associated with this thesis are provided, which are as follows:

7

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Electric demand forecasting
with neural networks and symbolic time series representations, Applied Soft
Computing, Volume 122, 2022, 108871, ISSN 1568-4946.

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, An Application of Fuzzy Sym-
bolic Time- Series for Energy Demand Forecasting, International Journal of
Fuzzy Systems, 2024, ISSN 2199-3211.

� D. Criado-Ramón, L.G.B. Ruiz, M. C. Pegalajar, An Improved Pattern Sequence-
Based Energy Load Forecast Algorithm Based on Self-Organizing Maps and
Artificial Neural Networks, Big Data and Cognitive Computing, Volume 7, 92,
2023, ISSN 2504-2289

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, CUDA-bigPSF: An optimized
version of bigPSF accelerated with Graphics Processing Unit, Expert Systems
with Applications, Volume 230, 2023, 120661, ISSN 0957-4174.

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Accelerating neural network
hyperparameter selection with CUDA for energy forecasting, 2024 (Under re-
view).

� D. Criado-Ramón, L.G.B. Ruiz, Lorenzo Servadei, Robert Wille, M.P. Cuéllar,
M.C. Pegalajar, Parallelized Neural Network Training with Metaheuristics for
Energy Forecasting in Buildings, 2024 (Under review).

� D. Criado-Ramón, L.G.B. Ruiz, J.R.S. Iruela, M. C. Pegalajar, A Novel Non-
Intrusive Load Monitoring Algorithm for Unsupervised Disaggregation of Hou-
sehold Appliances, Information, Volume 15, 87, 2024, ISSN 2078-2489.

8

Caṕıtulo 2

Marco teórico

Esta sección recoge los conceptos más relevantes de las técnicas y tecnoloǵıas utili-
zadas durante el desarrollo de la tesis. En primer lugar, la sección 2.1 presenta el concepto
de serie temporal. En segundo lugar, la seción 2.2 describe el funcionamiento de las ar-
quitecturas de Red Neuronal Artificial utilizadas en la tesis. A continuación, la sección
2.3 presenta varias técnicas que pueden ser utilizadas para reducir la dimensionalidad de
series temporales en el ámbito energético y la sección 2.4 describe el uso de los algoritmos
metaheuŕısticos para optimizar una función. Por último, la sección 2.5 presenta las ven-
tajas y limitaciones de la arquitectura de la GPU para implementar algoritmos en paralelo.

2.1. Series temporales

A lo largo del tiempo, numerosos aspectos de nuestra vida experimentan transforma-
ciones que pueden ser cuantificadas u observadas en cualquier momento. Estas variables,
cuando se registran junto con el instante temporal de la observación, dan lugar a las
series temporales [12], un formato de datos ampliamente utilizado en diversos sectores
como meteoroloǵıa, medicina, economı́a y enerǵıa, entre otros. En medicina, las series
temporales se emplean para monitorizar señales como el ritmo card́ıaco o el seguimiento
de la evolución de infectados durante una epidemia. En el sector financiero, constituyen
una herramienta esencial para modelar y estudiar la evolución de los precios de activos en
los mercados. En la meteoroloǵıa, las series temporales son fundamentales para modelar
registros de temperaturas, presión atmosférica y precipitaciones, aśı como para realizar
pronósticos. En el ámbito energético, se utilizan para desarrollar modelos basados en el
histórico de consumo o producción de enerǵıa.

En un contexto más formal, una serie temporal X se define como una secuencia
ordenada cronológicamente de observaciones xt, tomadas regularmente en intervalos de
tiempo.

X = x0, x1, . . . , xt, xt+1, . . . , xn (2.1)

Donde xt representa una observación en el instante t de la serie temporal, y n es
el número total de observaciones. Esta definición puede extenderse a situaciones en las

9

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

Figura 2.1.1: Generación de enerǵıa en la Red Eléctrica Española durante 16 horas a
través del uso fuentes eólicas, nucleares e hidráulicas.

que se registran medidas de múltiples variables simultáneamente (series temporales mul-
tivariables). En este caso, xt denota el conjunto de observaciones xt,0, xt,1, ..., xt,m, donde
m es el número de variables estudiadas. Un ejemplo de serie temporal multivariable se
ilustra en la Figura 2.1.1, que muestra la evolución durante 16 horas de la generación de
enerǵıa en la Red Eléctrica Española (REE) mediante el uso de fuentes eólicas, nucleares
e hidráulicas.

En el análisis de series temporales se emplean diversas técnicas con el propósito de
anticipar los valores futuros de manera precisa. Las estrategias clásicas se orientan ha-
cia la descomposición descriptiva de las componentes de una serie temporal, siguiendo la
metodoloǵıa establecida por Box-Jenkins [13]. Esta metodoloǵıa desglosa la serie en tres
componentes aditivas fundamentales: Tendencia, Estacionalidad y Componente Residual.

La Tendencia (T), una componente determinista, modela la evolución a largo plazo
de la variable en estudio, proporcionando una visión de las tendencias significativas a lo
largo del tiempo. La Estacionalidad (E), también determinista, aborda cambios periódi-
cos en la serie, como variaciones asociadas con la hora del d́ıa o el d́ıa de la semana,

10

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

ofreciendo una comprensión más detallada de los patrones ćıclicos. Al eliminar las dos
componentes determińısticas mencionadas anteriormente, se obtiene la Componente Re-
sidual (R = X − E − T), que exhibe un carácter estocástico y refleja las variaciones no
explicadas por la tendencia y la estacionalidad. No obstante, la incertidumbre inherente
a esta componente y las dificultades para modelar las componentes determińısticas me-
diante regresión en escenarios complejos han impulsado la adopción de modelos de Soft
Computing, tales como las redes neuronales artificiales o la lógica difusa, como herramien-
tas fundamentales para el análisis de series temporales.

En la actualidad, las redes neuronales artificiales han emergido como el modelo de
Machine Learning ideal para esta tarea gracias a su flexibilidad y su capacidad para
modelar relaciones no lineales y complejas. Además, algunas arquitecturas de redes neu-
ronales, como es el caso de las redes neuronales recurrentes incoporan técnicas diseñadas
espećıficamente para procesar información temporal, facilitando que estas redes capturen
las dinámicas y sutilezas de las series temporales procesadas.

2.2. Redes Neuronales Artificiales

Las redes neuronales artificiales (RNA) son modelos de Machine Learning que en-
cuentran su inspiración en la estructura y funcionamiento del cerebro humano. Una RNA
está compuesta por pequeñas unidades denominadas neuronas, interconectadas entre śı
mediante conexiones ponderadas.

Durante el proceso de entrenamiento, la red busca ajustar los pesos de estas cone-
xiones para minimizar el error entre la salida de la red neuronal y el resultado deseado.
A la función de error utilizada para este proceso se le denomina función de pérdida. Para
ajustar los pesos se puede utilizar cualquier método de optimización, como podŕıa ser un
algoritmo metaheuŕıstico. No obstante, en la actualidad, siempre y cuando todas las fun-
ciones de activación usadas sean derivables, se suelen utilizar algoritmos de optimización
basados en el cómputo del gradiente y la retropropagación, como es el caso del algoritmo
de entrenamiento ADAM [14].

La organización de las arquitecturas de RNA se articula en capas, donde cada una
alberga un conjunto de neuronas dispuestas en paralelo. La mayoŕıa de arquitecturas
de RNA hacen uso de conexiones completamente conectadas entre capas, asegurando
que cada neurona de una capa se vincule con todas las de la capa siguiente. Tres tipos
fundamentales de capas conforman estas arquitecturas:

1. Capa de entrada — Encargada de recibir los datos iniciales o entradas, esta capa
actúa como el punto de inicio del procesamiento. Su función principal es transmitir
la información a las capas ocultas sin realizar cálculos adicionales, representando
simplemente el conjunto de caracteŕısticas asociadas a una muestra.

2. Capas ocultas — Estas capas procesan la información proveniente de la capa de
entrada, llevando a cabo operaciones intermedias mediante el cómputo de las sumas

11

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

ponderadas de las salidas de la capa previa y la aplicación de funciones elegidas
arbitrariamente por el usuario a la salida de la capa. Estas funciones, llamadas fun-
ciones de activación, suelen ser no lineales para permitir a la red neuronal aprender
patrones complejos en los datos. A diferencia de los otros tipos de capas, el número
de capas y el número de neuronas en las mismas son decididas por ensayo y error y
su valor óptimo depende de la complejidad del problema a modelar.

3. Capa de salida — Genera la respuesta final de la red después de procesar la
información a través de las capas ocultas. El número de neuronas en esta capa está
directamente relacionado con la naturaleza de la tarea que la red está diseñada para
abordar, es decir, dependerá del problema en cuestión. Por ejemplo, en la predicción
de series temporales, la cantidad de neuronas en la capa de salida reflejará el número
de observaciones futuras a predecir para una muestra dada.

Figura 2.2.1: Esquema de un perceptrón multicapa (MLP) usado para predicción los
siguientes 2 valores con 5 neuronas ocultas a partir de los 3 valores previos.

A las arquitecturas de red neuronal que siguen esta definición, como la del ejem-
plo mostrado en la figura 2.2.1, se les denomina Perceptrones Multicapa [15] (MLP). No
obstante, a lo largo del tiempo, han surgido diversas arquitecturas diseñadas para poder
abordar problemas más complejos.

En el contexto de series temporales, las Redes Neuronales Recurrentes (RNR) se
idearon para lidiar con las caracteŕısticas especiales de los datos de carácter secuencial.
La principal diferencia que incorporan estas redes es que incluyen una conexión que sale
y entra a la misma neurona oculta (conexión recurrente). En una RNR, cada uno de los

12

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

instantes de la secuencia de entrada son procesados de forma individual en orden cro-
nológico. La conexión recurrente actúa como una especie de “memoria” en la red, ya que
le permite recordar y utilizar los cálculos realizados en pasos de tiempo anteriores para
calcular la salida para el siguiente punto en la secuencia, otorgando a la red una capa-
cidad para recordar información que le permita modelar dependencias temporales. En el
desarrollo de esta tesis, aparte de la arquitectura de MLP previamente descrita, se han
evaluado dos arquitecturas de RNR en los trabajos realizados: las redes neuronales de
Elman y Long-Short Term Memory (LSTM).

Una red neuronal de Elman [16] (Figura 2.2.2) es un tipo de red recurrente sencilla
que modela la conexión recurrente mediante el uso de un nuevo tipo de capa: la capa de
contexto. Cada una de las neuronas de la capa de contexto contiene una copia de la salida
de su neurona oculta correspondiente para el instante de tiempo previo para actuar como
memoria de la salida del paso previo, ya que a su vez está conectada mediante conexiones
ponderadas con todas las neuronas ocultas del siguiente instante de tiempo.

Figura 2.2.2: Esquema de una red neuronal de Elman con 2 neuronas ocultas que predice
el siguiente valor a partir de una secuencia de entrada de cualquier longitud.

Las redes neuronales LSTM [17] nacen de la necesidad de superar las limitaciones
de las RNR Simples (como la de Elman) en la captura de dependencias temporales a largo
plazo. En el contexto de series temporales y secuencias temporales, las RNR tradicionales
presentan algunas limitaciones, principalmente debido al problema del desvanecimiento
del gradiente [18], que impide una retención efectiva de información para dependencias
temporales distantes en secuencias largas.

Las LSTM afrontan eficazmente el desaf́ıo del desvanecimiento del gradiente me-
diante la incorporación de celdas de memoria especializadas y puertas de control. Las
celdas de memoria, al ser componentes aditivas en vez de multiplicativas, posibilitan el

13

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

almacenamiento prolongado de información sin experimentar degradación por el desva-
necimiento del gradiente. Asimismo, las puertas de control regulan de manera precisa el
flujo de información, determinando qué datos retener, cuáles olvidar y cuáles enviar como
salida, permitiendo a la arquitectura gestionar información de forma selectiva y duradera
y teniendo en cuenta relaciones a corto y a largo plazo. La Figura 2.2.3 presenta de forma
esquematizada todos los cómputos necesarios para procesar un paso de tiempo en una
neurona oculta de tipo LSTM.

Figura 2.2.3: Esquema de cómputo de una unidad LSTM para un instante de tiempo t.

14

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

2.3. Reducción de la dimensionalidad

Una de las posibles soluciones para reducir la complejidad computacional que re-
quiere entrenar modelos de Machine Learning es reducir la dimensionalidad de los datos
de entrada. Estas técnicas de reducción de la dimensionalidad han de conseguir reducir
la cantidad de información proporcionada pero preservar la información relevante. Las
técnicas de reducción de dimensionalidad estudiadas en esta tesis pueden dividirse en dos
tipos: técnicas de simbolización y técnicas basadas en patrones estacionales.

Figura 2.3.1: Ejemplo de simbolización mediante el uso de SAX con un tamaño de seg-
mento 3 y un alfabeto de 4 śımbolos.

Las técnicas de simbolización de series temporales son un subconjunto de técnicas
de reducción de dimensionalidad que se basan en la combinación de la segmentación y
la discretización, con lo que son ideales para reducir la dimensionalidad cuando los datos
de entrada tienen una granularidad muy fina. Otra propiedad muy útil que tienen este
tipo de técnicas, derivada de la discretización que incorporan es que se puede extraer un
modelo basado en reglas de cualquier modelo entrenado con entrada y salida simbólicas,
otorgándole propiedades interesantes de interpretabilidad. Mientras que el uso de técnicas
de simbolización está muy extendido en problemas de clasificación, su uso no es frecuente
en problemas de predicción de series temporales debido a la potencial pérdida de infor-
mación que conllevan. La técnica de simbolización de series temporales más conocida y
utilizada en la literatura es SAX (Symbolic Aggregate approXimation) [19], que sigue una
idea sencilla e intuitiva consistente en dividir la serie temporal en segmentos equidistantes
y discretizar la media de cada segmento haciendo uso de un área equiprobable de la dis-
tribución gaussiana para cada uno de los śımbolos. Un ejemplo sencillo de simbolización
mediante el uso de esta técnia de simbolización puede ser observado en la figura 2.3.1,
en la que se simboliza una serie temporal normalizada con segmentos de tamaño 3 y un
alfabeto con 4 śımbolos (Nota: los puntos de corte entre śımbolos con 4 śımbolos en el
alfabeto son -0.67, 0 y 0.67).

15

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

Además de SAX, muchas otras variantes de esta técnica han sido desarrolladas con el
fin de mejorar algunas de sus limitaciones. De entre ellas cabe destacar aSAX (adaptative
SAX) [20], que no asume una distribución gaussiana sino que estima los puntos de corte
de la distribución haciendo uso del algoritmo de Lloyd, y otro conjunto de propuestas que
buscan incorporar alguna información que potencialmente haya sido por SAX al utilizar
tan sólo utilizar la media [21, 22, 23]. No obstante, hemos de tener en cuenta que este
último conjunto de aproximaciones require del uso de śımbolos adicionales para lograr
esta mejora, reduciendo la efectividad de la reducción de la dimensionalidad.

Otra posible aproximación para reducir la dimensionalidad es el uso de técnicas
basadas en patrones estacionales. Por regla general, estas técnicas, gracias a la estacio-
nalidad diaria de los datos de consumo energético, utilizan algún algoritmo de clústering
para generar diferentes perfiles de consumo a nivel diario y asocian el consumo de cada d́ıa
con uno de los perfiles extráıdos, reduciendo todos los datos de consumo de un d́ıa a una
única etiqueta (o śımbolo). Una vez la serie temporal ha sido etiquetada, estos modelos
utilizan para la predicción un modelo de Machine Learning adicional o alguna operación
sencilla, como la media, teniendo en cuenta los patrones encontrados en d́ıas previos al
que se desea predecir. El primer algoritmo de este tipo fue “Pattern Sequence-based
Forecasting (PSF)”, publicado en 2011 y diseñado para trabajar con series temporales
energéticas [24]. Este algoritmo comienza aplicando clustering K-means para transformar
la serie temporal antes de la fecha de predicción en una secuencia de identificadores de
clúster (etiquetas) con un identificador para cada d́ıa. Posteriormente, el algoritmo di-
vide la secuencia etiquetada usando una ventana deslizante de tamaño W. Para realizar
la predicción, el algoritmo busca en el histórico ocurrencias previas de la secuencia de
identificadores encontrada para los W d́ıas previos al d́ıa a predecir. La predicción final
es la media del consumo de todos los d́ıas siguientes a una ocurrencia del patrón buscado
en el histórico. Desde su concepción, el algoritmo ha sido aplicado a otros sectores [25, 26]
y diferentes variantes del mismo han sido propuestas incluyendo cambios como el uso de
otros algoritmos de clústering [27, 28] o su adaptación para entornos distribuidos [29].

2.4. Optimización con algoritmos metaheuŕısticos

El proceso de entrenamiento de la mayoŕıa de modelos de Machine Learning suele
estar regido por una serie de hiperparámetros que han de ser proporcionados. En la ma-
yoŕıa de casos, la búsqueda de estos hiperparámetros se realiza mediante un método de
ensayo y error. No obstante, esta aproximación tiene una serie de limitaciones, ya que,
dependendiendo de la dimensión del espacio de búsqueda, este proceso puede ser muy
costoso computacionalmente. Es por ello que es frecuente sustituir el uso del método de
ensayo y error por algoritmos que gúıen el proceso de optimización de una forma más
eficiente, como es el caso de los algoritmos metaheuŕısticos.

Las metaheuŕısticas son técnicas de optimización inspiradas en diversos fenómenos
naturales y sociales que buscan soluciones óptimas o casi óptimas a un problema en un
tiempo razonable. Existen metaheuŕısticas que buscan su inspiración en la teoŕıa evoluti-

16

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

va de Darwin (algoritmo genético) [30], en el movimiento de bandadas de aves (Particle
Swarm Optimization) [31], o en la termodinámica (Simulated Annealing) [32], entre mu-
chas otras fuentes de inspiración. Aunque cada algoritmo vaŕıa en los detalles espećıficos,
dependiendo de la inspiración, todos suelen adaptarse al siguiente esquema.

Figura 2.4.1: Esquema genérico de la estructura de una metaheuŕıstica.

1. Inicialización — El primer paso es la generación de un primer conjunto de solu-
ciones potenciales con las que empezar a aplicar el algoritmo. Es habitual referirse
a cada una de estas soluciones como individuo y al conjunto de las soluciones como
población. Por regla general, la mayoŕıa de metaheuŕısticas inicializan los individuos
con valores aleatorios dentro de los valores válidos para cada caracteŕıstica, aunque
también cabe la posibilidad de utilizar criterios heuŕısticos para la generación de
la primera población. Una vez que se ha generado la población inicial, se aplica la
función de evaluación para ver la calidad de cada uno de los individuos.

2. Búsqueda — El segundo paso que se realiza es la generación de nuevos individuos
a partir de los individuos previos. Este es el aspecto más diferenciado entre las dis-
tintas metaheuŕısticas ya que el operador u operadores utilizados para este proceso
dependen de la inspiración de la misma. Además, este proceso de búsqueda ha de
encontrar un balance entre exploración y explotación. La exploración se utiliza para
permitirnos encontrar potenciales soluciones que se encuentren distantes en el espa-
cio de las soluciones presentes en la población actual. Por otro lado, la explotación
se utiliza para refinar las mejores soluciones, es decir, se usa para evaluar posiciones
en el espacio cercanas a los mejores individuos encontrados hasta el momento.

3. Evaluación — Una vez se han generado las nuevas soluciones, se vuelve a aplicar
la función objetivo (función fitness, en inglés) para ver si la solución ha mejorado o
no. Esta función depende exclusivamente del problema que se intenta resolver.

4. Memoria/Elitismo — Basándose en la evaluación realizada, el algoritmo decidirá
si acepta o rechaza la nueva solución para sustituir la solución inicial. Dependiendo
de la metaheuŕıstica podŕıan aceptarse siempre las mejores soluciones, aceptarse con
una cierta probabilidad (para evitar óptimos locales) o incluso guardarse las mejores
soluciones en estructuras de datos adicionales.

5. Finalización — Tras el paso previo, los pasos 2, 3 y 4 se repiten hasta alcanzar un
criterio con el que termina la ejecución del algoritmo. Los criterios de terminación
más habituales para los algoritmos metaheuŕısticos son realizar un número máximo
de iteraciones o alcanzar un número máximo de evaluaciones de la función objetivo.

17

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

2.5. GPU/CUDA

CUDA (Compute Unified Device Architecture) es el término que engloba la ar-
quitectura y el modelo de programación de propósito general de las tarjetas gráficas de
NVIDIA. Al igual que otras arquitecturas de GPU, la arquitectura hardware de CUDA se
caracteriza por su gran cantidad de núcleos (cores) que operan en paralelo, ofreciendo una
mayor latencia de instrucción que un arquitectura de CPU. Por esta razón, se la conoce
comúnmente como una arquitectura “masivamente paralela”.

Aśı pues, las aplicaciones ideales de la GPU son aquellas en las que se puede aplicar
la misma operación a un gran volumen de datos de forma independiente, ya que cada
núcleo puede encargarse de realizar el cómputo para una porción de los datos y todos los
núcleos pueden ser utilizados de forma simultánea. No obstante, la GPU también es útil en
otro tipo de aplicaciones paralelas. En esos casos, el desarrollo de algoritmos para GPU no
es una tarea trivial y requiere un conocimiento profundo de la arquitectura y limitaciones
de la GPU a utilizar. La Figura 2.5.1 muestra de forma resumida los elementos de la
arquitectura de CUDA explicada a continuación. Dicha arquitectura pueden dividirse en
dos partes diferenciadas: los elementos de cómputo (núcleos) y la jerarqúıa de memoria.

Figura 2.5.1: Resumen de la jeraqúıa de memoria y los eleméntos de computo de CUDA.

18

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

a) La arquitectura de cómputo de CUDA sigue un modelo SIMT (Single Instruction
Multiple Threads) donde 32 núcleos (cores) contiguos, denominados “warp”, deben
estar ejecutando la misma instrucción. Esta es la principal limitación computacional
de las arquitecturas de GPU ya que puede implicar la realización de muchos cálculos
innecesarios. Por ello, es importante evitar, en la medida de lo posible, secuencias
de código if-else o, en su defecto, siempre que sea posible asegurarse de que todos
los núcleos de un warp estén realizando la misma operación.

Para permitir operaciones concurrentes y facilitar la localización de la caché, una
GPU CUDA se encuentra divida en múltiples “streaming multiprocessors”. Ca-
da streaming multiprocessor contiene su propio conjunto de warps, registros, memo-
ria caché y otros coprocesadores adicionales dependiendo del modelo. Esta localidad
de registros y caché permite realizar una cooperación más eficiente si los núcleos que
cooperan se encuentran en el mismo “streaming multiprocessors” ya que pueden
usar directamente la caché o, si se encuentran en el mismo warp, el programador
puede llegar a utilizar instrucciones que realizan la cooperación directamente en los
registros.

b) La jerarqúıa de memoria es otro de los elementos más importantes de la GPU, ya
que la mayoŕıa de cuellos de botella de algoritmos para GPU suele darse en los ac-
cesos a memoria. El acceso más lento ocurre con los datos almacenados en la RAM
de la CPU/placa base, ya que requiere atravesar la conexión PCIe y recorrer toda la
jerarqúıa de memoria de la GPU. Dentro del chip se encuentra tanto una memoria
general de gran capacidad denominada “memoria global”, aśı como memoria caché
y registros aparte de otros tipos de memoria especializados para ciertas computacio-
nes con gráficos. El nivel de caché L2 es de mayor capacidad y es común a todos los
multiprocesadores, haciéndolo más rápido que el acceso a memoria global. Sin em-
bargo, este nivel de caché no puede ser manejado directamente por el programador
y su uso eficiente depende de que los patrones de acceso sean predecibles. El nivel
de caché L1 es de menor capacidad y local a cada streaming multiprocessor, con lo
que es el tipo de memoria más rápida más allá de los registros y su uso y acceso
puede ser escrito directamente por el programador mediante el uso de una abstrac-
ción denominada “memoria compartida”, con la que se puede alojar estructuras de
datos en la caché mediante el uso de una palabra clave en el código.

El lenguaje utilizado para escribir código CUDA es una extensión de C++ que in-
corpora ciertas palabras clave y variables adicionales. Cada trabajo a realizar por la GPU
se escribe en funciones denominadas “kernels”, en los que se indica la secuencia de ins-
trucciones a realizar por un núcleo. Además, hay variables especiales que nos permiten
identificar cada hebra, con lo que se puede distribuir el trabajo de forma eficiente incluso
en tareas más complejas que puedan conllevar algo de divergencia. Cuando lanzamos el
trabajo a ejecutarse en la GPU se ha de indicar tanto el número de bloques como el núme-
ro de hebras por bloque que se han de ejecutar. Esta abstracción de bloques y hebras por
bloque tiene una gran relevancia, ya que la ejecución de todas las hebras de un bloque

19

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

se asigna, en tiempo de ejecución, a un único streaming multiprocessor. Esto permite que
las hebras dentro del mismo bloque puedan sincronizarse, es decir, esperar a que todas
las hebras lleguen al mismo punto del código (con el fin de evitar condiciones de carrera)
sin influir en el procesamiento de otros bloques, y asegura que todas las hebras puedan
cooperar de forma eficiente ya que tendrán acceso a la memoria caché del streaming mul-
tiprocessor mediante el uso de la memoria compartida. Aśı pues, el desarrollador tendrá
que tener en cuenta el grado de paralelismo (número de hebras que podŕıan ser ejecuta-
das de forma paralela), la necesidad de colaboración entre hebras y potenciales cuellos
de botella en accesos a memoria, sincronizaciones y/o cómputos para poder realizar una
implementación de alta calidad de un algoritmo paralelo.

20

Caṕıtulo 3

Resumen de los trabajos
desarrollados

La siguientes secciones recogen las ideas principales detrás de los trabajos cient́ıficos
realizados en el ámbito de esta tesis doctoral. Los principales logros y resultados de dichos
trabajos pueden consultarse en las secciones con mismo nombre del caṕıtulo 5.

3.1. La simbolización para la reducción de la dimen-

sionalidad de series temporales

Uno de los principales desaf́ıos a la hora de trabajar con datos energéticos radica en
la masiva cantidad de información disponible en las diversas fuentes que se desean proce-
sar, especialmente cuando se trata de datos extráıdos con una granularidad muy fina. Una
estrategia potencial para abordar este problema es utilizar técnicas de preprocesamiento
destinadas a reducir la alta dimensionalidad. Uno de estos tipos de técnicas, conocido
como simbolización, combina la segmentación y la discretización para generar una repre-
sentación simplificada de los datos, que se presenta como una secuencia de śımbolos. De
esta manera, se logra una manera más manejable y comprensible de trabajar con la infor-
mación, lo que facilita su análisis y modelado. Más allá de facilitar un entrenamiento más
rápido de los modelos deMachine Learning, las técnicas de simbolización, gracias al uso de
la discretización, proporcionan otra serie de propiedades beneficiosas, como la facilidad de
interpretación y la resistencia a datos ruidosos. De hecho, aunque no suelan ser utilizadas
para la predicción de series temporales por temor a la posibilidad de perder información
relevante, son ampliamente utilizadas para problemas de clasificación de series temporales.

Con esto en mente, uno de nuestros primeros objetivos fue estudiar y evaluar cómo
se podŕıan integrar de forma óptima los modelos de Machine Learning más prometedores
para predicción de series temporales energéticas, las RNAs (MLP, Elman y LSTM), con
las técnicas de simbolización existentes en la literatura. En este análisis, se evaluaron
diversas alternativas en la metodoloǵıa de preprocesamiento, que abarcaron diferentes es-
trategias para codificar los śımbolos en las RNA aśı como diferentes tamaños de ventana

21

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

deslizante, arquitecturas, funciones de activación y topoloǵıas. Toda la metodoloǵıa fue
evaluada de forma exhaustiva con datos de demanda energética de la Peńınsula Ibérica
desde 2009 hasta 2019 proporcionados por el operador energético español, Red Eléctrica
Española (REE) [33] con una granularidad de 10 minutos. Los metodoloǵıa y resultados
asociados a este primer objetivo fueron publicados en el siguiente art́ıculo cient́ıfico:

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Electric demand forecasting
with neural networks and symbolic time series representations, Applied Soft Com-
puting, Volume 122, 2022, 108871, ISSN 1568-4946. https://doi.org/10.1016/j.
asoc.2022.108871

Como segundo objetivo nos propusimos abordar una de las limitaciones inherentes
a las técnicas tradicionales de simbolización: la posible pérdida de información durante el
proceso de discretización. Para superar este desaf́ıo sin sacrificar el resto de las ventajas de
la simbolización, desarrollamos una nueva técnica denominada FPLS-Sym. La principal
innovación en su diseño fue la utilización de valores difusos para representar los śımbolos.
Esta caracteŕıstica asegura una conservación de información de mayor calidad al realizar
predicciones con FPLS-Sym, lo que se traduce en predicciones más precisas, aunque re-
quiere un espacio de almacenamiento adicional para la matriz de pertenencia difusa. Sin
embargo, a pesar de su mayor complejidad en comparación con otras técnicas, el tiempo
de entrenamiento necesario para FPLS-Sym en redes neuronales no difiere significativa-
mente de otras técnicas, manteniendo una mejora considerable respecto al uso de la serie
temporal original. Para validar FPLS-Sym, se repitió la misma bateŕıa de experimentos
del trabajo anterior, incorporando la opción de utilizar directamente la matriz de perte-
nencia como entrada y/o salida de la red neuronal. Los resultados de este trabajo pueden
consultarse en:

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, An Application of Fuzzy Sym-
bolic Time-Series for Energy Demand Forecasting, International Journal of Fuzzy
Systems, 2024, ISSN 2199-3211. https://doi.org/10.1007/s40815-023-01629-4

3.2. Reducción de dimensionalidad basada en la búsque-

da de patrones

Las series temporales energéticas se caracterizan por presentar patrones estacionales
bien definidos a diferentes niveles. En un análisis del consumo eléctrico diario, es común
observar un mayor nivel de demanda durante las horas pico del d́ıa, mientras que las ho-
ras de la madrugada suelen registrar menor consumo. Asimismo, a nivel semanal, debido
al significativo consumo energético en entornos industriales y laborales, se espera que la
demanda durante los d́ıas laborables supere considerablemente la de los fines de semana
y d́ıas festivos.

Aprovechando estos patrones estacionales, en los últimos 15 años se han desarrolla-
do diversos modelos de Machine Learning que se basan en reducir la dimensionalidad de

22

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

las series temporales mediante la extracción de patrones diarios y el uso de cómputos o
modelos adicionales basados en estos patrones para realizar predicciones. El primer algo-
ritmo de este tipo, Pattern Sequence-Based Forecasting (PSF), opera identificando
patrones de consumo mediante el algoritmo de clústering K-medias, asignando a cada d́ıa
el identificador del clúster correspondiente a su patrón diario. Luego, examina los identi-
ficadores de los W d́ıas previos al d́ıa a predecir y busca ocurrencias en el histórico que
el mismo patrón. La predicción se calcula como la media del consumo de los d́ıas que ha
ocurrido el patrón buscado en el histórico.

Desde su concepción, múltiples variaciones de este algoritmo han sido propuestas
para mejorarlo, incluyendo el uso de diferentes algoritmos de clústering o la combinación
con otros modelos de Machine Learning, cada cual con su serie de ventajas e incovenien-
tes. En el trabajo de esta tesis, decidimos realizar un algoritmo de este estilo que intente
mejorar la precisión de otros algoritmos PSF y mantenga las propiedades de las técnicas
de simbolización previamente estudiadas: reducción de dimensionalidad e interpretabi-
lidad. Tras un estudio profundo de diferentes posibilidades, acabamos desarrollando un
modelo que combinaba el uso de los mapas autoorganizados de Kohonen [34] (como algo-
ritmo de clústering más preciso), RNAs y algoritmos evolutivos. La inclusión del algoritmo
evolutivo fue realizada para guiar el proceso de entrenamiento en la obtención de los hiper-
parámetros óptimos, con lo que evitamos tener que recurrir a una búsqueda exhaustiva.
La red neuronal fue incluida por ser un modelo altamente preciso e interpetable en este
caso. Esto se debe a que tanto sus entradas como sus salidas son valores discretos, con
lo que se puede convertir el modelo entrenado en un sistema basado en reglas. Más allá
de la selección de los modelos que intregran la propuesta de tipo PSF realizada, la otra
novedad incluida en la misma fue el uso del d́ıa de la semana y mes correspondientes al
d́ıa a predecir como variables adicionales que recibe la red neuronal, facilitando detectar
patrones que dependen de la estacionalidad a nivel semanal o anual. Para validar este
algoritmo se hizo una comparación con otras variantes de PSF y dos modelos adicionales
de Machine Learning : un MLP y Prophet [35]. La experimentación fue realizada sobre el
conjunto de datos previamente presentado de la REE [33] aśı como de sus equivalentes en
Nueva York (NYISO) [36] y Australia (AEMO) [37], permitiendo evaluar el algoritmo a
diferentes niveles de granularidad.

� D. Criado-Ramón, L.G.B. Ruiz, M. C. Pegalajar, An Improved Pattern Sequence-
Based Energy Load Forecast Algorithm Based on Self-Organizing Maps and Artificial
Neural Networks, Big Data and Cognitive Computing, Volume 7, 92, 2023, ISSN
2504-2289 https://doi.org/10.3390/bdcc7020092

3.3. La paralelización de algoritmos de Machine Lear-

ning

Otra estrategia viable para abordar la complejidad computacional inherente al pro-
cesamiento de volúmenes masivos de datos radica en la utilización de la GPU. Desafortu-
nadamente, incoporar la GPU en una aplicación no es una tarea trivial, ya que implica la

23

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

necesidad de estudiar y desarrollar versiones paralelas de los algoritmos diseñadas espećıfi-
camente para la GPU, que a su vez requiere un profundo conocimiento de las ventajas
y limitaciones de la arquitectura masivamente paralela de la GPU. Por ello, tras adqui-
rir un mayor nivel de conocimientos en el desarrollo de algoritmos para GPU, decidimos
estudiar cómo incoporar el uso de la GPU en modelos de predicción de consumo energético.

El primer trabajo realizado en este ámbito fue la adaptación y paralelización de uno
de los mejores algoritmos de tipo PSF. El algoritmo bajo estudio, denominado bigPSF
[29], originalmente estaba diseñado para operar en clústeres de CPU utilizando Apache
Spark y una estrategia de distribución de trabajo basada en la división del conjunto de
datos entre los clústeres. Sin embargo, al considerar su implementación en la GPU, esta
estrategia presentaba diversas limitaciones, ya que generaba una gran cantidad de de-
pendencias de datos entre las distintas hebras y esta limitación pod́ıa ser evitada por
completo mediante otras aproximaciones.

Por tanto, aprovechando la necesidad del algoritmo de encontrar el número óptimo
de clústers para K-medias aśı como la necesidad de ser reentrenado con los datos previos
por cada d́ıa a predecir, se optó por cambiar por completo la estrategia de distribución
de trabajo. En nuestra propuesta, cada hebra de la GPU se encarga de llevar a cabo la
predicción para un d́ıa espećıfico y un número determinado de clústeres de K-medias.
Esta aproximación presenta dos ventajas principales: al no haber necesidades de sincro-
nización todas las hebras de la GPU están siendo utilizadas casi siempre y, al encontrarse
la mayoŕıa de estructuras de datos en la memoria local de la hebra, el compilador puede
optimizar el uso de registros para reducir los accesos a memoria y los recursos de memoria
serán liberados para futuras hebras tras finalizar las computaciones de la hebra actual,
facilitando la escalabilidad del algoritmo. Para obtener una explicación más detallada so-
bre este trabajo, se remite al lector al trabajo:

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, CUDA-bigPSF: An optimi-
zed version of bigPSF accelerated with Graphics Processing Unit, Expert Systems
with Applications, Volume 230, 2023, 120661, ISSN 0957-4174. https://doi.org/
10.1016/j.eswa.2023.120661

Los otros dos proyectos llevados a cabo en el ámbito de la paralelización se enfocaron
en mejorar el proceso de entrenamiento de los modelos más prevalentes en la actualidad,
es decir, las RNAs. Aunque en la actualidad la mayoŕıa de los frameworks de RNAs per-
miten el entrenamiento usando la GPU, esta opción no siempre resulta ser la más eficaz.
De hecho, debido a las limitaciones inherentes a la arquitectura de las GPUs, es necesa-
rio que el tamaño del lote de datos (batch) o el número de entradas por muestra sea lo
suficientemente grande para que se manifiesten los beneficios de la computación paralela
con GPU. Mientras que estos requisitos se cumplen en muchos campos de aplicación de
moda, como el procesamiento del lenguaje natural y la visión por computador, rara vez
se cumplen en el sector energético. Esto se debe a que las RNAs, en el sector energético,
generalmente reciben como entrada solo valores previos de la serie temporal (también co-
nocidos como “lags”) y, en algunos casos menos frecuntes, alguna variable exógena como

24

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

la temperatura. Teniendo en cuenta este hecho y que se conoce que utilizar tamaños de
batch demasiado grandes puede propiciar que el proceso de entrenamiento se estanque
en un óptimo local [38], hemos estudiado las dos aproximaciones alternativas descritas a
continuación para hacer un mejor uso de la potencia de la GPU.

El primer enfoque abordado buscaba paralelizar simultáneamente la búsqueda de
hiperparámetros junto con el entrenamiento de las RNAs. En este enfoque, cada bloque
de una GPU se encarga de entrenar una red neuronal de forma independiente y todas
las hebras dentro de la misma colaboran para realizar el proceso de entrenamiento de
una forma colaborativa en la que cada hebra se encarga de los cómputos asociadas a una
neurona de la capa oculta. De esta manera, la GPU no se utiliza tan sólo para entrenar
una red de una forma paralela sino para entrenar múltiples redes neuronales de forma
paralela que pueden diferir en múltiples hiperparámetros (número de neuronas, función
de activación, tasa de aprendizaje, etc.). Aśı pues, esta aproximación facilita encontrar
la combinación de hiperparámetros ideal en un tiempo mucho menor. Este enfoque fue
estudiado utilizando datos de la REE sobre tres tipos diferentes de RNAs: MLPs, Redes
Neuronales de Elman y LSTMs, comparando tanto la ganancia de tiempo obtenida en
comparación con el framework TensorFlow aśı como comparándolo en términos de preci-
sión con propuestas de otros autores. Una explicación más detallada de este trabajo puede
ser encontrada en la siguiente referencia:

� D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Accelerating neural network hy-
perparameter selection with CUDA for energy forecasting, 2024 (En revisión).

El segundo estudio llevado a cabo modifica el paradigma de entrenamiento con-
vencional, sustituyendo el proceso de backpropagation por el empleo de algoritmos meta-
heuŕısticos recientemente propuestos. La adopción de tales algoritmos conlleva dos venta-
jas significativas. En primer lugar, sus operadores suelen exhibir una naturaleza paralela,
lo que implica que la mayoŕıa de estos pueden llevar a cabo sus operaciones de manera
independiente para cada caracteŕıstica de un individuo. En segundo lugar, su dinámica
poblacional, junto con operadores como la mutación, contribuye a evitar la convergencia
prematura hacia óptimos locales, una limitación potencial de los algoritmos entrenados
mediante backpropagation. En consecuencia, en el marco de este estudio se implemen-
taron cinco metaheuŕısticas (Particle Swarm Optimization [31], Equilibrium Optimizer
[39], Whale Optimization Algorithm [40], Marine Predators Algorithm [41] y Political
Optimizer [42]), incluyendo variantes meméticas de las mismas, y se evaluó su desempeño
en comparación con el método de backpropagation más ampliamente utilizado (ADAM)
tanto en términos de precisión como de tiempo de entrenamiento utilizando datos de con-
sumo de 10 edificios de una universidad australiana [43]. Para obtener información más
detallada sobre este trabajo, se remite al lector a la siguiente referencia:

� D. Criado-Ramón, L.G.B. Ruiz, Lorenzo Servadei, Robert Wille, M.P. Cuéllar,

25

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

M.C. Pegalajar, Parallelized Neural Network Training with Metaheuristics for Energy
Forecasting in Buildings, 2024 (En revisión).

3.4. El problema de la desagregación energética

El último estudio realizado en esta tesis investiga el problema de la desagregación
energética. A diferencia del resto de trabajos de esta tesis, el propósito principal de esta ta-
rea no radica en la predicción del consumo eléctrico, sino en la descomposición inteligente
del consumo asociado a un hogar en las distintas componentes relacionadas con el funcio-
namiento de los diversos electrodomésticos presentes en dicho hogar. La capacitación de
modelos para abordar esta tarea demanda un enfoque intrusivo y costoso, que requiere
la instalación de sensores adicionales para medir la componente de consumo asociada a
cada electrodoméstico. Por consiguiente, existe un marcado interés en el desarrollo de
algoritmos no supervisados capaces de realizar esta descomposición sin depender de más
información que el consumo total. Aunque se han logrado avances significativos en este
campo, todos los algoritmos no supervisados existentes se han centrado en la búsqueda
de métodos para separar diversos patrones de consumo (por ejemplo, mediante técnicas
de agrupamiento) y no disponen de modelos no supervisados para asignar una etiqueta a
cada uno de estos grupos.

Nuestro interés para trabajar en esta área surge a través de la distribuidora energéti-
ca “Cuerva Enerǵıa”, que se pone en contacto con nosotros con el fin de desarrollar un
algoritmo que sea capaz de abordar la desagregación de una forma no supervisada. Es
importante destacar que, a pesar de ser desarrollado para la compañ́ıa, la mayoŕıa de
los smart meters que utilizaban teńıan una granularidad horaria (un nivel al que es casi
imposible realizar una desagregación fiable) y ninguna referencia supervisada para eva-
luar la calidad de los modelos desarrollados. Aśı pues, tuvimos que recurrir a utilizar
los pocos conjuntos de datos públicos disponibles para la desagregación y adaptarlos a
una granularidad de un minuto, la misma que estaba empezando a utilizar Cuerva en
los últimos smart meters que estaba instalando. El algoritmo desarrollado se basaba en
detectar picos de subida o bajada en la potencia consumida para determinar eventos en
los que un electrodoméstico se enciende y se apaga. Una vez esos eventos eran detectados,
se utilizaba conocimiento experto de los patrones de consumo presentes en un conjunto
limitado de electrodomésticos para poder identificarlos de manera relativamente precisa.
De esta manera, se puede obtener información de consumo desagregado de algunos elec-
trodomésticos que pueden utilizar en sistemas de recomendación, optimización del coste
de consumo o detección del malfuncionamiento de algún electrodoméstico, entre otras
muchas aplicaciones interesantes. La referencia asociada a este trabajo es:

� D. Criado-Ramón, L.G.B. Ruiz, J.R.S. Iruela, M. C. Pegalajar, A Novel Non-
Intrusive Load Monitoring Algorithm for Unsupervised Disaggregation of Household
Appliances, Information, Volume 15, 87, 2024, ISSN 2078-2489. https://doi.org/
10.3390/info15020087

26

Caṕıtulo 4

Resultados.

4.1. La simbolización para la reducción de la dimen-

sionalidad de series temporales

La mayoŕıa de los experimentos realizados en esta tesis tiene como objetivo evaluar
el potencial y la calidad de diferentes aproximaciones que nos permiten reducir el tiempo
de entrenamiento de modelos de Machine Learning. Dentro de este contexto, la primera
aproximación que decidimos estudiar para reducir la complejidad computacional del en-
trenamiento de estos modelos fue el uso de las técnicas de simbolización.

El primer trabajo realizado sobre las técnicas de simbolización estaba centrado en
estudiar la viabilidad de las mismas para entrenar RNAs ya que, aunque la simbolización
hab́ıa sido ampliamente utilizada en problemas de clasificación de series temporales, ape-
nas hab́ıa sido utilizada en problemas de predicción. La evaluación experimental realizada
en este trabajo buscaba evaluar la forma óptima de integrar RNAs y simbolización para
predecir las siguientes 24 horas de demanda eléctrica a partir de las 00:00. Para encontrar
esta integración óptima, se utilizó un pipeline de entrenamiento con diferentes estrategias
a evaluar en cada paso. Los componentes del pipeline son los siguientes:

Técnicas de simbolización —- Se comprobó el uso del modelo sin simbolización, aśı
como con las técnicas de simbolización SAX y aSAX.

Parámetros de simbolización —- Se utilizaron tamaños de segmento de 6 observa-
ciones, haciendo que los datos pasen de granularidad de 10 minutos a granularidad
horaria. Los tamaños de alfabeto (número de śımbolos) evaluados fueron 7 y 13.

RNAs —- Se evaluó el uso de tres arquitecturas (MLP, Elman y LSTM) con dife-
rentes funciones de activación en la capa oculta (sigmoide, tangente hiperbólica y
ReLU) con un número de neuronas ocultas entre 5 y 60 neuronas (sólo los múltiplos
de 5 fueron evaluados).

Ventana deslizante —- La ventana deslizante es un mecanismo de manipulación de
datos que cubre una serie de observaciones consecutivas de la serie temporal de-
pendiendo de su tamaño y es desplazada para ir extrayendo las muestras que son

27

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

proporcionadas a los modelos. En nuestro caso, el tamaño de la ventana deslizante
cubŕıa todas las observaciones 24 horas previas al inicio de la predicción y se eva-
luaron dos tipos de deslizamiento, ya que el objetivo del modelo era sólo predecir a
partir de las 00:00. Estos tipos de deslizamiento fueron el deslizamiento diario, que
sólo genera las muestras que empiezan a las 00:00, y el deslizamiento de un instante,
que genera un número de muestras por d́ıa que depende de la granularidad de los
datos.

Codificación de la simbolización —- Para transformar la representación discreta de
la simbolización a una representación numérica apta como entrada (o salida) de la
RNA, se evaluó tanto el uso del one-hot encoding como el uso de la codificación
ordinal propuesta en [44].

Los resultados de este proceso de experimentación mostraron el potencial de las
técnicas de simbolización para modelar series temporales energéticas ya que, aunque no
llegaban a alcanzar el mismo nivel de precisión que las series temporales originales, nos
permit́ıan obtener modelos competitivos en términos de precisión que eran entrenados
mucho más rápido. Gracias al pipeline de entrenamiento utilizado, descubrimos que era
necesario utilizar aSAX y la codificación ordinal para obtener los resultados más preci-
sos en la simbolización. Además, se observó que las técnicas de simbolización tend́ıan a
funcionar mejor con modelos más sencillos, es decir, MLPs entrenados con la ventana
de deslizamiento diaria, y que los modelos sin simbolización funcionaban mejor con los
modelos más complejos, LSTMs entrenadas con más muestras haciendo uso de la ventana
de deslizamiento de un instante.

En el segundo trabajo sobre simbolización que realizamos, en el que diseñamos una
nueva técnica de simbolización difusa (FPLS-Sym), utilizamos la misma bateŕıa de expe-
rimentos con una ligera diferencia: también evaluamos el uso de la matriz de pertenencia
como codificación de la representación en la red neuronal con el fin de aprovechar la ma-
yor cantidad de información proporcionada por la representación difusa. En este caso,
pudimos observar que utilizar la matriz de pertenencia como entrada de la red neuro-
nal mejoraba sustancialmente los resultados en términos de precisión, dando lugar a un
modelo más preciso y entrenado mucho más rápido que el mejor modelo que no usaba
técnicas de simbolización.

4.2. Reducción de dimensionalidad basada en la búsque-

da de patrones

La otra alternativa estudiada en esta tesis para la reducción de la dimensionalidad
fue el uso de algoritmos de tipo PSF, que utilizan un proceso de clustering para asociar al
patrón de consumo de cada d́ıa una etiqueta. En esta área, decidimos desarrollar una nue-
va variante del algoritmo orientada a preservar las ventajas de la simbolización y mejorar
la precisión en comparación con otros modelos. Nuestra propuesta haćıa uso de un mapa
autoorganizado de Kohonen para obtener el etiquetado, un MLP para hacer la predicción
a partir del etiquetado y un algoritmo evolutivo para optimizar los hiperparámetros del

28

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

mapa autoorganizado y el MLP.

La evaluación de nuestra propuesta se realizó con datos de demanda energética de
diferentes regiones geográficas (España, Australia y Nueva York) a distintos niveles de
granularidad. Nuestra propuesta, gracias al uso de los modelos seleccionados, la optimi-
zación de sus hiperparámetros del algoritmo evolutivo y el uso del d́ıa de la semana y mes
como variables exógenas del MLP, dieron lugar a obtener el mejor modelo de entre las
técnicas de tipo PSF comparadas, aunque fuese algo más lentas que las mismas.

Además, se compararon los algoritmos de tipo PSF con otros modelos de Machine
Learning. Esta comparación reveló que los algoritmos de tipo PSF se entrenaban conside-
rablemente más rápido que las RNAs, siempre y cuando se tuviera en cuenta el proceso de
selección de hiperparámetros en ambos modelos. Sin embargo, a diferencia de las técnicas
de simbolización, los resultados en términos de precisión de los algoritmos de tipo PSF
fueron considerablemente inferiores a los proporcionados por las RNAs.

4.3. La paralelización de algoritmos de Machine Lear-

ning

Tras evaluar las distintas aproximaciones para la reducción de la dimensionalidad,
decidimos evaluar diferentes estrategias para optimizar el proceso de entrenamiento me-
diante el uso de la GPU. En este contexto, desarrollamos tres trabajos: uno en el que
diseñamos una versión paralela de un algoritmo de tipo PSF y dos orientados a propor-
cionar estrategias alternativas con las que aprovechar mejor la arquitectura de la GPU
cuando se entrenan RNAs con muestras de tamaño reducido, tal y como suele ocurrir en
el ámbito energético.

El trabajo de paralelización de un algoritmo de tipo PSF se basó en el algoritmo
bigPSF, que hab́ıa sido diseñado para ser ejecutado en clústers de CPU distribuidos.
Nuestra propuesta para GPU solucionó algunas de las limitaciones para computación pa-
ralela y distribuida que teńıa la versión original y fue capaz de proporcionar resultados
mucho más rápido (hasta más de 500 veces más rápido que la versión distribuida para
Spark). Aśı pues, esta propuesta, al combinar paralelización con GPU y la reducción de
dimensionalidad de algoritmo de tipo PSF, es una gran opción cuando se desea tener
un modelo inicial con el que comparar otras opciones. El entrenamiento de este modelo
para conjuntos de datos con 7 años de consumo energético tardó menos de 2 segundos y,
para su versión ampliada, con 14 años de consumo energético, tardó menos de 10 segundos.

La segunda propuesta de paralelización en GPU se enfocó en el desarrollo de al-
goritmos paralelizados que permitieran llevar a cabo de manera eficiente la optimización
de hiperparámetros para las RNAs. Esta propuesta implica entrenar múltiples RNAs de
una capa oculta de forma simultánea en la GPU, donde el entrenamiento de cada RNA
sigue un esquema paralelo. Espećıficamente, el entrenamiento de cada RNA se asigna a

29

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

un streaming multiprocessor, y cada hebra de un streaming multiprocessor se encarga de
realizar los cálculos asociados a una neurona de la capa oculta.

Para evaluar la calidad de esta implementación, se realizó una comparativa con la
implementación paralela para GPU disponible en TensorFlow, que está diseñada para
entrenar una única red neuronal de la manera más rápida posible. No obstante, es impor-
tante tener en cuenta que la implementación de TensorFlow parte con una desventaja,
ya que, en el entrenamiento de RNAs con datos energéticos, rara vez se puede procesar
una cantidad de información lo suficientemente grande como para aprovechar todos los
recursos de la GPU. Por tanto, para realizar una comparación justa, se lanzaron tantos
procesos de TensorFlow como fuera posible sin saturar los recursos del sistema utilizado
en la comparación.

Los experimentos realizados en este trabajo sobre datos de la REE demostraron que,
dependiendo del tamaño del batch utilizado, la optimización de hiperparámetros para las
redes MLP fue entre 248 y 629 veces más rápida con nuestra propuesta que con el uso
de TensorFlow. Asimismo, se observó que para las redes de Elman, nuestra propuesta fue
entre 27 y 1141 veces más rápida, y hasta 26 veces más rápida en el caso de las LSTM.

La última propuesta de paralelización evaluada en esta tesis se enfocó en el uso de
algoritmos metaheuŕısticos paralelizados en la GPU para el entrenamiento de RNAs. De-
cidimos explorar el uso de estos algoritmos debido a que la mayoŕıa de sus operadores se
adaptan de manera excepcional a la arquitectura masivamente paralela de la GPU y sue-
len contar con componentes diseñados para evitar quedar atrapados en un óptimo local.
Con el fin de realizar una evaluación de alta calidad, se desarrollaron versiones paraleliza-
das de los cinco metaheuŕısticos estudiados, aśı como versiones meméticas de los mismos
utilizando una búsqueda local con el algoritmo de entrenamiento ADAM. Todos estos
métodos, incluyendo el uso de ADAM sin ningún algoritmo metaheuŕıstico para entrenar
las RNAs, fueron evaluados utilizando datos de consumo energético de 10 edificios de una
universidad australiana, acompañados de la temperatura como variable exógena.

Los resultados de esta experimentación revelaron que, si bien los algoritmos me-
taheuŕısticos se entrenaban significativamente más rápido, no eran lo suficientemente
efectivos por śı solos para superar en rendimiento a las RNAs entrenadas con ADAM.
Sin embargo, cuando se empleaban sus variantes meméticas, el proceso de entrenamien-
to aún manteńıa una velocidad relativamente alta y surǵıan casos en los que alguno de
los algoritmos meméticos proporcionaba los mejores resultados en términos de precisión,
especialmente cuando la RNA utilizada era el MLP. En tres de los edificios estudiados,
el mejor algoritmo resultó ser un algoritmo memético, mientras que en los siete restan-
tes, el mejor algoritmo fue ADAM, acompañado habitualmente de una red neuronal más
compleja que el MLP. Aśı pues, en base a estos resultados, creemos que los algoritmos
metaheuŕısticos estudiados tienen dificultades para manejar espacios de búsqueda con una
mayor dimensionalidad con el ĺımite de evaluaciones utilizado pues, a mayor complejidad
de RNA o, lo que es lo mismo, un mayor número de pesos a entrenar, los resultados de
los algoritmos metaheuŕısticos fueron peores.

