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Abstract: In this study, the energy efficiency of time series forecasting algorithms is addressed in
a broad context, highlighting the importance of optimizing energy consumption in computational
applications. The purpose of this study is to compare the energy efficiency and accuracy of algorithms
implemented in different frameworks, specifically Darts, TensorFlow, and Prophet, using the ARIMA
technique. The experiments were conducted on a local infrastructure. The Python library CodeCarbon
and the physical energy consumption measurement device openZmeter were used to measure the
energy consumption. The results show significant differences in energy consumption and algorithm
accuracy depending on the framework and execution environment. We conclude that it is possible to
achieve an optimal balance between energy efficiency and accuracy in time series forecasting, which
has important implications for developing more sustainable and efficient applications. This study
provides valuable guidance for researchers and professionals interested in the energy efficiency of
forecasting algorithms.

Keywords: time series; forecasting; green computing; energy efficiency

1. Introduction

In the digital age, machine learning (ML) has transformed various fields by providing
advanced tools for data-driven decision making. Time series forecasting, particularly in
finance, healthcare, supply chain management, and energy production, has significantly
benefited from these advancements [1]. This capability enables organizations to optimize
operations, manage risks, and improve planning accuracy. However, the increasing com-
plexity of these models has led to higher computational demands and energy consumption.

The energy consumption associated with different types of algorithms, particularly in
time series forecasting models, is a growing concern from both economic and environmental
perspectives [2]. As organizations aim to enhance the accuracy of their models, they often
resort to more complex algorithms and more powerful computational infrastructures. This
rise in energy demand incurs additional costs and impacts the environment through increased
greenhouse gas emissions. In a global context where sustainability and carbon footprint
reduction are priorities, assessing the energy efficiency of these models and frameworks
is crucial. Moreover, there are time series algorithms specifically designed to measure the
energy efficiency of various systems and processes [3], further emphasizing the importance of
optimizing energy usage not only in computational tasks but across different sectors.

In this context, the energy efficiency of data processing algorithms has been extensively
studied. Merelo-Guervós et al. [4] optimized evolutionary algorithms in the JavaScript
language, showing that carefully selecting data structures and eliminating unnecessary
memory allocations can significantly reduce energy consumption. On the other hand,
Escobar et al. [5] developed a distributed K-nearest neighbors (KNN) algorithm for EEG
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signal classification by using the minimum redundancy-maximum relevance (mRMR)
feature selection technique and an energy policy that adjusts execution based on cost, they
improved energy efficiency in heterogeneous clusters.

Furthermore, Díaz et al. [6] created the Vampire system, a low-cost tool for the real-
time monitoring of energy consumption in distributed computing systems. Utilizing an
ESP32 microcontroller and the MQTT protocol, Vampire efficiently records and analyzes en-
ergy consumption in 60-core clusters. Complementing these studies, Prieto et al. compared
the energy efficiency of personal computers (PCs) with mainframes and supercomputers,
demonstrating that PCs can achieve efficiency levels similar to those of systems in the
Green500 ranking. These studies indicate that migrating processes to more energy-efficient
resources and implementing energy monitoring and management technologies can signifi-
cantly reduce the global energy consumption, promoting environmental sustainability [7].

In this research, we conduct a systematic analysis of the energy efficiency of various
ML frameworks used for time series forecasting. By comparing statistical techniques such
as ARIMA [8] and SARIMA [9] with ML approaches like LSTM [8] and Prophet [8], this
work aims to provide a comprehensive view of energy consumption patterns and associated
carbon emissions. Utilizing precise measurement tools such as CodeCarbon [10] (CC) and
openZmeter [11] (oZm), we quantify the energy impact of these algorithms. The analysis
covers various libraries and frameworks, including Statsmodels [12], TensorFlow [13],
PyTorch [14], and Darts [15], providing a foundation for developing more sustainable
ML solutions.

The main contributions of this paper are as follows:

1. Assessing the energy consumption of various libraries used for time series forecasting,
employing a range of techniques based on both statistical methods and ML.

2. Analyzing the greenhouse gas emissions resulting from the energy consumption of
evaluated frameworks and algorithms.

3. Identifying the most energy-consuming algorithms and frameworks and understand-
ing their environmental impact.

4. Contributing to the knowledge on the energy efficiency of Statistical and ML methods,
supporting efforts to make data science more environmentally sustainable.

In what follows, Section 2 describes the dataset, methods, and optimization frame-
work used in this study. Section 3 presents the results of optimizing forecasting models,
including statistical validation and performance metrics. Section 4 discusses the results
and improvements, focusing on energy efficiency. Section 5 concludes the study.

2. Materials and Methods

This section describes the dataset utilized in this research. We detail the characteristics
of the dataset, the methods used for time series forecasting, the hardware infrastructure,
tools and libraries employed, and the metrics used to evaluate the performance of the
forecasting models.