30

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

4.4. El problema de la desagregación energética

El último trabajo evaluado en la tesis estaba centrado en buscar una solución no
supervisada para desagregar el consumo eléctrico a partir de smart meters de granulari-
dad horaria. Dado que la compañ́ıa eléctrica con la que colaboramos no dispońıa de datos
supervisados con los que verificar los resultados del algoritmo desarrollado, tuvimos que
recurrir al uso de un dataset público, REDD, que teńıa información de consumo desagre-
gado de varias casas en Estados Unidos en un periodo durante un par de meses en 2011
e inclúıa los electrodomésticos que nuestro algoritmo es capaz de detectar (frigoŕıfico, la-
vavajillas, microondas y lavadora/secadora). Este dataset tomaba observaciones con una
frecuencia de 1 KHz (muestras con una granularidad más fina que un segundo) y se hizo
un proceso de muestro para cambiar el dataset a una granularidad de 1 minuto.

Los resultados de este algoritmo fueron bastantes positivos teniendo en cuenta que
los datos limitados con los que tuvimos que trabajar y que, hasta ahora, no exist́ıa ningún
algoritmo completamente no supervisado diseñado para esta tarea. De la experimentación
realizada, el electrodoméstico que mejor se detectó fue el frigoŕıfico, detectado sin mayor
problema en las 3 casas estudiadas con un gran nivel de precisión. El segundo electro-
doméstico utilizado, el lavavajillas, fue detectado en 2 de las 3 casa estudiadas debido
a una limitación inherente del algoritmo propuesto. En nuestra propuesta, para poder
detectar el lavavajillas es necesario que haya dos ciclos de consumo (cuando se calienta el
agua) elevado para que se pueda considerar que es un lavavajillas y el programa utilizado
en la tercera casa utilizaba tan solo uno de estos ciclos. Por regla general, la detección
de estos eventos de mayor consumo se realizó exitosamente. No obstante, hemos de tener
en cuenta que otra limitación de nuestra propuesta en la detección del lavavajillas es que
no es capaz de detectar el consumo del mismo cuando no están ocurriendo esos eventos.
Por último, los resultados para los otros dos electrodomésticos evaluados (microondas y
lavadora/secadora) fueron bastante irregulares. En el caso de la lavadora/secadora, nues-
tra propuesta teńıa una limitación similar a la del lavavajillas en la que realmente sólo es
capaz de detectar eventos de consumo elevado cuando es necesario subir la temperatura
y, en el caso del microondas, la principal dificultad fue causada por instancias en las que
la potencia utilizada por el mismo difeŕıa considerablemente de la potencia encontrada
por algoritmo, posiblemente porque el usuario estaba usando el mismo con una potencia
distinta.

31

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

32

Caṕıtulo 5

Conclusiones y trabajos futuros

Esta última sección de la memoria de la tesis recoge, de forma resumida, las conclu-
siones del desarrollo de esta tesis doctoral y posibles v́ıas de investigación para trabajos
futuros.

En primer lugar, durante el desarrollo de esta tesis, estudiamos el uso de técnicas de
reducción de la dimensionalidad para predecir series temporales energéticas de una forma
más rápida y eficiente. Para ello, evaluamos tanto el uso de técnicas de simbolización
como el desarrollo de algoritmos de tipo PSF:

Las técnicas de simbolización, fueron evaluadas con una metodoloǵıa diseñada para
evaluar la viabilidad de estas técnicas en conjunción con RNAs. La evaluación de la
metodoloǵıa nos demostró que las mismas eran viables y daban resultados competi-
tivos siempre y cuando la granularidad de los datos fuese lo suficientemente fina y se
usasen redes neuronales sencillas, como el MLP. En base a estos resultados, decidi-
mos realizar una técnica de simbolización más compleja, FPLS-Sym, que haćıa uso
de la lógica difusa para preservar una mayor cantidad de información. Esta técnica
de simbolización no solo tardó en entrenar mucho menos que las RNAs entrenadas
sin simbolización sino que mejoró los resultados proporcionados por las RNAs más
complejas, como es el caso de las LSTM, para el problema estudiado.

Para contribuir en el campo de los algoritmos de tipo PSF, desarrollamos un nuevo
algoritmo combinando mapas autoorganizados de Kohonen, RNAs y algoritmos evo-
lutivos para optimizar sus hiperparámetros. Este algoritmo, junto a otros algoritmos
del mismo tipo y otras RNAs, fue estudiado con 10 años de demanda energética de
Australia, España y Nueva York. Nuestra propuesta fue la mejor de todas las de su
tipo, aunque fue algo más lenta que el resto. Sin embargo, ninguna de las propuestas
de tipo PSF mejoró los resultados de las RNAs.

En segundo lugar, desarrollamos implementaciones paralelizadas para GPU con el
fin de acelerar el proceso de entrenamiento y búsqueda de hiperparámetros de modelos

33

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

de Machine Learning. En este contexto, realizamos tres trabajos:

El primer trabajo se centró en paralelizar un algoritmo de tipo PSF que hab́ıa sido
diseñado para trabajar con clusters distribuidos de CPU. Los cambios realizados
para mejorar la velocidad de entrenamiento nos permitieron desarrollar un algorit-
mo que, en apenas unos segundos, era capaz de entrenar un modelo competitivo con
otras opciones.

El segundo trabajo se centró en acelerar el proceso de selección de hiperparámetros
mediante el uso de la GPU con redes neuronales relativamente pequeñas. La es-
trategia de distribución de recursos utilizada en nuestra propuesta nos mostró una
gran mejora en el tiempo necesario para hacer la búsqueda de hiperparámetros, es-
pecialmente cuando se trabajaba con tamaño de batch pequeños y redes neuronales
sencillas.

El tercer trabajo realizado en este contexto se centró en evaluar el uso de algo-
ritmos metaheuŕısticos (y variantes meméticas de los mismos) para entrenar los
pesos y sesgos de las RNAs. Gracias a este trabajo, pudimos observar que, aunque
los algoritmos metaheuŕısticos tienden a entrenar más rápido para un número fijo
de evaluaciones, estos también encuentran dificultades para converger lo suficien-
temente rápido conforme la complejidad de la RNA utilizada crece. Aśı pues, las
variantes meméticas de estos algoritmos proporcionaron mejores resultados cuando
se evaluaron utilizando redes neuronales como el MLP, pero cuando se utilizaron
redes neuronales más complejas, como las LSTM, los aglrotimos no fueron capaces
de mejorar los resultados proporcionados por el uso del algoritmo de entrenamiento
ADAM.

En tercer y último lugar, desarrollamos, en colaboración con “Cuerva Enerǵıa”, una técni-
ca de desagregación no supervisada para detectar múltiples electrodomésticos en hogares.
La técnica fue capaz de detectar la presencia y potencia de consumo habitual de 4 tipos
de electrodomésticos y desagregar con un gran nivel de precisión el consumo asociado al
frigoŕıfico.

Una vez expuestas las conclusiones de todos los trabajos realizados en el contexto
de esta tesis doctoral, podemos decir que surgen varias ĺıneas de investigación con las que
se podŕıa continuar la misma:

1 Podŕıan estudiarse y desarrollarse técnicas de simbolización más complejas, con
el fin de mejorar la precisión de las mismas y acelerar el proceso de selección de
hiperparámetros para las técnicas de simbolización mediante el uso de la GPU.

2 Se podŕıa estudiar y desarrollar algoritmos metaheuŕısticos diseñados para trabajar
con problemas de alta dimensionalidad con el fin de mejorar los resultados obtenidos
a la hora de utilizarlas para entrenar los pesos y sesgos de las RNAs.

34

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

3 Podŕıan estudiarse y desarrollarse versiones multiobjetivo de algoritmos metaheuŕıti-
cos de manera que, de forma simultánea, pueda tanto entrenarse los pesos y sesgos
de las RNAs como buscar la topoloǵıa óptima para la misma.

35

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

36

Conclusions and future works

This final section of the thesis memory summarizes, in a concise manner, the results
of the development of this doctoral thesis and potential research avenues for future work.

Firstly, during the course of this work, we investigated the use of dimensionality
reduction techniques to predict energy time series in a faster and more efficient manner.
To achieve this, we evaluated both symbolization techniques and the development of PSF-
type algorithms:

Symbolization techniques were assessed using a methodology designed to evaluate
their viability in conjunction with Artificial Neural Networks (ANNs). The evalua-
tion of this methodology demonstrated that they were viable and yielded competitive
results as long as the data granularity was fine enough and simple neural networks
like multi-layer perceptrons (MLP) were utilized. Based on these results, we decided
to develop a more complex symbolization technique, FPLS-Sym, which employed
fuzzy logic to preserve more information. This symbolization technique took less
time to train than ANNs trained without symbolization and improved the accuracy
of the forecast for the studied problem.

To contribute to the field of PSF-type algorithms, we developed a new algorithm
by combining Kohonen self-organizing maps, ANNs, and evolutionary algorithms to
optimize their hyperparameters. This algorithm, along with other algorithms of the
same type and other ANNs, was studied using 10 years of energy demand data from
Australia, Spain, and New York. Our proposal outperformed all others of its kind,
although it was slightly slower to train. However, none of the PSF-type proposals
improved the results of ANNs.

Secondly, we explored the development of GPU algorithms to accelerate the trai-
ning process and hyperparameter search of machine learning models. In this context, we
conducted three works:

The first work focused on parallelizing a PSF-type algorithm that had been designed
to work with distributed CPU clusters. The modifications made to improve training
speed enabled us to develop an algorithm that could train a competitive model in
just a few seconds of GPU computation.

The second work aimed to accelerate the hyperparameter selection process by using
the GPU to simultaneously train multiple relatively small neural networks. The

37

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

resource distribution strategy used in our proposal showed a significant improvement
in the time required for hyperparameter search, especially when working with small
batch sizes and simple architectures like the MLP.

The third work in this context focused on evaluating the use of metaheuristic al-
gorithms (and their memetic version) to train the weights and biases of ANNs.
Through this work, we observed that although metaheuristic algorithms tend to
train faster for a fixed number of evaluations, they tend to encounter issues as the
complexity of the ANN used increases. Memetic variants of these algorithms provi-
ded great results when evaluated using neural networks like MLP, but when used
with more complex neural networks, such as LSTMs, they were unable to improve
upon the results provided by training the ANN with ADAM.

Lastly, we developed an unsupervised disaggregation technique to detect multiple
household appliances in collaboration with “Cuerva Enerǵıa”. The technique successfully
identified the presence and typical power consumption of four types of appliances and
accurately disaggregated the consumption associated with the refrigerator.

To finish, having presented the conclusions of all the work conducted in the context
of this doctoral thesis, several lines of research emerge for future exploration:

1 More complex symbolization techniques could be studied and developed to improve
their accuracy and accelerate the hyperparameter selection process for symbolization
techniques using GPUs.

2 Metaheuristic algorithms designed to work with high-dimensional problems could
be studied and developed to enhance the results obtained when using them to train
the weights and biases of ANNs.

3 Multi-objective versions of metaheuristic algorithms could be investigated and deve-
loped so that both the weights and biases of ANNs could be trained simultaneously
and the optimal topology for the network could be searched for.

38

Bibliograf́ıa

[1] International Renewable Energy Agency (IRENA), “Renewable energy statis-
tics 2020.” Disponible enhttps://www.irena.org/publications/2020/Jul/
Renewable-energy-statistics-2020, July 2020. ISBN: 978-92-9260-246-8.

[2] United Nations Treaty Collection, Chapter XXVII 7. d, “Paris agreement.” Dis-
ponible en https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&

mtdsg_no=XXVII-7-d&chapter=27&clang=_en. Adopted: 2015-12-12 Inforce: 2016-
11-04.

[3] M. P. la Transición Ecológica y el Reto Demográfico, “Plan nacional integrado de
enerǵıa y clima (pniec) 2021–2030.” Disponible en https://www.miteco.gob.es/

es/prensa/pniec.html, 2020.

[4] P. E. y del Consejo, “Reglamento (ue) 2018/1999 del parlamento europeo y
del consejo, de 11 de diciembre de 2018, sobre la gobernanza de la unión de la
enerǵıa y de la acción por el clima.” Disponible en: https://eur-lex.europa.
eu/legal-content/ES/TXT/?uri=CELEX%3A02018R1999-20231120, 2018.

[5] N. Wei, C. Li, X. Peng, F. Zeng, and X. Lu, “Conventional models and artificial
intelligence-based models for energy consumption forecasting: A review,” Journal
of Petroleum Science and Engineering, vol. 181, p. 106187, 2019.

[6] D. B. Avancini, J. J. Rodrigues, S. G. Martins, R. A. Rabêlo, J. Al-Muhtadi, and
P. Solic, “Energy meters evolution in smart grids: A review,” Journal of cleaner
production, vol. 217, pp. 702–715, 2019.

[7] K. Zhou, C. Fu, and S. Yang, “Big data driven smart energy management: From
big data to big insights,” Renewable and sustainable energy reviews, vol. 56,
pp. 215–225, 2016.

[8] M. Gomez-Omella, I. Esnaola-Gonzalez, and S. Ferreiro, “Short-term forecasting
methodology for energy demand in residential buildings and the impact of the
covid-19 pandemic on forecasts,” in Artificial Intelligence XXXVII: 40th SGAI In-
ternational Conference on Artificial Intelligence, AI 2020, Cambridge, UK, Decem-
ber 15–17, 2020, Proceedings 40, pp. 227–240, Springer, 2020.

[9] S.-C. Chan, K. M. Tsui, H. Wu, Y. Hou, Y.-C. Wu, and F. F. Wu, “Load/price fo-
recasting and managing demand response for smart grids: Methodologies and cha-
llenges,” IEEE signal processing magazine, vol. 29, no. 5, pp. 68–85, 2012.

39

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

[10] S. A. A. Rizvi, A. Xin, A. Masood, S. Iqbal, M. U. Jan, and H. Rehman, “Electric
vehicles and their impacts on integration into power grid: A review,” in 2018 2nd
IEEE Conference on Energy Internet and Energy System Integration (EI2), Bei-
jing, China, October 20–22, 2018, pp. 1–6, IEEE, 2018.

[11] B. P. Koirala, E. Koliou, J. Friege, R. A. Hakvoort, and P. M. Herder, “Energetic
communities for community energy: A review of key issues and trends shaping in-
tegrated community energy systems,” Renewable and Sustainable Energy Reviews,
vol. 56, pp. 722–744, 2016.

[12] J. A. Gras, Diseños de series temporales: técnicas de análisis, vol. 46. Edicions
Universitat Barcelona, 2001.

[13] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[14] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun,
eds.), 2015.

[15] L. B. Almeida, “Multilayer perceptrons,” in Handbook of Neural Computation, IOP
Publishing Ltd and Oxford University Press, 1997.

[16] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–211, 03
1990.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, pp. 1735–80, 12 1997.

[18] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural
nets and problem solutions,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 06, no. 02, pp. 107–116, 1998.

[19] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: A novel symbolic
representation of time series,” Data Mining and Knowledge Discovery, vol. 15,
pp. 107–144, 08 2007.

[20] N. D. Pham, Q. L. Le, and T. K. Dang, “Two novel adaptive symbolic represen-
tations for similarity search in time series databases,” in 2010 12th International
Asia-Pacific Web Conference, pp. 181–187, 2010.

[21] B. Lkhagva, Y. Suzuki, and K. Kawagoe, “New time series data representation
esax for financial applications,” pp. x115 – x115, 02 2006.

[22] K. Zhang, Y. Li, Y. Chai, and L. Huang, “Trend-based symbolic aggregate appro-
ximation for time series representation,” in 2018 Chinese Control And Decision
Conference (CCDC), pp. 2234–2240, 2018.

40

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

[23] Y. Yu, Y. Zhu, D. Wan, H. Liu, and Q. Zhao, “A novel symbolic aggregate appro-
ximation for time series,” in Proceedings of the 13th International Conference on
Ubiquitous Information Management and Communication, IMCOM 2019, pp. 805–
822, 2019.

[24] F. Martinez Alvarez, A. Troncoso, J. C. Riquelme, and J. S. Aguilar Ruiz, “Energy
time series forecasting based on pattern sequence similarity,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, pp. 1230–1243, Aug. 2011.

[25] N. Bokde, A. Troncoso, G. Asencio-Cortés, K. Kulat, and F. Mart́ınez-Álvarez,
“Pattern sequence similarity based techniques for wind speed forecasting,” in Pro-
ceedings of the International Work-Conference on Time Series, Granada, Spain,
pp. 18–20, 2017.

[26] N. Bokde, M. W. Beck, F. Mart́ınez Álvarez, and K. Kulat, “A novel imputation
methodology for time series based on pattern sequence forecasting,” Pattern Recog-
nition Letters, vol. 116, p. 88 – 96, 2018.

[27] F. Mart́ınez-Álvarez, A. Schmutz, G. Asencio-Cortés, and J. Jacques, “A novel hy-
brid algorithm to forecast functional time series based on pattern sequence simila-
rity with application to electricity demand,” Energies, vol. 12, no. 1, 2019.

[28] W. Shen, V. Babushkin, Z. Aung, and W. L. Woon, “An ensemble model for day-
ahead electricity demand time series forecasting,” in Proceedings of the Fourth In-
ternational Conference on Future Energy Systems, e-Energy ’13, (New York, NY,
USA), p. 51–62, Association for Computing Machinery, 2013.

[29] R. Pérez-Chacón, G. Asencio-Cortés, F. Mart́ınez-Álvarez, and A. Troncoso, “Big
data time series forecasting based on pattern sequence similarity and its applica-
tion to the electricity demand,” Information Sciences, vol. 540, pp. 160–174, 2020.

[30] J. H. Holland, Adaptation in natural and artificial systems: an introductory analy-
sis with applications to biology, control, and artificial intelligence. MIT press, 1992.

[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948
vol.4, 1995.

[32] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statistical Science, vol. 8,
no. 1, pp. 10–15, 1993.

[33] Red Eléctrica de España, “Demanda de enerǵıa eléctrica en tiempo real.” https:

//demanda.ree.es/visiona/peninsula/demanda/total (Último acceso: 02-01-
2022).

[34] T. Kohonen, “The Self-Organizing Map,” Proceedings of the IEEE, vol. 78, no. 9,
pp. 1464–1480, 1990.

[35] S. J. Taylor and B. Letham, “Forecasting at scale,” The American Statistician,
vol. 72, no. 1, pp. 37–45, 2018.

41

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

[36] New York Independent System Operator, Inc., “NYISO OASIS.” http://mis.

nyiso.com/public/ (Último acceso: 02-01-2022).

[37] Australian Energy Market Operator, “Aggregated price and de-
mand data.” https://aemo.com.au/energy-systems/electricity/

national-electricity-market-nem/data-nem/aggregated-data (Último
acceso: 02-01-2022).

[38] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On
large-batch training for deep learning: Generalization gap and sharp minima,” in
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[39] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, “Equilibrium op-
timizer: A novel optimization algorithm,” Knowledge-Based Systems, vol. 191,
p. 105190, 2020.

[40] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engi-
neering Software, vol. 95, pp. 51–67, 2016.

[41] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Marine preda-
tors algorithm: A nature-inspired metaheuristic,” Expert Systems with Applications,
vol. 152, p. 113377, 2020.

[42] Q. Askari, I. Younas, and M. Saeed, “Political optimizer: A novel socio-inspired
meta-heuristic for global optimization,” Knowledge-Based Systems, vol. 195,
p. 105709, 2020.

[43] H. Moraliyage, N. Mills, P. Rathnayake, D. De Silva, and A. Jennings, “Unicon:
An open dataset of electricity, gas and water consumption in a large multi-campus
university setting,” in 2022 15th International Conference on Human System Inter-
action (HSI), pp. 1–8, 2022.

[44] J. Cheng and G. Pollastri, “A neural network approach to ordinal regression,”
pp. 1279–1284, 06 2008.

42

Caṕıtulo 6

Copia de los trabajos publicados

43

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.1. Electric demand forecasting with neural net-

works and symbolic time series representations.

Referencia:
D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Electric demand forecasting with neu-
ral networks and symbolic time series representations, Applied Soft Computing, Volume
122, 2022, 108871, ISSN 1568-4946
Estado:
Publicado
Factor de impacto:
8.7
Categoŕıa:
Primer cuartil JCR.
Posición 26/192 en la categoŕıa “Computer Science, Artificial Intelligence”
DOI:
https://doi.org/10.1016/j.asoc.2022.108871

Revista:
Applied Soft Computing
Editorial:
Elsevier

44

Electric demand forecasting with neural networks and

symbolic time series representations

D. Criado-Ramóna,∗, L.G.B. Ruizb, M.C. Pegalajara

aDepartment of Computer Science and Artificial Intelligence, University of
Granada, Granada, Spain

bDepartment of Software Engineering, University of Granada, Granada, Spain

Abstract

This paper addresses the electric demand prediction problem using neural
networks and symbolization techniques. Symbolization techniques provide a
time series symbolic representation of a lower length than the original time
series. In our methodology, we incorporate the use of encoding from ordinal
regression, preserving the notation of order between the symbols and make
extensive experimentation with different neural network architectures and
symbolization techniques. In our experimentation, we used the total electric
demand data in the Spanish peninsula electric network, taken from 2009 to
2019 with a granularity of 10 minutes. The best model found making use
of the symbolization methodology offered us slightly worse quality metrics
(1.3655 RMSE and 0.0390 MAPE instead of the 1.2889 RMSE and 0.0363
MAPE from the best numerical model) but it was trained 6826 times faster.

Keywords: time series, forecasting, symbolic representation, energy
demand, artificial neural networks

1. Introduction.

Energy has become one of the most important resources of our time. It
is present in most aspects of our time and, due to its relevance, has a big en-
vironmental impact and heavily affects our economy. As such, finding ways

∗Corresponding author at: c/Periodista Daniel Saucedo Aranda s.n, 18071, Granada,
Spain.

Email addresses: davidcr96@correo.ugr.es (D. Criado-Ramón), bacaruiz@ugr.es
(L.G.B. Ruiz), mcarmen@decsai.ugr.es (M.C. Pegalajar)

Preprint submitted to Applied Soft Computing

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

45

to produce and distribute energy in a sustainable and efficient way has been
one of the main objectives of many governments, institutions and private
parties over the last decade. Advances in storage and sensor technology have
conducted a wide availability of energy data from different sources that result
in really large time series. This huge amount of information may sometimes
be useful but also presents some disadvantages, mainly the computational
power required to process them. Thus, it is frequent to add a preprocessing
stage to reduce the length of the time series.

A common approach to reduce the computational complexity when work-
ing with time series is the use of techniques that reduce the number of vari-
ables used (dimensionality reduction) or reduce the length of the time series
(numerosity reduction). Syan et all [1] evaluated different feature extraction
methods for dimensionality reduction (PCA, ICA, tSNE and UMAP, among
others) to make a short-term forecast of the London Households dataset.
Elsworth and Güttel [2] used a symbolization technique named ABBA to
reduce the length of the time series and evaluated its performance when used
in conjunction with LSTM neural networks. Symbolization techniques trans-
form the original time series to a lower length sequence of discrete symbols
from a finite alphabet, trying to preserve the most relevant information. In
our study, we evaluate two symbolization techniques (SAX [3] and aSAX [4])
to create a short-term forecasting model for the Spanish electric demand.
Using this approach, we evaluate whether the symbolization offers us faster
training, better forecasts and the differences between various ways of training
different neural network architectures (MLP [5], Elman [6] and LSTM [7])
with different hidden activation functions.

Neural networks are a popular approach to forecast energy demand and
production as they usually offer better forecasts but are usually harder to
train. Siridhipakul and Vateekul [8] used a Dual-Stage Attentional LSTM
to forecast Thailand’s power consumption. Their model outperformed ev-
ery other traditional model for that task. Azadeh, Ghadrei, and Nokhandan
[9] used seasonal artificial neural networks to do short-term load forecast-
ing of the energy consumption in Iran one day ahead. Ehsan Simon and
Venkateswaran [10] used a multilayer perceptron architecture to predict the
energy output of a solar photovoltaic power plant one day ahead.

Symbolization techniques have been previously used in the energy sector.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

46

However, they are not commonly used for forecasting task but for pattern
extraction/recognition related tasks. Reinhardt and Koessler [11] created a
SAX-based method to extract consumption patterns from distributed power
systems. Chen and Wen [12] used SAX to find similar weather patterns in
a database and use it in a PCA model to detect HVAC system faults in
buildings. Miller, Nagy and Schlueter [13] used SAX to detect infrequent
daily consumption patterns that could represent faults in energy systems in
buildings.

However, up to date, there is only one unpublished work [2] on the use
of symbolization techniques for forecasting tasks in which they use LSTM
neural networks to forecast different datasets with the symbolic time series
being provided to the neural network with one-hot encoding. The goal of
our research is to find how suitable symbolization techniques to forecast a
massive amount of energy data and expand upon the preprocessing ideas
used in the previously mentioned paper by making a comparative analysis
of how different approaches in the model training pipeline (sample selection,
data encoding, symbolization technique and neural network architecture) can
improve the obtained results.

The rest of the paper is structured as follows: the data, algorithms and
methodology used are described in section 2; the results obtained are shown
and discussed in section 3; and section 4 compiles the conclusions obtained
from this research.

2. Materials and Methods.

2.1. Data Analysis and Preparation.

For this paper, the historical record of Spanish energy consumption was
scrapped from the official REE website [14], which provides data from 2007
to present of the amount of electricity demanded every 10 minutes in the
Spanish peninsula electric network. A first exploratory visual analysis pro-
vides us with information about the seasonality of the data.

As we can observe in the figure 1, the data presents seasonal patterns in
three levels: daily, weekly and annually. This is due to the fact that we can
observe high autocorrelation values for each 144-time step (24 hours) on the

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

47

Figure 1: Autocorrelation function plots (ACF). On the left, ACF every 10 minutes. In
the middle, daily mean demand ACF. On the right, weekly mean demand ACF.

left one, each 7-time step on the middle one (1 week) and every 52 weeks
on the right one (1 year). Furthermore, by evaluating figure 2 we observe
two relevant factors about the daily and weekly seasonality. Most days, peak
demand is reached between 12 and 13 hours or between 20 and 21 hours.
Sunday is the day of the week with the least electric demand followed by
Saturday while the rest of the days have a quite similar demand, hinting
that workdays may be an important factor in electric demand.

Figure 2: Box plots. On the left, the hourly demand box plot. On the right, box plot of
the demand each day of the week.

The data for the experimentation was gathered from January 1st 2009
to December 31th 2019. A first preprocessing stage was made to fix any
missing values and unwanted data. Issues with missing hours and repeated
hours from daylight saving time (DST) were solved by adding an extra hour

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

48

with the mean of the previous and the next one if the clock is advanced or by
keeping the mean of the repeated hour if the clock is turned back to standard
time. The dataset was divided into three partitions preserving chronological
order: 70 % training data, 10 % validation data and 20 % test data.

2.2. Artificial Neural Networks (ANN).

Artificial neural networks (ANN) are machine learning models inspired by
the human nervous system. An ANN consists of many computational nodes,
named neurons, and weighted connections between them. Usually, these neu-
rons are aggregated into layers where the first layer (or input layer) provides
the input data for training or forecasting, and the last layer (or output layer)
provides the corresponding output. During the training process, the ANN
optimizes its weights to minimize a loss function between the output from
the last layer and the desired output. In our experimentation, we tried out
three architectures of ANNs frequently used for time series forecasting, each
with its own advantages and disadvantages.

Multilayer perceptrons (MLP) are one of the most simple and widely
used feed-forward artificial neural networks. Due to lower complexity, they
are easier to train and perform fast operations. The architecture of the MLP
consists of at least three sequential layers: one input layer, one or more
hidden layers and the output layer. Every neuron in a MLP model is fully
connected, which is, each neuron is connected to all neurons from the pre-
vious and next layer. Associated with those connections there is a weight
that the neural network will learn during the training process. Each neuron
j (except those on the input layer) performs the sum of the inputs from the
previous layer multiplied by their respective weights wji and applies a non-
linear activation function f to the output.

hj = f
(∑

i

wjixi

)
(1)

A recurrent neural network (RNN) is a type of ANN in which the connec-
tions between nodes from a graph along a temporal sequence, allowing them
to use their internal state (memory) to process sequences of variable length.
The Elman Recurrent Neural Network [6] is a RNN that adds a new type
of layer: the context layer. The context layer contains as many neurons as
the hidden layer and serves as a memory by storing the output of the hidden

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

49

layer from the previous time point ht−1 and sending it back to all neurons
on the hidden layer on the current time point t alongside the corresponding
element of the sequence xt. Mathematically, the Elman Neural Network can
be described as follows:

hj,t = f(whj
xt + wcjhj,t−1 + bhj

) (2)

where hj,t is the output of the unit j from the hidden layer at time point t, f
an activation function (usually tanh), whj

the learned weights on that unit
for the input, wcj the learned weights on that unit for its own output on the
previous time point (stored in the context unit) and bhj

the bias of the unit.

Long-Short Term Memory (LSTM) [7] neural networks were created by
Hochreiter and replace the standard hidden neuron with LSTM units. Each
LSTM unit is formed by two recurrent data vectors: the hidden state and
the cell state; and three gates: input gate, forget gate and output gate. The
hidden state works as a short-term memory whilst the cell state works as long-
term memory. The three gates work as masks that control the information
flow in and out of the cell state. All three gates have their own weights
and use the sigmoid function to ensure the [0,1] range. Mathematically, the
LSTM cell works as follows:

• Forget gate: ft = σ(Wf · [ht−1, xt] + bf) (3)

• Input gate: it = σ(Wi · [ht−1, xt] + bi) (4)

• Candidate cell state: C̃t = tanh(Wc · [ht−1, xt] + bc) (5)

• Output gate: ot = σ(Wo · [ht−1, xt] + bo) (6)

• Cell state: Ct = ft · Ct−1 + it · C̃t (7)

• Hidden state: ht = ot · tanh(Ct) (8)

2.3. Time series symbolization.

Time series symbolization techniques transform a raw numerical time-
series T = [T0, T1, T2, ..., Tn] to a sequence of symbols of lower length S =
[S0, S1, S2, ..., Sm]. Symbolization is used as a numerosity reduction tech-
nique in many time series data mining tasks, especially those that rely on
distance computation, such as pattern mining and anomaly detection. Their

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

50

objective is to provide a simpler representation of time series that reduce
computational complexity and storage requirements while preserving rele-
vant information.

Time series symbolization often relies on a two-step process based on time
series segmentation and extracting symbols that represent the relevant infor-
mation from each segment. Symbolic Aggregate approXimation (SAX) [3] is
the most used symbolization technique in the literature. The segmentation
in SAX is made making use of Piecewise Aggregate Approximation (PAA),
which divides the original time series into equidistant segments and returns
the mean value from each segment. Then, the mean value from each segment
is discretized making use of an interval-based lookup table. Each interval is
an equiprobable area under the Gaussian curve. The number of intervals
in the lookup table corresponds to the number of unique symbols that can
appear on the resulting sequence (size of the alphabet). SAX works under
the assumption of normality in the original time series and two parameters
provided by the algorithm user: the size of the alphabet and the size of the
segments.

While SAX has offered great results in many applications [15, 16], it is
a common opinion from various authors the information from just the mean
may not suffice depending on its application. Thus, there are many propos-
als of SAX variants that try to address some of its issues. Extended SAX
(ESAX) [17] uses the minimum, maximum and mean of every segment in-
stead of just the mean. Trend-based SAX (TSAX) [18] uses the mean and
a new symbol to represent the trend. The trend is calculated by splitting
each segment in half and looking at the subtraction of the means of the sub-
segments. It can take three values: stable (the absolute difference is lower
than a minimum value), up or down. TFSAX [19] incorporates a new sym-
bol that represents the trend. The trend is calculated as the arctangent of
the ratio between the trend distance and the number of turning points in
the segment and is discretized by using the same procedure as SAX’s mean
value. Adaptive SAX (aSAX) [4] uses the Lloyd algorithm to find a new
set of breakpoints that should resemble better the original data distribution
than the assumption of normality from SAX.

In our experimentation, we implemented the SAX and aSAX symbol-
ization techniques. The use of other SAX variants was discarded because

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

51

they use more than one symbol per segment. While the use of more sym-
bols per segment preserves more information, it also makes the prediction
harder since we would need to forecast accurately multiple symbols at the
same time. Furthermore, most proposals do not offer a way to transform the
symbolic representation into a numerical one as they were designed for other
data mining tasks, such as classification or clustering, providing almost no
benefit for the forecasting task and requiring more time to train.

2.4. Methodology

Figure 3: Applied methodology flowchart.

In order to see which approach works better (neural networks with or
without symbolization), we trained models under similar conditions, as we
can observe in figure 3. In the case of models without symbolization, after the
data was cleaned, a model is trained with the samples provided by a sliding
window whose size corresponds to two days and the next sample is obtained
moving the sliding window either to the next observation (1-step) or the
number of observations corresponding to two days (daily-step). Then, the
selected neural network architecture is trained by making use of the mean
squared error as loss function. In the case of models with symbolization,
prior to the sliding window, the corresponding symbolization technique is
applied and an encoding algorithm transforms the symbolic representation
into a suitable input for the neural network. Afterwards, the sliding window
and neural network will be applied in the same way that models without
symbolization except by the fact that the loss function will be determined by

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

52

the encoding algorithm used. Once all models were trained, we made a com-
parative analysis to compare both the differences between models with and
without symbolization and what parameters in the preprocessing pipeline
lead to better models. In this section, we will provide and explain the differ-
ent parameters tested in the methodology.

2.4.1. Symbolization parameters.

The selected symbolization techniques, SAX and aSAX require the user
to provide a segment size and an alphabet size. Finding those values is a
non a non-trivial task. Longer segments will speed up the posterior training
process but could offer less accurate forecasts while extremely short segments
will barely give any benefit over using the time series without symbolization.
High cardinality alphabets will represent better the original time series but
could make the forecasting task more difficult. Particularly cases in which
some symbols appear too many times in comparison with the others or some
symbols barely used. However, if the alphabet size is too small we may be
losing relevant information.

The selection of these parameters has a huge impact on the interpretation
of the symbolic time series. In our experimentation, we decided to use a
segment size of 6, since each symbol of the time series will be representing
the mean demand during an hour and can provide a considerable speedup
while preserving enough information. For the alphabet size, we tested two
values: 7 and 13. These two values correspond to the largest alphabet size
in which each symbol is observed in at least 10% and 5% of the observations,
respectively. We decided not to use larger alphabets since, for our data,
they lead to excessively imbalanced distributions in which some symbols may
appear too many times and other symbols may not appear at all.

2.4.2. Encoding.

A well-known way to train an artificial neural network with a symbolic
sequence is by using a hot-encoding representation. Each symbol s of the a
different symbols is represented by a unique vector of all zeros except a one
in the sth position of the vector. This is a common and successful approach
in a task such as text mining, where this encoding is combined with the soft-
max activation in the output layer and the cross-entropy loss function to
train neural networks. This approach usually leads to high accuracy models

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

53

but does not take into account how far each predicted symbol is from the
expected symbol.

In the case of energy demand, we deem more useful forecasts that may
be slightly less accurate but penalize the distance between predicted and
expected value. This is the reason we propose the incorporation of the ordinal
regression encoding proposed by Cheng et al. [20] to forecast symbolic time
series. In this approach, the neural network is trained to learn the probability
o = (o1, o2, ..., oi, ..., oa) of a given value x being lower than the ith symbol,
where oi(i ≤ a) is close to one and oi(i ≥ a) is near zero. The encoding
represents the ith symbol with a vector of a numbers with all ones up to
position number i filled with zeros afterwards and requires the use of the
sigmoid activation on the output layer and the mean squared error as loss
function.

2.4.3. Sliding Window.

Since our objective is to make daily forecasting with an univariate time
series, a sliding window algorithm was used to extract the samples. The size
of the sliding window was set to two days. The observations corresponding
to the first 24 hours are provided to neural network as the input signals and
the next 24 hours are the desired output signals. This was set after trying
out multiple input sizes from the use of just a few hours to an entire week.
Two values were selected for the sliding window step during our experimen-
tation. Choosing a step size of 1 provides us with the maximum amount of
training samples, giving us more information at the expense of more training
time. This approach also creates flexible models that can be used to forecast
the next 24 hours independently of the hour the sample start. Choosing a
daily step size (24 for symbolic representations or 144 for numerical repre-
sentations) will provide us with fewer samples, thus granting faster training
and a lower risk of overfitting. This approach makes models that only work
properly when the first observation of a sample is at 0:00. The daily step
size was used for the validation and testing partitions.

2.4.4. Neural network parameters.

All neural networks models were trained using a many-to-many approach
using the samples providing by the sliding window. We tested topologies with
one hidden layer with a number of hidden units between 10 to 60 neurons
(each value every 5 neurons was tested). Three different hidden activation

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

54

functions where tested: hyperbolic tangent, sigmoid and ReLU. Models were
trained during up to 75 epochs with early stopping if the results do not
improve for 10 epochs. We use the cross entropy loss function for the symbolic
time series and mean squared error for the numeric time series. The learning
rate when working with the symbolic representation was raised to 0.005 since
with the default value of 0.001 it was not converging. All other parameters
were kept to the default value of the TensorFlow Keras [21] framework, which
was used for all experimentation. All calculations were made on a desktop
computer with 8 GB of RAM and an AMD Ryzen 5 2600x running at 3.6
GHz. For reproducibility purposes, the random seed to initialize the weights
of each model was set to 1996.

3. Discussion.

3.1. Forecasting performance metrics.

To evaluate the performance of the models we used the training time,
three metrics for models with symbolization and two metrics for models with-
out symbolization. For models with symbolization, we used the root mean
squared error (RMSE), MINDIST and accuracy. Since RMSE was used for
models with and without symbolization, we will refer to the RMSE used for
models with symbolization as RMSE (Sym) for the remainder of the paper
while RMSE alone refers to the numeric representation. In order to calculate
the RMSE (Sym), since the metric requires a numerical value, each symbol is
replaced with the integer that represents its position on the alphabet. For ex-
ample, the first symbol, A, would be replaced with integer 1. The best model
with symbolization for a specific alphabet size was selected making use of this
metric, while the others are used to provide complementary information for
the discussion. RMSE is defined as follows:

RMSE =

√∑N
i=1 (ŷi − yi)2

N
(9)

where ŷi is the predicted value, yi is the expected value and N is the
sample size.

MINDIST [3] is a distance measure proposed alongside SAX that lower
bounds the euclidean distance of the corresponding PAA representation of

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

55

the time series. The benefit from it is that it allows us to compare results
even if we make use of different alphabet size or segment size. MINDIST is
calculated as follows:

MINDIST (a, b) =

√
n

w

√√√√
w∑

i=1

(dist(ai, bi))2 (10)

where a and b are two SAX (or aSAX) sequences, n is the numeric time
series length, w is the symbolic time series length and dist is defined as
follows:

dist(r, c) =

{
0, if |r − c| ≤ 1
βmax(r,c)−1 − βmin(r,c), otherwise

(11)

where β is a breakpoint from the symbolization lookup table.

The accuracy metric tells us the percentage of correct predictions and its
purpose is to complement the RMSE metric. Accuracy is defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions
(12)

In the case of models without symbolization, we made use of the RMSE
and MAPE metric. MAPE is defined as follows:

MAPE =

∑n
i=1 |y−ŷ

y

N
(13)

Since we cannot directly compare models with and without symbolization,
it is required to transform the representation after the forecast is done. We
can evaluate how well a model with symbolization forecasts the numerical
time series by transforming each symbol to the central value of the interval it
represents and repeating that value as many times as long as the segment size,
and we can evaluate how well the models without symbolization (numerical)
can provide a symbolic forecast by using the symbolization technique after
the forecast is done.

3.2. Preprocessing pipeline.

 The preprocessing pipeline proposed in our methodology features multiple
alternatives in each of its steps, such as the use of different encoding

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

56

algorithms. The first part of the discussion will be focused on the study of
this preprocessing pipeline and, particularly, if there is any alternative that
always outperforms the others. A summary of the models trained using the
SAX symbolization algorithm is shown in table 1. For clarity reasons, the
table only shows the model with the best number of neurons and activation
(according to the RMSE (Sym) metric) per combination of all other param-
eters.

Table 1: Best topologies found for SAX based training. Bold values represent best metrics
found for each alphabet size.

Alphabet Architecture Window Neurons Activation RMSE MINDIST Accuracy
size and Encoding step (Sym)

7 MLP [One-Hot] Daily 40 ReLU 0.6903 1.0549 0.7021
7 Elman [One-Hot] Daily 60 sigmoid 0.7421 1.1977 0.6759
7 LSTM [One-Hot] Daily 25 ReLU 0.705 1.0249 0.682
7 MLP [One-Hot] 1 60 ReLU 0.8116 1.4945 0.6548
7 Elman [One-Hot] 1 45 sigmoid 0.906 1.8182 0.6085
7 LSTM [One-Hot] 1 60 ReLU 0.7592 1.272 0.6674
13 MLP [One-Hot] Daily 50 tanh 1.188 1.7053 0.5566
13 Elman [One-Hot] Daily 55 sigmoid 1.2734 1.8804 0.5166
13 LSTM [One-Hot] Daily 60 ReLU 1.1936 1.6802 0.5421
13 MLP [One-Hot] 1 60 ReLU 1.4039 2.2482 0.5068
13 Elman [One-Hot] 1 60 sigmoid 1.4129 2.2889 0.484
13 LSTM [One-Hot] 1 55 ReLU 1.3105 1.9718 0.4952
7 MLP [Ordinal] Daily 60 sigmoid 0.6366 0.7121 0.6888
7 Elman [Ordinal] Daily 45 ReLU 0.704 0.8755 0.6469
7 LSTM [Ordinal] Daily 60 ReLU 0.6678 0.7472 0.6676
7 MLP [Ordinal] 1 55 sigmoid 0.7638 1.1066 0.6195
7 Elman [Ordinal] 1 50 sigmoid 0.7866 1.1643 0.6077
7 LSTM [Ordinal] 1 60 ReLU 0.7279 1.0484 0.655
13 MLP [Ordinal] Daily 60 ReLU 0.9893 1.1032 0.5584
13 Elman [Ordinal] Daily 50 ReLU 1.1399 1.417 0.4591
13 LSTM [Ordinal] Daily 55 ReLU 1.0132 1.1006 0.5133
13 MLP [Ordinal] 1 45 sigmoid 1.2852 1.795 0.4451
13 Elman [Ordinal] 1 50 sigmoid 1.3575 2.0101 0.4402
13 LSTM [Ordinal] 1 60 ReLU 1.1763 1.5321 0.4888

The summary table shows that for every pair of models that share archi-
tecture, alphabet size and sliding window step but have different encoding,
most models with one-hot encoding provide better accuracy than ordinal
models while all models with ordinal encoding provide better RMSE (Sym)
than models with ordinal encoding. This was the expected behaviour and
verifies that whenever how far away the prediction is from the expected value

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

57

is relevant the ordinal encoding should be preferred. In the case of the slid-
ing window, the use of a daily step outperforms the use of a step size of
one. Therefore, the use of a daily step sliding window offers both better met-
rics and faster training time, since the daily step size will generate a lower
amount of samples to use for training. Also, the most simple neural network
architecture, the MLP, provides better results than all the other recurrent
architectures.

While the RMSE (Sym) metric allows us to compare models with the
same alphabet size, we cannot directly use it to compare models with al-
phabet sizes that differ. The MINDIST metric, on the other hand, is suit-
able to compare different alphabet sizes but is only a lower bound of their
true PAA euclidean distance. The MINDIST metric is usually worse for the
models that use symbolization with alphabets of 13 symbols than 7. This
is expected since a higher alphabet size makes the forecast more difficult.
However, since it is a lower bound, it is completely possible that an alphabet
size of 13 outperforms the alphabet size of 7 if we compare the results after
transforming the symbolic representation back to a numerical one.

3.3. Comparison between SAX and aSAX.

With aSAX, the use of daily step size for the sliding window and the use
of the ordinal encoding did also outperform the other alternatives. Table 2
contains a summary of the best models found making use of aSAX.

Table 2: Best topologies found for aSAX. All models in this table use ordinal encoding
and a daily sliding window step.

Alphabet Architecture Neurons Activation RMSE MINDIST Accuracy
size (Sym)

7 MLP 45 ReLU 0.6181 0.6678 0.6664
7 Elman 45 ReLU 0.6794 0.8843 0.6322
7 LSTM 40 ReLU 0.6496 0.6356 0.6303
13 MLP 25 ReLU 0.9548 1.088 0.525
13 Elman 35 ReLU 1.1094 1.4289 0.4258
13 LSTM 55 ReLU 0.9873 1.0948 0.4698

The use of aSAX instead of SAX leads us to models that forecast better
their symbolic representation than their SAX counterparts. They also make

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

58

use of a lower amount of neurons, providing lower complexity models. The
best models with aSAX always make use of the ReLU activation function.
Since the only difference between SAX and aSAX, is the interval each sym-
bol covers, we can understand the reason behind the better performance by
taking a closer look into them.We can observe the interval breakpoints for
our training data in table 3 and how many times each symbol appears on the
training data in figure 4.

Table 3: SAX and aSAX breakpoints for our training data.

1 2 3 4 5 6 7

SAX
Lower bound −∞ 23.3326 25.8686 27.8197 29.6381 31.5909 34.1268
Upper bound 23.3326 25.8686 27.8197 29.6381 31.5909 34.1268 ∞

aSAX
Lower bound −∞ 22.2939 24.9574 27.7179 30.4538 33.148 36.287
Upper bound 22.2939 24.9574 27.7179 30.4538 33.148 36.287 ∞

Figure 4: Symbol distribution on training data for symbolization techniques with an al-
phabet size of 7.

While using the SAX symbolization technique, the symbols that cover
the extreme values appear many more times than symbols that cover areas
in the center of the distribution. The selection of these breakpoints is a
byproduct of the fact that the original data did not have a normal distri-
bution and will result in a bias towards predicting symbols 1 and 7. Since

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

59

aSAX does not require the normality assumption we can observe how the
algorithm finds a more balanced set of breakpoints that deals with the im-
balance problem although it creates certain imbalance particularly against
forecasting the symbols of highest electric demand. Another way to see the
impact of this interval selection is to observe the density plot provided in
figure 5, where the area between two vertical lines (including the vertical
edges of the figure) represents the density covered by each symbol). In SAX,
we can easily observe how most density is under the extreme symbols while
aSAX provides a much more balanced interval distribution.

Figure 5: Comparison of intervals provided by SAX and aSAX.

3.4. Comparison between models with and without symbolization.

After concluding that for models with symbolization, the use of ordinal
encoding, a sliding window with a daily step size, the MLP architecture and
aSAX provided better symbolic forecasts, we need to train models without
symbolization in order to compare both approaches. Table (table 4) displays
the metrics of the best models trained without symbolization.

The best model found when training models without symbolization tech-
niques is a LSTM with 55 units in its hidden layer and the hyperbolic tan-
gent activation function, which provides an RMSE of 1.2889 on our test data.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

60

Table 4: RMSE and MAPE on test partition for the best models without symbolization.

Architecture Window step Neurons Activation RMSE MAPE

MLP Daily 60 ReLU 1.5542 0.0434
Elman Daily 30 ReLU 2.0766 0.0601
LSTM Daily 20 ReLU 1.8408 0.0531
MLP 1 25 ReLU 1.553 0.0445

Elman 1 55 ReLU 2.0146 0.0591
LSTM 1 55 tanh 1.2889 0.0363

Contrary to the use of the symbolic representation, the best models with the
numerical representation make use of a step size of one. Thus, the models
without symbolization required the use of a much higher amount of training
samples and, therefore, a higher training time. Lastly, we will compare the
performance of the trained models with and without symbolization. This
comparison will be split in two parts: the forecast of the symbolic represen-
tation and the forecast of the original time series. Table 5 shows the perfor-
mance that the models trained without symbolization offered to forecast the
symbolic representation. This implies that after the model did the forecast
with the numerical representation the symbolization techniques were applied.

As expected, when working with models trained without symbolization,
the best performance to forecast the symbolic representations is provided by
the best model found to forecast the numeric representation (LSTM with
55 units in its hidden layer and the hyperbolic tangent activation function).
However, it underperforms in comparison with the models trained with sym-
bolization. For example, a MLP with 60 neurons, the sigmoid activation
function, ordinal encoding and a daily step sliding window (table 1) scored
a symbolic RMSE of 0.6366 and an accuracy of 68.88 % being trained with
SAX and an alphabet size of 7. However, its counterpart trained without
symbolization and being symbolized according to SAX algorithm after the
numeric forecast only scored a symbolic RMSE of 0.7209 and an accuracy of
59.99 %, much better than the 0.7209 and 59.99 %. Similar situations occur
when comparing each model without symbolization against the correspond-
ing model with symbolization. Therefore, whenever the symbolic output can
be interpreted in a useful way models with symbolization should be preferred
as they work better and faster.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

61

Table 5: Symbolic forecast metrics for the best models trained without symbolization.

Symbolization Window Architecture Neurons Activation RMSE MINDIST Accuracy
(Alphabet size) step (Sym)

SAX (7 symbols) Daily MLP 60 ReLU 0.8166 1.3498 0.5193
SAX (13 symbols) Daily MLP 60 ReLU 1.3535 2.2961 0.3646
aSAX (7 symbols) Daily MLP 60 ReLU 0.7195 0.8507 0.564
aSAX (13 symbols) Daily MLP 60 ReLU 1.2293 1.8506 0.3799
SAX (7 symbols) Daily Elman 30 ReLU 1.0485 2.582 0.4218
SAX (13 symbols) Daily Elman 30 ReLU 1.8149 3.7256 0.2821
aSAX (7 symbols) Daily Elman 30 ReLU 0.9165 1.7876 0.4476
aSAX (13 symbols) Daily Elman 30 ReLU 1.6416 3.0854 0.2866
SAX (7 symbols) Daily LSTM 20 ReLU 0.91 1.9002 0.4755
SAX (13 symbols) Daily LSTM 20 ReLU 1.5608 2.9747 0.3148
aSAX (7 symbols) Daily LSTM 20 ReLU 0.8221 1.2837 0.4869
aSAX (13 symbols) Daily LSTM 20 ReLU 1.4237 2.4285 0.3027
SAX (7 symbols) 1 MLP 25 ReLU 0.8586 1.466 0.4915
SAX (13 symbols) 1 MLP 25 ReLU 1.4244 2.4491 0.3319
aSAX (7 symbols) 1 MLP 25 ReLU 0.7514 0.9146 0.5347
aSAX (13 symbols) 1 MLP 25 ReLU 1.2873 1.9861 0.3522
SAX (7 symbols) 1 Elman 55 ReLU 0.9908 2.3953 0.4693
SAX (13 symbols) 1 Elman 55 ReLU 1.7386 3.4882 0.3144
aSAX (7 symbols) 1 Elman 55 ReLU 0.8771 1.6637 0.4907
aSAX (13 symbols) 1 Elman 55 ReLU 1.5838 2.901 0.3204
SAX (7 symbols) 1 LSTM 55 tanh 0.7209 1.0039 0.5999
SAX (13 symbols) 1 LSTM 55 tanh 1.1581 1.7187 0.4419
aSAX (7 symbols) 1 LSTM 55 tanh 0.6502 0.6281 0.6297
aSAX (13 symbols) 1 LSTM 55 tanh 1.0597 1.3673 0.456

Another use case of the symbolization techniques is to provide a fast
approximation to forecast the numeric time series. In this case, after the
symbolization technique is applied each symbol is replaced by the central
value of the interval it represents and the same value is repeated as many
times as long was the segment size. Table 6 showcases the scored offered by
the models trained with symbolization after transforming them to a numer-
ical representation as well as different models without symbolization.

With the use of the daily step sliding window, symbolization techniques
outperform the numerical representation while the opposite happens with
the use of a step of one. The use of a bigger alphabet size improves the
performance of the symbolic models. The best performing symbolic model
is a MLP with 25 hidden neurons and the ReLU activation making use of
the aSAX symbolization method with an alphabet size of 13 unique symbols
offering a RMSE of 1.3655 and a MAPE of 0.0390 on test data. The best
numeric model offers slightly better performance with an RMSE of 1.2889

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

62

Table 6: Original time series forecast and training time for the best numeric and symbolic
models.
Representación Ventana Arquitectura Neuronas Activación RMSE MAPE Tiempo de
(Tamaño alfabeto) deslizante entrenamiento (s)

SAX (7 śımbolos) Diaria MLP [Ordinal] 60 sigmoide 1.6291 0.0475 4.9495
SAX (13 śımbolos) Diaria MLP [Ordinal] 60 ReLU 1.4307 0.0408 5.0936
aSAX (7 śımbolos) Diaria MLP [Ordinal] 45 ReLU 1.6618 0.0484 3.4701
aSAX (13 śımbolos) Diaria MLP [Ordinal] 25 ReLU 1.3655 0.0390 6.8402
SAX (7 śımbolos) 1 LSTM [Ordinal] 60 ReLU 1.8391 0.0532 667.5387
SAX (13 śımbolos) 1 LSTM [Ordinal] 60 ReLU 1.5903 0.0454 584.8650
aSAX (7 śımbolos) 1 LSTM [Ordinal] 55 tanh 1.8402 0.0531 581.4093
aSAX (13 śımbolos) 1 LSTM [Ordinal] 25 tanh 1.6200 0.0451 623.6284
Numérica Diaria MLP 60 ReLU 1.5542 0.0434 8.5964
Numérica 1 LSTM 55 tanh 1.2889 0.0363 40959.7513

Representation Window Prediction model Optimal parameters* RMSE MAPE Training
step time (s)

Numeric 1 Decision Tree max depth: 15 2.6410 0.0733 87.4397

Numeric 1 Random Forest
max depth:20

n estimators: 150
1.7465 0.0492 15484.5837

Numeric 1 Gradient Boosting Trees
max depth: 20

n estimators: 150
learning rate: 0.1

1.4900 0.0422 22284.1009

*Parameters evaluated: max depth ∈ [10, 15, 20, 25, 30]; n estimators ∈ [50, 100, 150, 200]; learning rate ∈ [0.05, 0.1, 0.15, 0.2, 0.3].
*Any other parameter not mentioned correspond to scikit-learn default values. Multi-step forecast is done recursively.

and a MAPE of 0.0363. However, the training time required for the numeric
model was 40599.7513 seconds while the best symbolic model required only
6.8402 seconds to train. However, the best symbolic model still outperforms
other algorithms that can be used for forecasting such as Random Forests or
Gradient Boosting Tress [22] while being trained faster than them. Figure
6 depicts the accuracy differences between the symbolic forecast and the
numeric forecast over the span of a week. Further improvements may be
accomplished by exploring different alphabet and segment sizes and other
symbolization techniques.

3.5. Advantages, limitations and use cases of the proposed approach.

As we can observe in the conducted experimentation, the main advantage
of using symbolization techniques for time series forecasting is the training
time speedup. The ideal scenario to apply the symbolization techniques
happens whenever the symbolic forecast can be used in a posterior decision-
making process. For example, with the data we studied, since each symbol
represents an interval for the mean demand during an hour, the symbolic
forecast could help plan the production and importation of energy as long as
an expert can establish a relationship between the symbols and the available
production and importation for the electric grid or if instead of the proposed
algorithms the intervals were already provided by an expert.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

63

Figure 6: Prediction plot over the span of one week of the test partition.

Nevertheless, the main use case for these techniques is to speed up the
training of models when we have massive amounts of data. The use of any
symbolization technique will usually lead to slightly worse but relatively ac-
curate performance metrics [2]. This is due to the fact that when are using
symbolization techniques we are limited to the forecasting of an approxima-
tion of the time series.

Lastly, this approach is not appropriate for all kind of data. Due to the
fact that the symbolization will always lead to some information loss, there
will be an instance in which transforming the symbolic forecast to a numerical
one will barely resemble the expected results. This will usually happen when
the difference between consecutive observations is too big, hence the mean
value will not properly represent the segment. Therefore, obtaining good
results with symbolization techniques require a certain degree of smoothness
from the time series used.

4. Conclusion.

In this paper, we studied the use of symbolization techniques for electric
demand forecasting. Experimentation made use of the demand data of the
main Spanish electric network with observations taken from 2009 to 2019
every 10 minutes. We evaluated different ways to train neural networks with
symbolic time series and compared our best symbolic models with our best

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

64

numeric models. The use of an ordinal encoding, preserving the notion of
order, improved the performance metrics when compared to the classical one-
hot encoding. We evaluated which approach performed better to forecast the
time series symbolic and numerical representations. Symbolic models out-
performed numerical models when forecasting the symbolic representation.
When forecasting the numerical representation, symbolic models provided us
with a comparable but slightly worse forecast. However, symbolic models had
a lower complexity and trained much faster than the best numerical models.
Future improvements may be made with the development of new symboliza-
tion techniques, other machine learning models, including the symbolization
on more complex methodologies or by adding relevant external information
for our problem.

Acknowledgments

We acknowledge financial support from the Ministerio de Ciencia e Inno-
vación (Spain) (Research Project PID2020-112495RB-C21) and the I+D+i
FEDER 2020 project B-TIC-42-UGR20. LGB Ruiz was supported by “Next
Generation EU” Margaritas Salas aids.

Abbreviations

ANN Artificial Neural Network
aSAX Adaptive SAX
LSTM Long-Short Term Memory
MLP Multi-Layer Perceptron
SAX Symbolic Aggregate Approximation

References

[1] D. Syed, S. S. Refaat, H. Abu-Rub, O. Bouhali, Short-term power fore-
casting model based on dimensionality reduction and deep learning tech-
niques for smart grid, in: 2020 IEEE Kansas Power and Energy Confer-
ence (KPEC), 2020, pp. 1–6. doi:10.1109/KPEC47870.2020.9167560.

[2] S. Elsworth, S. Güttel, Time series forecasting using lstm networks: A
symbolic approach, Unpublished results (Preprint). (03 2020).

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

65

[3] J. Lin, E. Keogh, L. Wei, S. Lonardi, Experiencing sax: A novel symbolic
representation of time series, Data Mining and Knowledge Discovery 15
(2007) 107–144. doi:10.1007/s10618-007-0064-z.

[4] N. D. Pham, Q. L. Le, T. K. Dang, Two novel adaptive symbolic rep-
resentations for similarity search in time series databases, in: 2010
12th International Asia-Pacific Web Conference, 2010, pp. 181–187.
doi:10.1109/APWeb.2010.23.

[5] L. B. Almeida, Multilayer perceptrons, in: Handbook of Neural Com-
putation, IOP Publishing Ltd and Oxford University Press, 1997.

[6] J. Elman, Finding structure in time, Cognitive Science 14 (1990) 179–
211. doi:10.1016/0364-0213(90)90002-E.

[7] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural com-
putation 9 (1997) 1735–80. doi:10.1162/neco.1997.9.8.1735.

[8] C. Siridhipakul, P. Vateekul, Multi-step power consumption forecasting
in thailand using dual-stage attentional lstm, in: 2019 11th International
Conference on Information Technology and Electrical Engineering (ICI-
TEE), 2019, pp. 1–6. doi:10.1109/ICITEED.2019.8929966.

[9] A. Azadeh, S. Ghadrei, B. P. Nokhandan, One day ahead load forecast-
ing for electricity market of iran by ann, in: 2009 International Con-
ference on Power Engineering, Energy and Electrical Drives, 2009, pp.
670–674. doi:10.1109/POWERENG.2009.4915144.

[10] R. Ehsan, S. P. Simon, P. R. Venkateswaran, Day-ahead forecasting
of solar photovoltaic output power using multilayer perceptron, Neural
Computing and Applications 28 (2016) 3981–3992.

[11] A. Reinhardt, S. Koessler, Powersax: Fast motif matching in distributed
power meter data using symbolic representations, in: 39th Annual IEEE
Conference on Local Computer Networks Workshops, 2014, pp. 531–538.
doi:10.1109/LCNW.2014.6927699.

[12] Y. Chen, J. Wen, Whole building system fault detection based on
weather pattern matching and pca method, in: 2017 3rd IEEE Inter-
national Conference on Control Science and Systems Engineering (ICC-
SSE), 2017, pp. 728–732. doi:10.1109/CCSSE.2017.8088030.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

66

[13] C. Miller, Z. Nagy, A. Schlueter, Automated daily pattern filtering of
measured building performance data, Automation in Construction 49
(2015) 1–17. doi:10.1016/j.autcon.2014.09.004.

[14] Red Eléctrica de España, Spanish peninsula electric network demand,
https://demanda.ree.es/visiona/peninsula/demanda/total

(accessed 21 June 2021).

[15] S. Benabderrahmane, N. Mellouli, M. Lamolle, On the predictive anal-
ysis of behavioral massive job data using embedded clustering and deep
recurrent neural networks, Knowledge-Based Systems 151 (03 2018).
doi:10.1016/j.knosys.2018.03.025.

[16] N. Potha, M. Maragoudakis, D. Lyras, A biology-inspired,
data mining framework for extracting patterns in sexual cy-
berbullying data, Knowledge-Based Systems 96 (01 2016).
doi:10.1016/j.knosys.2015.12.021.

[17] B. Lkhagva, Y. Suzuki, K. Kawagoe, New time series data rep-
resentation esax for financial applications, 2006, pp. x115 – x115.
doi:10.1109/ICDEW.2006.99.

[18] K. Zhang, Y. Li, Y. Chai, L. Huang, Trend-based symbolic ag-
gregate approximation for time series representation, in: 2018 Chi-
nese Control And Decision Conference (CCDC), 2018, pp. 2234–2240.
doi:10.1109/CCDC.2018.8407498.

[19] Y. Yu, Y. Zhu, D. Wan, H. Liu, Q. Zhao, A novel symbolic aggregate
approximation for time series, in: Proceedings of the 13th International
Conference on Ubiquitous Information Management and Communica-
tion, IMCOM 2019, 2019, pp. 805–822. doi:10.1007/978-3-030-19063-
7 65.

[20] J. Cheng, G. Pollastri, A neural network approach to ordinal re-
gression, in: IEEE Int. Jt. Conf. Neural Networks 2008 IJCNN
2008 IEEE World Congr. Comput. Intell, 2008, pp. 1279–1284.
doi:10.1109/IJCNN.2008.4633963.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

67

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow (version 2.0.4), Zenodo,
2021. doi:10.5281/zenodo.4725924.

[22] A. Galicia, R. Talavera-Llames, A. Troncoso, I. Koprinska, F. Mart́ınez-
Álvarez, Multi-step forecasting for big data time series based on
ensemble learning, Knowledge-Based Systems 163 (2019) 830–841.
doi:https://doi.org/10.1016/j.knosys.2018.10.009.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

68

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.2. An Application of Fuzzy Symbolic Time-Series

for Energy Demand Forecasting.

Referencia:
D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, An Application of Fuzzy Symbolic
Time-Series for Energy Demand Forecasting, International Journal of Fuzzy Systems,
2024, ISSN 2199-3211
Estado:
Publicado
Factor de impacto:
4.3
Categoŕıa:
Segundo cuartil JCR.
Posición 62/192 en la categoŕıa “Computer Science, Artificial Intelligence”
DOI:
https://doi.org/10.1007/s40815-023-01629-4

Revista:
International Journal of Fuzzy Systems
Editorial:
Springer Nature

69

An application of fuzzy symbolic time-series for energy

demand forecasting.

D. Criado-Ramón1*†, L.G.B. Ruiz2† and M.C. Pegalajar1†

1*Department of Computer Science and Artificial Intelligence, University of Granada,
c/Periodista Daniel Saucedo Aranda s.n, Granada, 18014, Andalusia, Spain.

2Department of Software Engineering, University of Granada, c/Periodista Daniel
Saucedo Aranda s.n, Granada, 18014, Andalusia, Spain.

*Corresponding author(s). E-mail(s): dcriado@ugr.es;
Contributing authors: bacaruiz@ugr.es; mcarmen@decsai.ugr.es;

†These authors contributed equally to this work.

Abstract

In this paper, we present a new fuzzy symbolization technique for energy load forecasting with neural
networks, FPLS-Sym. Symbolization techniques transform a numerical time series into a smaller
string of symbols, providing a high-level representation of time series by combining segmentation,
aggregation and discretization. The dimensional reduction obtained with symbolization can speed
up substantially the time required to train neural networks, however, it can also lead to consider-
able information losses that could lead to a less accurate forecast. FPLS-Sym introduces the use of
fuzzy logic in the discretization process, maintaining more information about each segment of the
neural network at the expense of requiring more space in memory. Extensive experimentation was
made to evaluate FPLS-Sym with various neural-network-based models, including different neural
network architectures and activation functions. The evaluation was done with energy demand data
from Spain taken from 2009 to 2019. Results show that FPLS-Sym provides better quality metrics
than other symbolization techniques and outperforms the use of the standard numerical time series
representation in both quality metrics and training time.

Highlights:
- We present a new fuzzy time series symbolization algorithm, FPLS-Sym.
- The comparison was made with Spanish energy demand data from 2009 to 2019.
- FPLS-Sym provided better and faster results than the original time series.

Keywords: time series forecasting, fuzzy logic, symbolic representation, energy demand, artificial neural
networks

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

70

1 Introduction

With all the technological advances in the last
few decades, many real-life sectors generate
massive amounts of temporal data daily, such
as healthcare, finance, or energy. In the energy
sector, accurately forecasting energy demand is
critical in planning energy production and distri-
bution. Processing this massive amount of data
is not a trivial task. Therefore, it is frequent to
use high-performance computational resources,
such as clusters or GPUs; or to generate and use
high-level representations of this data that allow
for faster computations, such as symbolization.

Symbolization techniques provide a lower-
length symbolic representation of time series using
aggregation and discretization. The main chal-
lenge for a symbolization technique is to reduce
the time series length as much as possible while
not losing any relevant information. The first
proposal of a symbolization technique is Symbolic
Aggregate approXimation (SAX) [1], and it is still
the most widely used symbolization technique.
SAX splits the time series into equidistant seg-
ments using Piecewise Approximate Aggregation
(PAA) [2] and transforms the mean value of each
segment to a symbol. Each symbol in SAX repre-
sents an equiprobable interval assuming a normal
distribution. Many other variants of the SAX idea
have been proposed to specialize this technique
for different fields or to address some of its main
drawbacks. ESAX [3] was created to be used in
the finance field and also preserves the maximum
and minimum from each segment, as the authors
considered that only preserving the mean value
when working with financial data was insufficient.
Adaptive SAX (aSAX) [4] was created to remove
the time series normality assumption from SAX.
In the energy field, it is common to use symbol-
ization techniques for pattern-related tasks such
as pattern extraction [5] and anomaly detection
based on patterns [6, 7]. Still, they are not com-
monly used for the forecasting task [8].

Many different forecasting models have been
used for energy forecasting over the last few
decades. While classical models such as ARIMA
have been used to forecast energy in various stud-
ies [9, 10], most recent works use neural networks
and hybrid models [11]. Several different neural

network architectures have been previously eval-
uated under different circumstances. Bagnasco
et al. [12] used a multi-layer perceptron neural
network to forecast energy consumption in a
hospital in 2015. Naji et al. [13] used an extreme
learning machine to predict energy consumption
in buildings in 2016. In 2019 [14], a methodology
to create ensembles of wavenets was proposed.
The methodology was evaluated with hourly load
datasets from Italy and the US. In 2020, Sajjad
et al. [15] used a combination of Convolutional
Neural Networks (CNN) and Gated Recurrent
Unit (GRU) layers to forecast residential loads.
In 2021, Zhang et al. [16], proposed a multi-layer
model with CNN and Seq2Seq to simultaneously
predict three different loads (cooling, heating,
and electricity) of a Chinese industrial park.
Hybrid approaches in the energy field mainly use
combinations of clustering and other methods
and ensembles. In 2011 [17], a hybrid model with
K-means and pattern-based search forecasting
was presented with remarkable results while fore-
casting energy data. In 2020 [18], a model using
clustering and ARIMA was proposed to predict
energy in buildings. Furthermore, an improved
version of the K-means pattern-based forecasting
model was presented for distributed computa-
tion with Spark the same year [19]. In 2022 [20],
a hybrid model combining singular spectrum
analysis and parallel long short term memory
neural networks presented great results in build-
ing energy forecasting in comparison with other
models. In 2023 [21], a theory-guided deep neural
network using Attention, LSTM layers and CNN
layers was presented for solar power forecasting.
The theory-guided module of the framework
consists of expert-provided photovoltaic power
generation constraints that penalize the loss func-
tion of the neural network when they are not met.
Results show that this approach outperformed
several other deep learning alternatives to predict
solar power generation in Asia.

However, even though the most accurate
results are usually provided by neural network
models, they can still be challenging to use due
to the large amount of data and time required
to train them. This can be a significant issue in
real-time decision-making, where the model may
need to be retrained frequently to provide the

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

71

most accurate forecasts.

In order to address this issue, we found out
in our previous study [8] that symbolization tech-
niques were a powerful alternative time series
representation, capable of providing faster train-
ing times although not yielding the same level
of accuracy. Thus, in this study, we have devel-
oped and evaluated a new fuzzy symbolic time
series representation to preserve more information
about each segment to provide more accurate fore-
casts while still being faster than models that use
the original time series without any dimensional-
ity reduction. More specifically, this work provides
the following contributions to the field:

1. We present a new symbolization technique, the
first one that uses a fuzzy representation to
preserve more information.

2. We provide a detailed analysis with statisti-
cal tests to evaluate whether our proposal is
consistently better than previous symboliza-
tion techniques regardless of the neural network
configuration used.

3. We evaluate the effect of using three different
symbolization techniques in four neural net-
work architectures using a publicly available
big data dataset.

This manuscript is structured as follows:
Section 2 provides the theoretical background for
the methods used in this paper. Section 3 presents
our fuzzy symbolization technique. Section 4
describes the experiments done to evaluate the
performance of the proposed method. Section 5
analyzes the results obtained in those experiments
and, lastly, section 6 draws the most relevant
accomplishments of our work and proposes future
lines of research.

2 Background.

2.1 Symbolization techniques.

Numerosity reduction techniques reduce data
volume by using alternative smaller data repre-
sentations. In the case of univariate time series,
the use of this kind of technique would result
in a new time series with the same number of
variables but fewer observations.

Time series symbolization is a numerosity
reduction technique that transforms a raw numeri-
cal time series T = [T0, T1, T2, ..., Tn] to a sequence
of symbols of lower length S = [S0, S1, S2, ..., Sm],
usually combining aggregation and discretization.
Any symbolization technique can be divided into
the following components:
1. How to reduce the length of the time series.

This step is usually done by splitting the time
series into multiple segments [1, 3, 4, 22, 23].

2. Which information must be preserved from
each segment. It may be a simple statistical
value such as mean [1, 4], maximum or min-
imum, multiple statistical values [3] or some-
thing more sophisticated such as the linear
regression of the segment [22, 23].

3. How to transform the preserved values into
a symbolic string. This may be obtained via
expert knowledge [22], some specific criteria
such as probability distribution [1, 3, 22] or
even optimization algorithms [4].

4. How long and how many symbols can be used
for the symbolic representation. Most symbol-
ization techniques provide this as a parameter
that the user must decide [1, 3, 4, 22, 23].

SAX [1] was the first symbolization tech-
nique published and is still the most widely used.
Segmentation in SAX is done using Piecewise
Approximate Aggregation (PAA), splitting the
time series into equidistant segments. The mean
value from each segment is preserved and the
discretization is made assuming the time series
follows a normal distribution and each symbol
of the symbols covers an equiprobable interval
of values for the mean of the segments. The size
of the segments and the number of symbols are
provided by the user.

Many other symbolization techniques have
been proposed based on the idea of SAX. Many
authors claim that SAX does not preserve enough
information as it just uses the mean value [3, 22,
23]. Extended SAX (ESAX) [3] uses three symbols
per segment in order to preserve the mean, maxi-
mum and minimum of each segment. Trend-based
SAX (TSAX) [22] and TFSAX [23] are different
alternatives to add an extra symbol that repre-
sents the trend of the segments. Adaptive SAX
(aSAX) [4] uses the Lloyd algorithm to find a new
set of breakpoints that should better resemble the

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

72

original data distribution than the assumption of
normality from SAX. Since we want to use sym-
bolization to forecast time series we will only make
use of symbolization techniques that make use of
one symbol: SAX and aSAX. This is made to cre-
ate an experimental scenario where all techniques
can be compared. This is due to the fact that, in
the first place, it is not easy to decide whether they
should be compared by making use of equal size
segments or the same amount of symbols (if even
possible) and, in the second place, many of this
techniques, as they were intended for other tasks
such as indexing or classification don’t propose a
way to transform the extra information hold on
the new symbols into a numerical value (required
for the forecasting task).

2.2 Artificial Neural Networks
(ANN).

Artificial Neural Networks are machine learn-
ing models inspired by the human’s brain neural
system. ANNs are structured in multiple layers of
neurons where each neuron can be connected to
one or more neurons of another layer. Each neu-
ron computes a weighted sum of the inputs and
applies a usually nonlinear function chosen by
the user named activation function. The learning
process of a neural network consists of optimizing
those weights to minimize the difference between
the output layer and the desired output. In our
experimentation, we compared four ANN archi-
tectures.

Multilayer perceptrons (MLP) [24] are one of
the most simple and widely used feed-forward arti-
ficial neural networks. Due to lower complexity,
they are easier to train and perform fast opera-
tions. Nevertheless, previous work has shown that
classic feed-forward neural networks may outper-
form many modern architectures. Its architecture
consists of at least three sequential fully connected
layers: one input layer, one or more hidden layers
and the output layer. In this architecture, the out-
put of each layer y is a vector computed according
to Equation 1, where W is a matrix that contains
all of the weights of the connections between the
neurons from the previous layer and the current
one, x is the input to the current layer and b is

a vector of biases and g is the activation func-
tion. The biases b and weights W are learnable
parameters that are optimized during the learning
process.

y = g(Wx+ b) (1)

Elman’s Simple Recurrent Network [25] incor-
porates a feedback loop on each hidden layer
neuron, allowing it to manage sequences with
variable lengths and to take into account the hid-
den output from the previous time-step t−1 of the
sequence in the computation of the current one.
This feedback loop is portrayed by an additional
layer denominated context layer. The connection
from the hidden neurons to the context neurons
always has a fixed weight of 1, indicating that
they will hold a copy of the current hidden out-
put ht. However, the connection from the context
neuron to the hidden neuron will have a new set
of weights U that will be used to consider the
effect of previous elements of the sequence in the
computation of the next time-step. Mathemati-
cally, the output of a hidden layer for a time-step
t can be computed as follows.

ht = g(Wxt + Uht−1 + b) (2)

Long-Short Term Memory (LSTM) neural net-
works were proposed by Hochreiter [26] and
changed the simple feedback loop present in the
previous architecture for a more complex one in
an attempt to address the exploding gradient and
vanishing gradient problems [27]. In this architec-
ture, two different feedback loops are present in
each neuron, one for short-term memory (hidden
state) ht and one for long-term memory (cell state)
ct. Furthermore, three different gates are used to
control the information flow between the inputs
and outputs of the neuron. The input gate it is
used to control the impact of the short-term mem-
ory in the creation of the new states, the forget
gate ft is used to control how much of the long-
term memory is forgotten and the output gate
ott is used to create the relationship between the
short-term memory and the long-term memory.
The more complex architecture of the LSTM neu-
ral networks allows them to solve more complex
problems at the expense of a slower training speed,
as each hidden neuron will have 4 independent sets

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

73

of weights W , recurrent weights U and biases b.
Mathematically, the LSTM hidden layer works as
follows (⊗ represents the element-wise product for
the remainder of the paper).

it = σ(Wixt + Uiht−1 + bi) (3)

ft = σ(Wfxt + Ufht−1 + bf) (4)

ot = σ(Woxt + Uoht−1 + bo) (5)

ct = ft · ct−1 + it ⊗ g(Wcxt + Ucht−1 + bc) (6)

ht = ot ⊗ g(ct) (7)

Lastly, Gated Recurrent Unit (GRU) [28] neu-
ral networks follow a similar idea to LSTM neural
networks with a lower complexity as they don’t
use the memory cell and make use of only two
gates to control the information flow. The reset
gate rt decides how much of the past information
needs to be forgotten to create the new interme-
diate state for the current time-step ĥt, acting as
a short-term memory. The update gate zt deter-
mines how much of the new state ht should be
created from the intermediate state ĥt and the
previous hidden state ht−1. Mathematically, this
is expressed as follows:

zt = σ(Wzxt + Uzht−1 + bz) (8)

rt = σ(Wrxt + Urht−1 + br) (9)

ĥt = g(Whxt + Uh(rt ⊗ ht−1) + bh) (10)

ht = (1− zt)⊗ ht−1 + zt ⊗ ĥt (11)

2.3 Training Artificial Neural
Networks.

The process of training any neural network con-
sists of updating all the learnable parameters
of the model (weights and biases) to optimize
a specific loss function between the outputs of
the neural network and their expected values.
This process is usually done via a gradient-based
optimizer, although any other optimization algo-
rithms, such as metaheuristics, can be used. For
this task, we chose to use the Adam [29] optimizer,
as it is computationally efficient, has little memory
requirements and has been the most widely used
optimizer in neural network applications over the
past years. A detailed pseudocode of the Adam
optimizer can be found in Algorithm 1.

Algorithm 1 Adam

Require: α = 0.001 ▷ Stepsize
Require: β1 = 0.9, beta2 = 0.999 ▷ Exponential

decay for the moment estimates
Require: W0 Initial learnable parameters
Require: f(W) ▷ Output of objective function for W
Require: ϵ = 10−8 ▷ Small number to avoid

division by zero.
1: m0 = 0, v0 = 0 ▷ Initialize moment vectors
2: t = 0 ▷ Time-step
3: while termination criteria not reached do
4: t = t+ 1 ▷ Increase time-step
5: gt = ▽wft(Wt−1) ▷ Get gradients at timestep
6: mt = β1 ·mt−1 + (1− βa)⊗ gt ▷ First

moment estimate
7: vt = β2 · vt−1 + (1− β2)⊗ g2t ▷ Second

moment estimate
8: m̂t = mt/(1− βt

1) ▷ Bias correction
9: v̂t = vt/(1− βt

2) ▷ Bias correction
10: Wt = Wt−1 − α · m̂t/(

√
v̂t + ϵ ▷ Update

parameters
11: end while
12: return Wt

3 Fuzzy Piecewise Linear
Segments for Symbolization
(FPLS-Sym).

Table 1 Hyperparameters of FPLS-Sym.

Hyperparameter Meaning

α Alphabet size
n Segment size
b Overlap of the membership function

FPLS-Sym is our proposal for a new symbolic
time series representation based on the linguist
description technique Fuzzy Piecewise Linear
Segments [30]. A general overview of the steps
required to obtain the representation can be
found in figure 1 and its pseudocode can be found
in algorithm 1. The key novelty introduced in
this representation is the use of a fuzzy set with
a triangular membership function to withhold
more information about each segment, while still
maintaining most of the advantages of other sym-
bolization techniques. This use of fuzzy logic will
make it slightly slower than other symbolization
techniques, such as SAX or aSAX, as they only
use the mean of the segment. However, it should

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

74

Fig. 1 A general overview of the steps required to obtain the FPLS-Sym representation.

remain faster than the original time series, thanks
to the segmentation process involved. The FPLS-
Sym representation requires the user to provide
the three hyperparameters specified in Table 1.

In the first step, FPLS-Sym uses a similar
approach to the aSAX symbolization technique,
splitting the time series into equidistant segments
S of a fixed-sized n. Afterwards, the mean of the
observations of each segment is computed and
all of the means are clustered with the Lloyd
algorithm. The desired number of clusters α
will be provided by the user and it will also be
the alphabet size of the symbolic representation
(number of symbols used). Thus, there will be
a direct relationship between each cluster and
symbol, where each symbol represents the mean
of its cluster observations. These values will also
be the universe of discourse of the fuzzy set.

pi =

n∑

k=1

|mi · k + ci − yi,k|
yk · n (12)

Afterward, a piecewise linear approximation of
each segment si is computed. This is done through
the use of the Least Square Method for linear

Algorithm 2 FPLS-Sym

Require: α ▷ Number of symbols (Alphabet size)
Require: n ▷ Segment size
Require: b ▷ Triangular membership function

overlap
Require: Y = {y1, y2, ..., yN} ▷ Original time series
1: S = {s1, s2, ..., sn} = Split Y in equidistant

segments of size n
2: X = {x1, x2, ..., xn} = Mean of all observations in

each segment si
3: G = Clustering(X, α) ▷ Apply Lloyd Clustering

and return centers of the clusters
4: fpls = {{}} ▷ Empty Matrix of size |S| x α
5: for all si ∈ S do
6: mi, ci = LinearRegression(si)
7: pi = Compute Mean Error Ratio (Eq. 12)
8: segfpls = {{}} ▷ Create Empty Matrix of n x

α
9: for all gj ∈ G do

10: for all yk ∈ si do
11: segfpls[j][k] = Compute membership

degree between observation yk of segment si and
symbol gj with overlap b(Eq. 13).

12: end for
13: end for
14: fpls[i, :] = Mean of segfpls across columns
15: end for
16: return fpls

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

75

regression, where we preserve the slope mi and
intercept ci. Additionally, we compute the mean
error ratio pi between the regression residuals
and each original observation yi,k of the segment.
(equation 12). At last, a triangular membership
function is applied to create a fuzzy relationship
between each segment’s linear approximation and
each symbol of the alphabet. The membership
function for the entire segment will be the mean
of the membership function for all observations
within that segment. Equation 13 defines the tri-
angular membership function between the point k
of the segment Si and one of the elements of the
universe of discourse gj , where ri,k = |mi·k+ci−gj
(distance between an element of fuzzy set and the
linear approximation) and b is a tunable hyperpa-
rameter that controls the level of overlap between
the elements of the fuzzy set and pi.

µ(si,j) =





0 if ri,k ≥ pi + b
1 if ri,k = 0
1− ri,k

pi+b if ri,k ≤ pi + b
(13)

Thus, the FPLS-Sym time series represen-
tation requires storing a vector of membership
degrees for each segment instead of only the mean
value used in other symbolization techniques, such
as SAX or aSAX. Thus, the neural network model
may take into account three different factors while
using the proposed representation. First, thanks to
the use of the triangular membership function, the
model can take into account how close each value
is to each symbol’s mean. Second, thanks to the
use of the error rate of the linear regression pi as a
penalization, lower membership degrees will usu-
ally indicate a worse linear approximation. Lastly,
since the vector of membership degrees of the seg-
ment is the mean of its equivalent for each of the
observations, the model can take into account the
trend of the segment as the membership degree for
a symbol will be 0 if no part of the linear approxi-
mation is nearby. Thus, the FPLS-Sym contains a
lot more information than the other classical sym-
bolization techniques, that only use the mean of
the segment and assign a symbol based on a Gaus-
sian distribution (SAX) or a previous clustering
process (aSAX). Figure 2, shows the computation
of the FPLS-Sym representation for the segment
displayed in the plot.

Fig. 2 An Example of the computation of FPLS-Sym for
a segment using an overlap b = 0.75 and the symbol centers
G = {0.5, 1.5, 2.5, 3.5}.

4 Experimentation.

4.1 Data Description and
Preprocessing.

All the models compared in this work were
trained and tested with energy demand data from
the Spanish national electricity grid (figure 3),
scrapped from the official website of the partly
state-owned corporation that operates the grid,
REE (Spanish Electricity Network) [31].

Fig. 3 Two weeks of demand data from REE.

Their website provides information about
the expected demand, the actual demand, and
various other variables related to gas emissions
and energy production. Each observation on the
dataset is made every 10 minutes and it provides
information about energy demand from 2007 to
the current date. However, emissions and energy

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

76

production were not recorded until much later.
For this paper, we only used the actual demand
value from 2009 to 2019. The dataset did not
present any missing values and the only prepro-
cessing step was fixing the daylight saving time
(DST) so every day had 24 hours. This was done
by adding an extra hour with the mean of the
previous and the next one if the clock is advanced
or by keeping the mean of the repeated hour if
the clock is turned back to standard time.

The dataset was divided into three partitions
preserving chronological order: 70 % training data,
10 % validation data, and 20 % test.

4.2 Selection of hyper-parameters
for symbolization techniques.

In order to use the symbolization techniques we
are comparing (SAX, aSAX and FPLS-Sym) we
need to provide an alphabet size (total amount of
symbols available for the discretization process)
and a segment size. Selecting any of these param-
eters is not trivial and there is no way to find an
optimal value without doing trial and error.

In the case of the alphabet size, the use of
larger alphabet sizes would provide more sym-
bols, but each symbol would cover a smaller
interval. As we have a high number of symbols, it
is more likely to fail the symbolic forecast, but,
whenever we predict the expected symbol, the
difference between the expected numerical value
and the numerical value provided by the symbol
should be smaller in most cases. This would be
further accentuated if models take into account
some notion of order between symbols as it would
reduce the number of times a predicted symbol
represents an interval far away from the expected
one. The exact opposite situation would happen
for low alphabet sizes.

In the case of the segment size, the selection of
a larger segment size will provide better training
times, as they will provide a smaller sample size
to train; however, it will provide worse numerical
approximations to the original time series, as we
would to need to repeat more times the numerical
value used to represent the symbol.

Another important factor to take into account
from using a symbolic representation is how easy
they are to interpret. This approach is partic-
ularly useful when experts provide reasonable
intervals for each symbol that represents some-
thing meaningful for posterior decision-making.
In our experimentation, we have led more towards
the interpretation approach for the selection of
hyper-parameters. We selected the segment size
and alphabet size, making use of the same criteria
of our previous study [8]. As such, we studied the
use of a segment size of 6 and alphabet sizes of 7
and 13.

4.2.1 Sample extraction with sliding
windows.

Training a neural network with time series data
requires a previous step in which we create sam-
ples with an input and its desired output. In
order to create these samples, we made use of a
sliding window that covers the number of observa-
tions corresponding to two consecutive days (the
first for the input and the second for the out-
put). This results in the use of a sliding window
of size 144 when training models with the orig-
inal time series and a sliding window of size 24
when training models with symbolic representa-
tions with the hyper-parameters we chose. Since
the objective is to create models that predict
energy demand always from 0:00 to 23:50 we took
into account two alternative steps to move the slid-
ing window. The use of a sliding window step of 1
creates models trained with more samples, capa-
ble of doing forecasts from any hour of the day but
that requires more time to train while the use of
a daily window step creates models trained with
fewer samples, thus, they are trained faster but
they are always limited to make forecasts from
observations starting at 0:00.

4.3 Experiment description and
setup.

All the experiments done in this work are done
to compare how well neural network models
perform with and without symbolization and
how well they perform in comparison with other
machine learning models. More specifically, we
will evaluate the optimal way to integrate the

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

77

proposed symbolization in the neural network,
compare how accurately each symbolization tech-
nique is capable of predicting the next symbol
and compare how accurately all of the models are
capable of forecasting the energy consumption in
its numerical representation.

In order to do so, extensive experimentation
will be conducted with all neural network mod-
els using a trial-and-error approach to make the
comparison as fair as possible. For reproducibility
purposes, we provide all the hyperparameters
evaluated in this section. Any unmentioned
parameters were kept to the default value of the
TensorFlow [32] framework, which was used for all
experimentation. We tested topologies between
5 and 60 hidden neurons (increasing by 5) of
the MLP, ELman, LSTM and GRU neural net-
work architectures. Furthermore, in all of them,
three different hidden activation functions were
evaluated: hyperbolic tangent (tanh), sigmoid
and ReLU. The random seed used to initialize
the weights was 1996. After several preliminary
experiments, the value of the overlap of the trian-
gular membership function b was set to 3.5. All
models were trained during up to 75 epochs with
early stopping if the results did not improve for
10 epochs. We used the cross-entropy loss func-
tion for the symbolic time series and the mean
squared error for the numeric time series. The
learning rate (Adam’s stepsize) when working
with the symbolic representation was raised to
0.005 since with the default value of 0.001 it was
not converging. The computer used to execute
all the experiments had 32 GB of RAM and an
AMD Ryzen 5 2600X running at 3.6 GHz.

Additionally, since we are working with time
series data, we will also evaluate the optimal
way to extract samples with a sliding window
in the case of each symbolic representation and
the numerical representation. More specifically, we
will evaluate whether it is more interesting to use
a window step of 1, in which we will create a new
sample after each observation/simple or whether it
is more useful to do a daily step, in which a sample
is only created when the first observation/symbol
happens at 0:00.

4.3.1 Integrating FPLS-Sym:
Representation encoding as
input and output.

Artificial neural networks require a numerical rep-
resentation in order to make all the computations
required in the architecture. While the proposed
representation has a numerical representation
that provides richer information than other sym-
bolization techniques (the membership degrees) it
is unclear if the use of that encoding will be opti-
mal in the output layer. Thus, we will evaluate
three different ways in which our symbolic repre-
sentation can be encoded in the output layer.

In the first one, “membership”, the neural
network will try to forecast the next values
for the membership function. In this case, the
neural network does not learn anything about
the defuzzification process, which will be done
through the use of the argmax function. This
should notably lead to more complex archi-
tectures and accurately forecasting the fuzzy
membership will be a harder task than the other
two alternatives.

The second alternative, “one-hot encoding”
consists in transforming the α symbols of the
alphabet into an output vector in {0, 1}α where
the symbol gi is represented with the vector that
only has a value of 1 in position i. This would
be the simplest encoding that can be used but
will also remove any notion of order during the
training process. Thus, the neural network will
value in the same way errors that are close or far
away from the expected value.

The third and last alternative, “ordinal”, is an
ordinal regression representation for neural net-
work proposed in [33]. This encoding solves the
issue of the second one, as it makes the neural net-
work aware of the order between symbols during
the training process. In this case, the representa-
tion of a symbol gi of the alphabet is a vector
in {0, 1}α − 1, where the symbol i is represented
as a vector of ones until the i − 1 position, and
the remaining elements set to 0. Additionally, this
encoding requires the use of the sigmoid activa-
tion function in the output layer and the use of the
mean squared error loss as the objective function.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

78

5 Results.

5.1 Statistical tests.

Some of the results obtained in the experiments
are supported by statistical tests performed with
a significance level α = 0.05. Particularly, for each
comparison made, using a Shapiro-Wilk test, we
could reject the normality assumption for at least
one of the samples being compared. As such, we
use a Wilcoxon signed-rank test to compare paired
samples of the performance metrics. A pair is
any case in which we use the exact same method-
ology steps (architecture, topology, activation,
sliding window step, symbolization technique
and encoding) except one step that defines the
groups. There are multiple ways to formulate the
hypothesis of the Wilcoxon signed-rank test. In
our experimentation, we will consistently use the
same hypothesis formulation. The null hypothesis
will be that the pseudomedian of the differences
between samples is negative. A p-value inferior to
the significance level would lead us to reject the
hypothesis, in which case, we could claim with
confidence of 1 − α that the metric in the first
sample usually has a greater value than the second
sample. Table 2 shows the results of all Wilcoxon
signed-rank tests conducted. These results will be
discussed later in their corresponding sections.

5.2 Forecasting performance
metrics.

Since we want to evaluate our models under two
different situations (accurately predicting the
next symbol or approximating the original time
series) we have two sets of performance metrics.

In order to evaluate symbolization metrics, we
considered the rooted mean squared error (RMSE,
equation 14) and the accuracy. In order to calcu-
late the symbolic RMSE (the RMSE while using a
symbolic representation), each symbol is replaced
with an integer that represents its position on the
alphabet. We will refer to the symbolic RMSE as
RMSE-Sym for the remainder of this paper. The
best topology was always selected based on the
lowest RMSE-Sym as it will also penalize wrong
symbols that represent intervals far away from the
expected value. The accuracy is the percentage

of predicted symbols that correspond with their
expected symbol.

RMSE =

√∑N
i=1 (ŷi − yi)2

N
(14)

where ŷi is the predicted value, yi is the
expected value and N is the sample size.

In the case of predictions with a numerical rep-
resentation, we used the RMSE metric (defined
previously in equation 14) and the mean absolute
percentage error (MAPE, equation 15)

MAPE =
1

N

n∑

i=1

|y − ŷ

y
| (15)

5.3 Impact of the encoding used in
the symbolization techniques

One of the most important aspects of the pro-
posed experimentation, was to identify what
was the optimal way to integrate the symbolic
representations in the neural networks, as they
require numerical input and output. Thus, we
evaluated the use of two types of encoding for all
symbolization techniques as well as the use of the
membership degrees for FPLS-Sym.

The results obtained, displayed in the statisti-
cal tests (table 2 - rows 1 and 2) prove that the
use of ordinal encoding in all symbolization tech-
niques (SAX, aSAX and FPLS-Sym) improves
both metrics (provides a lower RMSE-Sym and
a higher accuracy). Additionally, the use of the
membership representation in the output layer
provided some interesting results for FPLS-Sym.
When it was used with a feed-forward neural
network the best results were provided, however,
when working with recurrent neural networks the
use of the membership function was usually more
beneficial. However, the overall best models found
(as can be seen in table 3) still made use of the
ordinal encoding.

5.4 Impact of the sliding window’s
sample generation.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

79

Table 2 Wilcoxon signed-rank test. H0 : X1 −X2 are symmetric about µ < 0.

Metric X1 X2 T p-value

RMSE-Sym One-hot Ordinal 961660.0 1.41 · 10−173

Accuracy Ordinal One-hot 971110.5 7.48 · 10−183

RMSE-Sym 1-step window Daily window 969941.0 4.85 · 10−180

Accuracy Daily window 1-step window 972253.0 7.24 · 10−182

RMSE-Sym (MLP+FPLS) Membership Ordinal 350.0 0.0078
Accuracy (MLP+FPLS) Ordinal Membership 450. 0.0002

RMSE-Sym (RNN+FPLS) Ordinal Membership 3061.0 2.27 · 10−5

Accuracy (RNN+FPLS) Membership Ordinal 2927.0 0.0002

RMSE-Sym SAX aSAX 222294.0 5.65 · 10−62

Accuracy SAX aSAX 231280.5 3.68 · 10−74

RMSE-Sym aSAX FPLS-Sym 434728.0 5.50 · 10−125

Accuracy FPLS-Sym SAX 244789.0 0.0498

Training time (s) FPLS-Sym SAX 292600.0 2.79 · 10−13

Table 3 Comparative of FPLS-Sym neural network training defuzzification strategies making use of daily-step sliding
window and ordinal encoding. Best metrics per alphabet size in bold.

Alphabet ANN output Architecture Activation Neurons RMSE Accuracy
size (Sym)

7 Membership MLP sigmoid 45 0.5337 0.7113
7 Membership Elman tanh 25 0.6000 0.6634
7 Membership LSTM tanh 60 0.5430 0.7103
7 Membership GRU ReLU 55 0.5382 0.7151
7 Ordinal MLP tanh 50 0.5047 0.7489
7 Ordinal Elman ReLU 50 0.5924 0.6701
7 Ordinal LSTM ReLU 35 0.5594 0.7067
7 Ordinal GRU ReLU 25 0.5768 0.6862

13 Membership MLP sigmoid 55 0.8585 0.5295
13 Membership Elman tanh 55 0.9595 0.4900
13 Membership LSTM tanh 50 0.8766 0.5111
13 Membership GRU tanh 40 0.8773 0.5233
13 Ordinal MLP tanh 55 0.8077 0.5620
13 Ordinal Elman ReLU 25 0.9654 0.4631
13 Ordinal LSTM ReLU 45 0.9320 0.5117
13 Ordinal GRU ReLU 45 0.9123 0.4990

Another relevant factor before the application of
the neural network architecture is how to prepare
and feed the samples used to train the neural
network given the nature of the time series data.
Particularly, we evaluated two different ways of
extracting the samples: one in which we only
feed samples starting at the first hour of the day
(daily) and one in which we feed as many sam-
ples as possible creating a new sample in every
time-step (1-step). Table 4 shows the best models
found while forecasting the time series in its sym-
bolic form.

As expected, the use of the daily-step win-
dow significantly reduces the required training
time since it provides less sample for training.
However, it did provide significantly better perfor-
mance metrics too (table 2 - rows 3 and 4). This
behaviour is most likely caused by the creation

of too many incoherent samples due to the daily
seasonality of energy data. We define as incoher-
ent samples any two or more training samples
that force the model to always fail the forecast
of at least one of them since they share the same
input but require different outputs. Since energy
consumption is highly correlated with human and
industrial activity, we found the same symbolic
string starting at different hours and it will usu-
ally require different outputs. Therefore, due to
the nature of our data, objective and methodol-
ogy, using a daily-step window should always be
preferred although it restricts our model to make
forecasts with inputs that always have to start at
midnight, which is the most common use case of
day-ahead forecasting models.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

80

Table 4 Best topologies for all models trained with ordinal encoding. Best metric per alphabet size in bold.

Representation Window Architecture Neurons Activation Symbolic Accuracy Training
(Alphabet size) step RMSE time (s)

SAX (7 symbols) Daily MLP [Ordinal] 60 sigmoid 0.6366 0.6888 4.9495
aSAX (7 symbols) Daily MLP [Ordinal] 45 ReLU 0.6181 0.6664 3.4701
FPLS-Sym (7 symbols) Daily MLP [Ordinal] 50 tanh 0.5047 0.7436 6.6461
SAX (7 symbols) 1 GRU [Ordinal] 55 sigmoid 0.7269 0.6470 459.7355
aSAX (7 symbols) 1 LSTM [Ordinal] 45 ReLU 0.6578 0.6371 590.4094
FPLS-Sym (7 symbols) 1 LSTM [Ordinal] 45 tanh 0.5654 0.6940 806.4591

SAX (13 symbols) Daily MLP [Ordinal] 60 ReLU 0.9893 0.5584 5.0936
aSAX (13 symbols) Daily MLP [Ordinal] 25 ReLU 0.9548 0.5250 6.8402
FPLS-Sym (13 symbols) Daily MLP [Ordinal] 45 ReLU 0.8077 0.5585 6.9993
SAX (13 symbols) 1 GRU [Ordinal] 60 tanh 1.1634 0.4823 419.7400
aSAX (13 symbols) 1 GRU [Ordinal] 25 sigmoid 1.0421 0.4919 1054.4451
FPLS-Sym (13 symbols) 1 LSTM [Ordinal] 55 ReLU 0.8701 0.5298 1406.6871

5.5 Symbolization techniques
comparison.

The last alternative in the proposed methodology
is the selection of the symbolization technique.
Particularly, we want to check whether any
symbolization technique provides better quality
metrics than the others when the neural network
is used to forecast the next 24 symbols. A com-
parison of all of them using alphabets with 7
and 13 symbols is provided in table 4. The result
show that FPLS-Sym outperformed both SAX
and aSAX independently of the other hyperpa-
rameters evaluated in our methodology. This is
the expected behaviour as FPLS-Sym is capable
of providing more accurate information to the
input layer of the neural network at the expense
of more space to be stored and some additional
computational power, that explains the slightly
slower training time required when using this
symbolization technique. The best models for
each of the alphabet sizes used the previously
discussed optimal training methodology for our
data: a MLP architecture with ordinal encoding
and a daily-step sliding window to provide the
training samples.The only difference between
them is the number of neurons on their hidden
layer and the activation function used. Another
important factor to highlight is that even FPLS-
Sym models that don’t use ordinal encoding
(table 3) or use a daily-step sliding window with
recurrent neural networks provide better results
than the best models found for the other sym-
bolization techniques. Therefore, also taking into
account the results of the statistical tests con-
ducted (table 2 - last 5 rows) we can conclude
that the use of FPLS-Sym will provide a signifi-
cant improvement on RMSE-Sym and accuracy

over the other symbolization techniques used at
the expense of a small increase in calculations.

5.6 Forecasting the time series in its
numerical form.

At last, we will compare the performance of
symbolization techniques with the same neural
network architectures trained with the numerical
representation as well as other machine learning
models. Symbolic forecasts are transformed into
numerical forecasts by replacing each symbol with
its center value and repeating that value as many
times as long is its corresponding segment. Figure
4 displays how the best model for aSAX, FPLS-
Sym and the numerical representation prediction
in one week of the test dataset. Table 5 com-
pares the performance of the numerical forecast
between the best models found for each symbol-
ization technique, the best models obtained with
the numerical representation and other regression
algorithms.

Among all the methods evaluated, FPLS-Sym
provided the best forecast, improving the results
of all symbolization techniques and the other algo-
rithms that used a numerical representation. The
best model with FPL-Sym provided a RMSE
of 1.1655 and a MAPE of 3.29 %, obtaining a
reasonable improvement over the second-best per-
formant model and being capable of training in
just under 7 seconds. The second-best performant
model was the best neural-network-based model
that provided better performance metrics than the
other symbolization techniques at the expense of a
much higher training time. This high training time

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

81

Fig. 4 Predictions of the best model for aSAX (on the left), FPLS-Sym (on the middle) and the numeric representation
(on the right) over the span of a week of the test partition.

Table 5 Original/Numerical time series forecast and training time for the best numeric and symbolic models.

Representation Window Architecture Neurons Activation RMSE MAPE Training
(Alphabet size) step time (s)

SAX (7 symbols) Daily MLP [Ordinal] 60 sigmoid 1.6291 0.0475 4.9495
SAX (13 symbols) Daily MLP [Ordinal] 60 ReLU 1.4307 0.0408 5.0936
aSAX (7 symbols) Daily MLP [Ordinal] 45 ReLU 1.6618 0.0484 3.4701
aSAX (13 symbols) Daily MLP [Ordinal] 25 ReLU 1.3655 0.0390 6.8402
FPLS-Sym (7 symbols) Daily MLP [Ordinal] 50 tanh 1.8401 0.0502 6.6461
FPLS-Sym (13 symbols) Daily MLP [Ordinal] 55 tanh 1.1655 0.0329 6.9993
SAX (7 symbols) 1 LSTM [Ordinal] 60 ReLU 1.8391 0.0532 667.5387
SAX (13 symbols) 1 LSTM [Ordinal] 60 ReLU 1.5903 0.0454 584.8650
aSAX (7 symbols) 1 LSTM [Ordinal] 45 ReLU 1.8402 0.0531 441.6372
aSAX (13 symbols) 1 GRU [Ordinal] 25 sigmoid 1.5306 0.0439 1054.4451
FPLS-Sym (7 symbols) 1 LSTM [Ordinal] 45 tanh 2.9634 0.0829 575.4878
FPLS-Sym (13 symbols) 1 LSTM [Ordinal] 55 ReLU 1.3884 0.0391 1406.6871
Numeric Daily MLP 60 ReLU 1.5542 0.0434 8.5964
Numeric 1 LSTM 55 tanh 1.2889 0.0363 40959.7513

Representation Window Prediction model Optimal parameters* RMSE MAPE Training
step time (s)

Numeric 1 Decision Tree max depth: 15 2.6410 0.0733 87.4397

Numeric 1 Random Forest
max depth:20

n estimators: 150
1.7465 0.0492 15484.5837

Numeric 1 Gradient Boosting Trees
max depth: 20

n estimators: 150
learning rate: 0.1

1.4900 0.0422 22284.1009

*Parameters evaluated: max depth ∈ [10, 15, 20, 25, 30]; n estimators ∈ [50, 100, 150, 200]; learning rate ∈ [0.05, 0.1, 0.15, 0.2, 0.3].
*Any other parameter not mentioned corresponds to scikit-learn default values. Multi-step forecast is done recursively.

is easily explainable due to the higher dimension-
ality of the numerical representation, the use of
more training samples through a one-step sliding
window and the complexity of the recurrent LSTM
units. The third-best performant model was the
neural network trained with aSAX with a daily
window and 13 symbols, providing quality metrics
slightly worse than the numerical LSTM but also
training much faster. Lastly, most neural-network-
based models provided better quality metrics than
the other machine learning algorithms evaluated
in table 5.

5.7 Uses cases and limitations of the
proposed approach.

As can be observed in the results displayed in
this section, the use of the FPLS-Sym technique
provides more accurate results in a faster time
than the models trained with the numerical
representation. Furthermore, even though it is
a more complex symbolization technique, the
time required to train the neural network still
remains competitive, especially when using the
MLP architecture. This partially thank to the
fact that after taking into account the encod-
ings used, the FPLS-Sym representation only
requires an additional neuron in the input layer

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

82

in comparison with the ordinal input from SAX
and aSAX. In general, there are three main use
cases of the proposed symbolization technique.
The first one would be to train quickly an initial
model that may be used as a baseline to compare
other models. A second use would be for better
interpretation of the results. In that instance, the
forecast is provided in its symbolic form, helping
experts in the field make decisions and learn
frequent patterns in the studied time series. A
third extremely useful use case of the proposed
approach would be instances in which a model
needs to be retrained frequently. For example,
in the energy sector, major changes to energy
policies or the infrastructure used will most
likely lead to a major change in the time series
behavior. In those cases, using this type of model
can be extremely useful, as it can be retrained
much faster than other complex models that will
require a much larger training time and many
more observations until it can learn properly the
new behavior. Additionally, thanks to the lower
complexity of models trained with FPLS-Sym,
they may also be deployed in edge devices at the
consumer household, reducing the cost of frequent
and large communication between sensors and
data centers and helping to preserve the privacy
of the consumer (federated learning).

Nevertheless, the main limitation is the kind
of data used to train the models. Since the sym-
bolization process will inevitably compact the
information of the numerical representation, the
use of the proposed technique in time series with
low granularity or trivial problems will most likely
yield underwhelming results.

6 Conclusion.

In this paper, we applied symbolization tech-
niques to forecast the energy demand in Spain
in a fast and precise manner and presented a
new algorithm, FPLS-Sym, that outperformed
the other techniques for the forecasting task. The
proposed symbolization technique was evaluated
with Spanish energy demand data from 2009 to
2019 with observations gathered every 10 min-
utes. Extensive experimentation was done on
this dataset comparing different input encodings,
window size, neural network architectures and
topologies, symbolization techniques and other

forecasting algorithms with three main objectives
in mind. First, we wanted to evaluate how valu-
able would be to integrate a fuzzy representation
in symbolization techniques. Second, we wanted
to apply the proper statistical tests to verify the
optimal way to incorporate the symbolic repre-
sentations in a neural network model. Third, we
wanted to do everything in a publicly available
big data dataset, verifying the usefulness of the
approach with large amounts of data and allow-
ing easy reproduction of our findings in future
research. The results from the experimentation
done in this paper showed that the use of the
proposed fuzzy technique clearly outperformed
the other classic symbolization techniques, point-
ing out how useful it is the use of the fuzzy
representation to improve the accuracy of the
model. Secondly, thanks to the multiple Wilcoxon
signed-rank test applied, we saw that FPLS-Sym
consistently outperform the other alternatives
and it should ideally be used with an MLP
architecture, ordinal encoding and a daily slid-
ing window. Lastly, the results showed that our
best FPLS-Sym model did not only outperform
the other symbolization techniques but was also
capable of providing better metrics to forecast the
original time series representation and required
much less training time than the models trained
with the numerical representation.