2.1. Data Description

The dataset contains monthly records of beer production in Australia from January
1956 to August 1995 [16], measured in millions of liters. This data offers insights into
long-term trends, seasonality, and variability in beer production over nearly four decades.
The dataset has two columns: “Month” representing the date in YYYY-MM format, and
“Monthly beer production” indicating the production volume in millions of liters.

This dataset is well suited for time series analysis, making it valuable for identifying
patterns and forecasting. Various analytical methods, as well as ML and deep learning
(DL) models, have been applied to it. Initial exploratory analysis might include visu-
alizing the time series to identify trends and seasonal patterns, decomposing the series
into its components, and calculating descriptive statistics such as the mean, median, and
standard deviation.
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2.2. Time Series Forecasting

Forecasting time series is an essential technique in various fields. There are differ-
ent approaches to making forecasts, ranging from statistical models to DL methods and
decomposition techniques.

2.2.1. Statistical Forecasting Models

Statistical models are based on the assumption that past observations contain in-
formation that can be used to predict future outcomes. The corresponding details are
given below.

Autoregressive Integrated Moving Average (ARIMA) [8]

This model combines three components: autoregression (AR), moving average (MA),
and integration (I) to handle non-stationary time series. The general formulation of the
model is ARIMA(p,d,q), where p is the order of the autoregressive part, d is the degree of
differencing required to make the series stationary, and q is the order of the moving average
part. The general equation of the ARIMA model is:

yt = c + ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + θ1ϵt−1 + θ2ϵt−2 + . . . + θqϵt−q + ϵty (1)

where yt is the value at time t, ϕ are the parameters of the autoregressive part, θ are the
parameters of the moving average part, ϵt is the error term at time t, and c is a constant.

Seasonal ARIMA (SARIMA) [9]

Extension of the ARIMA model incorporating seasonal components. It is suitable for
time series that exhibit regular seasonal patterns. The SARIMA model is denoted as ARIMA
(p,d,q)(P,D,Q)[s], where the terms in parentheses represent the seasonal components and s
is the seasonal period.

Φp(Bs)ϕp(B)(1 − Bs)D(1 − B)dyt = Θq(Bs)θq(B)ϵt (2)

where yt is the time series, B is the backshift operator, Φp(Bs) is the seasonal autoregressive
polynomial of order P, ϕp(B) is the non-seasonal autoregressive polynomial of order p,
(1 − Bs)D is the seasonal difference of order D, (1 − B)d is the non-seasonal difference
of order d, Θq(Bs) is the seasonal moving average polynomial of order Q, θq(B) is the
non-seasonal moving average polynomial of order q, and ϵt is the random error at time t.

2.2.2. Machine Learning Forecasting Models

ML models for time series forecasting are based on techniques allowing the capture of
complex relationships in the data without explicit assumptions about their structure. The
corresponding details are given below [17].

Deep Learning

DL models are able to capture long-term temporal dependencies and complex patterns
in time series.

Long Short-Term Memory (LSTM) [8]

This is a type of recurrent neural network (RNN) designed to address long sequence
problems and mitigate the vanishing gradient issue. It operates through three gates—forget,
input, and output—that regulate the information flow. The forget gate discards information
from the previous cell state, the input gate determines what new information to add, and
the output gate controls which part of the current cell state to use for the output. By
updating the cell state and the hidden state at each step, LSTM networks can retain and
utilize relevant information over extended periods, enhancing performance in tasks such
as natural language processing and time series prediction.
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Decomposition-Based Models

Models based on decomposition separate a time series into components such as trend,
seasonality, and noise. A model in this approach is:

Prophet [8]

Developed by Facebook, Prophet is an additive model for time series forecasting
that decomposes data into trend, seasonality, and holiday effects. It handles missing data,
processes large volumes, and is suitable for daily, weekly, or yearly seasonal patterns. The
model is described by:

ŷt = f (yt−1, hol) (3)

where ŷt is the predicted value, g(t) represents the trend, s(t) captures seasonality, h(t) in-
cludes holiday effects, and ϵt is the error term. Prophet’s flexibility allows the incorporation
of external effects, making it a robust tool for various forecasting contexts.

2.3. Time Series Libraries

Currently, many Python libraries support time series analysis and modeling by pro-
viding essential tools and algorithms. This section describes some of the most widely used
libraries in this domain.

• Statsmodels [12] designed for the estimation of statistical models, testing, and time
series analysis, it offers tools for linear regression, logistic regression, generalized
linear model (GLM), mixed effects models, ARIMA, SARIMA, and robust regression.
Focused on statistical inference, it includes hypothesis testing, descriptive statistics,
and diagnostics. It facilitates the decomposition of time series and model evaluation,
with visualization capabilities to interpret results. It is suitable for academic research
and practical applications.

• TensorFlow [13] is an open source library by Google, known for ML and DNN. It
includes tools for time series analysis, such as LSTM to capture long-term dependen-
cies. It allows efficient processing on Graphics Processing Unit (GPU) and Tensor
Processing Unit (TPU), accelerating the training of complex models, and facilitates
data preprocessing through normalization and segmentation.