Future lines of work may study the inclusion
of exogenous variables, different machine learn-
ing models, other fuzzy representations, i.e. using
other membership functions; or accelerating the
selection of all the parameters evaluated using the
GPU.

Declarations

Author Contributions. All authors con-
tributed equally to this work.

Funding. The authors acknowledge financial
support from “Ministerio de Ciencia e Innovación”
(Spain) (Grant PID2020-112495RB-C21 funded
by MCIN/ AEI /10.13039/501100011033) and
from “Consejeŕıa de Universidad, Investigación e
Innovación de la Junta de Andalućıa” (I+D+i
FEDER 2020 project B-TIC-42-UGR20).

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

83

Conflict of interest. The authors have no com-
peting interests to declare that are relevant to the
content of this article.

Data Availability Statement. The datasets
generated during and/or analysed during the cur-
rent study are available in an OpenScienceFrame-
work repository, https://osf.io/v2zfm

References

[1] Lin, J., Keogh, E., Wei, L., Lonardi, S.:
Experiencing SAX: a novel symbolic repre-
sentation of time series. Data Min. Knowl.
Disc. 15, 107–144 (2007) https://doi.org/10.
1007/s10618-007-0064-z

[2] Keogh, E., Chakrabarti, K., Pazzani, M.,
Mehrotra, S.: Dimensionality Reduction for
Fast Similarity Search in Large Time Series
Databases. Knowl. Inf. Syst. 3 (2002) https:
//doi.org/10.1007/PL00011669

[3] Lkhagva, B., Suzuki, Y., Kawagoe, K.: New
Time Series Data Representation ESAX
for Financial Applications. In: 22nd Inter-
national Conference on Data Engineering
Workshops (ICDEW’06), pp. 115–115 (2006)
https://doi.org/10.1109/ICDEW.2006.99

[4] Pham, N.D., Le, Q.L., Dang, T.K.: Two
Novel Adaptive Symbolic Representations for
Similarity Search in Time Series Databases.
In: 2010 12th International Asia-Pacific Web
Conference, pp. 181–187 (2010) https://doi.
org/10.1109/APWeb.2010.23

[5] Reinhardt, A., Koessler, S.: PowerSAX: Fast
motif matching in distributed power meter
data using symbolic representations. In: 39th
Annual IEEE Conference on Local Com-
puter Networks Workshops, pp. 531–538
(2014) https://doi.org/10.1109/LCNW.2014.
6927699

[6] Chen, Y., Wen, J.: Whole building system
fault detection based on weather pattern
matching and PCA method. In: 2017 3rd
IEEE International Conference on Control
Science and Systems Engineering (ICCSSE),

pp. 728–732 (2017) https://doi.org/10.1109/
CCSSE.2017.8088030

[7] Miller, C., Nagy, Z., Schlueter, A.: Auto-
mated daily pattern filtering of measured
building performance data. Automat. Cos-
ntr. 49, 1–17 (2015) https://doi.org/10.1016/
j.autcon.2014.09.004

[8] Criado-Ramón, D., Ruiz, L.G.B., Pegalajar,
M.C.: Electric demand forecasting with neu-
ral networks and symbolic time series repre-
sentations. Appl. Soft Comput. 122, 108871
(2022) https://doi.org/10.1016/j.asoc.2022.
108871

[9] Ediger, V.Ş., Akar, S.: ARIMA forecasting of
primary energy demand by fuel in Turkey.
Energ. Policy 35(3), 1701–1708 (2007) https:
//doi.org/10.1016/j.enpol.2006.05.009

[10] Li, S., Li, R.: Comparison of forecasting
energy consumption in Shandong, China
Using the ARIMA model, GM model, and
ARIMA-GMmodel. Sustainability 9(7), 1181
(2017) https://doi.org/10.3390/su9071181

[11] Wang, H., Lei, Z., Zhang, X., Zhou, B., Peng,
J.: A review of deep learning for renewable
energy forecasting. Energ. Convers. Manage.
198, 111799 (2019) https://doi.org/10.1016/
j.enconman.2019.111799

[12] Bagnasco, A., Fresi, F., Saviozzi, M., Sil-
vestro, F., Vinci, A.: Electrical consump-
tion forecasting in hospital facilities: An
application case. Energ. Buildings 103,
261–270 (2015) https://doi.org/10.1016/j.
enbuild.2015.05.056

[13] Naji, S., Keivani, A., Shamshirband, S., Alen-
garam, U.J., Jumaat, M.Z., Mansor, Z., Lee,
M.: Estimating building energy consump-
tion using extreme learning machine method.
Energy 97, 506–516 (2016) https://doi.org/
10.1016/j.energy.2015.11.037

[14] Ribeiro, G.T., Mariani, V.C., Santos Coelho,
L.: Enhanced ensemble structures using
wavelet neural networks applied to short-
term load forecasting. Eng. Appl. Artif. Intel.
82, 272–281 (2019) https://doi.org/10.1016/

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

84

j.engappai.2019.03.012

[15] Sajjad, M., Khan, Z.A., Ullah, A., Hus-
sain, T., Ullah, W., Lee, M.Y., Baik, S.W.:
A Novel CNN-GRU-Based Hybrid Approach
for Short-Term Residential Load Forecasting.
IEEE Access 8, 143759–143768 (2020) https:
//doi.org/10.1109/ACCESS.2020.3009537

[16] Zhang, G., Bai, X., Wang, Y.: Short-time
multi-energy load forecasting method based
on CNN-Seq2Seq model with attention mech-
anism. Mach. Learn. Appl. 5, 100064 (2021)
https://doi.org/10.1016/j.mlwa.2021.100064

[17] Martinez Alvarez, F., Troncoso, A.,
Riquelme, J.C., Aguilar Ruiz, J.S.:
Energy Time Series Forecasting Based
on Pattern Sequence Similarity. IEEE T.
Knowl. Data En. 23(8), 1230–1243 (2011)
https://doi.org/10.1109/TKDE.2010.227

[18] Nepal, B., Yamaha, M., Yokoe, A., Yamaji,
T.: Electricity load forecasting using clus-
tering and arima model for energy man-
agement in buildings. Jpn. Archit. Rev.
3(1), 62–76 (2020) https://doi.org/10.1002/
2475-8876.12135

[19] Pérez-Chacón, R., Asencio-Cortés, G.,
Mart́ınez-Álvarez, F., Troncoso, A.:
Big data time series forecasting based
on pattern sequence similarity and its
application to the electricity demand.
Inform. Sciences 540, 160–174 (2020)
https://doi.org/10.1016/j.ins.2020.06.014

[20] Jin, N., Yang, F., Mo, Y., Zeng, Y., Zhou, X.,
Yan, K., Ma, X.: Highly accurate energy con-
sumption forecasting model based on parallel
LSTM neural networks. Adv. Eng. Inform.
51, 101442 (2022) https://doi.org/10.1016/j.
aei.2021.101442

[21] Du, J., Zheng, J., Liang, Y., Liao, Q., Wang,
B., Sun, X., Zhang, H., Azaza, M., Yan, J.:
A theory-guided deep-learning method for
predicting power generation of multi-region
photovoltaic plants. Eng. Appl. Artif. Intel.
118, 105647 (2023) https://doi.org/10.1016/
j.engappai.2022.105647

[22] Zhang, K., Li, Y., Chai, Y., Huang, L.:
Trend-based symbolic aggregate approxima-
tion for time series representation. In: 2018
Chinese Control And Decision Conference
(CCDC), pp. 2234–2240 (2018) https://doi.
org/10.1109/CCDC.2018.8407498

[23] Yu, Y., Zhu, Y., Wan, D., Liu, H.,
Zhao, Q.: A Novel Symbolic Aggregate
Approximation for Time Series. In: Pro-
ceedings of the 13th International Confer-
ence on Ubiquitous Information Manage-
ment and Communication (IMCOM) 2019,
pp. 805–822 (2019) https://doi.org/10.1007/
978-3-030-19063-7 65

[24] Almeida, L.B.: Multilayer perceptrons. IOP
Publishing Ltd and Oxford University Press
(1997)

[25] Elman, J.: Finding Structure in Time. Cogni-
tive Sci. 14, 179–211 (1990) https://doi.org/
10.1016/0364-0213(90)90002-E

[26] Hochreiter, S., Schmidhuber, J.: Long Short-
Term Memory. Neural Comput. 9(8), 1735–
1780 (1997) https://doi.org/10.1162/neco.
1997.9.8.1735

[27] Hochreiter, S.: The Vanishing Gradient Prob-
lem During Learning Recurrent Neural Nets
and Problem Solutions. Int. J. Uncertain.
Fuzz. 06(02), 107–116 (1998) https://doi.
org/10.1142/S0218488598000094

[28] Cho, K., Merriënboer, B., Gulcehre, C.,
Bougares, F., Schwenk, H., Bengio, Y.:
Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine
Translation. In: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural
Language Processing (EMNLP) (2014) https:
//doi.org/10.3115/v1/D14-1179

[29] Kingma, D.P., Ba, J.: Adam: A Method
for Stochastic Optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Con-
ference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015)

[30] Moreno-Garcia, A., Moreno-Garcia, J.,

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

85

Jimenez-Linares, L., Rodriguez-Benitez,
L.: Time series represented by means of
fuzzy piecewise lineal segments. J. Com-
put. Appl. Math. 318, 156–167 (2017)
https://doi.org/10.1016/j.cam.2016.11.003

[31] Red Eléctrica de España: Spanish peninsula
electric network demand. https://demanda.
ree.es/visiona/peninsula/demanda/total
(accessed 21 June 2021).

[32] Abadi, M., Agarwal, A., Barham, P., Brevdo,
E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schus-
ter, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., War-
den, P., Wattenberg, M., Wicke, M., Yu, Y.,
Zheng, X.: Tensorflow (version 2.0.4). Zen-
odo (2021). https://doi.org/10.5281/zenodo.
4725924

[33] Cheng, J., Pollastri, G.: A neural network
approach to ordinal regression. In: IEEE
Int. Jt. Conf. Neural Networks 2008 IJCNN
2008 IEEE World Congr. Comput. Intell, pp.
1279–1284 (2008) https://doi.org/10.1109/
IJCNN.2008.4633963

D. Criado-Ramón
David Criado Ramón
received his BS degree in
Computer Science, special-
izing in Computing and
Artificial Intelligence from
the University of Granada,
in 2019. He is currently

pursuing the PhD degree in Information and
Communication Technologies at the Univer-
sity of Granada. His current research interests
include neural networks, parallel computing and
evolutionary algorithms.

L.G.B. Ruiz
Luis Gonzaga Baca Ruiz is
an Associate Professor at
the University of Granada in
the Department of Software
Engineering. He received his

BS degree in Computer Sci-
ence, specializing in Com-

puting and Artificial Intelligence from the Uni-
versity of Granada in 2014. He obtained his PhD
in Information and Communication Technologies
at the University of Granada in 2019. His cur-
rent research interest includes time series, artificial
neural networks, data mining and metaheuristic
algorithms.

M.C. Pegalajar
Maŕıa del Carmen Pegala-
jar Jiménez is a professor at
the University of Granada
at the ETSI Computer Sci-
ence and Telecommunica-
tions, where she has been
a professor and researcher

since 1995. She obtained her bachelor’s degree
in Computer Science in 1993. In 1994 she was
awarded a grant in the Computing Services of
the University of Granada. In 1995 was hired as
an associate professor in her current department,
Computer Science and Artificial Intelligence, and
she finished her PhD project in 1997. Her current
research interest includes Edge and cloud com-
puting, big data time series, artificial neural net-
works and metaheuristic algorithms, psychology
and machine learning.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

86

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.3. An Improved Pattern Sequence-Based Energy

Load Forecast Algorithm Based on Self-Organizing

Maps and Artificial Neural Networks

Referencia:
D. Criado-Ramón, L.G.B. Ruiz, M. C. Pegalajar, An Improved Pattern Sequence-Based
Energy Load Forecast Algorithm Based on Self-Organizing Maps and Artificial Neural
Networks, Big Data and Cognitive Computing, Volume 7, 92, 2023, ISSN 2504-2289
Estado:
Publicado
Factor de impacto:
3.7
Categoŕıa:
Segundo cuartil JCR.
Posición 89/192 en la categoŕıa “Computer Science, Artificial Intelligence”
DOI:
https://doi.org/10.3390/bdcc7020092

Revista:
Big Data and Cognitive Computing
Editorial:
MDPI

87

Citation: Criado-Ramón, D.; Ruiz,

L.G.B.; Pegalajar, M.C. An Improved

Pattern Sequence-Based Energy Load

Forecast Algorithm Based on

Self-Organizing Maps and Artificial

Neural Networks. Big Data Cogn.

Comput. 2023, 7, 92. https://

doi.org/10.3390/bdcc7020092

Academic Editor: Wei-Chiang Hong

Received: 20 March 2023

Revised: 4 May 2023

Accepted: 6 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

An Improved Pattern Sequence-Based Energy Load Forecast
Algorithm Based on Self-Organizing Maps and Artificial
Neural Networks
D. Criado-Ramón 1,* , L. G. B. Ruiz 2 and M. C. Pegalajar 1

1 Department of Computer Science and Artificial Intelligence, University of Granada, 18014 Granada, Spain;
mcarmen@decsai.ugr.es

2 Department of Software Engineering, University of Granada, 18014 Granada, Spain; bacaruiz@ugr.es
* Correspondence: dcriado@ugr.es

Abstract: Pattern sequence-based models are a type of forecasting algorithm that utilizes clustering
and other techniques to produce easily interpretable predictions faster than traditional machine
learning models. This research focuses on their application in energy demand forecasting and
introduces two significant contributions to the field. Firstly, this study evaluates the use of pattern
sequence-based models with large datasets. Unlike previous works that use only one dataset or
multiple datasets with less than two years of data, this work evaluates the models in three different
public datasets, each containing eleven years of data. Secondly, we propose a new pattern sequence-
based algorithm that uses a genetic algorithm to optimize the number of clusters alongside all
other hyperparameters of the forecasting method, instead of using the Cluster Validity Indices
(CVIs) commonly used in previous proposals. The results indicate that neural networks provide
more accurate results than any pattern sequence-based algorithm and that our proposed algorithm
outperforms other pattern sequence-based algorithms, albeit with a longer training time.

Keywords: time-series forecasting; clustering; patterns; genetic algorithm; energy

1. Introduction

Electricity has been a vital part of modern life since its discovery. As the number of de-
vices that rely on electricity continues to grow, people often use it for multiple applications
simultaneously, such as lighting, refrigeration, cooling and heating, among others. Energy
has therefore become a key component of modern life. Given the economic and environ-
mental importance of this issue, it is essential to have accurate and understandable energy
demand forecasting to reduce energy generation and distribution costs and emissions.

Energy demand prediction has been a relevant topic in both the academic and profes-
sional circles and has been studied in a variety of scenarios and circumstances. Researchers
have addressed this topic for households [1], public buildings [2] and energy markets [3–8],
among others. Furthermore, from an artificial intelligence perspective, many different time-
series forecasting models have been applied to this matter ranging from easy-to-understand
models, such as ARIMA, to highly accurate black-box models, such as neural networks
and ensembles of different models [1]. However, in the majority of forecasting studies
published in recent years, some form of neural network architecture has been employed.
Mohammed et al. [9] presented an improved version of backpropagation to provide better
long-term load demand forecasting. Peng et al. [10] used the empirical wavelet transform
and attention-based Long-Short Term Memory neural networks to forecast industrial elec-
tricity in Hubei and the total energy consumption of China. Ghenai et al. [11] proposed a
Neuro-Fuzzy Inference System to provide a very-short-term load forecast for an educational
building to balance supply from renewable sources and market demand.

Big Data Cogn. Comput. 2023, 7, 92. https://doi.org/10.3390/bdcc7020092 https://www.mdpi.com/journal/bdcc

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

88

Big Data Cogn. Comput. 2023, 7, 92 2 of 15

Over the past decade, clustering algorithms have emerged as an interesting alternative
for energy forecasting as they can extract patterns that can be used for prediction. The use of
clustering algorithms is particularly attractive in scenarios that require faster training time,
robustness to noise and missing data or easy interpretability. To the best of our knowledge,
pattern sequence-based forecasting (PSF) [5] was the first proposal of this kind. PSF uses
K-means to extract daily load patterns, labels the time series according to the clusters found
by K-means and provides a forecast based on the labelled time series and historical data
that used the same labelled input. Several other variants of this concept have been proposed
in the literature. Improved PSF [6] makes the forecast based on the cluster distribution
per day of the week and a weighted average. SCPSNSP [7] uses neural networks and the
Self-Organizing Map (SOM) [12] as the clustering method instead of K-means. BigPSF [8]
incorporates a map-reduce scheme for the efficient computation of the PSF algorithm in
clusters with Spark. Beyond the scope of energy load forecasting, adaptations of PSF have
been used to forecast prices [7], predict wind speed [13] and impute missing data [14].

This study introduces two main novelties in the field of pattern sequence-based
forecasting:

• Firstly, most pattern sequence-based forecasting algorithms use a Cluster Validity
Index (CVI) to select the optimal cluster size. However, there is no guarantee that the
optimal cluster size for this metric would provide the best forecast. As such, we have
presented a new proposal that combines the use of Self-Organizing Maps (SOMs),
Artificial Neural Networks (ANN) and a genetic algorithm (GA) to find the optimal
hyperparameters of the model (including the cluster size).

• Secondly, this is the first study to evaluate pattern sequence-based forecasting al-
gorithms using multiple public big data time series [15–17] that cover eleven years
of energy consumption across three different geographical areas. Previous works
evaluated only one dataset or datasets with two years or less of data.

The rest of this manuscript is structured as follows. Section 2 describes the prepro-
cessing pipeline, PSF algorithms’ general scheme and our proposed algorithm. Section 3
presents the results of our experimentation. Section 4 provides a deep analysis of the results
obtained. Lastly, Section 5 draws the main conclusions of our work and proposes future
lines of research.

2. Materials and Methods
2.1. Data Preprocessing

The same preprocessing pipeline was applied to prepare the data from all three
sources before fitting the machine learning models. Firstly, the datasets were divided
into two partitions: training and test. The training set includes all observations from 1
January 2009 to 12 September 2016 (70%), while the test partition covers the days between
13 September 2016 and 31 December 2019 (30%).

Secondly, we checked for outliers, duplicated data and missing data in all three
datasets. No extreme outliers were found. However, all datasets presented some duplicates
due to repeated timestamps from the different scrapped files and daylight-saving time.
Data were scrapped chronologically to ensure reproducibility and only the last duplicate
timestamp was kept. There were no missing values besides those corresponding to daylight
saving time, which were filled via linear interpolation.

Lastly, the energy demand from each data source was scaled using min-max normal-
ization (Equation (1)) where s represents the time series and st represents the observation
occurring at time step t, rescaling all observations of time series s to a range between 0 and
1. After each algorithm computed its predictions, the inverse transformation was applied
to provide the forecasts in the original data scale.

s′t =
st −min(s)

max(s)−min(s)
(1)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

89

Big Data Cogn. Comput. 2023, 7, 92 3 of 15

2.2. Artificial Neural Networks

Artificial Neural Networks are machine learning models inspired by the brain’s biolog-
ical neural connections. An artificial neural network (ANN) typically consists of multiple
interconnected layers. Each connection between neurons in the network is assigned a
weight, which is adjusted during the learning process to improve the performance of the
model. The first layer, or input layer, receives a data sample, while the last layer, or output
layer, tries to produce the expected output for the input given in the first layer. All the other
layers are denominated as hidden layers. In an ANN, each neuron in a hidden layer (i.e.,
any layer except the input layer) calculates its output by taking a weighted sum of the out-
puts from the neurons in the previous layer, using the weights learned in the connections.
This weighted sum is then transformed by applying a non-linear function known as an
activation function. The activation function introduces non-linearity to the model, allowing
it to learn more complex patterns in the data. The learning process of a neural network
involves adjusting the weights of the connections to minimize the difference between the
output layer and the desired output. In the course of this research, we only used one type
of ANN: the Multilayer Perceptron (MLP) [18]. An MLP is one of the simplest and most
widely used ANN. An MLP features one input layer, one output layer and one or more
hidden layers. In each layer, each neuron must be connected to all the neurons of the next
layer. There cannot be any other additional connection between neurons. The user must
provide the number of hidden layers and the number of neurons per hidden layer.

2.3. Clustering Algorithms

The objective of clustering algorithms is to partition a set of data points into groups,
such that points in the same group are more similar to each other than to those in other
groups, according to a specified similarity or distance metric. K-means [19] is the most
widely used clustering algorithm and requires providing the desired number of clusters
(K). In K-means, the starting clusters are initialized according to some criteria (random
generation or, more commonly, the algorithm k-means++ [20]) and the clusters are updated
in each iteration until a convergence criterion is reached (for example, a maximum number
of iterations). Each data point is assigned to the cluster with the closest center, and each
cluster’s center is updated as the mean of all the samples in that cluster. This process is
repeated iteratively until convergence.

The SOM [12] is a clustering algorithm based on neural networks and competitive
learning that is widely used for visual representations and dimensionality reduction. The
SOM also has the unique property of topological preservation. This means that samples that,
according to the distance metric used, are nearby in the input space should also be close in
the output space. Unlike K-means, the SOM clusters are organized in an output map/lattice
that can have multiple dimensions (usually two). Each cell in the map represents a neuron
or cluster with its corresponding weights. During the training process, the SOM weights
are updated either after processing each sample (online mode) or after processing the entire
dataset for one epoch (batch mode). For each sample, the closest neuron, referred to as the
Best Matching Unit (BMU), is identified. Its weights and the weights of the neurons in the
vicinity of the BMU are updated to minimize the distance between their weights and the
input sample. This learning process is controlled by a learning rate and a neighborhood
function (which determines the extent of the area where neighbouring neurons’ weights
are updated with a lower magnitude).

2.4. The Original PSF Algorithm and Its Variants

Pattern sequence-based forecasting is a general-purpose forecasting algorithm that was
first proposed in 2011 [5], as illustrated in Figure 1. It is a versatile algorithm that employs
clustering techniques to identify patterns in time-series data, which are subsequently used
to make predictions. It is known for its efficiency and interpretability, making it a popular
choice in various applications. The algorithm works as follows:

• Data normalization. The time series is standardised to reduce the effect of outliers.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

90

Big Data Cogn. Comput. 2023, 7, 92 4 of 15

• Horizon selection. The user specifies the number of consecutive observations that will
be transformed into a label, and the number of observations to be forecasted in each
iteration of the algorithm. This value is denoted as h, and in the context of this paper
represents the number of observations per day.

• Optimal number of clusters selection. The K-means algorithm is executed for each
number of clusters (K) between 2 and 15. The optimal number of clusters is selected
using three different cluster validity indexes (CVI).

• Clustering/Labelling. The time series is labelled using the K-means algorithm with
the optimal number of clusters.

• Optimal window size selection. We employed cross-validation to identify the optimal
window size (W).

• Forecasting. The sequence of W labels corresponding to the W days before the fore-
casted date is searched throughout the historical data. The data from the day after the
pattern is found are recorded for any occurrence, and the average of these data will
produce the final forecast.

• Online learning. While there are days left to be forecasted, the last forecast ground
truth is added to the training dataset and the entire process is repeated.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 16

2.4. The Original PSF Algorithm and Its Variants
Pattern sequence-based forecasting is a general-purpose forecasting algorithm that

was first proposed in 2011 [5], as illustrated in Figure 1. It is a versatile algorithm that
employs clustering techniques to identify patterns in time-series data, which are subse-
quently used to make predictions. It is known for its efficiency and interpretability, mak-
ing it a popular choice in various applications. The algorithm works as follows:
• Data normalization. The time series is standardised to reduce the effect of outliers.
• Horizon selection. The user specifies the number of consecutive observations that

will be transformed into a label, and the number of observations to be forecasted in
each iteration of the algorithm. This value is denoted as h, and in the context of this
paper represents the number of observations per day.

• Optimal number of clusters selection. The K-means algorithm is executed for each
number of clusters (K) between 2 and 15. The optimal number of clusters is selected
using three different cluster validity indexes (CVI).

• Clustering/Labelling. The time series is labelled using the K-means algorithm with
the optimal number of clusters.

• Optimal window size selection. We employed cross-validation to identify the opti-
mal window size (W).

• Forecasting. The sequence of W labels corresponding to the W days before the fore-
casted date is searched throughout the historical data. The data from the day after
the pattern is found are recorded for any occurrence, and the average of these data
will produce the final forecast.

• Online learning. While there are days left to be forecasted, the last forecast ground
truth is added to the training dataset and the entire process is repeated.

Figure 1. A visual summary of the PSF algorithm.

Improved PSF [6] is a variant of PSF that aims to reduce the training time further.
Unlike the original PSF, Improved PSF utilizes only one CVI to determine the optimal
number of clusters. Moreover, it does not require a sliding window for the forecasting
step. Instead, the prediction is a weighted average of the cluster centers based on the fre-
quency of each cluster per day of the week in the historical data.

SCPSNSP [7] is another variant of the previously described PSF algorithm. SCPSNSP
introduces the use of Self-Organizing Maps as its main novelty, and it is the closest to our
proposal. Instead of the three CVIs used by PSF, SCPSNSP uses the topographic error. The
topographic error [21] measures how well the SOM preserves the topology of the input
space. This is done by checking if the two best BMUs for each input are adjacent in the
output map. Unlike PSF, SCPSNPS uses an ANN to predict the next sample. This ANN
receives as an input signal the topographic coordinates of the symbols corresponding to
the previous days (the row and column of the SOM for the previous days as numerical
input) and predicts the coordinates on the topological map for the next day. Upon pre-
dicting the coordinates of a new sample, the algorithm identifies the closest cluster that

Figure 1. A visual summary of the PSF algorithm.

Improved PSF [6] is a variant of PSF that aims to reduce the training time further.
Unlike the original PSF, Improved PSF utilizes only one CVI to determine the optimal
number of clusters. Moreover, it does not require a sliding window for the forecasting step.
Instead, the prediction is a weighted average of the cluster centers based on the frequency
of each cluster per day of the week in the historical data.

SCPSNSP [7] is another variant of the previously described PSF algorithm. SCPSNSP
introduces the use of Self-Organizing Maps as its main novelty, and it is the closest to our
proposal. Instead of the three CVIs used by PSF, SCPSNSP uses the topographic error. The
topographic error [21] measures how well the SOM preserves the topology of the input
space. This is done by checking if the two best BMUs for each input are adjacent in the
output map. Unlike PSF, SCPSNPS uses an ANN to predict the next sample. This ANN
receives as an input signal the topographic coordinates of the symbols corresponding to the
previous days (the row and column of the SOM for the previous days as numerical input)
and predicts the coordinates on the topological map for the next day. Upon predicting
the coordinates of a new sample, the algorithm identifies the closest cluster that contains
at least one sample in it. The pattern predicted for the next day is the average of all the
samples in the selected cluster.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

91

Big Data Cogn. Comput. 2023, 7, 92 5 of 15

2.5. Genetic Algorithm

A genetic algorithm [22] is an evolutionary metaheuristic inspired by Darwin’s theory
of evolution. It evolves a population of potential solutions (individuals) using the concepts
of fitness, selection, mutation, crossover and survival. The genetic algorithm used in this
paper is described below:

• Initialization. A population with a selected number of potential solutions are initial-
ized randomly.

• Fitness. A fitness function is used to evaluate the quality of each individual. In
our case, the individual will be a set of hyperparameters of the algorithm, and the
fitness function will be the Root Mean Square Error (RMSE) of the model trained with
those hyperparameters.

• Selection. A random set of individuals is selected with binary tournament selec-
tion [23]. In the binary tournament, for each parent to be chosen, two individuals
are selected randomly (in our case, with replacement) and put in a tournament. The
winner of each tournament is the individual with the best fitness value. This individual
will be selected as a parent.

• Crossover and Mutation. Each pair of parents is crossed overusing the self-adaptive
binary crossover and the polynomial proposed in [24]. This will create a new set of
offspring of individuals of the same size as the parent generation.

• Survival. Elitism is used to select the individuals that will conform to the next gener-
ation. This means that the next generation only keeps the individuals with the best
fitness values, independent of whether they were a parent or offspring.

2.6. The Proposed Method

Similar to the other related proposals, our algorithm has two main steps: clustering
and forecasting. However, unlike any previous proposal of this type, all hyperparameters
of our algorithm are selected with a genetic algorithm. A general overview of our proposal
can be found in Figure 2.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 5 of 16

contains at least one sample in it. The pattern predicted for the next day is the average of
all the samples in the selected cluster.

2.5. Genetic Algorithm
A genetic algorithm [22] is an evolutionary metaheuristic inspired by Darwin’s the-

ory of evolution. It evolves a population of potential solutions (individuals) using the con-
cepts of fitness, selection, mutation, crossover and survival. The genetic algorithm used in
this paper is described below:
• Initialization. A population with a selected number of potential solutions are initial-

ized randomly.
• Fitness. A fitness function is used to evaluate the quality of each individual. In our

case, the individual will be a set of hyperparameters of the algorithm, and the fitness
function will be the Root Mean Square Error (RMSE) of the model trained with those
hyperparameters.

• Selection. A random set of individuals is selected with binary tournament selection
[23]. In the binary tournament, for each parent to be chosen, two individuals are se-
lected randomly (in our case, with replacement) and put in a tournament. The winner
of each tournament is the individual with the best fitness value. This individual will
be selected as a parent.

• Crossover and Mutation. Each pair of parents is crossed overusing the self-adaptive
binary crossover and the polynomial proposed in [24]. This will create a new set of
offspring of individuals of the same size as the parent generation.

• Survival. Elitism is used to select the individuals that will conform to the next gener-
ation. This means that the next generation only keeps the individuals with the best
fitness values, independent of whether they were a parent or offspring.

2.6. The Proposed Method
Similar to the other related proposals, our algorithm has two main steps: clustering

and forecasting. However, unlike any previous proposal of this type, all hyperparameters
of our algorithm are selected with a genetic algorithm. A general overview of our proposal
can be found in Figure 2.

Figure 2. A visual summary of the GA-SOM-NNSF algorithm.

In all previously described PSF algorithms, the optimal number of clusters is selected
using CVIs. The original PSF algorithm uses the silhouette index, Dunn’s index and Da-
vies–Bouldin index; Improved PSF uses the Davies–Bouldin index; and SCPSNSP uses the
topographic error. However, CVIs only measure the compactness of each cluster and the
distance between different clusters. Hence, there is no guarantee that the optimal number
of clusters given by any CVI will be the optimal number of clusters for the forecasting

Figure 2. A visual summary of the GA-SOM-NNSF algorithm.

In all previously described PSF algorithms, the optimal number of clusters is selected
using CVIs. The original PSF algorithm uses the silhouette index, Dunn’s index and Davies–
Bouldin index; Improved PSF uses the Davies–Bouldin index; and SCPSNSP uses the
topographic error. However, CVIs only measure the compactness of each cluster and the
distance between different clusters. Hence, there is no guarantee that the optimal number
of clusters given by any CVI will be the optimal number of clusters for the forecasting
task. Therefore, in GA-SOM-NNSF, the genetic algorithm selects the optimal number of
clusters (number of rows and columns of the SOM), the topology of the neural network

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

92

Big Data Cogn. Comput. 2023, 7, 92 6 of 15

and its learning rate. Thus, each time the genetic algorithm’s fitness function is called, a
new SOM and neural network are trained according to the parameters provided by the
individuals. Nevertheless, to reduce the computational overhead of training the same SOM
if individuals share the same number of rows and columns of the SOM, the first time it is
trained, its weights are stored on disk. The SOM is trained using the batch algorithm for
up to 1000 epochs, but it can stop earlier if the BMU does not change for 3 epochs. After
training, the BMU of each daily sample is assigned to a cluster identified by its row and
column on the output lattice.

Afterwards, a one-hidden-layer feed-forward neural network with the sigmoid activa-
tion function in the hidden layer is used to learn the relationship between previous and
future energy demand. It is well-known that using some exogenous variables can help
improve the forecast. For example, the use of the temperature may help the model take
into account HVAC systems, while the use of the day of the week may help the model
to understand the difference in energy consumption between workdays and weekends.
Nevertheless, we could not use the temperature as an exogenous variable in our study,
as the datasets we used do not provide that information. This is likely due to the fact
that the geographical areas we are working with are too large, and therefore, the range of
temperatures for any given day may be too wide and unreliable. However, we included
both days of the week and month of the year as additional features to the neural network
to differentiate between loads on working days and non-working days. In our method, the
neural network receives the cluster IDs from the previous X days (where X is determined
by each individual of the genetic algorithm) in one-hot encoding, and the day of the week
and month of the day to be predicted as exogenous variables. The output will be a unique
cluster identifier in one-hot encoding. The neural network is trained for 150 epochs using
the Adam optimizer with a learning rate determined by each individual of the genetic
algorithm using the categorical cross-entropy loss.

While our ANN provides as output the expected cluster for a given input, both during
training and to make a forecast, our method must provide a daily load for that expected
cluster. The daily load of any cluster will be the weights learned by the SOM for that cluster.

Alternatives to the ANN

We opted to use an ANN in the last step of our algorithm as a one-hidden-layer
feed-forward neural network can approximate any function. Furthermore, ANN has been
used with success in similar approaches [7], other hybrid models [10,11] and standalone [8].
Nevertheless, this last step of our proposal could use a different machine learning model.
However, linear models should be avoided, as they would be unable to learn any non-
linear relationship between the input space (previous days’ cluster, day of the week and
month) and the predicted clusters. If the ANN is replaced with another model, the new
model’s hyperparameter should replace ANN hyperparameters (learning rate and number
of hidden neurons) in the genetic algorithm.

2.7. Comparison Methodology

All algorithms were compared using the training/test partitions and the scaling
method described in Section 2.1. The hyperparameters were selected automatically by
using five-fold cross-validation in the training partition. We have evaluated a range of
hyperparameters for each algorithm, and a maximum of 300 combinations of different
parameters were tested per model. Furthermore, for reference, we evaluated two algorithms
that do not involve clustering: Prophet [25] and ANN. The range of parameters considered
for each method is as follows:

• PSF: Window size from 1 to 10. Number of clusters from 2 to 20;
• Improved PSF: Number of clusters from 2 to 20;
• SCPSNPS: Window size from 1 to 10. Number of rows and columns of the SOM from

5 to 10. With the Cascade-2 algorithm, resilient backpropagation and linear activation
in the output layer (as described by the authors);

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

93

Big Data Cogn. Comput. 2023, 7, 92 7 of 15

• GA-SOM-NNSF: Window size from 1 to 10. Number of rows and columns of the SOM
from 5 to 10. Number of hidden neurons between 5 and 40. Learning rate between
0.0001 and 0.01. Population size of 15. Twenty generations;

• Prophet: Automatic parameter selection;
• ANN: Window size from 1 to 10. One hidden layer. Number of hidden layers between

5 and 40. Sigmoid activation in the hidden layer. Learning rate between 0.0001
and 0.01.

2.8. Experimental Setup

All experiments were conducted on a personal computer equipped with an AMD
5 Ryzen 2600X CPU operating at a clock speed of 3.6 GHz, an NVIDIA GeForce RTX
3060 Ti 8 GB graphics card and 32 GB of DDR4 RAM. The experiments were implemented
using Python 3.9 and the libraries Simpsom [26] for the SOM, scikit-learn for K-Means and
normalization, TensorFlow [27] for training neural networks, pymoo [28] for developing
the genetic algorithm and FANN [29] (in C++) for the Cascade Neural Network of SCPSNSP.
All random number generators were initialized with the seed value 1996. The code to
execute our experiments has been provided as supplementary materials.

3. Results
3.1. Datasets’ Descriptions

The machine learning algorithms used in this study were compared with other algo-
rithms using the energy load data from three Transmission System Operators (TSOs). The
same eleven years of data from 1 January 2009 to 31 December 2019 were taken from each
dataset. Figure 3 shows a week of energy demand data from each TSO.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 16

• Improved PSF: Number of clusters from 2 to 20;
• SCPSNPS: Window size from 1 to 10. Number of rows and columns of the SOM from

5 to 10. With the Cascade-2 algorithm, resilient backpropagation and linear activation
in the output layer (as described by the authors);

• GA-SOM-NNSF: Window size from 1 to 10. Number of rows and columns of the
SOM from 5 to 10. Number of hidden neurons between 5 and 40. Learning rate be-
tween 0.0001 and 0.01. Population size of 15. Twenty generations;

• Prophet: Automatic parameter selection;
• ANN: Window size from 1 to 10. One hidden layer. Number of hidden layers be-

tween 5 and 40. Sigmoid activation in the hidden layer. Learning rate between 0.0001
and 0.01.

2.8. Experimental Setup
All experiments were conducted on a personal computer equipped with an AMD 5

Ryzen 2600X CPU operating at a clock speed of 3.6 GHz, an NVIDIA GeForce RTX 3060
Ti 8 GB graphics card and 32 GB of DDR4 RAM. The experiments were implemented us-
ing Python 3.9 and the libraries Simpsom [26] for the SOM, scikit-learn for K-Means and
normalization, TensorFlow [27] for training neural networks, pymoo [28] for developing
the genetic algorithm and FANN [29] (in C++) for the Cascade Neural Network of SCP-
SNSP. All random number generators were initialized with the seed value 1996. The code
to execute our experiments has been provided as supplementary materials.

3. Results
3.1. Datasets’ Descriptions

The machine learning algorithms used in this study were compared with other algo-
rithms using the energy load data from three Transmission System Operators (TSOs). The
same eleven years of data from 1 January 2009 to 31 December 2019 were taken from each
dataset. Figure 3 shows a week of energy demand data from each TSO.

Figure 3. A week of load data from each of the TSOs.

Red Eléctrica de España (REE) [15] is the main Spanish TSO, and its website provides
information about energy demand and production in Spain since 2007, with observations
recorded every 10 min. The website provides information about actual energy demand,
energy demand predicted by the system, energy demand used to fix the hourly market
price, energy produced by each renewable and non-renewable source, and their corre-
sponding CO2 emissions. However, some of these variables were gradually incorporated
and may not be available for all years. The TSO system is divided into different

Figure 3. A week of load data from each of the TSOs.

Red Eléctrica de España (REE) [15] is the main Spanish TSO, and its website provides
information about energy demand and production in Spain since 2007, with observations
recorded every 10 min. The website provides information about actual energy demand,
energy demand predicted by the system, energy demand used to fix the hourly market price,
energy produced by each renewable and non-renewable source, and their corresponding
CO2 emissions. However, some of these variables were gradually incorporated and may not
be available for all years. The TSO system is divided into different independent subsystems
for the Peninsular area, the Balearic Islands, the Canary Islands, Ceuta and Melilla. In this

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

94

Big Data Cogn. Comput. 2023, 7, 92 8 of 15

study, we only used data from the Peninsular area. It is important to note that the REE
website does not offer a direct download of the dataset and that the data must be compiled
by downloading an independent CSV file per day.

New York Independent System Operator, Inc. (NYISO) [17] is the organization re-
sponsible for managing New York State’s (USA) electric grid and its electric marketplace.
Its website provides information about energy pricing, load, solar power generation and
outages, among other technical reports. Most of the website’s load data have been recorded
every hour. The system provides information about the entire energy load of New York
State and the energy consumption in 11 different subzones of the state. For the purposes
of this study, we used the aggregated energy load from the entire state of New York. The
data can be obtained from the NYISO webpage, where monthly zip files are available, each
containing a CSV file for every day.

Australian Energy Market Operator (AEMO) [16] is Australia’s main TSO for energy
and gas. AEMO operates in two wholesale electricity markets: the National Electricity
Market, operating in eastern and south-eastern Australia since 1998, and the Wholesale
Electricity Market, operating in western Australia since 2006. For the purposes of this study,
we used data from the National Electricity Market as they provide information about the
actual load. In contrast, only the forecasted load is available for the Wholesale Electricity
Market. The National Electricity Market is one of the world’s longest interconnected power
systems, connecting New South Wales, the Australian Capital Territory, Queensland, South
Australia, Victoria and Tasmania. The data on price and demand are provided in a single
CSV file per month for each previously mentioned region, with observations recorded
every 30 min. For this study, we used the aggregated demand every 30 min for all regions.

3.2. Metrics Used

Three metrics commonly used in time-series forecasting were used to evaluate the
performance of each algorithm. For all these metrics, n represents the total number of
observations, ŷ represents the predicted value, and y represents the expected value.

The Mean Absolute Percentage Error (MAPE) is a commonly used and easy-to-
understand metric that provides the average difference between the forecasted and expected
values in percentage. A lower MAPE value indicates a better forecast. However, MAPE
can be heavily influenced by outliers and is asymmetric, meaning that overestimating and
underestimating the ground truth have different effects on the metric.

MAPE =
1
n∑n

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (2)

The Mean Absolute Error (MAE) is a standard metric in forecasting and regression
tasks that provides the average difference between the forecasted and expected values. A
lower MAE value indicates a better forecast. This metric is more robust to outliers than
MAPE and RMSE.

MAE =
∑n

i=1|yi − ŷi|
n

(3)

The Root Mean Square Error (RMSE) is a commonly used metric in forecasting and
regression tasks that measures the average difference between predicted and actual values,
with a higher weight given to larger errors. A lower RMSE value indicates better perfor-
mance. The RMSE metric is more useful when large errors are particularly undesirable,
although it can be sensitive to outliers.

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(4)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

95

Big Data Cogn. Comput. 2023, 7, 92 9 of 15

3.3. Experimental Results

Tables 1–3 present the performance of each method on the REE, AEMO and NYISO
datasets. The tables report the three quality metrics’ results for the optimal model on the
test partition; the total amount of time required to find the optimal hyperparameters, train
the optimal model, and make the predictions; and the optimal hyperparameters for each
method. Specifically, k represents the optimal number of clusters for K-means, w represents
the window size (number of previous days to use as input) and lr represents the learning
rate for the neural network optimizer.

Table 1. Quality metrics obtained for REE.

Method MAPE MAE RMSE Time (s) Best
Hyperparameters

PSF 0.0639 1836.1706 2554.8588 1009.8 k = 2, w = 5
Improved PSF 0.0632 1811.2023 2350.6346 342.7 k = 2

SCPSNSP 0.0484 1368.6395 1888.6601 8534.7 5 × 5 map, w = 9

GA-SOM-NNSF 0.0362 1024.1512 1476.6051 36,300.3 7 × 10 map, w = 1, 36 neurons
lr = 0.0051

Prophet 0.0554 1543.2565 2028.1925 76,948.5 Automatic

ANN 0.0236 681.7653 1010.3233 51,508.5 w = 7, lr = 0.001,
15 neurons

Table 2. Quality metrics obtained for AEMO.

Method MAPE MAE RMSE Time (s) Best
Hyperparameters

PSF 0.0616 1325.0971 1764.1506 933.5 k = 2, w = 4
Improved PSF 0.075 1594.5721 2020.5035 312.3 k = 2

SCPSNSP 0.049 1059.8433 1440.94 6614.3 5 × 5 map, w = 10

GA-SOM-NNSF 0.0474 1023.5576 1410.1180 14,722.2 7 × 10 map, w = 1, 33 neurons
lr = 0.0084

Prophet 0.0593 1269.5846 1628.6608 25,308.6 Automatic

ANN 0.0368 797.0881 1090.1918 47,758.2 w = 10, lr = 0.0001,
20 neurons

Table 3. Quality metrics obtained for NYISO.

Method MAPE MAE RMSE Time (s) Best
Hyperparameters

PSF 0.0756 1355.6724 1754.3449 898.9 k = 2, w = 4
Improved PSF 0.1087 1962.0865 2475.4632 294.5 k = 2

SCPSNSP 0.0609 1098.2639 1489.5731 3503.7 6 × 6 map, w = 6

GA-SOM-NNSF 0.0522 948.7998 1294.0604 9342.7 5 × 9 map, w = 1, 36 neurons
lr = 0.0053

Prophet 0.1075 1946.1666 2506.9506 21,637.5 Automatic

ANN 0.0362 667.5363 929.5423 45,838.8 w = 6, lr = 0.01,
25 neurons

For the REE data, the ANN algorithm achieved the best performance in all three met-
rics, although it required a longer training time than the pattern sequence-based algorithms.
On the other hand, Prophet had the slowest training time, taking more than 75,000 s, and
provided only mediocre results. Among the pattern sequence-based algorithms, PSF had
the worst performance, followed closely by Improved PSF. Our proposed GA-SOM-NNSF
model performed considerably better than the other pattern sequence-based algorithms but

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

96

Big Data Cogn. Comput. 2023, 7, 92 10 of 15

required around 4.5 times more training time than SCPSNSP, although it trained 1.4 times
faster than the best-performing ANN model.

For the AEMO data, the number of observations per hour was three times smaller than
REE, resulting in faster training times for all algorithms. Once again, the ANN provided
the best quality metrics for prediction, but it was also the slowest method to train. Prophet
delivered a three-times-faster training time compared to REE, becoming the second slowest
after the ANN. Unfortunately, like with the REE data, Prophet only provided better results
than PSF and Improved PSF. Among the pattern sequence-based algorithms, Improved
PSF provided worse results than PSF and was the worst-performing model. Our proposed
method yielded the best results among pattern sequence-based algorithms. However, the
improvement over SCPSNSP was relatively small compared to the difference in training
time between the two, with SCPSNSP being 2.2 times faster than our proposal.

For the NYISO data, the number of observations is twice smaller than AEMO, leading
to faster training for all methods. Once again, the ANN provided the best results among
all the evaluated models and the improvement for having fewer observations per day in
training time was marginal. Prophet was the second-slowest algorithm and provided the
worst quality metrics of all algorithms, closely followed by Improved PSF. From among the
pattern sequence-based algorithms, our algorithm provided the best results but was three
times slower to train than SCPSNPS, the second-best algorithm of this kind.

4. Discussion
4.1. Robustness of the Approach

Before comparing the different models evaluated in this paper, we should check if our
model produces robust results, i.e., the model learns without any overfitting or underfitting.
Table 4 displays, for each dataset, the error obtained by the GA-SOM-NNSF model with
the optimal hyperparameters in training and test.

Table 4. Quality metrics for training and test with the best GA-SOM-NNSF model.

Training Test

Dataset MAPE MAE RMSE MAPE MAE RMSE

REE 0.0331 934.59 1383.56 0.0362 1024.15 1476.61
NYISO 0.0425 805.74 1164.14 0.0522 948.80 1294.06
AEMO 0.0294 663.14 975.61 0.0474 1023.56 1410.12

The results indicate that our proposal performs well on unseen data using the REE
and NYISO datasets. In both cases, the training error is a good estimator of the test error,
and the difference between the two falls within reasonable boundaries as it is expected to
have a slightly better result with the data used for training. However, in the case of AEMO,
there is a substantial difference between the error in the training and test partitions. This
does not necessarily indicate that our model is overfitting but rather that forecasting the
days in the test partitions is considerably more challenging. A similar pattern can be found
in the other evaluated algorithms. For example, SCPSNPS provides an RMSE of 1052.38 in
the training partition and 1440.92 in the test partition.

4.2. Comparison between Algorithms

In this paper, we evaluated the performance of four pattern sequence-based forecasting
algorithms (including our proposal) for energy load forecasting. The first two algorithms,
PSF and Improved PSF, used K-means and averages of prior samples to produce a forecast.
There were two main differences between these two algorithms. Firstly, Improved PSF only
used one CVI instead of the three CVIs used by PSF. However, as seen in Tables 1–3, both
methods found two to be the optimal number of clusters in all three datasets. Therefore, the
main difference for all the cases studied in this paper is how each computes the prediction.
As explained in Section 2.4, PSF uses a window to compute the pattern of previous days

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

97

Big Data Cogn. Comput. 2023, 7, 92 11 of 15

and looks for previous occurrences of that pattern. Improved PSF removes this search
and calculates a weighted average of the cluster centers based on the frequency of each
cluster per day of the week. While it would be expected that the inclusion of the day of
the week should lead to better results, we also have to take into account that the changes
made to the forecasting method may make the forecasting method less powerful, as with
Improved PSF, we are completely ignoring the patterns of all the days in the history that
do not share the same day of the week as the day to be forecasted. On the experiments run
in this paper, Improved PSF provided slightly better results for REE but worse results for
AEMO and NYISO.

The other two algorithms, SCPSNPS and our proposal, relied on using the SOM and an
ANN to provide a forecast. The main difference between both was the usage of the genetic
algorithm and the design of the neural network used. In SCPSNPS, the topology error is
used as a CVI to obtain the optimal map size for the SOM. However, in our approach, we
argue that clustering validity metrics may not always provide the optimal cluster sizes
for forecasting purposes. Therefore, we employ a genetic algorithm to select the optimal
cluster size and other hyperparameters for our method. The results in Tables 1–3 show that
our proposal provides better results in all metrics for all three datasets at the expense of the
additional training time to test a broader range of hyperparameters. The tables also display
the differences between the map sizes in both algorithms, with the generic algorithm
usually selecting bigger maps. This most likely indicates that even though the clustering
separation or, in this case, the topology preservation may not be as good, the additional
patterns provided by the new clusters can improve the forecast quality. The other main
difference between both methods is the design of the neural network. In SCPSNPS, the
neural network is built with a constructive algorithm and maps the coordinates between
the input space and the output space. In our approach, the genetic algorithm selects the
optimal hyperparameters for the neural network topology, and the mapping is performed
between discrete variables representing each of the clusters. Therefore, if any exogenous
variable added is also discrete, our neural network will act as a rule-based system, leading
to a more straightforward interpretation once the rules are extracted. An example of a rule
that could be extracted from our model would be: “If we want to predict a Friday of March
and the cluster of the previous day was cluster 10, then, the next day, we expect the load
profile from cluster 23”.

We also used two non-PSF algorithms to compare the results: Prophet and the ANN.
Both models were slower to train than the PSF algorithms in all datasets, as expected.
Prophet did not provide great results in any of the three datasets evaluated. However, the
ANN always provided better metrics at the expense of being the slowest method to train.
This differs from the results reported in the original PSF algorithms papers, but it could
be explained by the improvements made in optimizers and weight initialization strategies
over the last decade, and the larger amount of data used to train the neural networks could
also explain the difference.

Figures 4–6 provide a visual comparison of the forecast provided by SCPSNPS (blue),
our proposal (pink) and the artificial neural network (green) with the expected value (black)
for four consecutive days of test partition in all three datasets. In all three figures, the ANN
provided a better forecast than the PSF algorithms, although there were some days when
the PSF algorithms provided a more accurate approximation. Between GA-SOM-NNFS
and our proposal, there were days when one offered better results than the other and vice
versa. However, it was more frequent for SCPSNPS to use patterns significantly different
from the closest possible pattern, as observed on the third day of each plot.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

98

Big Data Cogn. Comput. 2023, 7, 92 12 of 15

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 12 of 16

SOM-NNFS and our proposal, there were days when one offered better results than the
other and vice versa. However, it was more frequent for SCPSNPS to use patterns signif-
icantly different from the closest possible pattern, as observed on the third day of each
plot.

Figure 4. Forecast provided by the best three methods for REE.

Figure 4. Forecast provided by the best three methods for REE.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 13 of 16

Figure 5. Forecast provided by the best three methods for NYISO.

Figure 5. Forecast provided by the best three methods for NYISO.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

99

Big Data Cogn. Comput. 2023, 7, 92 13 of 15

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 14 of 16

Figure 6. Forecast provided by the best three methods for AEMO.

4.3. Practical Applications of the Proposed Algorithm
Even though our algorithm provided better results than all other pattern sequence-

based algorithms, the ANN consistently outperformed our proposed algorithm in terms
of accuracy, though requiring more training time. Therefore, in scenarios where accuracy
is the primary concern, ANNs should be preferred over our proposed algorithm. How-
ever, if there are any limitations to the amount of time available to train the models, our
proposal (or any other pattern sequence-based algorithm) should be used, although it is
also computationally expensive. In those scenarios, the genetic algorithm could stop
prematurely if the time restriction was reached, providing the best forecast for the time
available to train. This could be further improved with parallel or distributed versions of
the algorithm, drastically reducing the time required to train the SOMs and run the genetic
algorithm.

Another significant advantage of our approach is its high interpretability. In this case,
if the SOM finds an interesting pattern (or the pattern of interest is artificially introduced
in the SOM), the ANN will learn relationships between that pattern, previous days’ pat-
terns, the day of the week and the month. Due to the discrete nature of all input and output
data, simple understandable rules could be easily extracted from the ANN, providing ex-
perts with better insights into why that pattern was occurring.

5. Conclusions
The work presented in this paper had two main goals: first, to evaluate different pat-

tern sequence-based algorithms using large amounts of data, and second, to develop an
algorithm that challenges the idea of using a CVI to determine the optimal cluster size in
forecasting tasks.

To evaluate the pattern sequence-based algorithms, we used three publicly available
data sources of energy demand with ten years of data recorded at an hourly and sub-
hourly granularity. This is in contrast to previous studies that used only one dataset or
less than two years of data. While pattern sequence-based algorithms had provided in-
credible results in energy demand in previous studies, our results showed that Artificial
Neural Networks provided more accurate results, but they required more training time.

Figure 6. Forecast provided by the best three methods for AEMO.

4.3. Practical Applications of the Proposed Algorithm

Even though our algorithm provided better results than all other pattern sequence-
based algorithms, the ANN consistently outperformed our proposed algorithm in terms of
accuracy, though requiring more training time. Therefore, in scenarios where accuracy is
the primary concern, ANNs should be preferred over our proposed algorithm. However, if
there are any limitations to the amount of time available to train the models, our proposal
(or any other pattern sequence-based algorithm) should be used, although it is also compu-
tationally expensive. In those scenarios, the genetic algorithm could stop prematurely if the
time restriction was reached, providing the best forecast for the time available to train. This
could be further improved with parallel or distributed versions of the algorithm, drastically
reducing the time required to train the SOMs and run the genetic algorithm.

Another significant advantage of our approach is its high interpretability. In this case,
if the SOM finds an interesting pattern (or the pattern of interest is artificially introduced in
the SOM), the ANN will learn relationships between that pattern, previous days’ patterns,
the day of the week and the month. Due to the discrete nature of all input and output data,
simple understandable rules could be easily extracted from the ANN, providing experts
with better insights into why that pattern was occurring.

5. Conclusions

The work presented in this paper had two main goals: first, to evaluate different
pattern sequence-based algorithms using large amounts of data, and second, to develop an
algorithm that challenges the idea of using a CVI to determine the optimal cluster size in
forecasting tasks.

To evaluate the pattern sequence-based algorithms, we used three publicly available
data sources of energy demand with ten years of data recorded at an hourly and sub-hourly
granularity. This is in contrast to previous studies that used only one dataset or less than
two years of data. While pattern sequence-based algorithms had provided incredible results

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

100

Big Data Cogn. Comput. 2023, 7, 92 14 of 15

in energy demand in previous studies, our results showed that Artificial Neural Networks
provided more accurate results, but they required more training time.

The second goal of our research was to develop an improved pattern sequence-based
algorithm to address some of the weak points of previous proposals. The major difference
in our proposal was the use of a genetic algorithm to select the optimal cluster size and
the other neural network hyperparameters instead of using a cluster validity index. Our
proposal provided better forecasts than all other pattern sequence-based algorithms but
was also the slowest among them due to the use of the genetic algorithm. The optimal
cluster sizes provided by our algorithm were completely different from those offered by
the Cluster Validity Index used in the other proposal that makes use of the Self-Organizing
Map, indicating that a Cluster Validity Index is most likely not the best tool to select
clustering hyperparameters when the actual objective is to produce an accurate forecast.

In future works, we propose studying adaptations of our proposal for parallel and
distributed architectures to reduce training time and evaluating pattern sequence-based
algorithms in ensembles with other time-series forecasting algorithms.

Supplementary Materials: Code to train the models can be found at https://osf.io/m3rtz/.

Author Contributions: All authors have contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: We acknowledge financial support from the I+D+i FEDER 2020 project B-TIC-42-UGR20
“Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía” and from “the
Ministerio de Ciencia e Innovación” (Spain) (Grant PID2020-112495RB-C21 funded by MCIN/ AEI
/10.13039/501100011033).

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://demanda.ree.es/visiona/peninsula/demanda/total (accessed on 2 Jan-
uary 2022); https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-
nem/aggregated-data (accessed on 2 January 2022); http://mis.nyiso.com/public/ (accessed on 2
January 2022); The data after preprocessing is available at https://osf.io/8c7ws/ (accessed on 21
April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AEMO Australian Energy Market Operator
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BMU Best Matching Unit
CVI Cluster Validity Index
GA Genetic Algorithm
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
NYISO New York Independent System Operator, Inc.
PSF Pattern Sequence-Based Forecasting
REE Red Eléctrica de España
RMSE Root Mean Square Error
SOM Self-Organizing Map
TSO Transmission System Operator

References
1. Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent

Neural Network. IEEE Trans. Smart Grid 2019, 10, 841–851. [CrossRef]
2. Ruiz, L.G.B.; Cuéllar, M.P.; Calvo-Flores, M.D.; Jiménez, M.D.C.P. An Application of Non-Linear Autoregressive Neural Networks

to Predict Energy Consumption in Public Buildings. Energies 2016, 9, 684. [CrossRef]
3. Zhang, J.; Wei, Y.-M.; Li, D.; Tan, Z.; Zhou, J. Short-term electricity load forecasting using a hybrid model. Energy 2018, 158,

774–781. [CrossRef]

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

101

Big Data Cogn. Comput. 2023, 7, 92 15 of 15

4. Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Two stage forecast engine with feature selection technique and improved
meta-heuristic algorithm for electricity load forecasting. Energy 2018, 161, 130–142. [CrossRef]

5. Martínez-Álvarez, F.; Troncoso, A.; Riquelme, J.C.; Aguilar-Ruiz, J.S. Energy time series forecasting based on pattern sequence
similarity. IEEE Trans. Knowl. Data Eng. 2011, 23, 1230–1243. [CrossRef]

6. Jin, C.; Pok, G.; Park, H.-W.; Ryu, K. Improved pattern sequence-based forecasting method for electricity load. IEEJ Trans. Electr.
Electron. Eng. 2014, 9, 670–674. [CrossRef]

7. Jin, C.; Pok, G.; Park, H.-W.; Kim, K.; Yun, U.; Ryu, K. A SOM clustering pattern sequence-based next symbol prediction method
for day-ahead direct electricity load and price forecasting. Energy Convers. Manag. 2015, 90, 84–92. [CrossRef]

8. Pérez-Chacón, R.; Asencio-Cortés, G.; Martínez-Álvarez, F.; Troncoso, A. Big data time series forecasting based on pattern
sequence similarity and its application to the electricity demand. Inf. Sci. 2020, 540, 160–174. [CrossRef]

9. Mohammed, N.A.; Al-Bazi, A. An adaptive backpropagation algorithm for long-term electricity load forecasting. Neural. Comput.
Appl. 2022, 34, 477–491. [CrossRef] [PubMed]

10. Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long
short-term memory. Energy 2022, 238B, 121756. [CrossRef]

11. Ghenai, C.; Al-Mufti, O.A.A.; Al-Isawi, O.A.M.; Amirah, L.H.L.; Merabet, A. Short-term building electrical load forecasting using
adaptive neuro-fuzzy inference system (ANFIS). J. Build. Eng. 2022, 52, 104323. [CrossRef]

12. Kohonen, T. The Self-Organizing Map. Proc. IEEE 1990, 78, 1464–1480. [CrossRef]
13. Bokde, N.; Troncoso, A.; Asencio-Cortés, G.; Kulat, K.; Martínez-Álvarez, F. Pattern sequence similarity based techniques for wind

speed forecasting. In Proceedings of the International Work-Conference on Time Series, Granada, Spain, 18–20 September 2017.
14. Bokde, N.; Beck, M.W.; Martínez-Álvarez, F.; Kulat, K. A novel imputation methodology for time series based on pattern sequence

forecasting. Pattern Recognit. Lett. 2018, 116, 88–96. [CrossRef] [PubMed]
15. Spanish Peninsula Electric Network Demand. Available online: https://demanda.ree.es/visiona/peninsula/demanda/total

(accessed on 2 January 2022).
16. Australian Energy Market Operator, Aggregated Price and Demand Data. Available online: https://aemo.com.au/energy-

systems/electricity/national-electricity-market-nem (accessed on 2 January 2022).
17. New York Independent System Operator, Inc., NYISO OASIS. Available online: https://mis.nyiso.com/public/ (accessed on 2

January 2022).
18. Almeida, L.B. Multilayer perceptrons. In Handbook of Neural Computation, 1st ed.; IOP Publishing Ltd.: Bristol, UK; Oxford

University Press: Oxford, UK, 1997.
19. Lloyd, S. Least squares quantization in pc. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
20. Arthur, D.; Vassilvitskii, S. k-means++: The Advantage of Careful Seeding; Tech. rep; Stanford University: Stanford, CA, USA, 2006.
21. Kiviluoto, K. Topology preservation in self-organising maps. In Proceedings of the International Conference on Neural Networks

(ICNN’96), Washington, DC, USA, 3–6 June 1996. [CrossRef]
22. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present and future. Multimed. Tools. Appl. 2021, 80,

8091–8126. [CrossRef] [PubMed]
23. Blickle, T. Tournament Selection. Evol. Comput. 2000, 1, 181–186.
24. Deb, K.; Sindhya, K.; Okabe, T. Self-adaptive simulated binary crossover for real-parameter optimization. In Proceedings of the

9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, Association for Computing Machinery, New
York, NY, USA, 7 July 2007; pp. 1187–1194. [CrossRef]

25. Taylor, S.J.; Letham, B. Forecasting at Scale. Amer. Statist. 2018, 72, 37–45. [CrossRef]
26. Comitani, F. Simpsom, Version 2.0.1 (Software). Available online: https://doi.org/10.5281/zenodo.5788411 (accessed on 10

May 2022).
27. Tensorflow Developers. Tensorflow, version 2.0.4 (Software); Google Brain: Mountain View, CA, USA, 2015. [CrossRef]
28. Blank, J.; Deb, K. pymoo: Muti-objective optimization in python. IEEE Access. 2020, 8, 89497–89509. [CrossRef]
29. Nissen, S. Implementation of a Fast Artificial Neural Network Library (Fann), Report; University of Copenhagen: Copenhagen,

Denmark, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

102

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.4. CUDA-bigPSF: An optimized version of bigPSF

accelerated with Graphics Processing Unit.

Referencia:
D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, CUDA-bigPSF: An optimized version
of bigPSF accelerated with Graphics Processing Unit, Expert Systems with Applica-
tions, Volume 230, 2023, 120661, ISSN 0957-4174
Estado:
Publicado
Factor de impacto:
8.5
Categoŕıa:
Primer cuartil JCR.
Posición 22/192 en la categoŕıa “Computer Science, Artificial Intelligence”
DOI:
https://doi.org/10.1016/j.eswa.2023.120661

Revista:
Expert Systems with Applications
Editorial:
Elsevier

103

CUDA-bigPSF: An optimized version of bigPSF
accelerated with Graphics Processing Unit.

Authors

D. Criado-Ramóna,∗ (dcriado@ugr.es) [Corresponding Author]
L.G.B. Ruizb (bacaruiz@ugr.es)
M.C. Pegalajara (mcarmen@decsai.ugr.es)

a Department of Computer Science and Artificial Intelligence, University of
Granada.
Address: C/Periodista Daniel Saucedo Aranda s.n, 18014, Granada, Granada,
Spain.

b Department of Software Engineering, University of Granada
Address: C/Periodista Daniel Saucedo Aranda s.n, 18014, Granada, Granada,
Spain.

Abstract

Accurate and fast short-term load forecasting is crucial in efficiently
managing energy production and distribution. As such, many different
algorithms have been proposed to address this topic, including hybrid
models that combine clustering with other forecasting techniques. One of
these algorithms is bigPSF, an algorithm that combines K-means clustering
and a similarity search optimized for its use in distributed environments. The
work presented in this paper aims to improve the time required to execute
the algorithm with two main contributions. First, some of the issues of the
original proposal that limited the number of cores simultaneously used are
studied and highlighted. Second, a version of the algorithm optimized for
Graphics Processing Unit (GPU) is proposed, solving the previously
mentioned issues while taking into account the GPU architecture and
memory structure. Experimentation was done with seven years of real-world
electric demand data from Uruguay. Results show that the proposed
algorithm executed consistently faster than the original version, achieving
speedups up to 500 times faster during the training phase.

Keywords: time series forecasting, hybrid models, CUDA, energy, big data.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

104

1. Introduction.

Since electricity was discovered, humanity has created a steadily growing
number of devices that make use of electricity. Most of the time, people use
electricity simultaneously for multiple applications such as lighting,
refrigeration, cooling, or heating, among others. The energy required for this
is usually provided via an interconnected electricity network known as
“power grid”.

However, many complex factors have to be taken into account in the
management of the power grid, such as the use of renewable energy sources,
which rely on weather conditions or electricity transmission losses. Thus, it
is common to use Artificial Intelligence (AI) systems to assist in the
management of the power grid, particularly in the prediction of energy
demand and renewable energy production (Bose, 2017).

Over the last two decades, technical advancements have led to the higher
use of smart meters (Zheng et al., 2013), devices that measure the electricity
imported and exported from the grid by the consumer in real time. These
devices also provide the energy provider with energy consumption data
periodically, which can be used to optimize energy production and
distribution in entire regions. With the adoption of these devices and the
increasing energy consumption transparency of public entities and
governments, researchers have a wide range of data available to study
energy consumption. However, in many cases, usage of this type of data poses
considerable challenges, as the sheer amount of data may significantly
increase the computational power required to train these AI systems.

The relevance of energy in our current society has led to its study under
many different scenarios. The algorithms used for this task (Kong et al.,
2019) cover a wide range from easy-to-understand and interpret models,
such as ARIMA, to highly accurate black-box models: neural networks, deep
learning, and ensembles of different models, among others. Pattern
Sequence-based Forecasting (PSF) (Martinez Alvarez et al., 2011) is an
interesting middle-ground approach that has previously provided
remarkable results in the energy field. This algorithm creates hybrid models
that combine clustering and additional methods to extract patterns and make
computations based on those patterns. PSF and many of its improved

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

105

versions present some interesting properties in big data scenarios, e.g., the
clustering-based pattern extraction reduces the computational cost for the
second step of the algorithm, the pattern sequence-based forecast. However,
they still require intense computational power as each prediction requires
an independent clustering and pattern sequence-based forecast, severely
hindering the time needed to train and predict with these models.

Parallel and distributed approaches are frequently used to reduce the
time needed to train algorithms with high computational demands. An
improved specialized version for Apache Spark clusters called “bigPSF” was
presented in 2020 (Pérez-Chacón et al., 2020). However, there is no work to
this date that studies PSF algorithms under parallel architectures. In this
paper, a new version of the bigPSF algorithm accelerated with Graphic
Processing Units (GPUs) is proposed, hereafter referred to as “CUDA-bigPSF”.
Two main contributions are provided to this research field in this work:

• The first GPU implementation of a pattern sequence-based
algorithm is developed, reducing significantly the time
required to train and use this model.

• Some of the issues of the original BigPSF proposal are
highlighted and how they could be solved to obtain better
performance when using a distributed environment.

This manuscript is structured as follows: Section 2 reviews relevant
related papers on pattern sequence-based forecasting and GPU algorithms
with a focus on big data energy problems. Section 3 describes the CUDA/GPU
architecture and explains the CUDA-bigPSF algorithm. Section 4 studies the
GPU implementation’s accuracy, speedup, and scalability. Lastly, section 5
draws the most relevant accomplishments of this work and proposes future
lines of research.

2. Related works.

This section is structured in two independent parts and reviews the most
relevant related works in the field. In the first part, works related to the PSF
algorithm are reported and discussed. In the second part, we review the use
of the GPU in AI and, more specifically, in the energy field.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

106

The PSF algorithm was published in 2011 (Martinez Alvarez et al., 2011).
This algorithm starts by applying K-means clustering to transform the time
series before the prediction date into a sequence of cluster identifiers
(labels). Afterwards, the algorithm splits the labeled sequence using a sliding
window of size W. In order to make the prediction, the algorithm looks for
similar patterns to the last created with the sliding window, i.e., the pattern
of the W days before the prediction date. The final prediction is the average
of all the occurrences found using the original time series.

PSF has shown excellent results when working with energy data, and, as
such, it is its primary use. Nevertheless, it has also been used to forecast
energy prices (Jin et al., 2015), wind speed (Bokde et al., 2017), solar power
(Fujimoto & Hayashi, 2012), or even to impute missing data (Bokde et al.,
2018). Several authors have proposed variants and improvements to
overcome some of the original algorithm’s limitations. In (Jin et al., 2015) the
authors used the Self-Organizing Map (SOM) and neural networks to create
a specialized version that preserves the input space’s topological properties.
Similarly, in (Martínez-Álvarez et al., 2019) the authors proposed a
specialized version for functional data (funPSF) through the use of a
functional clustering algorithm, funHDDC (Bouveyron & Jacques, 2011).
They also created a version with specialized models for each day of the week
(7-funPSF) that provided significantly better results than the previous one.
In (Shen et al., 2013) the authors evaluated using PSF with five different
clustering methods (K-means, SOM, K-medoids, Hierarchical clustering, and
Fuzzy C-means) individually and in an ensemble. (Jin et al., 2014) introduced
a weighted mean that gives more relevance to the most frequent patterns
each day of the week. Lastly, the algorithm our work is based in (Pérez-
Chacón et al., 2020) proposes adapting the original PSF algorithm for clusters
with Apache Spark. Beyond the distributed approach, this algorithm also
included a weighted mean that gives more relevance to the matches closer to
the prediction date and a grid search of hyperparameters to find the best
solution at the expense of more computational power.

The rise of big data and many other data science methodologies that are
computationally expensive, such as AutoML, have led to a higher interest in
parallel and distributed algorithms capable of providing similar results in
less time. Researchers and companies have published open-source access to
GPU-accelerated implementations of traditional machine learning

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

107

algorithms. Facebook’s FAISS library (Johnson et al., 2021) optimizes
similarity search and clustering of dense vectors, providing fast K-means
clustering and nearest neighbour search algorithms. ThunderSVM (Wen et
al., 2018) provides a GPU adaptation of Support Vector Machines with the
standard kernels used for classification and regression. Most gradient
boosting machines provide GPU-accelerated implementations, such as
XGBoost (T. Chen & Guestrin, 2016) or LightGBM (Ke et al., 2017). NVIDIA
recently launched cuML (Raschka et al., 2020), a CUDA-specific open-source
library to accelerate all the algorithms included in the popular Python
package scikit-learn. Neural network frameworks, such as Tensorflow
(Martín Abadi et al., 2015) or PyTorch (Paszke et al., 2019), provide GPU-
accelerated implementations optimized for deep neural networks and
represent the broadest use of GPU in AI research nowadays.

The energy field is no different, and most relevant recently published
works use GPU-accelerated neural network frameworks or use parallelized
metaheuristics to train neural networks. Table 1 presents a summary of the
most relevant works on the energy field using the GPU.

Citation Framework Application Contributions

(Kintsakis et al.,
2015)

No Demand and
price forecast

They propose a parallelized
version of Particle Swarm
Optimization to train Local Linear
Wavelet Neural networks.

(Coelho et al.,
2017)

No Appliance load
forecast

They propose a hybrid model
combining fuzzy rules and
metaheuristics accelerated with
GPU.

(Tian et al., 2019) PyTorch Smart meters They developed a transfer
learning methodology to train
large sets of smart meters based
on similarity.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

108

(Kim & Cho,
2019)

Keras Residential
buildings
consumption

They propose a combination of
Convolutional Neural Networks
(CNN) and Long-Short Term
Memory (LSTM).

(Iruela et al.,
2020)

No Public
buildings
consumption

They develop a parallel version of
the NSGA-II metaheuristic to train
feed-forward neural networks.

(Iruela et al.,
2021)

Tensorflow Public
buildings
consumption

They present a methodology to
simultaneously train specialized
neural network models for each
hour of the day.

(Said & Alanazi,
2022)

Keras Solar energy
production

They combined the use of
autoenconders for feature
extraction with LSTM neural
networks.

(Haque &
Rahman, 2022)

Tensorflow Commercial
buildings
consumption.

They combined the use of
regularized LSTM and Recurrent
Neural Networks (RNN) and
developed a heuristic to find the
optimal neural network
configuration.

(Chen et al.,
2023)

Tensorflow Smart meters They developed a federated
framework for smart meters that
makes of generative adversarial
networks (GAN) to create
privacy-preserving synthetic
data.

Table 1: Summary of related works using the GPU on the energy field.

Although PSF algorithms have previously shown excellent results in
energy forecasting, to the best of our knowledge, the use of GPU for PSF
algorithms has yet to be studied. As such, the study and proposal of our GPU-
accelerated algorithm, CUDA-bigPSF, is justified.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

109

3. Materials and Methods.

3.1. The CUDA architecture.
GPUs were initially conceived to accelerate graphical computation.

However, the massively parallel architecture of the GPU was also of interest
in many other fields that could use it to accelerate their applications and
simulations, leading to an evolution of the GPU programming model towards
the paradigm known nowadays as General-Purpose GPU (GPGPU). As part of
this evolution, new user-friendly languages were created to avoid the
complexity of writing general-purpose code through graphical APIs or
assembly. An example of this is Compute Unified Device Architecture (CUDA),
a proprietary extension of C++, made to facilitate GPGPU programming with
NVIDIA graphics cards.

In CUDA, the set of instructions to be executed by each GPU thread are
written in special functions called kernels. The programmer specifies the
kernel’s total number of threads by dividing the total number of threads in a
grid of blocks. Each block always contains a fixed number of threads, and all
threads within the same block can be synchronized and access a special
programmer-managed cache for fast collaboration. The grid indicates the
total number of blocks required to execute the kernel. The number of threads
in a given block can be provided in one, two or three dimensions to overcome
some limitations and to provide easier abstractions in some algorithms
involving complex structures such as matrices. The same applies to the
dimension of a grid.

A CUDA-capable GPU has one or more streaming multiprocessors, each
containing a set of cores, registers, cache memory and a scheduler. When a
kernel is launched, the blocks are distributed through the different
multiprocessors. All threads within the same block are executed
concurrently, and multiple blocks can be executed concurrently by the same
multiprocessor. At its core, the CUDA architecture uses a Single Instruction
Multiple Threads (SIMT) approach where 32 contiguous threads (a “warp”)
will execute the same instruction independently of the number of threads
used in a block. As such, branching code can negatively impact the
performance of the GPU algorithm, as both options must be evaluated before
proceeding with the next instruction, even if only one thread in the warp
takes the alternative branch.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

110

Figure 1: A schematic of the memory layout and multiprocessors of the GPU device used in
this research.

Memory accesses are one of the primary bottlenecks of GPU-accelerated
algorithms. As such, understanding the GPU memory hierarchy (fig. 1), its
advantages and caveats is critical in GPU algorithm development. The GPU
presents a slower and bigger global memory used to communicate with the
CPU (host) that all threads of the GPU can access. Furthermore, it presents up
to two levels of cache memory (L1 cache for each multiprocessor and L2
cache for all multiprocessors). When writing a kernel, the developer can
decide whether to store the variable in the global scope (global memory),
local scope, and the specialized section of the L1 cache to cooperate with
threads within the same block called “shared memory”. Variables in the local
scope follow similar rules to those in the global memory, but the compiler
can also store them in the registers under certain circumstances.
Nevertheless, accesses to global and local memory can also be fast if we use
a predictable access pattern, as they will be cached once a store or load
happens. Only cache misses will hinder the performance. Lastly, we must

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

111

note that there are some other specialized memory abstractions, such as the
constant memory (read-only) or the texture memory, that we have decided
to omit for simplicity as they are irrelevant to this paper.

3.2. The bigPSF algorithm.
BigPSF provides an improved PSF algorithm for distributed

environments. The training process of the algorithm finds the optimal
hyperparameters (number of clusters and window size) through a grid
search evaluated in a validation partition. The training and test processes are
done sequentially over all the days on their corresponding partition, using
the additional computational power to accelerate each prediction.

Figure 2: A general scheme of the steps done by the bigPSF algorithm for each prediction.

The BigPSF accelerated prediction algorithm (fig. 2) starts by creating a
distributed structure denominated RDD (Resilient Distributed Dataset) from
the original dataset samples before the prediction date. This RDD is shuffled

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

112

into random partitions distributed on the nodes available in the cluster. The
algorithm continues by applying K-means over the RDD. Centroids are
initialized using the k-means++ algorithm (Arthur & Vassilvitskii, 2007).

Afterwards, each node finds the closest cluster for the partitions of the RDD
available in the node and computes a partial centroids update. After each
iteration, partial centroids are communicated to the primary node to obtain
the final centroids of the iteration. K-means clustering ends after reaching a
maximum number of iterations or convergence. The clustering process
finishes with the creation of a new RDD, in which each sample is transformed
to its closest cluster identifier. Each compute node does this last step
independently, as synchronization is unnecessary. Then, the algorithm
creates its more complex structure, the “pattern matrix”, in a new RDD. Each
row of this RDD contains a row identifier id, a sequence of W labels from the
days between id and id + W − 1, and a data copy (hValue) of the day id + W of
the original dataset. This structure is generated by grouping all the possible
sequences of labels of length W from the previous RDD. Finally, the algorithm
filters all rows in the pattern matrix that share the same pattern and day of
the week of the prediction date. The prediction is the weighted average of the
data copies sharing the same sequence of labels and day of the week. This
weight for each match is calculated as:

 𝑤𝑤𝑖𝑖 =
𝑖𝑖𝑑𝑑𝑖𝑖

∑ 𝑖𝑖𝑑𝑑𝑗𝑗𝑗𝑗 ∈ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
 (1)

where idi is the row identifier of the match and matches contains all pattern
occurrences in the pattern matrix.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

113

Figure 3: An example of how the BigPSF algorithm calculates a prediction in a simulated
dataset for K=5 and W = 3.

A small example of how the bigPSF calculates a prediction is provided in
figure 3, where the algorithm is computing the prediction for the day with ID
100 with a window size of W=3 and a number of clusters K=5. The algorithm
starts by applying K-means with all the data prior to the day to be predicted
and labeling them with their corresponding best cluster (upper row of the
figure). Then, making use of the labeled dataset and the window size, the
pattern matrix is constructed. The last row of the pattern matrix will indicate
the pattern of the day to be predicted. All previous rows in the pattern matrix
containing the same pattern are filtered and the final prediction is made with
the weighted average of the hValues of the rows selected (using the weights
provided in eq. 1).

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

114

3.3. CUDA-bigPSF.

Figure 4: A flowchart of the work executed by each thread in CUDA-bigPSF.

The bigPSF algorithm shows some level of parallelism in two primary
ways. In the first one (data parallelism), the computation for each sample in
the dataset in parallel is done in paralle, as it proposed in the original bigPSF
algorithm. In the second one, each prediction is made sequentially in each
thread. There are several reasons why the second approach better when
using the GPU. First, to obtain a significant speedup, it is imperative to keep
all GPU threads busy. However, if a data parallelism strategy is used, there
would be several instances in which some threads would have to wait until
all the others finish for synchronization purposes. For example, after each K-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

115

means iteration, the algorithm would need synchronization to ensure
centroids are updated before the next iteration begins. Second, if the number
of days in the dataset is smaller than the number of cores available in the
GPU, using the first approach would keep more CUDA cores busy as long as
three or more different numbers of clusters are being evaluated
simultaneously. Last, the limited memory available in the GPU makes using
the second approach better for scalability as memory accesses are local to
the thread except for reading the dataset and writing the final result.
Therefore, after each thread finishes its work, the local memory resources
can be released to be used by another thread, significantly improving the
scalability of the proposed approach.

As such, CUDA-bigPSF (figure 4) distributes the work in independent
threads, each computing the prediction for a given date. They have access to
the entire dataset and the final output structure in global memory. The
thread identifier will be used to determine up to which date of the input
dataset they should be able to access and where they must write their
predictions in the output structure. The kernel (algorithm 1) will launch
using a bi-dimensional grid of quantity of number of clusters to be evaluated
by the minimum number of blocks to cover the validation (or test) partition.

Algorithm 1 CUDA-bigPSF (Each thread)

1: cluster_centers = KMeans(K, input, max_iterations, ϵ)
2: query[0:max w-1] = closest cluster(cluster_centers,

 input[rows(input)w:rows(input)])
3: weekday = n mod 7
4: for all i in weekday, weekday + 7, ..., n-7 do

5: for all w in 1,2,...,max_w do
6: label = closest_cluster(cluster_centers, sample[i-w])
7: if label=query[max w-w] then
8: weight = i - w +1
9: prediction_weights[w] += weight
10: my_predictions[w-1] += weight * input[i]
11: else

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

116

12: break
13: end if
14: end for
15: end for
16: for all w in 1, 2, ..., max_w do
17: if prediction_weights[w]!= 0 then
18: my_predictions[w] = my_predictions[w] / prediction_weights[w]
19: else
20: if w=1 then
21: Repeat for loop at line 4 with i from 0 to n-1
22: my_predictions[w] = my_predictions[w] / prediction_weights[w]
23: else
24: my_predictions[w] = my_predictions[w-1]
25: end if
26: end if
27: end for
28: Put my predictions in its corresponding place in global memory

The kernel (algorithm each thread executes) starts with a standard
implementation of Lloyd’s K-means algorithm, initializing the centroids with
the K-means++ algorithm. The clustering process finishes after reaching a
maximum number of iterations or convergence. The objective function of the
K-means algorithm is to minimize the Within Set Sum of Squared Errors
(WSSSE) of each cluster, which is defined as follows (eq. 2):

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = � � 𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑐𝑐𝑗𝑗�
2

𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑗𝑗

𝐾𝐾

𝑗𝑗=1

 (2)

where 𝑑𝑑�𝑥𝑥𝑖𝑖, 𝑐𝑐𝑗𝑗�
2

 is the Euclidean distance between each sample 𝑥𝑥𝑖𝑖 of the
cluster 𝐶𝐶𝐶𝐶 and the centroid of that cluster 𝑐𝑐𝑗𝑗 . The algorithm iterates over the
entire dataset once in each iteration, calculating the closest cluster to each
sample, adding the sample to a new array to compute the centroids for the
next iteration, and incrementing by one another structure used to count the
number of samples in each cluster. The centroids for the next iteration are
obtained by dividing these last two data structures (computing the mean).

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

117

Next, the pattern sequence-based algorithm starts. First, the query is
calculated, i.e., the labels (cluster identifiers) for the w samples before the
prediction date. Then, the algorithm strides weekly over the days in the
dataset that share the same day of the week of the prediction date. To
evaluate a dataset sample i, the label of the sample w days before it is
computed. A match is found for a window size of one if it shares the same
label as the position w of the query in reverse order. The same conditions
apply for any window size w except the previous window size w − 1 also
needs to have a match. The computation for each w is done in ascending
order to avoid any unnecessary calculations.

Every match found indicates that we must use the sample in the weighted
average for the current prediction date and window size. To use only a stride
over the entire dataset, two data structures are required to compute the
weighted average, similar to the procedure previously used for the k-means
centroids. Since the weights of BigPSF are a division that has the sum of all
numerators in the denominator, whenever a match is found the sample is
partially weighted by multiplying by the numerator and stored in a data
structure and an additional data structure is used to eventually compute the
sum of all numerators (denominator).

Lastly, the thread computes the division of the previous two data
structures to obtain the prediction for a given data for all possible values of
w that we are using. As the BigPSF algorithm specifies, the prediction
obtained by a window of size w−1 is used if there are no matches for a
window size of w. Occasionally the algorithm may fail for a window size of
one. In those scenarios, all samples before the prediction date are used,
regardless of the day of the week. The kernel finishes by putting the local
structure containing the predictions for all possible values of w in their
corresponding place in the global memory so the CPU can access the results.

As a last note, different clustering algorithms could be used instead of K-
means. Although a similar approach to the one proposed for K-means could
be used for any clustering algorithm, the optimal GPU implementation of the
algorithm will change significantly depending on the data structures and
computations required by each algorithm. Nevertheless, using K-means
provides several advantages that will lead to substantially faster execution
times than most clustering methods. This is due to the fact that only one

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

118

hyper-parameter has to be tuned for K-means (the number of clusters) and
only to store a really small data structure per execution of K-means is
required in memory (the cluster centroids) that will usually always fit in the
cache memory even when there are many predictions and, as such, clustering
processes, being computed in parallel.

4. Discussion.

4.1. Experimental Setup.

Figure 5: Box plot of the energy consumption each day of the week.

We have used the same dataset used in the bigPSF paper to compare our
results. This dataset contains electricity consumption data from Uruguay
between 2007 and 2014 recorded hourly. The average demand observed is
1092.21 MW, with a minimum of 609.87 MW and a maximum of 1907.55
MW. Figure 5 displays the energy consumption distribution by day of the
week. We can observe from this figure that energy demand on weekends is

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

119

lower than on weekdays, as it is expected (Raza & Khosravi, 2015). We did
not need additional preprocessing since the dataset did not present any
missing observations or extreme outliers. The dataset was split in 70 %
training and 30 % partition, with the last 30 % of the training partition used
as validation for the hyperparameter optimization, as it is specified in the
bigPSF paper.

All experiments were done with a personal computer with an AMD 5
Ryzen 2600X CPU running at 3.6 GHz, an NVIDIA GeForce RTX 3060 Ti 8 GB
graphics card, and 32 GB of DDR4 RAM. The code was written using Python
3.11 and CUDA 11.8. CUDA experiments were repeated 30 times with seeds
from 1996 to 2025. For the CUDA-BigPSF kernel, we used 32 threads per
block, as it provided the fastest results.

4.2. Implementation accuracy.
In this section, we will compare the accuracy of our implementation with

the results provided in the original paper. Even though we have implemented
the same algorithm with different approaches, we cannot obtain the same
results as the original authors due to the randomness in the initialization of
k-means and the fact that the original authors did not seed their experiments.
As such, we can only evaluate if we have obtained reasonably similar results
during training and test.

During the training phase, the Mean Absolute Percentage Error (MAPE)
was used, as it is done in bigPSF. This metric (eq. 2) has the advantage of
being scale-independent and easy to interpret as it represents the average
distance between forecasted and expected value in percentage. For all
equations, n represents the total number of samples, yi the forecasted sample
at index i and ŷi the expected values.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(%) =
100
𝑛𝑛

��
𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 (2)

Table 2 displays the difference in MAPE during training between the average
of 30 repetitions of CUDA-bigPSF and BigPSF (enclosed in parentheses). As
we can observe, both algorithms provide relatively similar results
considering the randomness of k-means initialization. The most significant

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

120

difference in MAPE between the approaches is 0.59 % with k = 6 and w = 6.
The best averaged MAPE found by CUDA-bigPSF was 4.51 % with k = 14 and
w = 1, while the best MAPE for BigPSF was 4.52 % with k = 13 and w = 2. In 1
of the experiment’s repetitions with k = 15, CUDA-bigPSF could not provide
at least one prediction, even removing the day of the week constraint. Thus,
we have excluded that seed (1998) from the average displayed in the table
for k = 15. In 27 out of the 30 experiment repetitions, a window size of one
provided the best results, questioning whether it is advantageous to study
the use of a broader window size or whether we should

 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=11 K=12 K=13 K=14 K=15

W=1 7.54
(7.12)

6.75
(6.43)

6.16
(6.02)

5.65
(5.47)

5.27
(5.33)

4.99
(5.18)

4.87
(4.96)

4.79
(4.95)

4.70
(4.89)

4.64
(4.73)

4.60
(4.65)

4.55
(4.59)

4.51
(4.67)

4.49
(4.67)

W=2 7.27
(6.70)

6.50
(6.30)

5.88
(5.83)

5.39
(5.39)

5.10
(5.22)

4.88
(4.99)

4.78
(4.83)

4.72
(4.85)

4.65
(4.89)

4.64
(4.73)

4.61
(4.65)

4.59
(4.52)

4.58
(4.61)

4.56
(4.61)

W=3 7.12
(6.59)

6.42
(6.34)

5.71
(5.76)

5.26
(5.38)

5.08
(5.20)

4.89
(5.05)

4.84
(4.95)

4.79
(4.95)

4.74
(4.93)

4.73
(4.84)

4.71
(4.77)

4.70
(4.64)

4.70
(4.68)

4.69
(4.77)

W=4 7.04
(6.55)

6.46
(6.34)

5.70
(5.77)

5.21
(5.40)

5.14
(5.31)

4.97
(5.19)

4.94
(4.97)

4.90
(5.04)

4.86
(5.08)

4.86
(4.94)

4.84
(4.89)

4.85
(4.80)

4.84
(4.88)

4.85
(4.88)

W=5 6.90
(6.50)

6.50
(6.51)

5.70
(5.83)

5.19
(5.51)

5.16
(5.41)

5.02
(5.26)

5.02
(5.05)

4.99
(5.17)

4.97
(5.24)

4.98
(5.12)

4.96
(5.02)

4.98
(4.97)

4.99
(4.99)

4.98
(4.95)

W=6 6.79
(6.46)

6.56
(6.64)

5.74
(5.90)

5.20
(5.59)

5.21
(5.80)

5.08
(5.37)

5.08
(5.14)

5.07
(5.25)

5.05
(5.32)

5.06
(5.l8)

5.05
(5.10)

5.07
(5.07)

5.07
(5.11)

5.07
(5.00)

W=7 6.80
(6.52)

6.66
(6.74)

5.82
(5.99)

5.28
(5.66)

5.27
(5.57)

5.14
(5.38)

5.14
(5.17)

5.13
(5.29)

5.10
(5.37)

5.12
(5.25)

5.10
(5.17)

5.12
(5.15)

5.12
(5.13)

5.11
(5.02)

W=8 6.81
(6.53)

6.75
(6.86)

5.87
(6.09)

5.35
(5.71)

5.33
(5.67)

5.18
(5.42)

5.19
(5.23)

5.18
(5.39)

5.15
(5.14)

5.16
(5.28)

5.13
(5.20)

5.14
(5.21)

5.14
(5.15)

5.14
(5.05)

W=9 6.84
(6.60)

6.84
(6.96)

5.91
(6.18)

5.43
(5.77)

5.41
(5.73)

5.25
(5.48)

5.26
(5.24)

5.23
(5.46)

5.19
(5.44)

5.19
(5.31)

5.16
(5.25)

5.17
(5.23)

5.16
(5.15)

5.15
(5.05)

W=10 6.91
(6.70)

6.89
(7.04)

5.96
(6.23)

5.49
(5.84)

5.48
(5.73)

5.31
(5.50)

5.31
(5.26)

5.29
(5.48)

5.24
(5.48)

5.23
(5.34)

5.20
(5.26)

5.19
(5.24)

5.18
(5.19)

5.16
(5.05)

Table 2: MAPE (%) for the grid search during the training phase for CUDA-bigPSF and
bigPSF (enclosed in parentheses). Best values for each method in bold.

limit the window size from the start to reduce the algorithm’s computational
complexity. In 18 out of the 30 experiment repetitions, a window size of k =
15 provided the best results, followed by 5 repetitions with k = 13 and 4
repetitions with k = 14.

We applied a similar methodology to compare the results in test using the
30 seeds with their optimal hyperparameters. For test, two additional
metrics are used: the Mean Absolute Error (MAE) and the Root Mean Squared
Error. The MAE (eq. 3) provides the average difference between the
forecasted value and the expected value in the original scale of the data while

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

121

the RMSE (eq. 4) gives a higher penalization to large errors between
forecasted values and expected values.

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (3)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (4)

Table 3 summarizes the results of our 30 repetitions for CUDA-bigPSF and
the results reported for bigPSF. Our implementations obtain similar

Algorithm MAPE MAE RMSE

bigPSF 4.70 57.15 61.23
CUDA-bigPSF (Average) 4.75 56.84 83.54
CUDA-bigPSF (Worst) 4.88 58.43 87.15
CUDA-bigPSF (Best) 4.62 55.29 80.40

Table 3: Summary of results obtained by the algorithms in quality metrics for the test
partition.

Dataset CPU-Seq CUDA-bigPSF bigPSF(Spark)
 Training Test Training Test Nº Cores Training Test

N (7 years) 00:16:44.17 00:02:37.05 00:00:01.87 00:00:00.47 2 00:18:54 00:01:30
2N (14 years) 01:03:56.76 00:09:18.47 00:00:09.71 00:00:00.89 4 00:22:03 00:01:45
4N (28 years) 04:00:29.14 00:37:04.03 00:00:38.49 00:00:09.48 4 00:29:24 00:02:20
8N (56 years) 14:58:00.58 02:25:40.14 00:02:36.62 00:00:42.00 4 00:42:50 00:03:24

16N (112 years) 56:08:18.72 09:23:37.46 00:10:33.48 00:02:46.42 4 1:07:25 00:05:21
Table 4: Execution time per version of the algorithm in hh:mm:ss.

results on average for MAPE and MAE, and the best experiment done with
CUDA even improves the results reported in bigPSF substantially. However,
there is an unexpected difference in the RMSE metric that we cannot explain.
A comparison of the results provided by the bigPSF / CUDA-bigPSF algorithm
with other forecasting algorithms such as neural networks, ARIMA and
gradient boosting trees can be found in (Pérez-Chacón et al., 2020).

4.3. Implementation speedup and scalability.
At last, we compare the executing times of the Spark version, the CUDA

version, and a sequential CPU version we will use as a baseline. Table 4

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

122

reports the performance of each architecture with the original dataset and
synthetic datasets made by repeating the original dataset, as is done in the
BigPSF paper.

First, it is important to note that even though the number of cores used
for bigPSF seems small, authors reported that using a higher number of cores
does not improve the results but rather makes them go even slower. This
situation happens because many algorithm steps of bigPSF using their data
distribution approach require synchronization and node cooperation, unlike
our GPU approach. As such, even though it takes almost 19 minutes to train
the algorithm with Spark, our GPU version can train it (find the optimal
number of clusters and window size) in under two seconds using the full
potential of all its cores. Interestingly, our sequential implementation was
slightly faster than the Spark version, training 2 minutes faster, although it is
easily explained as our CPU has a much higher clock speed and the Spark
version only uses two cores. The evolution of training time for all approaches
and the speedup obtained by bigPSF and CUDAbigPSF are displayed in figure
6, where the speedup is calculated by dividing the sequential version time by
the accelerated version time. However, the Spark approach struggles to
obtain a significant speedup until using 28 years of data. Meanwhile, our GPU
approach can produce results over 500 times faster than both methods for
seven years of data and still manages to make results at least 300 times faster
when using the highest amount of data evaluated in this paper (112 years).

Figure 6: On the left, line plot of the time spent in training by each method. On the right,
speedup obtained by the Spark and CUDA versions over a sequential implementation.

From the previously discussed results, it is clear that using a CUDA device
will produce faster results than the Spark approach in most situations. In fact,

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

123

the Spark approach only uses a significant number of cores once training
with an unreasonably large dataset. It is also important to note that due to
the weighting system used in bigPSF, older samples influence the prediction
at a much lower rate. As such, at some point, adding more data, at best, will
be no more than a rounding error in the final forecast. The only situation in
which the CUDA version proposed in this paper should perform significantly
worse than reported is with GPU devices that cannot store all the data
structures in the device memory. During the implementation and
explanation of our algorithm, we have considered this and used local
memory whenever possible so that once a thread finishes its work, another
thread can use that memory. As a last resource, the user can reduce the
number of clusters evaluated simultaneously to reduce the amount of local
memory used per thread. Nevertheless, this algorithm should provide good
results in most cases, even using low-end NVIDIA graphics cards.

5. Conclusion.
 The main objective of the work presented in this paper was to create a

high-performance GPU implementation of an algorithm for load forecasting
made for distributed algorithms, bigPSF. The proposed algorithm was
evaluated with the same dataset of energy consumption from Uruguay used
in bigPSF, allowing a direct comparison between both methods. The design
of the GPU version took into account some of the limitations of the bigPSF
algorithm through two main contributions. First, CUDA-bigPSF uses a
completely different approach to distribute the work between the cores,
removing almost all the need for synchronization and communication
between nodes. Second, CUDA-bigPSF takes into account several factors to
avoid any unnecessary computations and removes one of the costly data
structures used in bigPSF, the pattern matrix.

Results show that CUDA-bigPSF provides a correct implementation of

bigPSF capable of achieving speedups during the training phase up to 500
times faster than the original bigPSF. As such, the work presented in this
paper makes bigPSF more accessible to researchers and practitioners, as the
availability of GPU devices is more widespread and cheaper than access to a
distributed cluster. Furthermore, many of the solutions proposed in this
paper for the GPU can also be used to improve the distributed version of the
algorithm.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

124

There are several directions for future work on the algorithm presented
in this paper. One possibility is to evaluate and optimize the use of different
clustering methods or ensembles of them, evaluating the training time and
accuracy of them in different datasets. Additionally, it may be useful to
develop versions of the algorithm for multivariate time series. Another
possible direction for future work is to combine the use of this algorithm in
an ensemble with other forecasting algorithms to potentially improve
forecast accuracy.

Acknowledgments

This work has been developed with the support of the Department of
Computer Science and Artificial Intelligence of the University of Granada,
TIC111. We acknowledge financial support from Grant PID2020-112495RB-
C21 funded 493 by MCIN/ AEI /10.13039/501100011033 and the I+D+i
FEDER 2020 project B-TIC-42-UGR20. We thank Drs. Pérez-Chacón and
Martínez-Álvarez (Data Science and Big Data Lab, Pablo de Olavide
University) for all the help provided to reproduce their algorithm.

Abbreviations
ANN
CNN

Artificial Neural Network
Convolutional Neural Network

CUDA Compute Unified Device Architecture
GPU
LSTM

Graphics Processing Unit
Long-Short Term Memory

MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
PSF Pattern Sequence-Based Forecasting
RDD Resilient Distributed Dataset
RMSE Root Mean Square Error
SOM Self-Organizing Map

References

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

125

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful
seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, 1027–1035.

Bokde, N., Beck, M. W., Martínez Álvarez, F., & Kulat, K. (2018). A novel
imputation methodology for time series based on pattern sequence
forecasting. Pattern Recognition Letters, 116, 88–96.
https://doi.org/10.1016/j.patrec.2018.09.020

Bose, B. K. (2017). Power Electronics, Smart Grid, and Renewable Energy
Systems. Proceedings of the IEEE, 105(11), 2011–2018.
https://doi.org/10.1109/JPROC.2017.2745621

Bouveyron, C., & Jacques, J. (2011). Model-based clustering of time series in
group-specific functional subspaces. Advances in Data Analysis and
Classification, 5(4), 281–300. https://doi.org/10.1007/s11634-011-
0095-6

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 785–794.
https://doi.org/10.1145/2939672.2939785

Chen, Z., Li, J., Cheng, L., & Liu, X. (2023). Federated-WDCGAN: A federated
smart meter data sharing framework for privacy preservation.
Applied Energy, 334, 120711.
https://doi.org/10.1016/j.apenergy.2023.120711

Coelho, I. M., Coelho, V. N., Luz, E. J. da S., Ochi, L. S., Guimarães, F. G., & Rios,
E. (2017). A GPU deep learning metaheuristic based model for time
series forecasting. Applied Energy, 201, 412–418.
https://doi.org/10.1016/j.apenergy.2017.01.003

Fujimoto, Y., & Hayashi, Y. (2012). Pattern sequence-based energy demand
forecast using photovoltaic energy records. 2012 International
Conference on Renewable Energy Research and Applications (ICRERA),
1–6. https://doi.org/10.1109/ICRERA.2012.6477299

Haque, A., & Rahman, S. (2022). Short-term electrical load forecasting
through heuristic configuration of regularized deep neural network.
Applied Soft Computing, 122, 108877.
https://doi.org/10.1016/j.asoc.2022.108877

Iruela, J. R. S., Ruiz, L. G. B., Capel, M. I., & Pegalajar, M. C. (2021). A
TensorFlow Approach to Data Analysis for Time Series Forecasting in

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

126

the Energy-Efficiency Realm. Energies, 14(13), Article 13.
https://doi.org/10.3390/en14134038

Iruela, J. R. S., Ruiz, L. G. B., Pegalajar, M. C., & Capel, M. I. (2020). A parallel
solution with GPU technology to predict energy consumption in
spatially distributed buildings using evolutionary optimization and
artificial neural networks. Energy Conversion and Management, 207,
112535. https://doi.org/10.1016/j.enconman.2020.112535

Jin, C. H., Pok, G., Lee, Y., Park, H.-W., Kim, K. D., Yun, U., & Ryu, K. H. (2015). A
SOM clustering pattern sequence-based next symbol prediction
method for day-ahead direct electricity load and price forecasting.
Energy Conversion and Management, 90, 84–92.
https://doi.org/10.1016/j.enconman.2014.11.010

Jin, C. H., Pok, G., Park, H.-W., & Ryu, K. H. (2014). Improved pattern sequence-
based forecasting method for electricity load. IEEJ Transactions on
Electrical and Electronic Engineering, 9(6), 670–674.
https://doi.org/10.1002/tee.22024

Johnson, J., Douze, M., & Jégou, H. (2021). Billion-Scale Similarity Search with
GPUs. IEEE Transactions on Big Data, 7(3), 535–547.
https://doi.org/10.1109/TBDATA.2019.2921572

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y.
(2017). LightGBM: A highly efficient gradient boosting decision tree.
Proceedings of the 31st International Conference on Neural
Information Processing Systems, 3149–3157.

Kim, T.-Y., & Cho, S.-B. (2019). Predicting residential energy consumption
using CNN-LSTM neural networks. Energy, 182, 72–81.
https://doi.org/10.1016/j.energy.2019.05.230

Kintsakis, A. M., Chrysopoulos, A., & Mitkas, P. A. (2015). Agent-based short-
term load and price forecasting using a parallel implementation of an
adaptive PSO-trained local linear wavelet neural network. 2015 12th
International Conference on the European Energy Market (EEM), 1–5.
https://doi.org/10.1109/EEM.2015.7216611

Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2019). Short-Term
Residential Load Forecasting Based on LSTM Recurrent Neural
Network. IEEE Transactions on Smart Grid, 10(1), 841–851.
https://doi.org/10.1109/TSG.2017.2753802

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

127

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Jia, Y., Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, … Xiaoqiang Zheng. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. https://www.tensorflow.org/

Martinez Alvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar Ruiz, J. S. (2011).
Energy Time Series Forecasting Based on Pattern Sequence
Similarity. IEEE Transactions on Knowledge and Data Engineering,
23(8), 1230–1243. https://doi.org/10.1109/TKDE.2010.227

Martínez-Álvarez, F., Schmutz, A., Asencio-Cortés, G., & Jacques, J. (2019). A
Novel Hybrid Algorithm to Forecast Functional Time Series Based on
Pattern Sequence Similarity with Application to Electricity Demand.
Energies, 12(1), Article 1. https://doi.org/10.3390/en12010094

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
… Chintala, S. (2019). PyTorch: An imperative style, high-
performance deep learning library. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems
(pp. 8026–8037). Curran Associates Inc.

Pérez-Chacón, R., Asencio-Cortés, G., Martínez-Álvarez, F., & Troncoso, A.
(2020). Big data time series forecasting based on pattern sequence
similarity and its application to the electricity demand. Information
Sciences, 540, 160–174. https://doi.org/10.1016/j.ins.2020.06.014

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine Learning in Python:
Main Developments and Technology Trends in Data Science, Machine
Learning, and Artificial Intelligence. Information, 11(4), Article 4.
https://doi.org/10.3390/info11040193

Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based
load demand forecasting techniques for smart grid and buildings.
Renewable and Sustainable Energy Reviews, 50, 1352–1372.
https://doi.org/10.1016/j.rser.2015.04.065

Said, Y., & Alanazi, A. (2022). AI-based solar energy forecasting for smart grid
integration. Neural Computing and Applications, 35(11), 8625–8634.
https://doi.org/10.1007/s00521-022-08160-x

Shen, W., Babushkin, V., Aung, Z., & Woon, W. L. (2013). An ensemble model
for day-ahead electricity demand time series forecasting. Proceedings

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

128

of the Fourth International Conference on Future Energy Systems, 51–
62. https://doi.org/10.1145/2487166.2487173

Tian, Y., Sehovac, L., & Grolinger, K. (2019). Similarity-Based Chained
Transfer Learning for Energy Forecasting With Big Data. IEEE Access,
7, 139895–139908. https://doi.org/10.1109/ACCESS.2019.2943752

Wen, Z., Shi, J., Li, Q., He, B., & Chen, J. (2018). ThunderSVM: A fast SVM library
on GPUs and CPUs. The Journal of Machine Learning Research, 19(1),
797–801.

Zheng, J., Gao, D. W., & Lin, L. (2013). Smart Meters in Smart Grid: An
Overview. 2013 IEEE Green Technologies Conference (GreenTech), 57–
64. https://doi.org/10.1109/GreenTech.2013.17

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

129

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.5. Accelerating neural network hyperparameter

selection with CUDA for energy forecasting.

Referencia:
D. Criado-Ramón, L.G.B. Ruiz, M.C. Pegalajar, Accelerating neural network hyperpa-
rameter selection with CUDA for energy forecasting, 2024 (En revisión).
Estado:
En revisión.

130

Accelerating neural network hyperparameter selection

with CUDA for energy forecasting

D. Criado-Ramóna,∗, L.G.B. Ruizb, M.C. Pegalajara

aDepartment of Computer Science and Artificial Intelligence, University of
Granada, Granada, Spain

bDepartment of Software Engineering, University of Granada, Granada, Spain

Abstract

Finding the optimal hyperparameters of a neural network is a challenging
task, usually done through a trial-and-error approach. Given the complexity
of just training one neural network, particularly those with complex archi-
tectures and large input sizes, many implementations accelerated with GPU
and distributed and parallel technologies have come to light over the past
decade. However, whenever the complexity of the neural network used is
simple and the number of features per sample is small, these implementa-
tions become lackluster and provide almost no benefit from just using the
CPU. As such, in this paper, we will propose and evaluate a parallelized
implementation capable of training simultaneously different neural networks
with different hyperparameters to better use the resources of the GPU in
energy forecasting, a task where the number of features per sample is small
and shallow architectures can be sufficient to provide excellent forecasts.

Keywords: Neural networks, CUDA, GPU, parallel computing, time series

1. Introduction.

In the last decade, neural networks have become one of the most relevant
Artificial Intelligence (AI) models of our time, being used with astonishing
results in a wide range of applications such as computer vision [1], time series

∗Corresponding author at: c/Periodista Daniel Saucedo Aranda s.n, 18071, Granada,
Spain.

Email addresses: davidcr96@correo.ugr.es (D. Criado-Ramón), bacaruiz@ugr.es
(L.G.B. Ruiz), mcarmen@decsai.ugr.es (M.C. Pegalajar)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

131

forecasting [2], speech recognition [3] or natural language processing [4]. In
the energy sector, many neural network architectures have been used to fore-
cast energy consumption in households, public buildings and entire markets,
among others. However, the prevailing trend in recent years has been the
use of Deep Neural Networks, usually incorporating the Long-Short Term
Memory (LSTM) architecture in at least one of the hidden layers. In fact,
this architecture is featured in almost 50 % of the publications that used a
Recurrent Neural Network (RNN) to predict energy consumption in build-
ings [5].

Several recent works show that the use of LSTM neural networks or hy-
brid models comprised of at least one LSTM layer usually outperforms other
machine learning approaches to forecast energy consumption. Kim et al. [6]
proposed in 2019 a hybrid model with LSTM and Convolutional Neural Net-
work (CNN) that showed better results than ARIMA and a combination of
LSTM and Seq2Seq in energy demand data from Korea’s electric grid. An-
other hybrid model was proposed in 2019, by Yan et al., [7] to forecast energy
consumption in individual households. This hybrid model featured LSTM
neural networks with a Stationary Wavelet Transform and achieved more ac-
curate forecasts than the standalone LSTM, hybrid models combining LSTM
and CNN, and Support Vector Regression. Torres et al. [8] presented a deep
LSTM architecture to forecast energy demand on the Spanish electric grid.
The results showed that the deep LSTM neural network outperformed other
deep neural network architectures and other Machine Learning models. Jin
et al. [9] used, also in 2022, a hybrid model of Singular Spectrum Analysis
and parallel LSTMs to forecast energy consumption of multiple UK house-
holds at different sampling rates. Rick et al. [10] presented a different hybrid
model comprised of CNNs, LSTMs and autoencoders, during the same year,
to study energy consumption in the grid of a Brazilian energy distributor.

In closely related fields, such as power generation forecasting, hybrid mod-
els featuring the LSTM architecture have also become the state of the art.
Chen et al. [11] compared, in 2022, different deep learning architectures to
predict power generation, showing that the LSTM outperformed other fre-
quently used architectures such as Gated Recurrent Unit (GRU) or Temporal
Convolutional Networks using different levels of granularity. Zhou et al. [12]
evaluated in 2022 the enhancement provided by the inclusion of an attention
mechanism in the LSTM architecture to forecast photovoltaic power genera-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

132

tion. Wan et al. [13] applied in 2023 a similar idea to simultaneously forecast
power and heat with a hybrid model that combines CNN, LSTM and atten-
tion, outperforming other deep learning models.

Nonetheless, there are also other scenarios where simpler neural network
architectures are a better fit for the problem, particularly in cases where the
amount of data available to train the model is limited. Manno et al. [14]
showed how a simpler feed-forward neural network with one hidden layer
could provide better hourly forecasts than LSTM and other machine learn-
ing models in three energy datasets, and Maragkos et al. [15] showed how
a simple multilayer perceptron (MLP) with two hidden layers could outper-
form the deep pre-trained model ResNetPlus to forecast energy consumption
in the Greek market.

Given the large variety of ML models that can be applied to produce
accurate forecasts and the large search space of hyperparameters, finding the
optimal model for a specific task can be challenging and time-consuming, as
they are usually evaluated with a trial-and-error approach. This can be done
either exhaustively over a selected range of hyperparameters (“grid search”)
or guided by some optimization algorithm [16]. This large search space for
hyperparameters in conjunction with the slow training time of some of the
most complex models has led to the development of specialized implementa-
tions that leverage specific hardware to accelerate the training process.

A noteworthy example of this trend is the prevalent use of Graphics Pro-
cessing Units (GPUs) for training machine learning models. Nowadays, most
machine learning models, particularly Artificial Neural Networks, leverage
GPUs for efficient training. Initially, parallel implementations were intro-
duced for specific neural network architectures [17, 18]. However, with the
advent of user-friendly neural network frameworks such as TensorFlow [19]
and PyTorch [20], efficient implementations of the majority of neural network
architectures have become easily accessible. Furthermore, the significance
of AI in the GPU landscape has prompted manufacturers to offer libraries
with tailored primitives for deep learning [21, 22], which these frameworks
utilize to optimize the training process. This inclination toward GPU uti-
lization extends beyond neural networks to include other traditional machine
learning models. For example, the cuML library [23], also developed by a
GPU manufacturer, facilitates seamless GPU-accelerated usage of various

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

133

classic machine learning models, and many recently proposed machine learn-
ing models have been released with a GPU implementation available [24, 25].

However, despite the widespread availability of GPU implementations for
many machine learning models, certain specialized use cases still lack efficient
implementations. For example, CUDA implementations of metaheuristic al-
gorithms are not generally available and are frequently studied in the AI lit-
erature for different purposes [26, 27, 28, 29, 30]. In the context of Artificial
Neural Networks (ANNs), publicly accessible implementations are generally
tailored to enhance training speed with a large number of features or neu-
rons. These implementations often depend on the use of efficient parallelized
General Matrix Multiplications (GEMM), typically facilitated by linear alge-
bra libraries provided by the hardware manufacturer, such as cuBLAS [31].
Consequently, employing these approaches for training small neural networks
on GPUs might result slower than using the CPU. One potential remedy for
this challenge could involve increasing the batch size during training to op-
erate on larger matrices, assuming sufficient data is available. However, it is
widely recognized that an excessively large batch size can compromise accu-
racy, leading to poorer generalization [32].

Another prospective solution could involve leveraging GPU resources to
simultaneously train, in parallel, multiple neural networks with different hy-
perparameters, rather than utilizing the entire GPU to train a single small
neural network. Notably, the application of GPUs under these circumstances
has not been thoroughly examined in the existing literature. In this study,
we aim to address this gap by developing and evaluating an efficient GPU
implementation capable of training multiple neural networks simultaneously,
each with different hyperparameters. Our evaluation will focus on energy
forecasting data, where the number of input features is typically relatively
low, involving only the previous number of time steps used for the forecast
and a few exogenous variables like temperature. Thus, this paper strives
to contribute to the existing body of knowledge and addresses the following
research questions.

• Is it faster to train simultaneously multiple neural networks in the GPU
or use the optimized implementation from libraries such as TensorFlow
to accelerate the training of each neural network?

• How do the batch size and the complexity of each neural network affect

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

134

the results?

These questions will be solved with a real-case study with energy demand
data from Spain, comparing the time required to find the optimal architec-
ture using our approach with TensorFlow, and comparing the accuracy of
the best result found by the proposed implementation with previous works
using the same dataset.

The remainder of this paper is structured as follows. Section 2 presents a
brief introduction to the CUDA architecture, the neural networks used, and
an explanation of our approach. Section 3 presents and discusses the ob-
tained results. Lastly, Section 4 draws the main conclusions from our work.

2. Methodology.

2.1. The CUDA architecture.

Although Graphics Processing Units (GPUs) were initially created to ac-
celerate graphical computation, their massively parallel GPU architecture
greatly benefited many other general-purpose applications. Compute Uni-
fied Device Architecture (CUDA) was the first proposal of a language for
General-Purpose GPU (GPGPU) made by NVIDIA for their graphics cards.
The creation of this GPGPU language facilitated substantially the develop-
ment of GPGPU applications as previously they had to be written through
assembly or graphical APIs.

The CUDA language is an extension of the C/C++ language that adds
additional syntax to indicate the operations the threads of the GPU should
do. This is mainly done through special functions called “kernels” executed
simultaneously by all threads used. Whenever a kernel is launched, the pro-
grammer must specify the number of blocks and the number of threads on
each block that should execute the kernel. At a high level of granularity, all
threads within the same block have additional advantages as they are exe-
cuted on the same streaming multiprocessor. Each streaming multiprocessor
has a unique set of cores, registers, cache memory, and a scheduler. This al-
lows all threads within the same block to cooperate faster through the use of a
programmed-managed part of the L1 cache memory called “shared memory”
and a synchronization operation available for all threads of the block. If there

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

135

is not enough work to use an entire streaming multiprocessor, the scheduler
may run multiple blocks concurrently in the same streaming multiprocessor,
even from different kernels. On the other hand, at the smallest level of gran-
ularity, the CUDA cores use a Single Instruction Multiple Threads (SIMT)
architecture where a “warp” (32 contiguous threads) will always execute the
same instruction. This means that in any instance in which the kernel code
branches (e.g., if-else statements), the performance may be worse as it may
require the entire warp to execute all branches before continuing with the
following instruction and, as such, they should be avoided as long as pos-
sible. Figure 1 illustrates the relationship between the abstractions utilized
by the programmer and the corresponding hardware. When launching the
kernel, the programmer specifies the grid (number of blocks and threads per
block), and that grid is executed by an entire CUDA-capable GPU device.
At a lower granularity level, each of the blocks that compose that grid will
be executed in one of the Streaming Multiprocessors available in that GPU
device. At the lowest level of granularity, each of the threads within the
block will be executed on one of the CUDA cores available on the Streaming
Multiprocessor assigned to its block.

One of the most common bottlenecks in GPU-based applications are
slow memory accesses. Thus, understanding the GPU memory hierarchy
is extremely important to ensure peak performance. Figure 2 presents the
memory hierarchy of the CUDA-capable GPU device employed in our exper-
imentation. The figure is organized to showcase memory locations with the
slowest access at the top, gradually progressing to those with the fastest ac-
cess as we move downward. The slowest access occurs with data stored in the
CPU/motherboard RAM, as it necessitates traversing the PCIe connection
and traversing all memory locations within the GPU. Consequently, trans-
fers of data between the CPU and GPU are minimized as much as possible.
In fact, they are done only twice in many applications. The initial transfer
occurs from the CPU/Motherboard to the GPU, facilitating the loading of
all data necessary for computations, such as a dataset. The second transfer
takes place after completing all computations, ensuring that the end user
receives the computation results. This is essential since the output needs to
reside in the CPU/Motherboard for the end user to view or store the output.
The main on-chip memory on the GPU is the “global memory”, serving as
the principal storage location for data within the GPU. As such, it has the
largest store capacity, but it is the slowest location inside the GPU. Data that

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

136

Figure 1: Relationship between the CUDA software-level abstractions and the GPU hard-
ware.

needs to be exchanged between the CPU and the GPU or between multiple
Streaming Multiprocessors (or blocks), must be stored into global memory.
The next level in the memory hierarchy is the cache memory. There are two
levels of cache memory (L1 and L2). The L2 cache is a slightly slower type
of cache memory that has a larger storage capacity and it is shared across
all streaming multiprocessors. The L1 cache is the fastest memory location
besides registers, as it is local to each streaming multiprocessor. Thus, data
in the L1 cache can only be accessed by threads within the same block, mak-
ing it an ideal location in workflows that require shared memory access from
multiple threads within the same block. In fact, programmers may specify
within the kernel the amount of shared memory required and directly man-
age access to this memory without having to rely on compiler optimizations.
Lastly, the use of registers is usually limited to the data that is required for
the current computation. Nonetheless, the optimizer may select specific vari-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

137

ables and small arrays local to a thread to store them in registers if sufficient
space is available, removing the need of memory accesses until all computa-
tions with that data have finished.

Figure 2: A simplified representation of the CUDA memory hierarchy for the RTX 6000
Ada.

2.2. Artificial Neural Networks (ANNs).

ANNs are computational models inspired by the human brain. They con-
tain many computational nodes denominated “neurons” structured in layers.
These neurons are interconnected with other neurons and each connection is
associated with a weight. Each neuron computes the weighted sum of the
outputs of the previous layers with the weights of the connections. Further-
more, a non-linear function is usually applied to the output of each neuron,
allowing the neural network to learn non-linear relationships. During train-
ing, the connection weights are optimized to minimize a loss function between

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

138

the outputs of the last layer and the desired values.

The Multi-Layer Perceptron (MLP) [33] is a simple and widely used neu-
ral network. This architecture has one input layer, one or more hidden layers,
and one output layer. In this architecture, each neuron j from a layer per-
forms the weighted sum of the output x of all neurons from the previous layer
i weighted by the weight of the connection w(i, j). After that, to obtain the
final output, the bias of that neuron bj is added and the activation function
f is applied.

hj = f(
∑

i

wi,jxi + bj). (1)

The Elman neural network [34] is a Recurrent Neural Network (RNN)
that includes a new kind of layer: the context layer. RNNs are capable of
processing sequences of variable length through the use of recurrent connec-
tions between the neurons. In the Elman Neural Network, there will be as
many context layers as hidden layers. Each context neuron copies the output
of each hidden neuron, which will be used as additional input to the hidden
layer along the context weights for the next element of the sequence. Math-
ematically, this can be expressed as follows:

hj(t) = f(wjx(t) + ujh(t− 1) + bj). (2)

where hj(t) is the output of the hidden neuron j for the element in po-
sition t of the sequence, wj are the weight between the hidden neuron and
all neurons of the previous layer previous layer, x(t) are the output of this
previous layer for the element t of the sequence, uj are the recurrent weights
between the context neurons and the neuron j, h(t− 1) are the hidden out-
puts for the previous element of the sequence and bj is the bias of the hidden
neuron.

LSTM neural networks [35] are another RNN type that uses special neu-
rons, denominated “LSTM cells” instead of hidden neurons. This type of
neural network was created to solve the vanishing gradient problem in RNN,
an issue that arises while training the neural network with backpropagation.
The vanishing gradient occurs because the gradient must be passed through

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

139

all time steps t of the sequence and the activation functions will squash the
outputs to a limited range, usually between 0 and 1 (sigmoid), or between
−1 and 1 (tanh). Therefore, for a long sequence, the repeated multiplication
of a value below 1 will lead to a value closer and closer to 0, thus vanishing
the gradient and making the neural network receive minimal to no updates in
those scenarios. To solve this issue, LSTM neural networks incorporate two
recurrent states: the hidden state ht (for short-term memory) and the cell
state C(t) (for long-term memory). Alongside both states, the LSTM neural
network also incorporates three gating mechanisms to regulate the informa-
tion flow in the cell. The input gate i(t), determines how much information
from the current step in the sequence can be used to update the states. The
forget gate f(t) decides how much information from the previous cell state
should be forgotten. Lastly, the output gate o(t) decides how much of the
current cell state is used to produce the hidden states. All of these gates have
a set of weights Wi|f |o to be learned and use a sigmoid activation function,
limiting the range of each value of the gate from 0 (blocking information) to
1 (allowing all information through). Mathematically, an LSTM cell works
as follows:

it|ft|ot = σ(Wi|f |o · [h(t− 1), x(t)] + bi|f |o). (3)

C̃(t) = tanh(Wc · [h(t− 1), x(t)] + bc). (4)

C(t) = ft · C(t− 1) + it · C̃(t). (5)

h(t) = o(t) · tanh(C(t)). (6)

2.3. The proposed method.

Figure 3 shows the general idea of how the proposed method will run
inside a GPU. Since we want to find the optimal hyperparameters, we devel-
oped one kernel that will train simultaneously multiple neural networks at
once. The selection of only using one kernel was made to avoid the overhead
of launching multiple kernels and the limitation provided by the fact that the
number of concurrent kernels in execution may be lower than the number of
streaming multiprocessors available. Thus, if we were to launch one kernel
per neural network, 14 streaming multiprocessors would have remained com-
pletely idle during the entire training process with the GPU we used. In

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

140

Figure 3: Distribution in blocks and threads of the proposed method.

the kernel proposed in our method, each block will train a specific neural
network, overcoming these limitations. Each thread will, for the most part,
perform the computations related to one hidden neuron. If the number of
threads per block is smaller than the number of hidden units, the kernel will
do as many iterations as required to compute all the results from the hidden
neurons.

Before running the kernel, it is essential to initialize and allocate most
of the data structures in memory. Since many of these structures are ac-
cessed by the CPU and undergo storage and retrieval only once, they are
allocated in global memory. This encompasses weights, biases, intermediate
outputs, and non-recurrent gradients. Recurrent gradients are allocated in
local arrays for each hidden neuron or thread, facilitating the utilization of
registers when the dimension is sufficiently low. All these data structures
are organized in row-major order and have dimensions in the following or-
der: neural network size, batch size (for intermediate results data structures

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

141

only), lags (for recurrent neural networks only) and hidden size. This is done
to ensure that all threads access contiguous positions in memory, since every
thread within the same block will need to access the same data structure
in the position corresponding to its hidden neuron. Thus, this configuration
minimizes the number of memory accesses required to load data from other
memory locations to the bare minimum.

After allocating these data structures, non-recurrent weights undergo ini-
tialization using the Xavier-Glorot method [36], where each thread handles
one element of the data structure at the start of the kernel. Recurrent
weights, on the other hand, are initialized through the orthogonal method
using CuPy’s [37] implementation of Singular Value Decomposition. Mean-
while, biases are initialized to 0, except for those associated with the forget
gate of LSTMs, which are initialized to 1, following common practices.

Afterward, several arrays containing hyperparameters for each neural net-
work are transmitted from the host to the GPU. In our implementation, there
is an array for hidden sizes, another for learning rates, and the last one for
activation functions. Each of these arrays will have as many values as neural
networks need to be trained. Therefore, the position i in each array will indi-
cate the value of its hyperparameter in the i-th neural network. Additionally,
an array containing a permutation per training epoch of the samples indexes
is initialized using CuPy. This array is used to avoid having to shuffle the
array in memory, thus allowing different neural networks to progress at a
different pace. Once this initialization progress is finished, the kernel will
iterate over each epoch and each sample of a batch.

In Figure 4, the workflow of all threads within the same block is illus-
trated, showing the tasks undertaken to process an entire batch. First, each
thread will do all the computations to compute the hidden output of a neu-
ron, storing the results in the corresponding array for intermediate values.
These computations are the weighted sum of the output of the previous layer
and the activation function. A synchronization barrier is placed afterward to
ensure that all hidden outputs have been computed before proceeding to the
next step. In the case of RNNs, this first step is repeated until all lags from
the input sequence have been computed. Then, after the last synchroniza-
tion is done, the Harris’ [38] parallel reduction is used with the final hidden
states and the weights of the output layer to compute each output neuron’s

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

142

Figure 4: A visual representation of the work done by the threads inside a block to train
a neural network.

output efficiently. At this step, we start computing the loss for this sample
with one thread per time step (output neuron) forecast, storing the loss for
that sample in an array. After a synchronization, each thread computes the
loss at the hidden layer by backpropagating the loss according to the chain
rule with the loss of the output layer, the output weights and the activation.
Finally, in RNNs , this process is repeated for all time steps and the next
sample inside the batch is processed.

After processing all samples within a batch, the weights and biases are
updated using the ADAM algorithm [39]. This update is performed with
the desired learning rate, using the previously computed backpropagated loss
and any other required intermediate values and weights. During this process,
each thread is responsible for updating one neuron, and no synchronization is
needed since all necessary computations have been previously executed and
stored, mitigating any potential race conditions.

In the case of RNNs, additional local arrays are employed to store recur-
rent gradients. These gradients pertain to the connections between a hidden
neuron and the context layer in the Elman network and between a hidden
LSTM unit and all recurrent connections through the gates in the LSTM net-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

143

work. This design allows these recurrent gradients to potentially be stored
in registers if the number of hidden neurons in the neural network is small
enough.

Upon completing the weight and bias updates, the CUDA block’s neural
network can proceed to process the next batch without waiting for all other
neural networks to complete processing the same batch since our approach
does not require shuffling the samples in memory thanks to the use of the
data structure with the permuted indexes.

3. Results.

3.1. Experimental setup.

To assess the efficacy of our approach, we conducted a comparative analy-
sis with TensorFlow’s implementations on a publicly available energy demand
dataset, as outlined in the following subsection. It is crucial to note that we
focused on a single dataset due to the extensive time required for these ex-
periments, and the results in terms of speedup should hold for datasets with
similar characteristics, such as the number of time steps and features.

It is worth emphasizing that TensorFlow utilizes distinct implementations
based on certain constraints and the neural network architecture employed.
Consequently, we divided our experiments into three distinct sets, each corre-
sponding to a unique architecture with a specific activation function (ReLU
for MLP, tanh for Elman and LSTM RNNs). These activation functions were
chosen based on their ability to provide the most accurate results for each
neural network architecture.

In each experiment, 348 neural networks were evaluated for only 10 epochs
to compare the difference in training time, as otherwise some experiments
would take many weeks to finish. Nonetheless, a total of 100 epochs were
used with the fastest implementation to select the best model and retrain it
(including the validation partition as training) to compare the forecast accu-
racy of the best model found with the proposed method and previous works
in the literature. In each experiment, we evaluated 348 neural networks with
a hidden size between 40 hidden neurons and 127 neurons with learning rates

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

144

of 0.05, 0.01, 0.001 and 0.0001. These numbers were selected to have a rea-
sonable degree of variety in learning rate and number of hidden neurons that
are still within a reasonable boundary to work well (neither too small nor too
big for the size of the problem studied). Lastly, the experiment was repeated
to see how the difference between implementations evolved using different
batch sizes (1, 2, 4, 8, 16, 32 and 64).

The experimental setup used was comprised of a private cloud server with
two GPU nodes, two Xeon 4310 CPUs and 64 GB of RAM. Each GPU node
had an NVIDIA RTX A6000 ADA with 48 GB GDDR6 global memory and
18176 CUDA cores. As such, GPU work was distributed through the use
of PySpark. In the case of our implementation, a kernel with half of the
hyperparameters was sent to each GPU and in the case of TensorFlow, we
evaluated two different approaches. In the first one (from now on, denomi-
nated “TF-A”), TensorFlow was allowed to use the full potential of a GPU
to train a neural network as fast as possible. Thus, two neural networks
were being trained as fast as possible at once (one on each GPU). However,
since this was not fully using all the resources of the GPU, we also evaluated
another approach (from now on denominated “TF-B”), in which we tried to
train as many neural networks as possible simultaneously. We did this by
training 14 neural networks simultaneously between both GPUs (7 on each)
in a multi-process approach, as adding more would create a bottleneck in
RAM memory, significantly slowing the training process.

3.2. Dataset description.

The dataset used for this work is a dataset containing energy consumption
from January 2007 to the present time. This dataset was scrapped from the
Spanish energy operator with a 10-minute granularity, although recently, all
the data has been updated to a 5-minute granularity. Although it provides
some additional information about market prices, emissions and energy gen-
eration, we only used the recorded energy consumption, as previous works
do. Furthermore, to make it comparable with the previous works, the same
preprocessing methodology was used. As such, only data up to June 2016
was used the previous 168 lags were the input sequence provided to each
neural network and the forecast horizon was the next 24 observations. The
data was divided into three partitions preserving chronological order. The
first 70 % was used for training and validation, and the last 30 % for the test

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

145

partition used to provide the results in Section 3.5. The validation partition
was the last 30 % of the training partition and was used to select the best-
performing architecture.

3.3. Metrics used.

To measure the execution performance of each approach, we measure
the total execution time of each algorithm per experiment (one neural net-
work architecture with a specific batch size). Additionally, we measured the
speedup obtained between our implementation and TensorFlow approaches.
Regarding the accuracy metrics, the following metrics were used as they are
utilized frequently for time series forecasting.

The Mean Absolute Error (MAE) measures the average absolute differ-
ence between the predicted and expected values.

MAE =
1

N

N∑

i=1

|yi − ŷi|. (7)

The Mean Absolute Percentage Error (MAPE) is a measure that repre-
sents the MAE as a percentage according to the following formula.

MAPE =
1

N

N∑

i=1

yi − ŷi
yi

. (8)

The coefficient of determination, R2, measures the proportion of variabil-
ity in the dependent variable that is explained by a regression model. It is
calculated by comparing the sum of squared differences between the observed
values and the model’s predictions to the sum of squared differences between
the observed values and their mean. R2 values range from 0 to 1, with higher
values indicating a better fit of the model to the data.

R2 = 1−
∑N

i=1(yi − ŷi)
2

∑N
i=1(ȳ − ŷi)2

(9)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

146

Lastly, the Root Mean Squared Error (RMSE) is a metric that gives more
weight to large errors, punishing harder forecasted values far away from the
expected values, but also making it heavily influenced by outliers.

RMSE =
1

N

√√√√
N∑

i=1

(yi − ŷi)2. (10)

For all these metrics, N represents the total number of observations of all
samples, ŷ represents the predicted value, ȳ is the average of the observations
and y represents the expected value. For all metrics except R2, a lower value
indicates a better forecast.

3.4. Speedup analysis.

Table 1 presents the results found for the MLP architecture. The results
show the total time used to train all neural networks between 40 and 127
neurons with 4 different learning rates in 4 seconds. As expected, our ap-
proach was substantially faster than the other two approaches as, given the
simplicity of this architecture, it is hard to use all the resources of the GPU
unless an extremely large batch size or a large number of neural networks are
trained simultaneously. For the proposed method, the fastest training time
was 2 seconds for the batch size of 64 and the slowest was 21 seconds for
the batch of 1. However, TF-A, representing the classic use of TensorFlow,
where each neural network is trained using the full potential of 1 GPU, led
to an extremely slow training speed, with a worse performance the lower the
batch size, as the number of operations that could be done in parallel would
be even smaller.

On the other hand, the second TensorFlow approach, TF-B, is capable
of training simultaneously up to 14 neural networks (7 on each GPU), but
the speedup between both approaches is only 3 times faster. In general, the
TensorFlow implementations work better the larger the batch sizeHowever,
the proposed approach was still substantially faster, providing speedups be-
tween 248 and 429 times faster than the TensorFlow-based approaches.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

147

Table 1: Execution time and speedups between the different approaches for the MLP
architecture.
Batch Size Proposed Approach TF-A TF-B Speedup vs TF-A Speedup vs TF-B

64 2.3597 1806.7862 585.3889 765.7005 248.0828
32 2.4007 3075.5440 799.1027 1281.0803 332.8565
16 2.7557 5895.0102 1212.8949 2139.2363 440.1466
8 3.7472 11435.8724 2065.0896 3051.8761 551.1077
4 5.9630 22626.1064 3751.2006 3794.4303 629.0817
2 11.1880 38171.3175 6153.0140 3411.8050 549.9649
1 21.3858 74304.2316 11664.5383 3474.4695 545.4344

Table 2 presents the results for the Elman architecture. Due to the more
complex nature of the recurrent connection, the time required to train with
all implementations studied is substantially slower than the ones obtained for
the MLP, as the inclusion of time step dependencies involves a higher number
of operations and a mandatory synchronization before processing the next
time step. In particular, our approach offers a relatively fast training time,
between 117 and 147 seconds, while the best approach using TensorFlow is
between 27 and 1141 times slower, depending on the batch size used.

Table 2: Execution time and speedups between the different approaches for the Elman
architecture.
Batch Size Proposed Approach TF-A TF-B Speedup vs TF-A Speedup vs TF-B

64 147.2129 25969.1383 4049.3666 176.4053 27.5069
32 146.3562 51806.8023 7676.6376 353.9775 52.4517
16 142.9166 103078.4482 14977.9314 721.2490 104.8019
8 139.4633 205481.8361 29390.5676 1473.3757 210.7405
4 127.2687 223986.1243 58379.0883 1759.9461 458.7072
2 117.0509 416869.0485 69425.9476 3561.4345 593.1262
1 121.2705 831297.8234 138391.2889 6854.9081 1141.1789

Table 3: Execution time and speedups between the different approaches for the LSTM
architecture.
Batch Size Proposed Approach TF-A TF-B Speedup vs TF-A Speedup vs TF-B

64 1640.9951 5185.2487 1666.2205 3.1598 1.0154
32 1628.4055 9809.2184 2762.1860 6.0238 1.6963
16 1629.1816 18753.4415 4867.6259 11.5110 2.9878
8 1629.5084 37053.4223 8978.5803 22.7390 5.5100
4 1638.6638 72995.0195 17236.8766 44.5455 10.5189
2 1646.0327 134860.7963 31196.6928 81.9308 18.9527
1 1657.0721 244583.4005 44268.8245 147.5997 26.7151

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

148

Lastly, Table 3 presents the execution times for the LSTM architecture.
For our implementation, the execution time is slower than the Elman archi-
tecture as it is a more complex architecture that requires a higher number
of operations and 4 recurrent connections on each time step for the gates
and the cell state. One of the most impressive things is that the TensorFlow
implementations for this more complex architecture are faster than their im-
plementation for the Elman neural networks. This is because for the LSTM
neural network, as long as certain restrictions are met, TensorFlow uses a
highly optimized implementation made by the GPU manufacturers instead
of the generic GPU kernel created by the TensorFlow developers. It should
also be noted that, although it is expected that the optimizations presented
in [22] are used, the full implementation details are not publicly available.
As such, for this architecture, we see the closest results to our approach,
allowing us to present some of the limitations of our approach. In general,
while our approach stayed around 1640 seconds regardless of the batch size,
the best TensorFlow approach was between 1.01 and 26.72 times slower, de-
pending on the batch size. In general, it should be expected that, as the
batch size used grows, our approach will provide a lower speedup as each el-
ement of the batch is computed sequentially in our approach and larger data
structures will be required, which will lead to more cache misses. As such,
there will always be a breakpoint between our approach and the TensorFlow
approaches, where, as the complexity grows (due to either a larger batch size
or a more complex neural network), the proposed approach will be slower, or
there may not be enough memory in the card to simultaneously hold all data
structures required to train all neural networks in parallel. Therefore, the
GPU specifications, neural network architecture, number of neural networks
to be trained and the batch size used hold a crucial part in determining
whether the proposed approach or the multiprocess TensorFlow approach
(TF-B) would be better.

3.5. Comparison with previous works.

At last, we compare the results in terms of the accuracy of each model. A
first point of interest is to evaluate the impact the batch size has had on each
of these architectures, as its optimal size has a major impact on the usefulness
of each implementation. Figure 5 shows the evolution of all metrics used as
the batch size grows on each architecture. As it can be observed from this
figure, regardless of the architecture, the use of a smaller batch size leads
to the best results, with the best model always obtained through the use

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

149

of a batch size of 1 or 2. The use of larger batch sizes (32 and 64) led to
a less accurate model, particularly in the case of the LSTM, where higher
batch sizes provided worse models than the simple MLP architecture with
similar batch size. It should be remarked that, for all metrics, the LSTM
architecture usually delivered the most accurate forecast, closely trailed by
the MLP architecture.

Figure 5: Evolution of metrics with batch size.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

150

Table 4: Comparison of four quality metrics with previous works in the literature. Best
values per metric in bold

Model MAPE (%) MAE (MW) RMSE (MW) R2

Linear Regression [40] 7.3395 – – –
Elman with 1 hidden layer (ours) 3.3657 968.6227 1478.35 0.8948
Decision Tree [40] 2.8783 – – –
Gradient Boosting Tree [40] 2.7190 – – –
Random Forest [40] 2.2005 – – –
MLP with 1 hidden layer (ours) 1.7391 486.7483 734.5207 0.9775
Deep Feed Forward Neural Network [40] 1.6769 – – –
Deep LSTM (CVOA) [8] 1.5859 435.9883 585.1958 –
Temporal Fusion Transformer [40] 1.5148 – – –
Deep LSTM (Random) [8] 1.4472 398.7652 545.8998 –
LSTM with 1 hidden layer (ours) 1.3006 372.4421 539.6172 0.9879

Table 4 provides the complete list of metrics that measure the forecast
accuracy in this work and in previous works. Some of the previous works
only provided the MAPE; thus, the MAE, RMSE and R2 are denoted as not
available with two hyphens in the table. From the models trained by us, the
worst results were consistently provided by the Elman neural network ar-
chitecture, which only provided better results than Linear Regression. The
MLP architecture provided better results than the other machine learning
models studied in this comparison. However, it was not able to reach the
level of accuracy of the deep learning models. Among the previous works
in the literature, a deep LSTM with 8 layers used to provide the best re-
sults with this dataset. However, the deep exploration of hyperparameters
provided by our approach allowed us to find an LSTM with just one hidden
layer and 89 hidden neurons that provided better results for all the metrics
available. These results further confirm the great capability of the LSTM
neural network architecture to provide accurate forecasts and showcase a
great application of the proposed method, allowing us to exhaustively evalu-
ate a range of hyperparameters efficiently instead of having to rely on random
search or other optimization approaches, as it was done to obtain that deep
LSTM in [8].

3.6. Advantages and limitations of the proposed approach.

One of the major advantages of using the proposed approach is how much
faster we can find the optimal hyperparameters for a neural network, as it was
shown in subsection 3.4. This has many advantages as it allows researchers
and practitioners do to a more exhaustive search to find the optimal model

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

151

in the lowest amount of time possible. Furthermore, depending on the ap-
plication they are used, some other advantages may arise. For example, in
our energy forecasting case study, the training could be done in a cloud ser-
viceThen, once trained, the models could be sent to edge devices or smart
meters that can be used for inference purposes without the need to train an
individual model per smart meter with limited resources and facilitating its
use in any other advanced analytics provided to the customer at the edge (en-
ergy disaggregation, demand response, pricing, recommender systems, etc).

However, even though the proposed approach should work greatly in a
large number of applications, the major drawback of the proposed approach
is how poorly it scales as the complexity of the datasets and neural networks
rises. This is mainly due to the fact that more complex datasets will usu-
ally require neural networks with a larger number of trainable parameters
(i.e., computer vision problems) and there will be a breakpoint where the
batch size and the number of trainable parameters per layer is large enough
that GEMM-based approaches can use optimally all the GPU resources or
we cannot fit in the GPU memory all of the data structures required for our
approach. In those cases, the highly optimized GEMM-based approaches
available in frameworks like TensorFlow or PyTorch should be preferred.
Nevertheless, there will still be some instances in which depending on the
data, the number of neural networks evaluated and their complexity, it may
still be more beneficial to use our approach multiple times with a reduced
number of neural networks trained simultaneously in order to fit them in
memory.

4. Conclusion.

This paper presented a novel approach to train simultaneously multiple
neural networks with different hyperparameters in parallel with the GPU,
allowing researchers and practitioners to quickly find the optimal topology
for a neural network model. The proposed method was evaluated with three
different neural network architectures (MLP, Elman and LSTM) using en-
ergy demand data from the Spanish grid. The developed implementation
was compared against two approaches that used TensorFlow GPU imple-
mentations in terms of training time and other machine learning models in
terms of accuracy. Furthermore, we evaluated each neural network architec-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

152

ture with different batch sizes, allowing us to study the impact of batch size
selection in accuracy metrics and allowing us to see the evolution in speedup
as the batch size increases. After evaluating the developed implementation
we learned that:

• It was faster to train multiple neural networks with our implementa-
tion than using other approaches until reaching a breakpoint in which
a neural network may be so big that either all resources of the GPU are
already used to train one neural network or the data structures for mul-
tiple neural networks no longer fit in the GPU memory. This interplay
between speedup and complexity can be seen through the comparison
of batch sizes, as a larger batch size implies larger data structures and
a higher amount of computations that can be done in parallel to train
just one neural network.

• The most accurate models across each neural network architecture were
generally achieved with lower batch sizes. Furthermore, the LSTM
architecture consistently outperformed the other two, establishing itself
as the most accurate choice for the dataset studied.

The implementation presented in this paper provided an exceptional
training speed, yielding results that were up to 3400 times faster than con-
ventional methods using TensorFlow. This remarkable advantage positions
our implementation as an ideal choice for scenarios akin to the one examined
in this study, where the number of input features is relatively modest. This
will usually be the case for most tabular datasets and many time series ap-
plications. However, the main limitation of our approach is that it does not
scale well in scenarios with larger amounts of data. This implies that our
implementation may not be optimal for applications characterized by a vast
amount of data, such as those found in Computer Vision or Natural Lan-
guage Processing. In these instances, where one neural network saturates
most of the GPU’s resources, the TensorFlow implementation excels as it
was designed specifically for that use case. Consequently, the performance of
our proposed implementation is contingent on hardware specifics and data
volume. Thus, the closer we are to using all CUDA cores or all fast memory
locations with just one neural network, the worse our implementation will
work. Nonetheless, the proposed implementation will still be the best choice

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

153

for a large number of applications that do not require processing massive
amounts of data simultaneously.

Future works may consider the development and evaluation of paral-
lelized algorithms to guide the hyperparameter search (i.e., metaheuristic
algorithms) or extend the methodology to other neural network architec-
tures.

Acknowledgments

We acknowledge financial support fromMinisterio de Ciencia e Innovación
(Spain) (Grant PID2020-112495RB-C21 funded by MCIN/ AEI /10.13039/501100011033).

Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
CUDA Compute Unified Device Architecture
GPU Graphics Processing Unit
LSTM Long-Short Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ML Machine Learning
MLP Multi Layer Perceptron
RMSE Root Mean Squared Error
RNN Recurrent Neural Network

References

[1] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, et al.,
Deep learning for computer vision: A brief review, Computational in-
telligence and neuroscience 2018 (2018). doi:10.1155/2018/7068349.

[2] H. Hewamalage, C. Bergmeir, K. Bandara, Recurrent neural net-
works for time series forecasting: Current status and future direc-
tions, International Journal of Forecasting 37 (1) (2021) 388–427.
doi:10.1016/j.ijforecast.2020.06.008.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

154

[3] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, K. Shaalan, Speech recog-
nition using deep neural networks: A systematic review, IEEE access 7
(2019) 19143–19165. doi:10.1109/ACCESS.2019.2896880.

[4] B. Alshemali, J. Kalita, Improving the reliability of deep neural net-
works in nlp: A review, Knowledge-Based Systems 191 (2020) 105210.
doi:10.1016/j.knosys.2019.105210.

[5] C. Lu, S. Li, Z. Lu, Building energy prediction using artificial neural
networks: A literature survey, Energy and Buildings 262 (2022) 111718.
doi:10.1016/j.enbuild.2021.111718.

[6] M. Kim, W. Choi, Y. Jeon, L. Liu, A hybrid neural net-
work model for power demand forecasting, Energies 12 (5) (2019).
doi:10.3390/en12050931.

[7] K. Yan, W. Li, Z. Ji, M. Qi, Y. Du, A hybrid lstm neural network for
energy consumption forecasting of individual households, IEEE Access
7 (2019) 157633–157642. doi:10.1109/ACCESS.2019.2949065.

[8] J. Torres, F. Mart́ınez-Álvarez, A. Troncoso, A deep lstm network for the
spanish electricity consumption forecasting, Neural Computing and Ap-
plications 34 (13) (2022) 10533–10545. doi:10.1007/s00521-021-06773-2.

[9] N. Jin, F. Yang, Y. Mo, Y. Zeng, X. Zhou, K. Yan, X. Ma, Highly
accurate energy consumption forecasting model based on parallel lstm
neural networks, Advanced Engineering Informatics 51 (2022) 101442.
doi:10.1016/j.aei.2021.101442.

[10] R. Rick, L. Berton, Energy forecasting model based on cnn-
lstm-ae for many time series with unequal lengths, Engineer-
ing Applications of Artificial Intelligence 113 (2022) 104998.
doi:10.1016/j.engappai.2022.104998.

[11] M.-Y. Chen, H.-S. Chiang, C.-Y. Chang, Solar photovoltaic power gener-
ation prediction based on deep learning methods, in: 2022 IET Interna-
tional Conference on Engineering Technologies and Applications (IET-
ICETA), 2022, pp. 1–2. doi:10.1109/IET-ICETA56553.2022.9971676.

[12] H. Zhou, Y. Zhang, L. Yang, Q. Liu, K. Yan, Y. Du, Short-term pho-
tovoltaic power forecasting based on long short term memory neural

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

155

network and attention mechanism, IEEE Access 7 (2019) 78063–78074.
doi:10.1109/ACCESS.2019.2923006.

[13] A. Wan, Q. Chang, K. AL-Bukhaiti, J. He, Short-term power
load forecasting for combined heat and power using cnn-lstm
enhanced by attention mechanism, Energy 282 (2023) 128274.
doi:10.1016/j.energy.2023.128274.

[14] A. Manno, E. Martelli, E. Amaldi, A shallow neural network approach
for the short-term forecast of hourly energy consumption, Energies 15 (3)
(2022). doi:10.3390/en15030958.

[15] N. Maragkos, M. Tzelepi, N. Passalis, A. Adamakos, A. Tefas, Elec-
tric load demand forecasting on greek energy market using lightweight
neural networks, in: 2022 IEEE 14th Image, Video, and Multi-
dimensional Signal Processing Workshop (IVMSP), 2022, pp. 1–5.
doi:10.1109/IVMSP54334.2022.9816189.

[16] X. Luo, L. O. Oyedele, Forecasting building energy consumption:
Adaptive long-short term memory neural networks driven by ge-
netic algorithm, Advanced Engineering Informatics 50 (2021) 101357.
doi:10.1016/j.aei.2021.101357.

[17] H. Jang, A. Park, K. Jung, Neural network implementation using cuda
and openmp, in: 2008 Digital Image Computing: Techniques and Ap-
plications, 2008, pp. 155–161. doi:10.1109/DICTA.2008.82.

[18] R. Uetz, S. Behnke, Large-scale object recognition with cuda-accelerated
hierarchical neural networks, in: 2009 IEEE International Conference on
Intelligent Computing and Intelligent Systems, Vol. 1, 2009, pp. 536–
541. doi:10.1109/ICICISYS.2009.5357786.

[19] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow: Large-scale machine

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

156

learning on heterogeneous distributed systems (2016). arXiv:1603.04467,
doi:10.48550/arXiv.1603.04467.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-
performance deep learning library, in: Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[21] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, E. Shelhamer, cudnn: Efficient primitives for deep learning, CoRR
abs/1410.0759 (2014). arXiv:1410.0759, doi:10.48550/arXiv.1410.0759.

[22] J. Appleyard, T. Kociský, P. Blunsom, Optimizing performance of
recurrent neural networks on gpus, CoRR abs/1604.01946 (2016).
arXiv:1604.01946, doi:10.48550/arXiv.1604.01946.

[23] S. Raschka, J. Patterson, C. Nolet, Machine learning in python:
Main developments and technology trends in data science, ma-
chine learning, and artificial intelligence, Information 11 (4) (2020).
doi:10.3390/info11040193.

[24] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, ACM, New York,
NY, USA, 2016, pp. 785–794. doi:10.1145/2939672.2939785.

[25] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu,
Lightgbm: A highly efficient gradient boosting decision tree, Advances
in neural information processing systems 30 (2017) 3146–3154.

[26] A. M. Kintsakis, A. Chrysopoulos, P. A. Mitkas, Agent-based short-
term load and price forecasting using a parallel implementation of an
adaptive pso-trained local linear wavelet neural network, in: 2015 12th
International Conference on the European Energy Market (EEM), 2015,
pp. 1–5. doi:10.1109/EEM.2015.7216611.

[27] T. O. Ting, J. Ma, K. S. Kim, K. Huang, Multicores and gpu
utilization in parallel swarm algorithm for parameter estimation of

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

157

photovoltaic cell model, Applied Soft Computing 40 (2016) 58–63.
doi:10.1016/j.asoc.2015.10.054.

[28] L. Wang, Z. Zhang, C. Huang, K. L. Tsui, A gpu-accelerated
parallel jaya algorithm for efficiently estimating li-ion battery
model parameters, Applied Soft Computing 65 (2018) 12–20.
doi:10.1016/j.asoc.2017.12.041.

[29] J. Iruela, L. Ruiz, M. Pegalajar, M. Capel, A parallel solution
with gpu technology to predict energy consumption in spatially dis-
tributed buildings using evolutionary optimization and artificial neu-
ral networks, Energy Conversion and Management 207 (2020) 112535.
doi:10.1016/j.enconman.2020.112535.

[30] Y. Zhuo, T. Zhang, F. Du, R. Liu, A parallel particle swarm optimiza-
tion algorithm based on gpu/cuda, Applied Soft Computing 144 (2023)
110499. doi:10.1016/j.asoc.2023.110499.

[31] NVIDIA, cuBLAS, https://docs.nvidia.com/cuda/cublas/, ac-
cessed: 2024-11-01 (2023).

[32] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang,
On large-batch training for deep learning: Generalization gap and sharp
minima, in: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings, 2017.

[33] L. B. Almeida, Multilayer perceptrons, in: Handbook of Neural Com-
putation, IOP Publishing Ltd and Oxford University Press, 1997.

[34] J. Elman, Finding structure in time, Cognitive Science 14 (1990) 179–
211. doi:10.1016/0364-0213(90)90002-E.

[35] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural com-
putation 9 (1997) 1735–80. doi:10.1162/neco.1997.9.8.1735.

[36] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, JMLR Workshop and
Conference Proceedings, 2010, pp. 249–256.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

158

[37] R. Nishino, S. H. C. Loomis, Cupy: A numpy-compatible library for
nvidia gpu calculations, 31st confernce on neural information processing
systems 151 (7) (2017).

[38] M. Harris, et al., Optimizing parallel reduction in cuda, Nvidia developer
technology 2 (4) (2007) 70.

[39] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization,
in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[40] J. F. Torres, A. Galicia, A. Troncoso, F. Mart́ınez-Álvarez, A scal-
able approach based on deep learning for big data time series fore-
casting, Integrated Computer-Aided Engineering 25 (4) (2018) 335–348.
doi:10.3233/ICA-180580.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

159

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.6. Parallelized Neural Network Training with Me-

taheuristics for Energy Forecasting in Buildings.

Referencia:
D. Criado-Ramón, L.G.B. Ruiz, Lorenzo Servadei, Robert Wille, M.P. Cuéllar, M.C.
Pegalajar, Parallelized Neural Network Training with Metaheuristics for Energy Fore-
casting in Buildings, 2024 (En revisión).
Estado:
En revisión.

160

Parallelized Neural Network Training with

Metaheuristics for Energy Forecasting in Buildings.

D. Criado-Ramóna,c,∗, L.G.B. Ruizb, Lorenzo Servadeic, Robert Willec, M.P.
Cuéllara, M.C. Pegalajara

aDepartment of Computer Science and Artificial Intelligence, University of Granada,
C/Periodista Daniel Saucedo Aranda s.n, 18014, Granada, Spain

bDepartment of Software Engineering, University of Granada, C/Periodista Daniel
Saucedo Aranda s.n, 18014, Granada, Spain

cChair for Design Automation, Technical University of Munich, School of Computation,
Information and Technology, Arcisstraße 21, 80333, Munich, Germany

Abstract

This research introduces an innovative methodology for simultaneously
training multiple neural networks in a collaborative and parallel fashion,
leveraging state-of-the-art metaheuristic algorithms implemented on CUDA
GPUs. The primary aim is to address the challenge of converging into local
optima while optimizing GPU resources for energy forecasting tasks, as the
low amount of input features per sample present in the energy forecast task
hinders the effective utilization of GPU devices. As such, this study imple-
ments and compares the most widely used gradient-based optimizer, ADAM,
with five different metaheuristics in four different neural network architec-
tures. Additionally, memetic variants of each metaheuristic, incorporating a
local search powered by the ADAM optimizer, were also studied. All models
were evaluated in terms of training time and mean square error with a pub-
licly available dataset that contains energy consumption and weather data
from several buildings in an Australian university.

Keywords: time series forecasting, energy, metaheuristic, GPU, parallel,
neural networks

∗Corresponding author at: c/Periodista Daniel Saucedo Aranda s.n, 18071, Granada,
Spain.

Email addresses: dcriado@ugr.es (D. Criado-Ramón), bacaruiz@ugr.es (L.G.B.
Ruiz), lorenzo.servadei@tum.de (Lorenzo Servadei), robert.wille@tum.de (Robert
Wille), manupc@ugr.es (M.P. Cuéllar), mcarmen@decsai.ugr.es (M.C. Pegalajar)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

161

1. Introduction.

Electricity has become one of the most relevant resources of our time. It
is present in a wide variety of electronic devices that we use on a daily basis,
such as phones, computers, heating/cooling systems, or illumination systems,
among many others. Being such a vital resource for human life, obtaining
ways to optimally produce and distribute this form of energy in a sustainable
and cost-efficient manner has become a global objective supported by many
governments and institutions [1].

In order to support this process, short-term load forecasting models are
frequently used, allowing plan makers to make a more informed decision.
These models still face many challenges as advances in technology can rad-
ically change the expected energy consumption. This can be seen in tech-
nologies such as self-consumption [2], flexible demand response [3], electric
vehicles [4], or energy communities [5]. Furthermore, sudden changes in con-
sumer behavior, such as confinement during the COVID-19 crisis [6], also
substantially alter the expected consumption profile. Thus, these models
should also be able to be re-trained quickly after enough data has been col-
lected to learn the new patterns, hence minimizing the errors in the forecast.

Over the last few decades, artificial intelligence (AI) researchers have
studied a wide variety of algorithms for energy forecasting tasks. Although
the earlier models mainly used statistical autoregressive models such as ARIMA
[7, 8], most recent works in the field make use of some kind of neural network
in their design, [9] with Long-Short Term Memory (LSTM) neural networks
and Convolutional Neural Networks (CNN) being the two most popular ar-
chitectures in recent years. Kuo and Huang [10] presented a deep learning
architecture using a deep neural network named “DeepEnergy”, composed
of three convolutional layers and a fully connected layer. The experiments
showed that this method outperforms a feed-forward neural network, an
LSTM and other machine learning models to forecast energy consumption in
Texas. Wang et al. [11] studied the use of different machine learning models
to forecast periodic time series of energy consumption. For this purpose, they
used the energy consumption of a refrigerator. The results showed the superi-
ority of Artificial Neural Networks (ANN) over other models with the LSTM

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

162

being the most prominent model. Sajjad et al. [12] proposed a deep learning
architecture that combines CNN and Gated Recurrent Unit layers to forecast
short-term energy consumption in buildings. This model outperformed other
neural networks, such as the Multi-Layer Perceptron (MLP), the LSTM and
a hybrid model of convolutional and LSTM layers. Mustaqeem et al. [13] pro-
posed an ensemble of different neural network architectures (CNN, Stacked
LSTM and bi-directional LSTM) to forecast household energy consumption,
providing better results than other hybrid models with neural networks. Rick
and Berton [14] proposed another hybrid architecture that incorporated the
use of auto-enconder in the CNN-LSTM hybrid model. The results showed
that it performed better than a Temporal Convolutional Network (TCN), a
combination of CNN and a recurrent neural network (RNN), but it was out-
performed by Prophet. Nazir et al. [15] evaluated the use of Temporal Fusion
Transformers to forecast energy consumption from London customers. The
results showed that their model worked better for that dataset than LSTM
and CNN models.

Nevertheless, although deep learning models featuring this kind of archi-
tectures are the most popular, there are also some cases in which simpler
architectures can provide a much better result [16, 17, 18]. This can be influ-
enced by many factors, such as the forecast horizon, the amount of training
data available, or the granularity of the data. A distinct feature of energy
consumption data is that it usually only uses a few variables, in many cases
just previous energy consumption, and beyond that, the other usual variables
that are frequently used are those related to the date and the temperature.
Although this represents a lower computational cost than the one required
for other fields (i.e., computer vision), there is usually not enough data to
use all of the GPU cores simultaneously, leading to an inefficient use of the
GPU due to the underuse of its computational resources. As such, in this
paper, we want to evaluate the use of alternative strategies to train neural
networks that may make better use of the GPU computational resources,
more specifically, metaheuristic algorithms.

The use of metaheuristic algorithms in neural network training has been
a topic of great interest in AI research over the past few decades [19, 20], as
these algorithms can be used to avoid falling in local optima or to find the
optimal hyperparameters for the model [9]. Energy forecasting papers that
use metaheuristics to find the optimal hyperparameters mainly seek to find

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

163

the optimal neural network configuration and some parameters that control
the training process (optimizer, learning rate). Bacanin et al. [21] evaluated
the use of Genetic Algorithms (GA) and Particle Swarm Optimization (PSO)
to select the input size, number of hidden neurons and the optimizer-related
hyperparameters in recurrent neural networks. Luo et al. [22] used a GA
to optimize the number of layers, hidden neurons, activation function, and
optimizer in a deep feedforward neural network. Luo and Oyedele [23] used
again a GA to optimize the number of layers, hidden units, dropout, and
learning rate in an LSTM neural network. Other works use metaheuristic
algorithms to avoid falling in local optima, thanks to their population-based
approaches and their balance of exploration and exploitation instead of the
mere exploitation done by gradient-based approaches. In [24], a comparison
of several metaheuristics was provided to train feed-forward ANNs. The
results showed that the Teaching-Learning based optimizer provided the best
results, although only a unique time series was used. Other comparisons of
a similar style have also been carried out in different works. Sahraei and
Çodur [25] compared the use of GA, PSO and Simulated Annealing to train
a feed-forward neural network. Other interesting approaches go beyond just
using metaheuristics and propose hardware-accelerated implementations to
train these models much faster. Ruiz et al. [26] proposed a parallel CPU
implementation of a memetic GA algorithm to train Elman’s recurrent neural
networks. Iruela et al. [27] proposed a parallel GPU implementation of the
NSGA-II algorithm to train a multilayer perceptron, allowing for a much
faster training time. However, even though this topic has been previously
studied, there is a large gap to be filled, as most works mainly focus on the
implementation of one specific metaheuristic algorithm for a specific neural
network. As such, this work aims to fill this gap by providing the following
contributions to the field.

• To the best of our knowledge, there is no previous work in which multi-
ple metaheuristics were compared while using the GPU to train them.

• Unlike previous works, our proposal makes use of Tensor Cores, newer
coprocessors available in newer NVIDIA GPUs that compute matrix
multiplications around 10 times faster than the CUDA cores used in
previous works.

• Unlike previous works that focused only on one architecture (MLP
or Elman), our work evaluates all metaheuristics in 4 different neural

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

164

network architectures (MLP, Elman, LSTM, CNN).

• In addition to GPU-accelerated implementations of the algorithms, we
also evaluated memetic versions of each of them using a local search
with ADAM [28], a gradient-based optimizer that combines adaptive
learning rates and momentum to efficiently converge.

• The publicly available dataset used for experimentation contains energy
consumption data from multiple buildings, unlike many previous works
that used only one time series.

The remainder of the paper is structured as follows. Section 2 presents the
background and the proposed methodology. Section 3 presents the dataset
used, defines the experiments and provides the parameters required to repro-
duce the experiments. Section 3 presents and discusses the results obtained
in all the buildings that were studied. Lastly, section 5 draws the final con-
clusions from our research.

2. Materials and Methods.

In Section 2, we present the theoretical background of neural networks
and metaheuristic algorithms. Subsequently, we introduce the GPU/CUDA
model, followed by a comprehensive explanation of the parallel implementa-
tion for both the neural networks and metaheuristic algorithms.

2.1. Neural Networks.

ANNs are Machine Learning models that feature multiple linked compu-
tational nodes (neurons), usually structured in layers. During the training
process, the weights and biases of the neural network are optimized. In this
study, four different types of neural network have been evaluated.

An MLP [29] is a simple and widely used ANN type consisting of an
input layer, one or more hidden layers, and an output layer. Each neuron
applies a weighted sum with all neurons from the previous layer followed by
an activation function f (Eq.1), introducing non-linearity in the model.

h = f(Wx+ b) (1)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

165

where h is a vector that contains all the hidden outputs, W is the matrix of
weights, x is the input data and b is the vector of biases.

An Elman neural network [30] is a type of RNN that includes a hidden
layer with feedback connections, allowing them to capture temporal depen-
dencies in sequential data. This feedback connection provides a copy of the
output of the hidden neuron that is used as an additional input for the hidden
neuron for the next element of the sequence. Equation 2 describes mathe-
matically the computation of the hidden output at time-step t (ht).

ht = g(Wxt + Uht−1 + b) (2)

where U are the weights for the recurrent conections and ht−1 is the hidden
output from the previous time-step.

An LSTM [31] is another type of RNN designed to overcome the van-
ishing gradient problem [32] present in other types of RNN like the Elman
neural network. LSTMs hidden neurons feature a hidden state ht, a cell state
ct and three gates used at each time-step: the input gate it, which controls
incoming information; the forget gate ft, which regulates the retention of
past information; and the output gate ot, which determines the output based
on the current input and past hidden states. Each gate and the cell state has
its own set of weights W , recurrent weights U , and biases b. This leads to a
much more sophisticated architecture that requires more data and time to be
trained but can provide excellent results. The LSTM unit can be described
mathematically as follows (⊗ denotes the element-wise product).

it = σ(Wixt + Uiht−1 + bi) (3)

ft = σ(Wfxt + Ufht−1 + bf) (4)

ot = σ(Woxt + Uoht−1 + bo) (5)

ct = ft · ct−1 + it ⊗ g(Wcxt + Ucht−1 + bc) (6)

ht = ot ⊗ g(ct) (7)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

166

A CNN [33] is a specialized deep learning architecture designed for image
and pattern recognition. Its distinctive feature lies in the use of the convo-
lutional operation between a subsection of the input data and a learnable
filter that acts as the weights for this architecture. In the forward pass, the
filter is continuously applied to submatrices x[i] of the input data by moving
the filter a fixed amount called “stride” until the image has been completely
finished (Eq. 8). Given that we were not working with image data, we used
its counterpart for time series, moving only along a 1D axis and ensuring that
no future data is leaked with causal padding [34]. Furthermore, in addition
to the convolutional layers, CNN architectures usually feature pooling layers
to downsample the augmented spatial dimensions through the use of aggre-
gation/reduction operators like the maximum or the average before using a
fully connected output layer.

h[i] = f(Wx[i] + b) (8)

2.2. Metaheuristic algorithms.

Metaheuristic algorithms are general optimization approaches usually in-
spired by natural processes that guide the search for the optimal solution
without any problem-specific knowledge. Thus, these algorithms try to ei-
ther minimize or maximize an objective function, called “fitness”, which for
the purposes of this study will be the neural network loss. Five different
metaheuristic algorithms were used to optimize the weights and biases of the
four neural network architectures studied. PSO was selected because it is
one of the most widely used metaheuristics and the other 4 were selected as
they are recently proposed algorithms that reported excellent results in their
corresponding papers.

PSO [35] is a heuristic optimization algorithm inspired by the social be-
havior of animals. In PSO, a population of potential solutions, represented
as particles, is initialized in a solution space. Each particle has a position and
velocity, which are adjusted iteratively (Eq. 9 and 10) to explore and exploit
the solution space. The movement of each particle is influenced by its own
historical best position (personal best) and the best position found by any
particle in the entire swarm (global best). This allows particles to balance
exploration (searching for new areas in the solution space) and exploitation
(refining around known good areas).

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

167

Vi(t+ 1) = w · Vi(t) + c1 · r1 · (Pi −Xi(t)) + c2 · r2 · (G−Xi(t)) (9)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (10)

where:

• Xi(t) is the i-th particle of the swarm at iteration t

• Vi(t) is the velocity of the i-th particle of the swarm at iteration t

• w is the inertia weight that controls the impact of the previous velocity.

• c1 and c2 are acceleration coefficients that control the influence of per-
sonal and global best positions, respectively.

• r1 and r2 are random values between 0 and 1.

• Pi is the personal best position of particle i.

• G is the global best position found by any particle in the swarm.

The Equilibrium Optimizer (EO) [36] is a metaheuristic optimization al-
gorithm inspired by the dynamics of mass balance in a control volume. Each
individual, called a concentration or particle, is updated each iteration ac-
cording to the equation for the conservation of mass in a control volume (Eq.
11). Additionally, a concentration pool is used to preserve the best solutions
found during the execution of the algorithm, which contains the four best
individuals found and an additional individual that is the average of the four
other individuals in the concentration pool.

−→
C =

−→
C eq + (

−→
C −−→

C eq) · −→F +

−→
G

−→
λ V

(1−−→
F) (11)

where:

• −→
C is the current individual.

• −→
C eq is a random individual from the concentration pool.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

168

• −→
λ is a random vector in [0, 1]

• −→
F is an exponential term based on

−→
λ that is increases with the number

of iterations up to 1.

• −→
G is the multiplication of

−→
F and vector with a random point for each

feature between
−→
C eq and

−→
C

• V is a constant that represents the volume (usually set to 1).

The Marine Predators Algorithm (MPA) [37] is a metaheuristic that is in-
spired by the widespread foraging strategy (Lévy and Brownian movements)
between ocean predators and their prey. This algorithm changes the up-
date strategy of each individual based on the number of iterations that have
passed. During the first third of iterations, the individuals are updated with
a Brownian movement between the current individual and the best individ-
ual. During the second third, half of the population is updated using a Lévy
movement and the second half is updated using another Brownian move-
ment weighted by a convergence factor that decreases over time. The Lévy
movement is used with the convergence factor for the last third of iterations.
Additionally, to avoid local optima, after each iteration 80 % of the popu-
lation moves in their immediate vicinity by adding a random value in their
range and the remaining 20 % does a longer jump,

The Whale Optimization Algorithm (WOA) [38] is an optimization tech-
nique inspired by the cooperative hunting behavior of humpback whales that
simulates the process of whales working together to encircle and capture prey.
The algorithm employs two main phases: the encircling prey phase and the
searching for prey phase. In the encircling prey phase, solutions (represent-
ing whales) adjust their positions to surround the best solution found so far
with a 50 % chance of using a shrinking mechanism (Eq. 12) and a 50 %
chance of using a spiral model (Eq. 13). In the searching for prey phase, the
solutions explore the search space based on the position of the best global
solution. These phases are driven by mathematical equations that model the
hunting behavior of whales.

−→
X (t+ 1) =

−→
X∗(t)−−→

A · −→D (12)

−→
X (t+ 1) =

−→
D′ · ebl · cos(2 · π · l) +−→

X∗(t) (13)

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

169

−→
X (t+ 1) =

−−−→
Xrand(t)−−→

A · −−−→Drand (14)

where:

• −→
X (t) is the individual at iteration t

•
−→
X∗(t) is the best individual found up to iteration t.

• −→
A is a random vector with a linearly decreasing range over the course
of the iterations.

•
−→
D′ is the absolute distance between the best individual and the current
individual.

• −→
D is the multiplication of

−→
D′ and a random vector in [0, 1].

• b is a constant that defines the shape of the spiral and l is a random
number in [−1, 1].

• −−−→
Xrand is a random whale from the population.

• −−−→
Drand is the equivalent of

−→
D using

−−−→
Xrand instead of the best individual.

Political Optimizer (PO) [39] is a global optimization algorithm that is
inspired by the multiple phases of politics. Unlike other algorithms, each
individual in the population has two roles: a party and a constituency. The
individual with the best fitness for each party and each constituency is des-
ignated as its leader. During each iteration, the political phases are run
sequentially. First, the election campaign phase is used to improve the fit-
ness of each individual prior to the election. This is done using a strategy
called recent past-based position updating strategy with the previous individ-
ual and the best solution. This is done twice (first with the party leader and
then with the constituency winner). Then, the party switching phase occurs
in which there is a random possibility that each member is exchanged with
the least fit member of another party. This probability linearly decreases
to zero over the course of the iterations. Then, the fitness values of the in-
dividual are adapted and, lastly, the parliamentary affairs step takes place.
In this step, for each constituency winner, a new individual is computed by
randomly taking another constituency winner and adding the absolute dis-
tance between the two weighted by a random vector in [−1, 1]. If the new
individual improves the fitness value, it replaces the previous one.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

170

Figure 1: A streaming multiprocessor and the CUDA memory hierarchy.

2.3. The GPU/CUDA model.

GPUs (Ghaphics Processing Units) are pieces of hardware that were ini-
tially designed to accelerate graphics computation in computers. In its archi-
tecture, they feature a large number of cores that operate at a slower latency
than CPU cores, making them exceptionally good in massively parallel tasks.
Due to this, they have become a key component in advancements in AI, as
they can significantly reduce the time required to train AI models.

CUDA (Compute Unified Device Architecture) is the acronym used to
name the architecture and general-purpose programming model of NVIDIA’s
graphics cards. A CUDA-capable GPU features a hierarchical structure of
memory and computational components. At its lowest level, the CUDA
computational model follows a Single Instruction Multiple Threads (SIMT)
model, where 32 contiguous CUDA cores (a “warp”) must execute the same
instruction simultaneously. Multiple warps are contained together in the mul-
tiple “streaming multiprocessors” available inside the GPU. Each streaming
multiprocessor can execute code independently, allowing concurrent execu-
tion of different GPU applications, since they contain their own CUDA cores,
registers, and cache memory, as can be seen in Figure 1, which shows the
structure of one of the 142 multiprocessors available in the GPU used and
the CUDA memory hierarchy. Additionally, newer GPU generations have
additional cores inside each multiprocessor for specific tasks, such as Tensor
Cores, designed to accelerate matrix multiplications and are extremely rele-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

171

vant in many AI algorithms. From a memory perspective, the GPU features
a connection to the motherboard memory through the PCIe connection, a
large but slow “global memory” and two levels of fast cache (L1 and L2).
The L2 cache, which is shared across all streaming multiprocessors, and the
L1 cache, a smaller but faster cache local to each streaming multiprocessor.

The CUDA programming model can be used either through some of its
specific-purpose libraries (i.e. cuBLAS for linear algebra operations) or by
directly writing GPU code through the C/C++ CUDA extension. In this
extension of C/C++, the GPU code is written in special functions called
“kernels” that contain the set of instructions to be executed by each thread
of the GPU. When the kernel is called, the programmer must indicate the
total number of threads to use by providing a number of blocks and a number
of threads per block. Each block will be executed in one of the streaming
multiprocessors, allowing threads within the same block to cooperate faster
as they can directly use the L1 cache and synchronization barriers local to
their streaming multiprocessors.

2.4. CUDA implementations and memory layout.

Most of the CUDA implementations done in this paper can be split into
three main implementation categories: Tensor Cores, map-style kernels and
reduction kernels.

• Tensor Core usage is done through the cuBLAS library and it is explic-
itly used to compute as fast as possible the matrix multiplication oper-
ators required in the forward pass and backward pass of the ANNs. An
important factor to take into account is that in order to get the most
benefit from Tensor Cores there are certain requirements in memory
alignment as otherwise loading the submatrix into the coprocessor may
require multiple reads, drastically reducing performance. As such, as it
will be shown later, all data structures had their dimensions padded to
the next multiple of 8, putting just enough zeros in the corresponding
ones to ensure that the padded data does not affect the results.

• Map-style kernels are simple kernels in which the function is applied
to all elements in a data structure (i.e., activation functions). In this

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

172

Figure 2: A visual scheme of the memory layout for a MLP architecture.

type of kernel, the computations for each element of the data structure
are done by one thread, allowing the GPU to use as many resources as
possible as long as the data structure is large enough. The most impor-
tant factor in this type of kernels is to make sure that adjacent threads
access adjacent positions in memory (“coallesced access”) as when a
thread requires a memory position, its warp will require a small chunk
of memory. Thus, having coalesced access will reduce the total num-
ber of memory operations requested by the warp, providing the fastest
results.

• Lastly, the third most frequent implementation category is reduction
kernels. Reduction kernels are kernels in which all threads cooperate
to compute an aggregation of results, usually a sum or an average of
elements in a data structure. For these types of kernels, warp-based
reductions were mainly used. In this approach, each warp should do an
independent reduction, and the kernel should start with each thread
of the warp doing its own aggregation in a register using coalesced ac-
cess to the data structure. Afterward, warp-intrinsic instructions can
be used to perform the reduction in the registers directly without the
need for memory access.

The memory layout depicted in figure 2 was used for the trainable pa-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

173

rameters regardless of the ANN and metaheuristic, making all metaheuristic
algorithms share the same representation for their individuals. In ANNs that
have recurrent weights, the recurrent weights are located between the hid-
den and the output weights. In this configuration, the dimensions of each
substructure, such as hidden weights and output weights, were adjusted to
the nearest multiple of 8 if they were not already a multiple. This strategic
padding is designed to optimize the utilization of Tensor Cores since their pri-
mary bottleneck lies in slow data transfer from GPU memory to the Tensor
Core. This padding, as specified in Section 2.1.11 of the cuBLAS documen-
tation [40], ensures that the submatrices loaded into the Tensor Cores are
read and written as fast as possible as they match the dimensions and pointer
alignments required for optimal performance.

Moreover, this memory layout is not just tailored for Tensor Cores; it also
aligns with the optimal memory structure for most metaheuristic operators,
as most of them will do map-style operations with one or two individuals.
Thus, having the features of the individuals adjacent in memory while each
thread computes one of those features while ensuring that adjacent threads
will access adjacent positions in memory (coalesced memory access), reduc-
ing the number of GPU memory accesses to the bare minimum.

2.5. ANN implementation details.

This section briefly describes the implementation carried out for each of
the neural network architectures studied. In all cases, the first step is to
prepare the dataset by adding the required padding and loading it into the
GPU memory. For the RNN, the dataset is loaded into memory making sure
that the data of all samples and features of a time-step is adjacent in the
GPU memory, ensuring coalesced access while processing each time step. In
the case of the CNNs, the input data is transformed once at the beginning
into a bigger matrix that allows us to express the convolution operation as
a single matrix multiplication. Afterwards, depending on the architecture
used, different approaches are taken. Figure 3 shows the strategy followed
for each architecture, where teal indicates Tensor Core operations, green in-
dicates map-style kernels, and pink indicates reduction kernels.

In the case of the MLP, once the dataset has been prepared, Tensor Cores
are used to compute the hidden weights with a map-style kernel afterward

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

174

Figure 3: Kernels and operations used for the forward pass of the ANNs in the GPU.

to compute the hidden output. Lastly, Tensor Cores are used again to com-
pute the final output and a reduction is applied to compute the fitness of all
neural networks. Due to the changes made in the preparation of the data
set, the CNN can use a procedure similar to the one used for the MLP, with
the exception of using a different activation function and a reduction for the
pooling operation.

In the case of the RNNs, both architectures feature a similar approach, as
we allow the GPU to compute asynchronously the operations for the time-
step inputs and the recurrent inputs. Furthermore, as it is common for
efficient computation in the GPU[41], all LSTM weights and biases from
the different gates were concatenated into one unique matrix, making both
schemes almost identical with the exception that the LSTM must not only
apply the activation function but rather do all element-wise operations in its

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

175

Figure 4: A flowchart of the kernels and methods use to implement each metaheuristic in
CUDA.

map-style kernel.

2.6. Metaheuristic implementation details.

Most of the metaheuristics algorithms mainly require map-style kernels,
since most of their operators update the features of an individual accord-
ing to some element-wise equation. Figure 4 presents a visual scheme of
the implementation details explained in the following, where r represents a
random number from a uniform distribution in [0, 1], green represents a map-
style kernel, red represents reduction kernels, yellow represents the use of the
forward pass presented in Section 2.5, and blue represents the use of other
CUDA libraries.

PSO features a algorithm that requires the computation of two equations
per generation and the use of a memory saving mechanism to preserve the
best solutions found by each individual. A generation starts will the random
values required computed with a map-style kernel. Then, Eqs. 9 and 10 are
computed with a map-style kernel for each one. Subsequently, the personal
best particle is updated with another map-style kernel, in which the per-
sonal best particle is updated if the fitness is better than the previous fitness

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

176

value. Afterwards, another map-style kernel is launched to update the data
structure that holds the personal best fitness, and, lastly, a reduction on the
personal best fitness is launched to find the index of the most fit individual
(the global best).

WOA has one of the simplest implementations as only one of the three
equations (Eqs. 12, 13 and 14) will be used on an individual based on random
values and some additional computations. Thus, a generation starts with a
map-style kernel that computes all random values. Afterwards, another map-
style kernel is launched, which will apply one of the equations depending on
the previously computed random values. Lastly, a reduction is used to find
the fittest individual of this generation, which replaces the previous one if it
is fitter.

The main feature of EO is the use of the candidate pool, a data structure
that preserves the four fittest individuals and another individual that is the
average of the previous four. In this algorithm, instead of launching four
reductions to find the fittest individual, the fastest GPU sorting algorithm
(RadixSort) is used to find them. Once found, a map-style kernel is launched
first to construct the candidate pool with the four fittest unique individu-
als found so far and and additional individual computed as the average of
the previous four. Afterwards, a memory saving mechanism similar to the
one used in PSO is applied. However, in this case, instead of an additional
structure, if the new individual does not improve its fitness, the individual
from the previous generation is restored. Then a random array is created to
assign to each individual one of the concentrations for (an integer from 0 to
4) and a map-style kernel is used to update all individuals in the population,
as they all use the same equation (Eq. 11).

MPA features a more complex strategy, as it requires multiple equations
to be computed and uses a memory saving mechanism twice. A generation
starts by finding the fittest individual, called “Elite” in this algorithm, and
using the same memory mechanism used in EO. Then, a slightly different
equation is applied to the population depending on the current phase. There
are three phases, one for each of the thirds of the generations used. During
the first phase, a Brownian movement update is performed in all individu-
als. During the second phase, the first half of the populations is updated
with a Brownian movement with a convergence factor, and the remaining

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

177

with a Lévy movement. In the last phase, all individuals are updated with a
Lévy movement with convergence factor. Each phase is implemented with its
own map-style kernel. Subsequently, the memory saving procedure is applied
again. After this, one of two equations is applied to all individuals of the gen-
eration based on a random number in [0, 1]. If the random number is below
the FADs parameter (0.2), a map-style kernel is used to explore positions
in proximity of each individual. In the other case, another map-style kernel
is used to make a larger movement. This movement is computed by taking
the distance between two randomly selected individuals. Thus, before the
computation of that kernel, we must compute two random permutations of
arrays containing indexes for the individuals. These are computed by apply-
ing RadixSort on a randomly generated array and using the sorted indexes
as the desired permutations.

PO is the last and most complex implementation, as it has several phases
and one of its components has data dependencies that force sequential exe-
cution. The election campaign, that updates the position of each individual
according to a set of equations is done with a simple map-style kernel. After-
ward, the party switching starts in which each individual may be randomly
swapped with the least fit individual of another randomly selected party,
which creates a data dependency. Thus, this part is mainly done by the
CPU with the GPU only using a map-style kernel to exchange those indi-
viduals and their fitness values. The next step is the government formation,
that designates the most fit individuals per party and constituency as leaders.
This is done with a reduction-style kernel, as it implies finding the indexes
with the best fitness value. The last step is the parliamentary affairs. In this
step, each constituency leader is attracted to a randomly selected individual,
which is implemented in a map-style kernel. Lastly, if it improves the fitness
value, the individuals and their fitness values are updated with two more
map-style kernels.

2.7. Memetic algorithms.

In addition to the metaheurisitc algorithms, a memetic algorithm was also
implemented for each of the proposed metaheurisitcs. Memetic algorithms
are optimization approaches that blend metaheuristic algorithms with lo-
cal search strategies applied to each individual in the population after the
metaheuristic operators. Thus, memetic algorithms provide a combination of

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

178

Figure 5: A summary of the memetic algorithm used for all metaheuristics.

global exploration and local exploitation that aims to enhance the efficiency
in finding optimal solutions. The general scheme for the memetic algorithm
used can be seen in Figure 5, where the local search is performed with back-
propagation with the ADAM optimizer and applied to each individual of the
population. However, in PO, since it has a much higher population size, only
eight individuals do the locar search with ADAM as otherwise it does not
have enough evaluations to converge.

The backpropagation process is implemented according to each neural
network architecture, using Tensor Cores for every operation that could be
expressed as a matrix multiplication, map-style kernels to apply derivatives of
activation functions and update the weights and biases; and reduction-style
kernels to aggregate the gradients from all the samples processed.

3. Experiments.

3.1. Dataset description and preprocessing.

The UNICON data set [42] was used to carry out all the experiments.
This open-source dataset provides information about electricity, gas and en-
ergy consumption from 71 buildings across 5 different campuses from La
Trobe University. It also contains weather information for each campus. For
the purposes of our experimentation, electricity consumption was the main
variable studied, and the temperature was used as an exogenous variable in
the forecast. The observations are provided with a granularity of 15 minutes
with the first observations recorded dating from 2018 and the dataset still
receives periodic updates to introduce current observations.

The preprocessing pipeline used for the experimentation started by se-
lecting a subset of the large number of buildings available in the dataset. We

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

179

selected the 10 buildings with the largest amount of data available before
applying any preprocessing. These were the buildings with id 1, 2, 3, 9, 10,
12, 14, 41, 57 and 60. Subsequently, all missing values in each building were
filled via linear interpolation. Then, each building was treated as an inde-
pendent experiment and the data from each building was partitioned into a
first 70 % for training and validation and the remaining 30 % for test. The
first partition was divided into the first 70 % for training and the remaining
30 % for validation. Lastly, data from each building was scaled from the
original range to the [0, 1] range using min-max normalization.

3.2. Comparison methodology and experimental setup

The forecasting task in which all algorithms were evaluated was to predict
the next 24 hours starting at 0:00 (next 96 values). After a preliminary trial-
and-error study in TensorFlow, the optimal number of previous time-step
used as inputs for the forecast (“lags”) was set to 96 (1 day of data) and the
optimal activation functions were set to: sigmoid for the MLP, the default
hyperbolic tangent for the Elman and LSTM neural networks and ReLU for
the CNN. Additionally, the optimal CNN architecture was a 1D convolu-
tional layer with a filter size of 4 (1 hour) and causal padding, followed by
a MaxPooling layer for downsampling. In all architectures, the temperature
was also taken as an exogenous variable used as input for the neural network.

In the metaheuristic and memetic algorithms, all weights and biases were
randomly initialized using a uniform distribution in [−1, 1]. As it is common
in the literature, to make the comparison fair between the metaheuristic and
memetic algorithms, the algorithms were limited to a maximum number of
evaluations of the objective function (30000).

Additionally, a baseline with the ADAM optimizer using the GPU in Ten-
sorFlow, was also compared. Since it uses a completely different approach
than the metaheuristic algorithms, two different versions were evaluated.
ADAM (T) will refer to a time-limited execution of ADAM that will stop
if after processing a batch is spent more time than the slowest memetic or
metaheuristic algorithm for that complexity (same number of hidden neurons
and neural network architecture). This will be our main focus of compari-
son, as it allows us to compare the use of ADAM and the other algorithms
in the time-restricted cases that are of our interest, such as energy trading,

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

180

Table 1: List of parameters for each algorithm.

Algorithm Parameter Values

EO

Population size
a1
a2
gp

30
2
1
0.5

PSO

Population size
c1
c2
W

30
1.5
2.5
0.6

PO
n
λ

8
1 to 0 linearly decreasing

WOA Population size 30

MPA
Population size
FADs
P

25
0.2
0.5

ADAM learning rate 0.001

demand-response or better grid management through quicker adaptation to
sudden changes.

For the sake of completion, we also incorporated into our experimentation
a much slower unlimited version of ADAM, ADAM (U), which will run as
long as needed to guarantee obtaining the optimal results and will be evalu-
ated in subsection 4.5. Thus, after setting the parameters via trial-and-error,
ADAM (U) was set to run for up to 100 epochs with a batch size of 32 with
Early Stopping if the validation loss does not improve during 5 epochs. This
provided enough epochs to guarantee convergence and helped mitigate any
overfitting issues. The weights and biases in the ADAM baselines were ini-
tialized with the default methods used in TensorFlow.

All random seed generators were initialized with the seed 1996 and most of
the metaheuristic algorithms parameters were initialized to values suggested
by their authors as can be seen in table 1.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

181

3.3. Performance metrics.

In addition to the time used to measure the speed at with each algorithm
trained the neural networks, we used the Mean Squared Error (MSE) as the
main quality metric. The MSE Error is an error metric frequently used in
time-series forecasting and regression problems that gives a lower error with
more accurate predictions and penalizes more larger errors. Mathematically,
the MSE is computed as indicated in Eq. 15.

MSE =
1

N
·

N∑

i=1

(ŷi − yi)
2 (15)

where ŷi is the forecasted value, yi is the expected value and N is the
sample size.

4. Results.

4.1. Results for MLP.

Table 2 outlines the results for the most studied neural network archi-
tecture, the MLP. This is also one of the most interesting architectures for
time-restricted scenarios as it is usually extremely fast to train. As can be
seen in the table, all metaheuristic and memetic algorithms provide more
accurate results than ADAM (T) for this architecture as they use all evalu-
ations in less than a second of execution time.

It is noteworthy that, in general, the memetic variants consistently yield
improvements over their plain metaheuristic counterparts. This enhancement
is particularly pronounced due to the challenges posed by the large dimen-
sionality of neural network parameters. This is not only caused by the hidden
size but also by a substantial number of 192 inputs (comprising a day’s tem-
perature and energy consumption) and 96 outputs (predicting the energy
consumption for the next day), which contribute to this high-dimensional
search space in which metaheuristic algorithms may struggle with a limited
number of evaluations. As a result, the memetic versions of the algorithm
exhibit the ability to navigate this issue thanks to the faster convergence
provided by the gradient in their local search with ADAM.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

182

Table 2: MSE of the best model for each algorithm with the MLP neural network.

ADAM (T) EO
EO
(M)

PO
PO
(M)

PSO
PSO
(M)

WOA
WOA
(M)

MPA
MPA
(M)

Building 1 0.1525 0.0228 0.0163 0.0262 0.0225 0.0907 0.0182 0.0259 0.0130 0.0247 0.0149
Building 2 0.2195 0.0683 0.0631 0.0874 0.0841 0.0973 0.0930 0.0873 0.0597 0.0805 0.0640
Building 3 0.9950 0.0943 0.0779 0.1086 0.0952 0.1354 0.0896 0.0993 0.0686 0.1029 0.0762
Building 9 4.1139 1.2727 1.2584 1.5582 1.4000 2.8323 1.4204 1.4510 1.2185 1.3282 1.2629
Building 10 0.2715 0.0604 0.0443 0.0709 0.0609 0.1689 0.0561 0.0779 0.0374 0.0689 0.0434
Building 12 2.1475 0.6025 0.5370 0.6965 0.6557 1.2935 0.6728 0.6850 0.5106 0.6443 0.5251
Building 14 96.4436 7.1636 4.9282 10.0465 7.4062 30.8749 9.1622 9.7539 4.4831 9.4809 5.1748
Building 41 303.9650 75.7309 46.5444 102.9650 84.4418 167.1970 68.0945 105.9240 39.0502 75.0839 43.3393
Building 57 189.2728 64.7420 57.1301 71.1379 67.9385 122.1030 64.7620 68.2810 56.5122 69.0475 56.2067
Building 60 64.6287 14.4333 9.9276 18.6978 15.2892 32.5796 16.3400 18.0924 10.1407 15.6756 10.4867

Among all algorithms studied, the memetic version of WOA provided the
best results in 9 out of the 10 buildings studied, making the combination
of the memetic version of WOA and the MLP architecture the ideal choice
whenever a model needs to be retrained in near real time as it only takes
between 200 and 400 milliseconds.

4.2. Results for Elman.

Table 3 presents the Mean Squared Error (MSE) results for the Elman
neural network architecture. Interestingly, this table reveals a distinct trend
from previous results in which ADAM (T) outperforms in most cases, ex-
cept for a building where EO achieves the optimal solution. Several factors
contribute to this shift. First, ADAM (T) improves its results due to a signif-
icantly longer available time compared to the previous architecture. Training
times for the other algorithms range from 5 to 25 seconds, depending on the
hidden size and their use of a local search. The prolonged training time
is attributed to three primary reasons. Second, recurrent neural networks
(RNNs) exhibit data dependencies at each time step. Consequently, after
processing a time step during fitness updates and local search in memetic
algorithms, the GPU must wait for all threads to complete computations be-
fore moving on to the next time step, as computations rely on outputs from
previous time steps. Third, for gradient computation in RNNs, intermediate
outputs for each lag must be stored in memory. Otherwise, a complete for-
ward pass would need to be recomputed for each time step, which would be
even slower. In our scenario, this involves using memory structures that are
96 times larger than those used for intermediate outputs in the MLP. This
leads to unavoidable increased cache fails and more frequent memory access,
which also contribute to slowing down the training time.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

183

Table 3: MSE of the best model for each algorithm with the Elman neural network.
ADAM (T) EO

EO
(M)

PO
PO
(M)

PSO
PSO
(M)

WOA
WOA
(M)

MPA
MPA
(M)

Building 1 0.0179 0.0215 0.0223 0.0250 0.0228 0.0502 0.1708 0.0263 0.0272 0.0247 0.0272
Building 2 0.0222 0.0801 0.0834 0.0836 0.0842 0.1204 1.1937 0.0879 0.0450 0.0852 0.0794
Building 3 0.0828 0.0916 0.1693 0.0967 0.0945 0.2195 0.3246 0.0991 0.1050 0.1028 0.1471
Building 9 1.0427 1.3774 1.5582 1.4790 1.4877 2.0521 4.7434 1.5224 1.5946 1.4581 1.4095
Building 10 0.0480 0.0542 0.1232 0.0785 0.0699 0.1986 0.3843 0.0793 0.2010 0.0643 0.0826
Building 12 0.3855 0.6168 0.6733 0.6767 0.6636 1.2869 1.5782 0.7392 0.9590 0.6772 0.6505
Building 14 4.9845 6.1370 7.8514 8.0572 6.2002 13.8479 61.5268 10.6940 14.8050 7.2791 9.8535
Building 41 42.3671 75.1708 110.0340 103.6900 95.9156 147.4200 165.8190 104.5710 149.7400 80.3469 101.3340
Building 57 39.5450 66.1417 75.8945 73.8273 69.5798 109.9010 253.5510 68.6031 93.4327 67.0413 73.9232
Building 60 12.7456 12.3497 30.6357 19.6034 13.2708 34.2278 71.8002 18.0991 140.4670 13.5665 21.7705

Despite the prolonged training time, a significant observation in this ar-
chitecture is that many memetic algorithms exhibit poorer performance com-
pared to plain metaheuristic algorithms, with EO being the best algorithm
among them. This discrepancy is primarily attributed to certain individuals
in the population encountering a common issue seen in RNNs, known as the
vanishing/exploding gradient problem. This occurs when a large gradient is
obtained, and during its back-propagation through many time steps (96 in
our case), the gradient becomes so large that it messes up the training pro-
cess as changes in the weights and biases are radically large. On the contrary,
the vanishing gradient issue arises when the initial gradient is close to 0, and
after backpropagation through all the layers, the result approaches 0 to the
extent that the parameters are no longer updated.

The ADAM baseline in TensorFlow avoids these problems better by utiliz-
ing a specific initialization technique called ”orthogonal initialization.” Com-
bined with the fact that ADAM relies only on the gradient and does not have
any additional operators, this initialization method helps mitigate the risk
of exploding and vanishing gradients. However, in the case of metaheuristic
algorithms, which are general-purpose optimizers, each individual is often ini-
tialized with a uniform distribution within the feature boundaries to provide
a good exploration of the search space. This, coupled with the randomness
and distances used to update the population in metaheuristic operators, can
lead to solutions that are prone to suffer from these issues.

4.3. Results for LSTM.

Table 4 presents the results for the LSTM architecture. Once again,
the ADAM (T) baseline provides the best results in all buildings except two,
where the memetic version of WOA provides the best results. This RNN uses

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

184

4 times more parameters in their weights and biases, making it even slower
and making more prominent the issues that slowed down the computation
for the Elman neural network. Therefore, this neural network architecture
training time ranges from 6 to 60 seconds, making it the slowest model stud-
ied.

Table 4: MSE of the best model for each algorithm with the LSTM neural network.
ADAM (T) EO

EO
(M)

PO
PO
(M)

PSO
PSO
(M)

WOA
WOA
(M)

MPA
MPA
(M)

Building 1 0.0141 0.0213 0.0200 0.0259 0.0219 0.0383 0.0235 0.0261 0.0153 0.0241 0.0187
Building 2 0.0181 0.0763 0.0638 0.0872 0.0806 0.1007 0.0859 0.0881 0.0636 0.0788 0.0718
Building 3 0.0740 0.0867 0.0765 0.0993 0.0876 0.1379 0.0938 0.0998 0.0731 0.1040 0.0807
Building 9 0.9163 1.3036 1.2216 1.4722 1.3912 1.7719 1.3722 1.5027 1.2168 1.3616 1.2363
Building 10 0.0401 0.0522 0.0475 0.0715 0.0615 0.1137 0.0647 0.0806 0.0416 0.0619 0.0470
Building 12 0.3516 0.5975 0.5636 0.6651 0.6315 0.8037 0.6431 0.6901 0.5273 0.6694 0.5814
Building 14 4.2946 6.0683 5.1973 8.0262 5.8133 17.7587 6.0916 11.9455 4.5317 7.4815 5.1898
Building 41 37.0246 64.2720 56.8547 102.7780 83.9311 126.1610 82.2944 105.1680 41.8600 74.2065 60.2474
Building 57 38.8106 65.9136 65.3246 69.5488 66.4045 83.4990 70.4836 66.9036 61.2468 69.2005 66.1799
Building 60 11.4519 11.2965 10.1134 17.5005 12.7316 34.7839 12.8154 18.1153 9.1721 12.6371 10.1535

Despite being more intricate in terms of dimensionality, the memetic ver-
sion of the algorithms once more improved the results provided by the plain
metaheuristic algorithms. This is most likely due to the fact that LSTM
were specifically designed to avoid the vanishing gradient issue, incoporat-
ing a cellstate that backpropagates its error with an additive computation.
Among the metaheuristic and memetic algorithms, the memetic version of
WOA consistently provided the best results.

4.4. Results for CNN.
The last architecture studied was the CNN, with the results reported in

Table 5. This architecture is slightly more complex that the MLP but not
as complex as the RNNs, requiring from 1 to 10 seconds to train. In this
architecture we do not obtain results as conclusive as in 7 of the buildings the
best model is obtained by ADAM (T) and the best model for the remaining
3 with a memetic algorithm. However, unlike previous architectures, where
the memetic version of WOA provided the best results, the memetic version
of EO was the one capable of providing the best models in all but 1 cases
among the metaheuristic and memetic algorithms.

4.5. Complexity, Training Time and ADAM (U).
Table 6 presents a final comparison showing the best model from the

best baseline and the best metaheuristic/memetic algorithm in each build-

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

185

Table 5: MSE of the best model for each algorithm with the CNN.
ADAM (T) EO

EO
(M)

PO
PO
(M)

PSO
PSO
(M)

WOA
WOA
(M)

MPA
MPA
(M)

Building 1 0.0187 0.0221 0.0195 0.0283 0.0239 0.0578 0.0422 0.0260 0.0202 0.0250 0.0217
Building 2 0.0248 0.0696 0.0658 0.0908 0.0856 0.1601 0.1032 0.0813 0.0703 0.0752 0.0738
Building 3 0.0844 0.0920 0.0753 0.1049 0.0959 0.2828 0.1671 0.1003 0.797 0.1071 0.0865
Building 9 1.0541 1.3022 1.3084 1.4679 1.3235 2.2643 2.2450 1.6610 1.3301 1.3436 1.2758
Building 10 0.0454 0.0490 0.0438 0.0728 0.0651 0.1296 0.0923 0.0824 0.0502 0.0571 0.0475
Building 12 0.3526 0.5989 0.5635 0.6865 0.6242 1.1053 0.8213 0.7347 0.5822 0.6641 0.5886
Building 14 4.1853 5.9486 5.2000 8.8136 7.0973 24.0159 24.7880 9.3669 5.9751 7.3363 5.4215
Building 41 42.6789 62.3352 58.9237 104.0910 83.7230 163.4590 120.0730 107.7000 65.4303 67.6651 64.9378
Building 57 45.0313 63.1711 62.3635 70.1989 67.7822 129.0730 110.3870 68.7804 61.7044 67.4540 63.3745
Building 60 13.2025 12.8121 11.7933 18.8552 16.0079 33.6695 24.3865 18.0139 13.1238 13.2932 13.0161

Table 6: Best baseline and metaheuristic model for each building. Best algorithm per
building in bold.

Algorithm Architecture Hidden neurons MSE Training time (ms)

Building 1
ADAM (U) MLP 75 0.0127 8740
WOA (M) MLP 74 0.0131 261

Building 2
ADAM (T) LSTM 88 0.0181 25105
WOA (M) Elman 48 0.0450 14762

Building 3
ADAM (U) Elman 82 0.0736 34161
WOA (M) MLP 74 0.0686 262

Building 9
ADAM (T) LSTM 84 0.9163 39984
WOA (M) LSTM 23 1.2168 24474

Building 10
ADAM (U) MLP 33 0.0398 6370
WOA (M) MLP 80 0.0374 319

Building 12
ADAM (U) LSTM 32 0.3513 18878
WOA (M) MLP 31 0.5106 296

Building 14
ADAM (U) LSTM 47 4.1168 27122
WOA (M) MLP 30 4.4830 290

Building 41
ADAM (T) LSTM 80 37.0246 25066
WOA (M) MLP 53 39.0502 208

Building 57
ADAM (T) Elman 75 37.5450 13310
MPA(M) MLP 75 56.5122 177

Building 60
ADAM (U) LSTM 49 10.3054 34066
WOA (M) LSTM 40 9.1721 25140

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

186

ing. This table also includes the hidden size, training time, and results of
the models trained with ADAM(U), allowing us to compare the complexity
and training time with all approaches. In 7 of the 10 buildings studied, one
of the ADAM baselines provided the best results, and the remaining 3 best
models were provided by the memetic version of the WOA algorithm. In
fact, this algorithm provided the best model per building in all cases, with
the exception of building 57, where the best results were provided by the
memetic version of MPA. With the training time being displayed in the ta-
ble, we can also notice the massive difference in training speed between the
ADAM baseline and the memetic algorithms, making them the ideal choice
if we quickly need to retrain our model due to sudden changes, particularly
in combination with the MLP architecture, as training one of these models
takes less than 400 milliseconds. However, training some of the most complex
models with ADAM could take 39984 milliseconds, as happened in Building
3, or even more.

Finally, it is crucial to highlight that memetic-based approaches often
excel when applied to neural networks with lower complexity, encountering
challenges as the dimensionality increases. This phenomenon is evident in
Figure 6, which illustrates the evolution of MSE of ADAM (U) and WOA
(M) with respect to the number of hidden neurons within the MLP architec-
ture.

Notably, the memetic model consistently outperforms the ADAM model
for the initial 20 to 30 neurons, with certain exceptions, such as building 60,
where WOA (M) almost always performs better than ADAM. This under-
scores the ability of memetic models to navigate and surpass local optima
that may constrain ADAM, rendering them a useful tool in scenarios where
lower complexity models are preferred, as could happen in edge computing
cases due to the limited hardware available. However, as complexity and
the search space increases, it becomes apparent that the number of evalua-
tions employed in memetic algorithms might be insufficient to reach optimal
convergence. In light of this, exploring strategies to solve this issue may be
interesting for future works, such as allowing more evaluations as the hidden
size grows or giving more evaluations to the local search procedure.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

187

Figure 6: Evolution of MSE with hidden neurons in the first two and last two building
studied.

5. Conclusion.

The present study aimed to evaluate the use of GPU-accelerated meta-
heuristic algorithms to train the weights and biases of different neural net-
work architectures for energy forecasting purposes. In order to do so, efficient
CUDA implementations of four ANN architectures and five popular and re-
cent metaheuristic algorithms were presented in this paper as well as memetic

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

188

variants of them, incorporating a local search powered by ADAM. All of these
algorithms and baselines with the GPU implementations of TensorFlow were
compared in 10 buildings of a publicly available energy forecasting task in
terms of MSE and training time.

In about 70 % of the cases studied, the use of metaheuristic or memetic
algorithms did not improve the results obtained by ADAM while in the re-
maining 30 % the memetic algorithms provided better and faster results. EO
was the metaheuristic algorithm that provided the best results and WOA (M)
was the best memetic option. In general, the memetic option of WOA (M)
was superior to other approaches with the exception of the Elman neural
network, where vanishing/exploding gradient issues appeared and EO pro-
vided the best results; and with the CNN architecture, where the memetic
option of EO (M) provided the best results. In general, the best use case for
memetic algorithms was in the MLP architecture, as it was capable of find-
ing models of similar or better accuracy in an extremely short time, making
them an ideal option for edge computing, systems that benefit from real-time
retraining, or systems that work under time restrictions.

Future works may include the parallelization and evaluation of other
metaheuristic algorithms or design strategies to improve the performance
of this kind of algorithms in larger search spaces.

Declaration of competing interests

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

CRediT authorship contribution statement

D. Criado-Ramón: Conceptualization, Methodology, Software, Writing
- Original Draft, Writing - Review & Editing L.G.B. Ruiz: Conceptualiza-
tion, Methodology, Validation, Writing - Original Draft, Writing - Review
& Editing Lorenzo Servadei: Methodology, Resources, Writing - Review
& Editing, Supervision. Robert Wille: Methodology, Resources, Writing
- Review & Editing, Supervision. M.P. Cuéllar: Methodology, Resources,

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

189

Writing - Review & Editing M.C. Pegalajar: Conceptualization, Method-
ology, Writing - Review & Editing, Supervision, Project Administration,
Funding acquisition.

Acknowledgments

The authors acknowledge financial support from “Ministerio de Ciencia e
Innovación” (Spain) (Grant PID2020-112495RB-C21 funded by MCIN/ AEI
/10.13039/501100011033).

Abbreviations

ANN Artificial Neural Network
CNN Convolutional Neural Network
EO Equilibrium Optimizer
GA Genetic Algorithm
MLP Multi-Layer Perceptron
MPA Marine Predators Algorithm
LSTM Long-Short Term Memory
PSO Particle Swarm Optimization
PO Political Optimizer
WOA Whale Optimization Algorithm

References

[1] S. Safarzadeh, M. Rasti-Barzoki, and S. R. Hejazi, “A review of opti-
mal energy policy instruments on industrial energy efficiency programs,
rebound effects, and government policies,” Energy Policy, vol. 139,
p. 111342, 2020.

[2] J. Dehler, D. Keles, T. Telsnig, B. Fleischer, M. Baumann, D. Fraboulet,
A. Faure-Schuyer, and W. Fichtner, “Chapter 27 - self-consumption
of electricity from renewable sources,” in Europe’s Energy Transition
(M. Welsch, S. Pye, D. Keles, A. Faure-Schuyer, A. Dobbins, A. Shiv-
akumar, P. Deane, and M. Howells, eds.), pp. 225–236, Academic Press,
2017.

[3] N. O’Connell, P. Pinson, H. Madsen, and M. O’Malley, “Benefits and
challenges of electrical demand response: A critical review,” Renewable
and Sustainable Energy Reviews, vol. 39, pp. 686–699, 2014.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

190

[4] A. S. Al-Ogaili, T. J. Tengku Hashim, N. A. Rahmat, A. K. Ramasamy,
M. B. Marsadek, M. Faisal, and M. A. Hannan, “Review on schedul-
ing, clustering, and forecasting strategies for controlling electric vehi-
cle charging: Challenges and recommendations,” IEEE Access, vol. 7,
pp. 128353–128371, 2019.

[5] D. Frieden, A. Tuerk, C. Neumann, S. d’Herbemont, and J. Roberts,
“Collective self-consumption and energy communities: Trends and chal-
lenges in the transposition of the eu framework,” COMPILE, Graz, Aus-
tria, 2020.

[6] I. Shaikh, “Impact of covid-19 pandemic on the energy markets,” Eco-
nomic Change and Restructuring, vol. 55, no. 1, pp. 433–484, 2022.

[7] J. W. Taylor, “Triple seasonal methods for short-term electricity demand
forecasting,” European Journal of Operational Research, vol. 204, no. 1,
pp. 139–152, 2010.

[8] B. Nepal, M. Yamaha, A. Yokoe, and T. Yamaji, “Electricity load fore-
casting using clustering and arima model for energy management in
buildings,” Japan Architectural Review, vol. 3, no. 1, pp. 62–76, 2020.

[9] Y. Wei, X. Zhang, Y. Shi, L. Xia, S. Pan, J. Wu, M. Han, and X. Zhao,
“A review of data-driven approaches for prediction and classification
of building energy consumption,” Renewable and Sustainable Energy
Reviews, vol. 82, pp. 1027–1047, 2018.

[10] P.-H. Kuo and C.-J. Huang, “A high precision artificial neural networks
model for short-term energy load forecasting,” Energies, vol. 11, no. 1,
2018.

[11] J. Q. Wang, Y. Du, and J. Wang, “Lstm based long-term energy con-
sumption prediction with periodicity,” Energy, vol. 197, p. 117197, 2020.

[12] M. Sajjad, Z. A. Khan, A. Ullah, T. Hussain, W. Ullah, M. Y. Lee,
and S. W. Baik, “A novel cnn-gru-based hybrid approach for short-term
residential load forecasting,” IEEE Access, vol. 8, pp. 143759–143768,
2020.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

191

[13] Mustaqeem, M. Ishaq, and S. Kwon, “Short-term energy forecasting
framework using an ensemble deep learning approach,” IEEE Access,
vol. 9, pp. 94262–94271, 2021.

[14] R. Rick and L. Berton, “Energy forecasting model based on cnn-lstm-ae
for many time series with unequal lengths,” Engineering Applications of
Artificial Intelligence, vol. 113, p. 104998, 2022.

[15] A. Nazir, A. K. Shaikh, A. S. Shah, and A. Khalil, “Forecasting energy
consumption demand of customers in smart grid using temporal fusion
transformer (tft),” Results in Engineering, vol. 17, p. 100888, 2023.

[16] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and
H. Abu-Rub, “A novel stacked generalization ensemble-based hybrid
lgbm-xgb-mlp model for short-term load forecasting,” Energy, vol. 214,
p. 118874, 2021.

[17] A. Manno, E. Martelli, and E. Amaldi, “A shallow neural network ap-
proach for the short-term forecast of hourly energy consumption,” En-
ergies, vol. 15, no. 3, 2022.

[18] D. Criado-Ramón, L. Ruiz, and M. Pegalajar, “Electric demand fore-
casting with neural networks and symbolic time series representations,”
Applied Soft Computing, vol. 122, p. 108871, 2022.

[19] A. Blanco, M. Delgado, and M. Pegalajar, “A genetic algorithm to ob-
tain the optimal recurrent neural network,” International Journal of
Approximate Reasoning, vol. 23, no. 1, pp. 67–83, 2000.

[20] A. Blanco, M. Delgado, and M. Pegalajar, “A real-coded genetic algo-
rithm for training recurrent neural networks,” Neural Networks, vol. 14,
no. 1, pp. 93–105, 2001.

[21] N. Bacanin, L. Jovanovic, M. Zivkovic, V. Kandasamy, M. Antonijevic,
M. Deveci, and I. Strumberger, “Multivariate energy forecasting via
metaheuristic tuned long-short term memory and gated recurrent unit
neural networks,” Information Sciences, vol. 642, p. 119122, 2023.

[22] X. Luo, L. O. Oyedele, A. O. Ajayi, O. O. Akinade, H. A. Owolabi, and
A. Ahmed, “Feature extraction and genetic algorithm enhanced adaptive

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

192

deep neural network for energy consumption prediction in buildings,”
Renewable and Sustainable Energy Reviews, vol. 131, p. 109980, 2020.

[23] X. Luo and L. O. Oyedele, “Forecasting building energy consumption:
Adaptive long-short term memory neural networks driven by genetic
algorithm,” Advanced Engineering Informatics, vol. 50, p. 101357, 2021.

[24] G. Phatai, S. Chiewchanwattana, and K. Sunat, “A comparative of
neural network with metaheuristics for electricity consumption forecast
modelling,” in 2018 22nd International Computer Science and Engineer-
ing Conference (ICSEC), pp. 1–4, 2018.

[25] M. A. Sahraei and M. K. Çodur, “Prediction of transportation energy de-
mand by novel hybrid meta-heuristic ann,” Energy, vol. 249, p. 123735,
2022.

[26] L. Ruiz, R. Rueda, M. Cuéllar, and M. Pegalajar, “Energy consumption
forecasting based on elman neural networks with evolutive optimiza-
tion,” Expert Systems with Applications, vol. 92, pp. 380–389, 2018.

[27] J. Iruela, L. Ruiz, M. Pegalajar, and M. Capel, “A parallel solution
with gpu technology to predict energy consumption in spatially dis-
tributed buildings using evolutionary optimization and artificial neural
networks,” Energy Conversion and Management, vol. 207, p. 112535,
2020.

[28] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[29] L. B. Almeida, “Multilayer perceptrons,” in Handbook of Neural Com-
putation, IOP Publishing Ltd and Oxford University Press, 1997.

[30] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
pp. 179–211, 03 1990.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

193

[32] S. Hochreiter, “The vanishing gradient problem during learning recur-
rent neural nets and problem solutions,” International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, vol. 06, no. 02, pp. 107–
116, 1998.

[33] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a con-
volutional neural network,” in 2017 International Conference on Engi-
neering and Technology (ICET), pp. 1–6, 2017.

[34] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” 2016.

[35] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4,
pp. 1942–1948 vol.4, 1995.

[36] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, “Equi-
librium optimizer: A novel optimization algorithm,” Knowledge-Based
Systems, vol. 191, p. 105190, 2020.

[37] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Ma-
rine predators algorithm: A nature-inspired metaheuristic,” Expert Sys-
tems with Applications, vol. 152, p. 113377, 2020.

[38] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances
in Engineering Software, vol. 95, pp. 51–67, 2016.

[39] Q. Askari, I. Younas, and M. Saeed, “Political optimizer: A novel socio-
inspired meta-heuristic for global optimization,” Knowledge-Based Sys-
tems, vol. 195, p. 105709, 2020.

[40] NVIDIA, “cuBLAS.” https://docs.nvidia.com/cuda/cublas/, 2023.
Accessed: 2024-11-01.

[41] J. Appleyard, “Optimizing recurrent neural networks
in cudnn 5.” https://developer.nvidia.com/blog/

optimizing-recurrent-neural-networks-cudnn-5/, 2016. Ac-
cessed: 2024-11-01.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

194

[42] H. Moraliyage, N. Mills, P. Rathnayake, D. De Silva, and A. Jennings,
“Unicon: An open dataset of electricity, gas and water consumption
in a large multi-campus university setting,” in 2022 15th International
Conference on Human System Interaction (HSI), pp. 1–8, 2022.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

195

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

6.7. A Novel Non-Intrusive Load Monitoring Algo-

rithm for Unsupervised Disaggregation of Hou-

sehold Appliances.

Referencia:
D. Criado-Ramón, L.G.B. Ruiz, J.R.S. Iruela, M. C. Pegalajar, A Novel Non-Intrusive
Load Monitoring Algorithm for Unsupervised Disaggregation of Household Appliances,
Information, Volume 15, 87, 2024, ISSN 2078-2489
Estado:
Publicado
Factor de impacto:
3.1
Categoŕıa:
Segundo cuartil JCR.
Posición 120/251 en la categoŕıa “Computer Science, Information Systems”
DOI:
https://doi.org/10.3390/info15020087

Revista:
Information
Editorial:
MDPI

196

Citation: Criado-Ramón, D.; Ruiz,

L.G.B.; Iruela, J.R.S.; Pegalajar, M.C. A

Novel Non-Intrusive Load

Monitoring Algorithm for

Unsupervised Disaggregation of

Household Appliances. Information

2024, 15, 87. https://doi.org/

10.3390/info15020087

Academic Editors: Sanjay Misra,

Robertas Damaševičius and

Bharti Suri

Received: 11 January 2024

Revised: 31 January 2024

Accepted: 1 February 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Novel Non-Intrusive Load Monitoring Algorithm for
Unsupervised Disaggregation of Household Appliances
D. Criado-Ramón 1,* , L. G. B. Ruiz 2 , J. R. S. Iruela 3 and M. C. Pegalajar 1

1 Department of Computer Science and Artificial Intelligence, University of Granada, 18014 Granada, Spain;
mcarmen@decsai.ugr.es

2 Department of Software Engineering, University of Granada, 18014 Granada, Spain; bacaruiz@ugr.es
3 Grupo Cuerva, 18194 Churriana de la Vega, Spain; rsanchezi@cuervaenergia.com
* Correspondence: dcriado@ugr.es

Abstract: This paper introduces the first completely unsupervised methodology for non-intrusive
load monitoring that does not rely on any additional data, making it suitable for real-life applications.
The methodology includes an algorithm to efficiently decompose the aggregated energy load from
households in events and algorithms based on expert knowledge to assign each of these events to
four types of appliances: fridge, dishwasher, microwave, and washer/dryer. The methodology was
developed to work with smart meters that have a granularity of 1 min and was evaluated using the
Reference Energy Disaggregation Dataset. The results show that the algorithm can disaggregate the
refrigerator with high accuracy and the usefulness of the proposed methodology to extract relevant
features from other appliances, such as the power use and duration from the heating cycles of a
dishwasher.

Keywords: non-intrusive load monitoring; disaggregation; unsupervised; household; energy

1. Introduction

Electricity usage profiling is essential for understanding and improving household
energy consumption patterns [1]. By identifying individual appliance-level energy us-
age patterns, homeowners can make informed decisions on how to manage their energy
use, reduce their carbon footprint, and save money on energy bills [2]. The identification
of appliance consumption has been successfully applied to improve the householders’
quality of life in many different scenarios, such as scheduling the use of large consump-
tion appliances [3], detecting appliance malfunctions [4], or providing early preventive
maintenance [5], among many others.

Two main groups of approaches have been previously studied to monitor each ap-
pliance’s load: intrusive and non-intrusive. Intrusive load monitoring relies on installing
additional sensors at the plug level per appliance cost, being more accurate at the expense
of a higher price due to the high number of plug-level sensors that need to be manufactured,
installed, and maintained. On the other hand, non-intrusive load monitoring (NILM) only
relies on the aggregated load measured at the user connection point with their energy
distributor. As such, NILM approaches use algorithms and machine learning models to
disaggregate the appliance-level load from the aggregated load, leading to a less accurate
but more cost-effective approach. Since the NILM problem was first formulated in the
mid-1980s [6,7], many researchers have proposed different alternatives to address this
challenge. These proposals can be categorized into four different groups depending on the
strategies used to disaggregate the energy load.

State-based approaches, such as Hidden Markov Models (HMMs) [8–10], used to be
the state of the art in NILM as there was a clear relationship between each appliance state
and the hidden states of the model. HMMs are probabilistic methods that require providing
(or learning) a finite set of states, the probabilities of transitioning from one state to another,

Information 2024, 15, 87. https://doi.org/10.3390/info15020087 https://www.mdpi.com/journal/information

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

197

Information 2024, 15, 87 2 of 18

and the probability of producing an output from the hidden state. The major limitation of
this type of approach is its high computational cost, making it too expensive and slow for
real-life applications.

Dictionary-based approaches (sparse coding) [11–14] aim to find data representation
based on the linear combination of a dictionary and a representation where the difference
between the aggregated time series and the linear combination is minimized, each element
of the dictionary represents a different appliance, and the representation is sparse enough.
This minimization problem is NP-Hard and several methods can be used to solve it, such as
K-SVD or LASSO. These approaches can provide good results for supervised scenarios and
can be fast depending on the formulation and algorithms used to solve the optimization
problem. However, they have some major limitations in unsupervised scenarios since the
number of appliances for the dictionary must be provided previously.

Neural network-based approaches, with all the advancements made in deep learn-
ing over the past decade, have become the state of the art for supervised NILM. These
approaches are notoriously slow for training and require large amounts of data but can
provide fast and accurate disaggregation once trained. Several different neural network
architectures have recently been developed for this purpose, such as the use of U-Net [15],
combinations of convolutional neural networks and Long Short-Term Memory [16], and
generative adversarial networks [17].

Lastly, event-based approaches [18–20] detect the use of an appliance by detecting
events where appliances have been switched on or off or changed to a state with con-
siderably different power consumption, usually by edge detection. Once the events are
identified, rising and falling power edges are generally matched and some features of
each event are extracted (power, duration, etc.). Then, a classification (supervised) or
clustering (unsupervised) algorithm is used to map each event to an appliance. These
approaches are generally fast due to the dimensionality reduction provided by the event
extraction. However, they can only detect appliances with consistent energy consumption
in each operational state. The algorithm proposed in this paper is of this kind. A notable
methodology of this kind that has seen some success, even in unsupervised scenarios, is
the use of Graph Signal Processing (GSP) [21–23]. In GSP, a graph is constructed, with each
node representing a rising/falling edge of the original time series. Then, the mathematical
properties of the graph representation and a weighted adjacency matrix are exploited to
convert the problem at hand (clustering, classification) into an unconstrained quadratic
optimization problem that minimizes the total graph variation.

Although numerous approaches to NILM have been suggested, the majority of them
face limitations that hinder practical deployment in real-life applications. A predominant
proportion of these NILM algorithms depend on supervised methods, necessitating energy
companies to acquire and install multiple dedicated sensors (one for each appliance) in
every customer’s household. Despite offering highly accurate disaggregation results, this
approach compromises the intended non-intrusiveness of NILM algorithms and imposes
significant economic burdens due to the substantial costs associated with the installation
of these devices. Unsupervised approaches, which eliminate the need to install sensors,
have barely been studied, with just a few algorithms proposed for this task. However,
even these algorithms have some major limitations for real-life applications. For example,
in [21], even though the disaggregation is conducted in an unsupervised manner, several
hyperparameters must be tuned manually in order to do so, making it unfeasible to
deploy it on a large scale. Furthermore, the disaggregated signals are not mapped to
their corresponding appliance, requiring, according to the authors, an additional step
comparing each event with a signature database, which defeats the unsupervised purpose
of the algorithm. Another example of this situation is found in [24], where the energy
is disaggregated according to an energy consumption survey in Central Europe and a
probabilistic HMM framework of household activities. Not only may we be concerned with
whether the results of the survey are truly transferable to other regions but this approach

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

198

Information 2024, 15, 87 3 of 18

requires some supervised information that is not provided to the energy distributor, such
as the number of occupants, their age, and the nominal power of the appliances.

As such, the work proposed in this paper presents a new algorithm for low-rate
unsupervised NILM that provides the following main contributions to the field:

• It is the first unsupervised algorithm that can be deployed in any residential household
without any additional supervised information;

• We propose a novel event detection algorithm capable of recognizing some instances
in which rising/falling edges overlap;

• The NILM algorithm provides its disaggregation through knowledge of the common
use of appliances and how they work, making it easy to understand but limiting the
number of appliances it can detect.

The rest of the document is structured as follows. The proposed methodology is
detailed in Section 2. Section 3 provides an analysis of the results obtained. And finally, the
conclusions of our work are gathered in Section 4

2. Materials and Methods

The Materials and Methods section presents our algorithm and the methodology used
to validate it. The section starts by formally defining the problem at hand and an overview
of our algorithm. Afterward, a subsection presents our event detector and the following
one presents the expert knowledge used to associate each event with an appliance. Lastly,
the methodology used to validate the proposed algorithm is presented.

2.1. NILM Problem Formulation

Let Pti be the total household’s active power consumption at timestep ti. The task at
hand is to find, for each timestep ti, the contribution of each appliance a, towards the total
consumption power:

Pti = ∑
a∈A

Pat i + nati

where A is the set of all appliances in the household and n is the random noise provided
by measurement errors and any undetected appliances. Furthermore, after disaggregating
each signal, the algorithm should label each independent signal with its corresponding
appliance (fridge, dishwasher, microwave, etc.).

2.2. General Overview of Our Algorithm

Figure 1 represents the general methodology of our algorithm. Since the algorithm
proposed in this paper is an event-based method, its first step is to find substantial active
power consumption. In order to do so, the time series is differentiated by one time step
and only the values that surpass a threshold in absolute value are preserved. These values
represent the falling (negative) and rising (positive) edges that will be matched in the next
step to define the events. After the edges are extracted, the greedy algorithm presented in
Section 2.3 is used to match them, obtaining all the consumption events. Then, we leverage
the knowledge of the pattern uses and general known signatures of the fridge, dishwasher,
washing/dryer, and microwave in Section 2.4.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

199

Information 2024, 15, 87 4 of 18Information 2024, 15, x FOR PEER REVIEW 4 of 19

Figure 1. Flowchart of the proposed algorithm.

2.3. Event Detection
One of the most important and challenging steps in any event-based NILM algorithm

is to accurately match the rising and falling edges to accurately describe each event. The
proposed algorithm will work iteratively over the time series rising edges, alternating two
phases that can create events in each iteration, denominated matching and pruning.

2.3.1. Matching Phase
The matching phase will try to create an event using the rising edge of the current

iteration. All falling edges prior to the next rising edge are taken into consideration to
create an event. The event can be created if a valid match is found between the rising edge
and one or more falling edges. A valid match implies that the increase in power of the rising
edge is ±25% of the decrease in power of the falling edge(s). When a valid match is found,
the implied rising and falling edges are marked as used and their corresponding events
are added to the algorithm’s output. Since there will be situations in which multiple valid
matches are possible, the matches are always evaluated in the following order (Figure 2).
First, we assess whether the first falling edge is a valid match (Figure 2a). Second, we eval-
uate whether any combination of one or more falling edges is a valid match. If there are
multiple valid matches in the latter case, we select the one that has the smallest difference
in total power increase and decrease from the rising and falling edges involved. This can
be seen in Figure 2b, where one rising edge is matched with two falling edges to create
different events, and in the second rising edge of Figure 2c. Lastly, if there is no falling
edge available before the next rising edge (first rising edge in Figure 2c) or no valid match
is found, the algorithm will add the current rising edge to a pending list that will be man-
aged later in the pruning phase.

Figure 1. Flowchart of the proposed algorithm.

2.3. Event Detection

One of the most important and challenging steps in any event-based NILM algorithm
is to accurately match the rising and falling edges to accurately describe each event. The
proposed algorithm will work iteratively over the time series rising edges, alternating two
phases that can create events in each iteration, denominated matching and pruning.

2.3.1. Matching Phase

The matching phase will try to create an event using the rising edge of the current
iteration. All falling edges prior to the next rising edge are taken into consideration to
create an event. The event can be created if a valid match is found between the rising edge
and one or more falling edges. A valid match implies that the increase in power of the rising
edge is ±25% of the decrease in power of the falling edge(s). When a valid match is found,
the implied rising and falling edges are marked as used and their corresponding events
are added to the algorithm’s output. Since there will be situations in which multiple valid
matches are possible, the matches are always evaluated in the following order (Figure 2).
First, we assess whether the first falling edge is a valid match (Figure 2a). Second, we
evaluate whether any combination of one or more falling edges is a valid match. If there are
multiple valid matches in the latter case, we select the one that has the smallest difference
in total power increase and decrease from the rising and falling edges involved. This can
be seen in Figure 2b, where one rising edge is matched with two falling edges to create
different events, and in the second rising edge of Figure 2c. Lastly, if there is no falling
edge available before the next rising edge (first rising edge in Figure 2c) or no valid match is
found, the algorithm will add the current rising edge to a pending list that will be managed
later in the pruning phase.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

200

Information 2024, 15, 87 5 of 18
Information 2024, 15, x FOR PEER REVIEW 5 of 19

(a) (b)

(c)

Figure 2. Examples of events created in the matching phase. (a) Match between consecutive edges,
(b) Match with multiple falling edges, (c) No falling edge available after rising edge.

2.3.2. Pruning Phase
The pruning section will be executed after the matching section only if there is any

edge in the pending rising list. This section will try to match older rising edges from the
pending rising list with unused falling edges and will prune any old rising edge that is no
longer useful, even if no match was found for it. We use two different pruning mecha-
nisms. The first one aims to avoid events that are too long as it is unlikely that those events
actually occurred. We have set this limit to be 2 h for lower consumption events (below
450 W) and 10 h for the others. The second pruning mechanism (Figure 3a) will prune a
rising edge if the total consumption becomes too low (below 25% of its power increase) to
create a reasonable event. In both cases, a last chance of matching before finally deleting
the rising edge is provided but only taking into account any unused falling edge prior to
the point in the time series that caused the pruning. Matching rising edges from the pend-
ing rising list is similar to the rules provided in the matching section; although, some
tweaks are required. First, we will always evaluate the pending rising edges in a Last In,
First Out (LIFO) manner. Second, for each pending rising edge, we will first evaluate
whether one of the unused falling edges can be used to create an event. Furthermore, if
there is only one pending rising edge pending that should be pruned and one unused
falling edge before its pruning point (Figure 3b), we allow a slightly larger ±30% difference
in power consumption between edges as, otherwise, neither of them will be used. Third,
if no match is found, we will assess whether the sum of the consecutive rising edges from

Figure 2. Examples of events created in the matching phase. (a) Match between consecutive edges,
(b) Match with multiple falling edges, (c) No falling edge available after rising edge.

2.3.2. Pruning Phase

The pruning section will be executed after the matching section only if there is any edge
in the pending rising list. This section will try to match older rising edges from the pending
rising list with unused falling edges and will prune any old rising edge that is no longer
useful, even if no match was found for it. We use two different pruning mechanisms. The
first one aims to avoid events that are too long as it is unlikely that those events actually
occurred. We have set this limit to be 2 h for lower consumption events (below 450 W)
and 10 h for the others. The second pruning mechanism (Figure 3a) will prune a rising
edge if the total consumption becomes too low (below 25% of its power increase) to create
a reasonable event. In both cases, a last chance of matching before finally deleting the
rising edge is provided but only taking into account any unused falling edge prior to the
point in the time series that caused the pruning. Matching rising edges from the pending
rising list is similar to the rules provided in the matching section; although, some tweaks
are required. First, we will always evaluate the pending rising edges in a Last In, First
Out (LIFO) manner. Second, for each pending rising edge, we will first evaluate whether
one of the unused falling edges can be used to create an event. Furthermore, if there is
only one pending rising edge pending that should be pruned and one unused falling edge
before its pruning point (Figure 3b), we allow a slightly larger ±30% difference in power
consumption between edges as, otherwise, neither of them will be used. Third, if no match
is found, we will assess whether the sum of the consecutive rising edges from the pending

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

201

Information 2024, 15, 87 6 of 18

list (up to the one currently being evaluated) can be matched with a unique falling edge
(Figure 3c). Lastly, we evaluate if the rising edge can be matched with multiple falling
edges, as conducted in the matching section. The pruning procedure is repeated as long as a
pending rising edge is removed from the pending rising list. Once this procedure finishes,
the algorithm continues iterating to the next rising edge and applying the matching section.

Information 2024, 15, x FOR PEER REVIEW 6 of 19

the pending list (up to the one currently being evaluated) can be matched with a unique
falling edge (Figure 3c). Lastly, we evaluate if the rising edge can be matched with multi-
ple falling edges, as conducted in the matching section. The pruning procedure is repeated
as long as a pending rising edge is removed from the pending rising list. Once this proce-
dure finishes, the algorithm continues iterating to the next rising edge and applying the
matching section.

(a) (b)

(c)

Figure 3. Examples of events created in the pruning phase. (a) Pruning rising edge, (b) Additional
match threshold, (c) Multiple rising edges with one falling edge.

2.4. Appliance Detection
Once the events have been extracted by the event detector, the next step is to associate

each event to an appliance. Our algorithm is capable of detecting 4 appliances: fridges;
dishwashers; and appliances that must preserve a specific high temperature, such as the
clothes dryer and the microwave. The following sub-sub-sections present the expert
knowledge used to create an algorithm to detect each of these appliances.

2.4.1. Fridge Detection
Any food refrigeration appliance works according to the same principles of cooling

through evaporation [25]. This process is controlled by a thermostat that will start the
cooling process whenever the temperature detected is too hot and stop it once the desired
temperature has been reached. This makes food refrigeration appliances be active period-
ically, even when there is no human activity. This is clearly displayed, among other ideas,

Figure 3. Examples of events created in the pruning phase. (a) Pruning rising edge, (b) Additional
match threshold, (c) Multiple rising edges with one falling edge.

2.4. Appliance Detection

Once the events have been extracted by the event detector, the next step is to associate
each event to an appliance. Our algorithm is capable of detecting 4 appliances: fridges;
dishwashers; and appliances that must preserve a specific high temperature, such as
the clothes dryer and the microwave. The following sub-sub-sections present the expert
knowledge used to create an algorithm to detect each of these appliances.

2.4.1. Fridge Detection

Any food refrigeration appliance works according to the same principles of cooling
through evaporation [25]. This process is controlled by a thermostat that will start the
cooling process whenever the temperature detected is too hot and stop it once the desired
temperature has been reached. This makes food refrigeration appliances be active periodi-
cally, even when there is no human activity. This is clearly displayed, among other ideas, in
Figure 4, where the daily load signature of two refrigerators from the tracebase dataset [26]

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

202

Information 2024, 15, 87 7 of 18

is downsampled from 1-s to 1-min intervals. We can observe how transients can affect
the NILM process in the upper plot. Transients (in this context) are situations in which
an appliance very briefly consumes more or less power when it is transitioning from an
operational steady state to another (for example, the fridge controller starting or finishing
the refrigeration cycle). This situation is manageable for our proposal as the event detection
algorithm will generally divide these situations into two different events. In the lower plot,
we can also observe that there are several cycles that are longer than usual. This is expected
behavior whenever the household occupants frequently open the fridge door [27], making
the interior hotter and requiring more time to reach the programmed temperature.

Information 2024, 15, x FOR PEER REVIEW 7 of 19

in Figure 4, where the daily load signature of two refrigerators from the tracebase dataset
[26] is downsampled from 1-second to 1-minute intervals. We can observe how transients
can affect the NILM process in the upper plot. Transients (in this context) are situations in
which an appliance very briefly consumes more or less power when it is transitioning
from an operational steady state to another (for example, the fridge controller starting or
finishing the refrigeration cycle). This situation is manageable for our proposal as the
event detection algorithm will generally divide these situations into two different events.
In the lower plot, we can also observe that there are several cycles that are longer than
usual. This is expected behavior whenever the household occupants frequently open the
fridge door [27], making the interior hotter and requiring more time to reach the pro-
grammed temperature.

Figure 4. Load signature from two refrigerators during a day (dev_76C07C AND dev_D32131) taken
from the tracebase dataset.

Algorithm 1 is used to disaggregate the fridge from the aggregated signal. The de-
fault values proposed for each parameter of the algorithm are available in Table 1. The
algorithm starts by extracting all events that do not overlap, are below the maximum
power consumption allowed for the fridge, and last a reasonable amount of time for a
fridge cycle. By looking at non-overlapping events, we aim to detect those cycles when
there is no activity at home; thus, there should be less variance between cycles. If enough
of these cycles are found, we take the median of their events’ power and duration and use
them to initially mark any event that is in a range around the median power and has a

Figure 4. Load signature from two refrigerators during a day (dev_76C07C AND dev_D32131) taken
from the tracebase dataset.

Algorithm 1 is used to disaggregate the fridge from the aggregated signal. The
default values proposed for each parameter of the algorithm are available in Table 1. The
algorithm starts by extracting all events that do not overlap, are below the maximum power
consumption allowed for the fridge, and last a reasonable amount of time for a fridge
cycle. By looking at non-overlapping events, we aim to detect those cycles when there is
no activity at home; thus, there should be less variance between cycles. If enough of these
cycles are found, we take the median of their events’ power and duration and use them to
initially mark any event that is in a range around the median power and has a reasonable
cycle length compared to the fridge events (Lines 1–9). Furthermore, we include three
optimizations to improve the labeling of fridge events. These are the following:

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

203

Information 2024, 15, 87 8 of 18

• If there are any situations in which two events start or finish simultaneously, the other
edge is one minute apart, and the sum of power respects the rules for length and
duration described previously, we also mark them as a fridge event (Line 10). This is
undertaken to manage possible transients at the end of the cycle;

• The second optimization (Line 11) allows the selection of an event with a slightly
higher difference in power consumption if only one suitable event is found in any
instance in which too much time has passed between consecutive fridge events;

• Lastly, the third optimization (Lines 12–16) manages situations in which multiple
fridge events have been found overlapping with each other, preserving those that are
more likely to be the real ones.

Algorithm 1. Fridge detection and labeling optimizations

Input: eventList, Pf ridgemax
, t f ridgemin

, t f ridgemax
, n f ridgemin

, p f ridge, p f ridgeextra

Output: Most frequent program
{

Pcycle1, tcycle1, Pcycle2, tcycle2, tbetween } found.

1: nonOverlappingEvents = Extract from eventList all events that do not overlap with any
other event.

2: For event e in nonOverlappingEvents:
3: If Pe ≤ Pfridemax

and t f ridgemin
≤ te ≤ t f ridgemax

:
4: Append event e to validEvents
5: If size (validEvents) ≥ n f ridgemin

:
6: Pf ridge = median (validEvents.P); t f ridge = median (validEvents.t);
7: Else:
8: return None (fridge was not found)
9: fridgeEvents = all events from nonOverlappingEvents that last t f ridgemin

≤ te ≤ t f ridgemax

and consume Pf ridge ·
(

1 − p f ridge

)
≤ Pe ≤ Pf ridge ·

(
1 + p f ridge

)

10:Add to fridgeEvents all events that either start or finish simultaneously; their sum and
duration are between the boundaries described in the previous line and do not overlap
with a previous fridgeEvent.

11: If the time between two fridgeEvents is longer than the median and there is only one event
that can be a fridge event if p f ridge in Line 9 was increased by p f ridgeextra , we add it

12:For each group of fridgeEvents g that overlap:
13: If size(g) == 2:
14: Keep the element with the closest duration to t f ridge
15: Else:
16: Keep the combination of events with the closest energy (duration multiplied by the event

power) to the median cycle energy (Pf ridge · t f ridge)
17:Return fridgeEvents

Table 1. List of all hyperparameter default values.

Hyperparameter Value Explanation

Pf ridgemax
450 W Maximum power of events used for fridge detection

t f ridgemin
7 min Minimum length of each fridge cycle

t f ridgemax
90 min Maximum length of each fridge cycle

n f ridgemin
100 Minimum number of non-overlapping fridge events to consider it detected

p f ridge 0.25 Maximum percentual threshold for fridge events
p f ridgeextra 0.05 Additional threshold for fridge events if too much time has passed

Pdishmin
750 W Minimum power consumption for dishwasher events

tdishmin
10 min Minimum length of each cycle of dishwashing programs

tdishmax 90 min Maximum length of each cycle of dishwashing programs
ndishmin

5 Minimum number of times the dishwashing program must be detected
ndishmaxcycle

5 Maximum number of similar dishwashing cycles allowed in one program
pdish 0.25 Maximum percentual threshold for dishwashing cycles power
tdi f f 3 min Maximum time difference between new events and the detected dishwashing program

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

204

Information 2024, 15, 87 9 of 18

Table 1. Cont.

Hyperparameter Value Explanation

Pspikemin
750 W Minimum power of events for a spike-based appliance

tnextmax 7 min Maximum time between two consecutive spike events
nspikesmin

5 Minimum number of full spike-based events to detect a spike-based appliance
nconsecutivemin 6 Minimum number of consecutive spikes to consider it a full spike-based event

pspikes 0.25 Percentual difference allowed between a spike-based appliance’s event
tmicrowave 7 min Maximum length of microwave events
nmicrowave 10 Minimum number of times the microwave must be detected
pmicrowave 0.1 Percentual difference allowed between microwave events

Pmicrowavemin 600 W Minimum power of events for microwave detection
Pmicrowavemax 2000 W Maximum power of events for microwave detection

2.4.2. Dishwasher Detection

The dishwasher is another appliance that can be detected relatively easily if the events
are detected accurately; although, our approach will only detect the two main power
consumption events of a dishwashing program. Figure 5 shows the signature of different
programs from four dishwashing appliances: dev_B81D04, dev_995BAC, and dev_B82F81
from the tracebase dataset; and one from House 1 of the Reference Energy Disaggregation
Dataset (REDD) [28]. It should be noted that even though the fourth signature seems harder
to detect, thanks to the capability of our method to disaggregate multiple events that start or
finish simultaneously, two events will also be detected in this case (20–50 min and 70–90 min).

Information 2024, 15, x FOR PEER REVIEW 11 of 19

Figure 5. Load signatures from four different dishwashers taken from the tracebase dataset and
REDD.

2.4.3. Other Thermostat-Based Appliances
Another common signature found in the aggregated signal downsampled to 1 min is

the presence of multiple contiguous spikes of energy of short durations, on many occa-
sions with a starting cycle longer than the spikes. This is a common situation for many
heat-based appliances that require one start cycle to reach the desired temperature and
then have additional cycles to maintain the temperature within reasonable ranges. Appli-
ances, such as clothes dryers, washing machines, irons, or ovens, present this type of sig-
nature [30], making it extremely difficult to differentiate them without any user-provided
feedback. Figure 6 illustrates this situation for load signatures from an oven, an iron, and
a clothes dryer. The same clothes dryer is displayed with a 1-minute and 1-second granu-
larity and displays one of the additional challenges that low-granularity sensors have with
this type of signature as multiple spikes can appear as a unique cycle or may be completely
missing for this signature.

Algorithm 3 finds the most frequent power for any spike-based appliance. The algo-
rithm starts by iterating over all events that have not been assigned to any appliance that
has consumed at least a minimum amount of power (Lines 1–5). Then, we iterate over all
other events that start after the end of the previous event and add them to the spikes chain
if they are within a range of the original event power consumption (Lines 6–11). This pro-
cess ends when too much time has passed without a new spike. Then, we add the sequence
to the list of valid sequences if the number of consecutive spikes exceeds a minimum
threshold (Lines 12–13). For comparative purposes, in the rest of the paper, we have as-
sumed that the most frequently used appliance of this style is the washing machine or a

Figure 5. Load signatures from four different dishwashers taken from the tracebase dataset and
REDD.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

205

Information 2024, 15, 87 10 of 18

These two larger events correspond to the instances in which the dishwasher draws
more power for heating purposes. A traditional dishwashing cycle consists of four different
stages: prewashing, washing, rinsing, and drying. Most of the power consumption (the two
events our algorithm looks for) comes from heating the water during the washing phase
and heating fresh water again during the rinsing phase [29]. Depending on the model and
program, additional events of large power consumption may be found; although, in most
cases, they will have at least these two. Furthermore, in most dishwashers, the duration of
these cycles is controlled by a timer. As such, every time the same dishwasher program is
used, we should expect that these large consumption events and the time between both of
them should always last the same.

The identification of the main cycles of the most frequent dishwashing program used
is described in Algorithm 2. This algorithm takes, as input, the events found by the event
detector that are still not labeled and the hyperparameters that control it (the default values
for it are provided in Table 1). The algorithm starts by filtering out events that consume too
little power or are unreasonably short or long to be one of the dishwasher cycles (Lines 1–4).
Then, we also filter out events with similar power that appear too many times in a cycle
as it is extremely likely that they are related to another appliance, such as a large freezer
(Lines 5–6). Lastly, we compute all pairs of events that meet the restrictions (Lines 7–12)
and group them (Lines 13–22), preserving only the most prevailing group if it appears at
least a minimum number of times. Once the most frequent program has been found, the
dishwashing events are labeled by repeating the algorithm from Lines 1 to 12 and marking
all sequences of events that are at most in the range of ±pdish in power and ±tdi f f in time
from the respective features from the most frequent dishwashing program found.

Algorithm 2. Dishwasher program detection

Input: eventList, Pdishmin
, tdishmin

, tdishmax , ndishmin
, ndishmaxcycle

, pdish, tdi f f

Output: Most frequent dishwashing program { Pcycle1, tcycle1, Pcycle2, tcycle2, tbetween

}
.

1: validList = [] (empty list)
2: For event e in eventList:
3: If Pe ≥ Pdishmin

and tdishmin
≤ te ≤ tdishmax :

4: Append e to validEvents

5:
Add to each event a new variable “count” that counts the number of validEvents in a
± pdish · 100% range that happen in less than an hour

6: Remove all events e with count equal or superior to ndishmaxcycle

7: validTuples = []
8: For event e1 in eventList:
9: For event e2 in eventList: (only events that start after the end of e1)
10: tbetween = start of e2− end of e1
11: If (tdishmin

≤ tbetween ≤ tdishmax and pe1 · (1 − pdish) ≤ pe2 ≤ pe1 · (1 + pdish)):
12: Append the tuple (Pe1 , Pe2 , te1 , te2 , tbetween, 1) to validTuples
13: groupsFound = []
14: For Pe1 , Pe2 , te1 , te2 , tbetween, n in validTuples:
15: If size(groupsFound) == 0:
16: Append tuple (P e1

, Pe2 , te1 , te2 , tbetween, n
)

to groupsFound

17: Else:
18: For Pge1

, Pge2 , tge1 , tge2 , tgbetween, n in groupsFound:

19:
If cycle powers Pe1 , Pe2 are in ± pdish · 100% range of Pge1

, Pge2 and
times tge1 , tge2 , tgbetween have at most a difference of ± tdish minutes with
te1 , te2 , tbetween :

20:
Update Pge1

, Pge2 , tge1 , tge2 as the mean of all previous validTuples in the
group and increase ng by 1.

21: break

22:
Return the mean per feature of the group from groupsFound with higher n or nothing if
n < ndishmin

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

206

Information 2024, 15, 87 11 of 18

2.4.3. Other Thermostat-Based Appliances

Another common signature found in the aggregated signal downsampled to 1 min is
the presence of multiple contiguous spikes of energy of short durations, on many occasions
with a starting cycle longer than the spikes. This is a common situation for many heat-based
appliances that require one start cycle to reach the desired temperature and then have
additional cycles to maintain the temperature within reasonable ranges. Appliances, such
as clothes dryers, washing machines, irons, or ovens, present this type of signature [30],
making it extremely difficult to differentiate them without any user-provided feedback.
Figure 6 illustrates this situation for load signatures from an oven, an iron, and a clothes
dryer. The same clothes dryer is displayed with a 1-min and 1-s granularity and displays
one of the additional challenges that low-granularity sensors have with this type of signa-
ture as multiple spikes can appear as a unique cycle or may be completely missing for this
signature.

Information 2024, 15, x FOR PEER REVIEW 13 of 19

Figure 6. Load signature from an oven from the REDD and an iron and clothes dryer from tracebase.

2.4.4. Microwave Detection
The last appliance we will disaggregate is the microwave oven. The microwave oven

has become a staple appliance in most modern households. It is frequently used not only
for cooking but also for quickly heating milk or water, reheating food, or heating pre-
made food. Since it is mostly used in short periods, in many cases, even less than 1 min,
there will be instances in which the microwave will not be present in the aggregated signal
even though it was used. However, the microwave usually presents a signal that is de-
noted by a short spike in power consumption. A typical microwave oven for a household
can draw a wide range of power while working depending on the power used to heat the
food and the volume of the microwave. Therefore, in order to detect the microwave, we
look at any short event (up to 𝑡௠௜௖௥௢௪௔௩௘ minutes) that is yet to be labeled in a range be-
tween 𝑃௠௜௖௥௢௪௔௩௘೘೔೙ and 𝑃௠௜௖௥௢௪௔௩௘೘ೌೣ, removing any instances in which they may be a
transient and making sure they are not part of a sequence of spikes from other thermostat-
based appliances. If there are at least 𝑛௠௜௖௥௢௪௔௩௘ instances of spikes of this kind, we take
the median as the usual power draw of the microwave and will label, as microwave, any
element that is not part of a spike chain, as long as they are in a range of ± 𝑝௠௜௖௥௢௪௔௩௘ of
the expected value.

2.5. Validation Methodology
To evaluate how well our algorithm performs, we made use of the Reference Energy

Disaggregation Dataset downsampled to a 1-minute granularity. This dataset contains a
few weeks of energy consumption information from six US houses and has been widely
used to evaluate most NILM algorithms. The dataset provides information about the

Figure 6. Load signature from an oven from the REDD and an iron and clothes dryer from tracebase.

Algorithm 3 finds the most frequent power for any spike-based appliance. The
algorithm starts by iterating over all events that have not been assigned to any appliance
that has consumed at least a minimum amount of power (Lines 1–5). Then, we iterate over
all other events that start after the end of the previous event and add them to the spikes
chain if they are within a range of the original event power consumption (Lines 6–11).
This process ends when too much time has passed without a new spike. Then, we add
the sequence to the list of valid sequences if the number of consecutive spikes exceeds a
minimum threshold (Lines 12–13). For comparative purposes, in the rest of the paper, we
have assumed that the most frequently used appliance of this style is the washing machine
or a clothes dryer. Once the power has been found, the algorithm from Lines 1–13 is used

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

207

Information 2024, 15, 87 12 of 18

to mark the events that belong to the washing/drying appliance using the median power
found instead of Pe.

Algorithm 3. Spike-based appliance detection

Input: eventList, Pspikemin
, tnextmax , nspikesmin

, nconsecutivemin , pspikes
Output: Most frequent spike-based appliance median power consumption

1: validSpikes = [] (empty list)
2: For event e in eventList: (only events that are yet to be assigned to an appliance)
3: If Pe ≥ Pspikemin

:
4: mySpikes = [] (empty list)
5: lastEnd = e.end
6: For event e2 in eventList: (only events that start after the end of e):
7: If e2.start–lastEnd > tnextmax :
8: break
9: Else If Pe2 ·

(
1 − pspikes

)
≤ Pe ≤ Pe2 ·

(
1 + pspikes

)
:

10: lastEnd = e2.end
11: Append e2 to mySpikes
12: If size (mySpikes) ≥ nconsecutivemin :
13: Append mySpikes to validSpikes
14: If size (validSpikes) ≥ nspikesmin

:
15: Return median (validSpikes)

2.4.4. Microwave Detection

The last appliance we will disaggregate is the microwave oven. The microwave oven
has become a staple appliance in most modern households. It is frequently used not only
for cooking but also for quickly heating milk or water, reheating food, or heating pre-made
food. Since it is mostly used in short periods, in many cases, even less than 1 min, there
will be instances in which the microwave will not be present in the aggregated signal even
though it was used. However, the microwave usually presents a signal that is denoted by a
short spike in power consumption. A typical microwave oven for a household can draw a
wide range of power while working depending on the power used to heat the food and the
volume of the microwave. Therefore, in order to detect the microwave, we look at any short
event (up to tmicrowave minutes) that is yet to be labeled in a range between Pmicrowavemin
and Pmicrowavemax , removing any instances in which they may be a transient and making
sure they are not part of a sequence of spikes from other thermostat-based appliances. If
there are at least nmicrowave instances of spikes of this kind, we take the median as the usual
power draw of the microwave and will label, as microwave, any element that is not part of
a spike chain, as long as they are in a range of ±pmicrowave of the expected value.

2.5. Validation Methodology

To evaluate how well our algorithm performs, we made use of the Reference Energy
Disaggregation Dataset downsampled to a 1-min granularity. This dataset contains a few
weeks of energy consumption information from six US houses and has been widely used to
evaluate most NILM algorithms. The dataset provides information about the aggregated
power consumption and provides a detailed disaggregation with only a relatively small
unknown load. We selected this dataset as the first three houses had information about
most of the appliances our algorithm can detect, with a relatively small amount of missing
data. Note that we did not compare our algorithm with any other proposal as, to the
best of our knowledge, there is no other algorithm capable of disaggregating and labeling
energy consumption without additional information. As our algorithm is completely
unsupervised, all data from each house were used for evaluation, with the exception of any
time period in which the aggregated signal was missing.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

208

Information 2024, 15, 87 13 of 18

3. Results
3.1. Evaluation Metrics

To evaluate the NILM disaggregation in each household, we have used the classifica-
tion metrics generally used in this field: Precision (Equation (1)), Recall (Equation (2)), and
the F1-Score (Equation (3)).

The Precision (PR) measures how many instances in which the model determined an
appliance was running were actually right:

Precision (PR) =
TP

TP + FP
(1)

The Recall (RE), also referred to as sensitivity, measures how many times the model
detected an appliance running out of all instances in the data where the appliance was
running:

Recall (RE) =
TP

TP + FN
(2)

Lastly, the F1-Score (F1) is a metric that combines the previous ones to provide a single
metric that weights precision and recall in a balanced way:

F1 = 2 · PR · RE
PR + RE

(3)

For all these formulas, True Positives (TP) are the amounts of time in which an
appliance was running and an algorithm detected it as running, False Positives (FP) denote
all instances in which an appliance was not running but the algorithm detected it as
running, True Negatives (TN) are instances in which the appliance was not being used and
the algorithm detected the appliance was not running, and False Negatives (FN) denote
instances in which the algorithm did not detect the appliance although it was running.
Thus, the use of these metrics provides a more nuanced evaluation of the algorithm’s
performance, taking into account the trade-offs between true positives, false positives, true
negatives, and false negatives.

3.2. Disaggregation Accuracy in Each Household Evaluated

Table 2 presents the results obtained by the algorithm for the REDD’s House 1. This
house contains information about energy consumption from 18 April 2011 to 24 May
2011 with four periods of consecutive days where the consumption data are missing.
The proposed algorithm provided the results for this house in 2.22 s. All appliances
were available in the house and used in this time frame. On one hand, the fridge was
disaggregated with great accuracy, obtaining an F1-Score of 88.61%. On the other hand,
the dishwasher produced a really bad F1-Score of 22.6% with 100% precision, implying
that every time the algorithm marked something as dishwasher, it was correct. This result
can be easily explained as our algorithm can only detect the dishwasher program during
the heating phases. Therefore, the minutes corresponding to the other phases increase
significantly the number of false negatives. However, the high precision obtained shows
the usefulness of our algorithm in detecting the general power consumption and duration
of the dishwasher cycle. A similar situation can be observed for the washer/dryer with
high precision but mediocre recall due to all the minutes the washing/drying program
is working without using the heating component. Finally, the microwave provided only
mediocre results, with an F1-Score below 60% and precision and recalls around that range.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

209

Information 2024, 15, 87 14 of 18

Table 2. Results for our algorithm in REDD House 1.

TP FP TN FN RE PR F1

Fridge 5539 422 19,337 1002 0.9292 0.8468 0.8861
Dishwasher 125 0 25,319 856 0.1274 1.0 0.2260
Microwave 190 112 25,846 152 0.5555 0.6291 0.5901

Washer/Dryer 232 25 25,822 221 0.5121 0.9027 0.6535

Table 3 presents the results for House 2. Information about energy consumption in this
house is provided between 18 April 2011 and the first hours of 2 May 2011 with no missing
data. In this house, the proposed method took 1.52 s to provide the results. Additionally,
a few hours from 22 May are also available. In this house, although there is a submeter
for the washer/dryer appliance, the measured value never went over 9 W, indicating that
it was never used or there was some misconfiguration. Similar to House 1, the fridge
was disaggregated accurately with an F1-Score of 88.78%. The dishwasher still provided,
again, perfect precision and a better recall in comparison with House 1, which was to be
expected since most of the programs/models used in House 2 had a lower number of
minutes without using the heating component. At last, the microwave provided an even
worse F1-Score in this case as there were more instances in which the microwave was not
detected.

Table 3. Results for our algorithm in REDD House 2.

TP FP TN FN RE PR F1

Fridge 7457 440 10,793 1444 0.8377 0.9443 0.8878
Dishwasher 103 0 19,893 138 0.4274 1.0 0.5988
Microwave 36 2 19,986 110 0.2466 0.9474 0.3913

Washer/Dryer Not used in this house

Finally, Table 4 provides the results for House 3, where the proposed method provided
the disaggregation after 4.96 s. Information about energy consumption in this house was
available between 17 April 2021 and 27 May 2021, with multiple periods of missing data,
most notably the period from 28 April 2021 to 17 May 2021. This was the first house in
which our algorithm did not detect an existing appliance, the dishwasher of this house,
showing one of the limitations of the proposed algorithm. In this case, the program used
only used one major heating cycle; thus, this dishwasher program could not be detected.
For the other appliances, we saw a relatively good disaggregation of the fridge, although
slightly worse than in other houses; the washer/dryer was disaggregated perfectly when
detected with the expected false negatives due to the time it was working but not using the
heating component and the microwave provided, once again, only mediocre results.

Table 4. Results for our algorithm in REDD House 3.

TP FP TN FN RE PR F1

Fridge 7549 1228 14,219 1669 0.8189 0.8601 0.8390
Microwave 52 35 24,505 73 0.416 0.5977 0.5988

Washer/Dryer 350 0 23,633 682 0.3391 1.0 0.5065
Dishwasher Not detected

3.3. Real-Life Applications

Overall, even though the disaggregation provided by our algorithm is not perfect, it is
still, to the best of our knowledge, the only algorithm capable of providing high-quality
disaggregation without using any additional kind of supervised information. The primary
constraint of our algorithm lies in its reliance on the identification of appliances based on

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

210

Information 2024, 15, 87 15 of 18

their consumption patterns. Consequently, appliances that exhibit no discernible pattern or
have an unknown pattern will not be effectively identified by our algorithm. Despite this
limitation, the algorithm demonstrates proficiency in detecting at least the four appliances
that have been studied, utilizing the available information. The simplest application of
the proposed algorithm is the creation of visualizations that can help both customers and
providers to understand the energy consumption of each household, as can be seen in
Figure 7, where the disaggregation conducted by the proposed algorithm for the REDD’s
House 1 is displayed. Another simple example would be to use them as a prior step
for other NILM algorithms that rely on supervised knowledge of the appliance energy
consumption. However, the most interesting applications of this algorithm come from its
ability to learn general characteristics from appliances, such as their power use in each
cycle and their duration. For example, the usual power consumption and duration of
refrigeration cycles could be recorded periodically to detect any possible malfunctioning
of the refrigerator since, as it deteriorates, it is frequent that the cycles become longer.
This is easily detectable in our algorithm as this duration is recorded during the detection
process and, if cycles become too long, the algorithm will suddenly fail to recognize the
fridge. Thus, notifying the customer after verifying this kind of behavior can help diminish
the economic impact of appliance faults. Another possible application of the algorithm
would be to use it to schedule the use of some appliances, such as the dishwasher, to lower
the energy cost of using them. This would be particularly useful in Internet of Things
(IoT) scenarios in which the appliance may be scheduled to run at a specific hour and
optimized according to the needs of the customer. Furthermore, since the algorithm has
low computational requirements, it can be fully implemented in an Edge device at the final
customers’ homes to completely respect their privacy.

Information 2024, 15, x FOR PEER REVIEW 16 of 19

3.3. Real-Life Applications
Overall, even though the disaggregation provided by our algorithm is not perfect, it

is still, to the best of our knowledge, the only algorithm capable of providing high-quality
disaggregation without using any additional kind of supervised information. The primary
constraint of our algorithm lies in its reliance on the identification of appliances based on
their consumption patterns. Consequently, appliances that exhibit no discernible pattern
or have an unknown pattern will not be effectively identified by our algorithm. Despite
this limitation, the algorithm demonstrates proficiency in detecting at least the four appli-
ances that have been studied, utilizing the available information. The simplest application
of the proposed algorithm is the creation of visualizations that can help both customers
and providers to understand the energy consumption of each household, as can be seen
in Figure 7, where the disaggregation conducted by the proposed algorithm for the
REDD’s House 1 is displayed. Another simple example would be to use them as a prior
step for other NILM algorithms that rely on supervised knowledge of the appliance en-
ergy consumption. However, the most interesting applications of this algorithm come
from its ability to learn general characteristics from appliances, such as their power use in
each cycle and their duration. For example, the usual power consumption and duration
of refrigeration cycles could be recorded periodically to detect any possible malfunction-
ing of the refrigerator since, as it deteriorates, it is frequent that the cycles become longer.
This is easily detectable in our algorithm as this duration is recorded during the detection
process and, if cycles become too long, the algorithm will suddenly fail to recognize the
fridge. Thus, notifying the customer after verifying this kind of behavior can help dimin-
ish the economic impact of appliance faults. Another possible application of the algorithm
would be to use it to schedule the use of some appliances, such as the dishwasher, to lower
the energy cost of using them. This would be particularly useful in Internet of Things (IoT)
scenarios in which the appliance may be scheduled to run at a specific hour and optimized
according to the needs of the customer. Furthermore, since the algorithm has low compu-
tational requirements, it can be fully implemented in an Edge device at the final custom-
ers’ homes to completely respect their privacy.

Figure 7. Appliance disaggregation in the first two weeks of REDD House 1 with a zoomed-in version
for 23 April 2011.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

211

Information 2024, 15, 87 16 of 18

4. Conclusions

This work presented a new methodology to disaggregate energy consumption from
a few selected appliances without the use of additional information, unlike previous
work in the field that required information about the nominal power of the appliances or
information about the household occupants to identify the appliances. The methodology
relied on the development of a new algorithm for event detection and the use of export
knowledge to identify each appliance.

The need for a new event detection algorithm came due to the fact that previous
clustering-based approaches were limited to matching edges with a balance between power
consumption and time duration, as was conducted in [21]. However, this approach is not
ideal for data with low sampling rates as it will be unable to differentiate instances in which
multiple events start or end simultaneously. Therefore, we created a new event-based
detection algorithm that, as explained in Section 2.3, took into account these situations
to provide a better disaggregation into events. Once this disaggregation was completed,
the algorithms developed for each appliance were used to identify them without having
to rely on any additional information. This is a major step towards truly unsupervised
disaggregation as the algorithm can be used directly on household aggregated consumption
without the need to tune any parameters nor the need to know any information about the
customer’s household, providing a completely non-intrusive approach. This comes with
the drawback of limited accuracy and the fact that only appliances that exhibit consumption
patterns that can help us identify them can be detected and properly labeled.

The evaluation of the proposed methodology utilized data from three houses within
the REDD dataset. The results demonstrated a high accuracy in fridge disaggregation and
showcased the algorithm’s ability to learn appliance characteristics, such as the power
and duration of dishwasher heating cycles, in other cases. These findings underscore the
potential practical applications of the proposed approach.

Future works may evaluate the incorporation of the proposed methodology in other
NILM algorithms and their application in IoT/Edge scenarios for tasks such as preventive
maintenance or scheduling.

Author Contributions: Conceptualization, D.C.-R., L.G.B.R., J.R.S.I. and M.C.P.; Methodology,
D.C.-R., L.G.B.R., J.R.S.I. and M.C.P.; Software, D.C.-R., L.G.B.R., J.R.S.I. and M.C.P.; Validation,
D.C.-R., L.G.B.R., J.R.S.I. and M.C.P.; Writing—original draft, D.C.-R., L.G.B.R. and M.C.P.; Writing—
review & editing, D.C.-R., L.G.B.R., J.R.S.I. and M.C.P.; Supervision, M.C.P.; Funding acquisition,
J.R.S.I. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge financial support from Cuerva Energía, with funding acquired through
incentive line “Redes Inteligentes de la Agencia Andaluza de la Energía”—Expedient 11303205-A1.B)
Smart Grids Developments; and Ministerio de Ciencia e Innovación (Spain) (Grant PID2020-112495RB-
C21 funded by MCIN/AEI/10.13039/501100011033).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study used to be openly available at
http://redd.csail.mit.edu/ (accessed on 2 March 2022). Copies of the dataset used in this study are
available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Abdeen, A.; Kharvari, F.; O’Brien, W.; Gunay, B. The Impact of the COVID-19 on Households’ Hourly Electricity Consumption in

Canada. Energy Build. 2021, 250, 111280. [CrossRef]
2. Khan, I. A Survey-Based Electricity Demand Profiling Method for Developing Countries: The Case of Urban Households in

Bangladesh. J. Build. Eng. 2021, 42, 102507. [CrossRef]

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

212

Information 2024, 15, 87 17 of 18

3. Liu, Y.; Ma, J.; Xing, X.; Liu, X.; Wang, W. A Home Energy Management System Incorporating Data-Driven Uncertainty-Aware
User Preference. Appl. Energy 2022, 326, 119911. [CrossRef]

4. Rashid, H.; Singh, P.; Stankovic, V.; Stankovic, L. Can Non-Intrusive Load Monitoring Be Used for Identifying an Appliance’s
Anomalous Behaviour? Appl. Energy 2019, 238, 796–805. [CrossRef]

5. Green, D.; Kane, T.; Kidwell, S.; Lindahl, P.; Donnal, J.; Leeb, S. NILM Dashboard: Actionable Feedback for Condition-Based
Maintenance. IEEE Instrum. Meas. Mag. 2020, 23, 3–10. [CrossRef]

6. Hart, G.W. Prototype Nonintrusive Appliance Load Monitor, MIT Energy Laboratory Technical Report, and Electric Power Research
Institute Technical Report. 1985.

7. Hart, G.W. Nonintrusive Appliance Load Monitoring. Proc. IEEE 1992, 80, 1870–1891. [CrossRef]
8. Wu, Z.; Wang, C.; Peng, W.; Liu, W.; Zhang, H. Non-Intrusive Load Monitoring Using Factorial Hidden Markov Model Based on

Adaptive Density Peak Clustering. Energy Build. 2021, 244, 111025. [CrossRef]
9. Wu, Z.; Wang, C.; Zhang, H.; Peng, W.; Liu, W. A Time-Efficient Factorial Hidden Semi-Markov Model for Non-Intrusive Load

Monitoring. Electr. Power Syst. Res. 2021, 199, 107372. [CrossRef]
10. Kumar, P.; Abhyankar, A.R. A Time Efficient Factorial Hidden Markov Model Based Approach for Non-Intrusive Load Monitoring.

IEEE Trans. Smart Grid 2023, 14, 3627–3639. [CrossRef]
11. Kolter, J.; Batra, S.; Ng, A. Energy Disaggregation via Discriminative Sparse Coding. In Proceedings of the Advances in Neural

Information Processing Systems, Vancouver, Canada, 6–9 December 2010; Curran Associates, Inc.: Red Hook, NY, USA, 2010;
Volume 23.

12. Elhamifar, E.; Sastry, S. Energy Disaggregation via Learning “Powerlets” and Sparse Coding. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; AAAI Press: Austin, TX, USA, 2015; pp. 629–635.

13. Singh, S.; Majumdar, A. Deep Sparse Coding for Non–Intrusive Load Monitoring. IEEE Trans. Smart Grid 2018, 9, 4669–4678.
[CrossRef]

14. Singhal, V.; Maggu, J.; Majumdar, A. Simultaneous Detection of Multiple Appliances From Smart-Meter Measurements via
Multi-Label Consistent Deep Dictionary Learning and Deep Transform Learning. IEEE Trans. Smart Grid 2019, 10, 2969–2978.
[CrossRef]

15. Faustine, A.; Pereira, L.; Bousbiat, H.; Kulkarni, S. UNet-NILM: A Deep Neural Network for Multi-Tasks Appliances State
Detection and Power Estimation in NILM. In Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring,
New York, NY, USA, 18 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 84–88.

16. Zhou, X.; Li, S.; Liu, C.; Zhu, H.; Dong, N.; Xiao, T. Non-Intrusive Load Monitoring Using a CNN-LSTM-RF Model Considering
Label Correlation and Class-Imbalance. IEEE Access 2021, 9, 84306–84315. [CrossRef]

17. Kaselimi, M.; Doulamis, N.; Voulodimos, A.; Doulamis, A.; Protopapadakis, E. EnerGAN++: A Generative Adversarial Gated
Recurrent Network for Robust Energy Disaggregation. IEEE Open J. Signal Process. 2021, 2, 1–16. [CrossRef]

18. Liao, J.; Elafoudi, G.; Stankovic, L.; Stankovic, V. Non-Intrusive Appliance Load Monitoring Using Low-Resolution Smart Meter
Data. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy,
3–6 November 2014; pp. 535–540.

19. Giri, S.; Bergés, M. An Energy Estimation Framework for Event-Based Methods in Non-Intrusive Load Monitoring. Energy
Convers. Manag. 2015, 90, 488–498. [CrossRef]

20. Alcalá, J.; Ureña, J.; Hernández, Á.; Gualda, D. Event-Based Energy Disaggregation Algorithm for Activity Monitoring From a
Single-Point Sensor. IEEE Trans. Instrum. Meas. 2017, 66, 2615–2626. [CrossRef]

21. Zhao, B.; Stankovic, L.; Stankovic, V. On a Training-Less Solution for Non-Intrusive Appliance Load Monitoring Using Graph
Signal Processing. IEEE Access 2016, 4, 1784–1799. [CrossRef]

22. Zhao, B.; He, K.; Stankovic, L.; Stankovic, V. Improving Event-Based Non-Intrusive Load Monitoring Using Graph Signal
Processing. IEEE Access 2018, 6, 53944–53959. [CrossRef]

23. Li, X.; Zhao, B.; Luan, W.; Liu, B. A Training-Free Non-Intrusive Load Monitoring Approach for High-Frequency Measurements
Based on Graph Signal Processing. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE),
Hangzhou, China, 15–17 April 2022; pp. 859–863.

24. Holweger, J.; Dorokhova, M.; Bloch, L.; Ballif, C.; Wyrsch, N. Unsupervised Algorithm for Disaggregating Low-Sampling-Rate
Electricity Consumption of Households. Sustain. Energy Grids Netw. 2019, 19, 100244. [CrossRef]

25. Mascheroni, R.; Salvadori, V. Household Refrigerators and Freezers. In Handbook of Frozen Food Processing and Packaging; CRC
PRESS: Boca Raton, FL, USA, 2011; pp. 253–272.

26. Reinhardt, A.; Baumann, P.; Burgstahler, D.; Hollick, M.; Chonov, H.; Werner, M.; Steinmetz, R. On the Accuracy of Appliance
Identification Based on Distributed Load Metering Data. In Proceedings of the 2012 Sustainable Internet and ICT for Sustainability
(SustainIT), Pisa, Italy, 4–5 October 2012; IEEE: Toulouse, France, 2012; pp. 1–9.

27. Liu, D.-Y.; Chang, W.-R.; Lin, J.-Y. Performance Comparison with Effect of Door Opening on Variable and Fixed Frequency
Refrigerators/Freezers. Appl. Therm. Eng. 2004, 24, 2281–2292. [CrossRef]

28. Kolter, J.; Johnson, M. REDD: A Public Data Set for Energy Disaggregation Research. Artif Intell 2011, 25, 59–62.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

213

Information 2024, 15, 87 18 of 18

29. Bengtsson, P.; Berghel, J.; Renström, R. A Household Dishwasher Heated by a Heat Pump System Using an Energy Storage Unit
with Water as the Heat Source. Int. J. Refrig. 2015, 49, 19–27. [CrossRef]

30. Issi, F.; Kaplan, O. The Determination of Load Profiles and Power Consumptions of Home Appliances. Energies 2018, 11, 607.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

Técnicas de Machine Learning para el tratamiento de series temporales de Big Data en el ámbito energético

214