• PyTorch [14] developed by Facebook AI Research lab, it is oriented towards deep
learning and numerical computation. Ideal for time series analysis with RNNs, LSTMs,
and Transformers. It uses dynamic computational graphs to modify models during
execution, facilitating experimentation. It includes predefined components, GPU
support, and visualization tools, integrating well with other data analysis and ML
libraries.

• Darts [15] is a library for time series analysis and processing, offering a unified interface
to implement and evaluate models such as ARIMA, exponential smoothing, RNNs,
LSTMs, and transformer. It provides preprocessing tools, series visualization, and
model evaluation through cross-validation and accuracy metrics. It integrates with
other data analysis tools, being useful for academic and industrial applications

In Table 1, a comparison of Statsmodels, TensorFlow, PyTorch, Darts, and Prophet for
time series analysis is presented.

2.4. Performance Evaluation Metrics

This section details the metrics used to evaluate the performance of the predictive mod-
els and the units of measurement used to record energy consumption during model training.
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Table 1. Comparison of Statsmodels, TensorFlow, PyTorch, Darts, and Prophet for time series analysis.

Feature Statsmodels TensorFlow PyTorch Darts Prophet

Main Approach Statistical models Deep learning Deep learning Time series
Bayesian

structural time
series

Supported Models Regression, GLM,
ARIMA, SARIMA

RNN, LSTM,
Transformer

RNN, LSTM,
transformer

ARIMA,
exponential

smoothing, RNN,
LSTM,

transformer

Additive,
multiplicative
seasonalities,
changepoints

Preprocessing

Descriptive
statistics,

hypothesis
testing

Normalization,
segmentation

Normalization,
segmentation

Scaling, value
imputation

Handling missing
values, outlier

detection

Statistical Inference Yes No No Yes Yes
Visualization Yes Yes Yes Yes Yes
Hardware Acceleration No GPU, TPU GPU GPU No

2.4.1. Model Performance Evaluation

In the context of time series analysis and predictive modeling, it is crucial to evaluate
model performance using appropriate metrics. The model performance metrics [18] are
detailed below:

• Root mean squared error (RMSE): measures the average magnitude of the errors
between predicted and observed values; larger errors are further penalized by squaring
them before averaging and then taking the square root. The RMSE is defined as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (4)

where n is the number of observations, yi are the observed values, and ŷi are the
predicted values.

• Mean absolute error (MAE) measures the average of the absolute values of the errors
between predicted and observed values, providing a direct measure of the average
magnitude of the error without heavily penalizing larger errors. The MAE is de-
fined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (5)

where n is the number of observations, yi are the observed values, and ŷi are the
predicted values.

2.4.2. Measuring Energy Consumption

Energy consumption is measured in kilowatt–hours (kWh) [19], which represents the
use of 1 kilowatt of power over 1 hour. It is a standard measure used to quantify electrical
energy consumption in various contexts [5,7]. The kWh is defined as:

kWh = P × t (6)

where P is the power in kilowatts (kW) and t is the time in hours (h).

2.5. Energy Consumption Meters

This section describes the software and hardware meters used to analyze the energy
consumption of the algorithms, enabling the acquisition of precise and reliable results.
Firstly, the selection of openZmeter [11] is based on its numerous features, making it
suitable for evaluating energy consumption. Additionally, the Codecarbon library [10]
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is noted for its precision, as highlighted by Bouza et al. [20]. Further below, a detailed
description of each of the meters is provided.

• OpenZmeter [11]: is a low-cost, open source, intelligent hardware energy meter and
power quality analyzer. It measures reactive, active, and apparent energy, frequency,
root mean square (RMS) voltage, RMS current, power factor, phase angle, voltage
events, harmonics up to the 50th order, and the total harmonic distortion (THD). It
records energy consumption in kilowatt–hours (kWh). The device includes a web
interface and an API for integration. It can be installed in electrical distribution panels
and features Ethernet, Wi-Fi, and 4G connectivity. Additionally, it offers remote
monitoring and real-time alerts.

• CodeCarbon [10] is an open source software tool designed to measure and reduce
the carbon footprint of software programs. It tracks energy consumption in kilowatt–
hours (kWh) during code execution, taking into account the hardware used and the
geographical location of data centers to calculate CO2 emissions. In this context, the
methodology for calculating carbon dioxide (CO2) emissions involves multiplying the
carbon intensity of electricity (C, in grams of CO2 per kilowatt–hour) by the energy
consumed (E, in kilowatt–hours) by the computational infrastructure. This product
gives the total CO2 emissions in kilograms of CO2-equivalents (CO2eq):

CO2eq = C × E (7)

The tool also provides an application programming interface (API) API and Python
libraries for integrating carbon footprint monitoring into software projects, along
with detailed reports and visualizations considering the geographical location of
data centers.

2.6. Computational Resources

The experiments conducted in this research were performed using the cluster of the
Biomedical Signal Processing, Computational Intelligence, and Communications Security
(BIOSIP) research group at the University of Málaga. Exclusive access to the required com-
putational resources was provided to ensure the successful execution of the experiments.
Table 2 details the architecture of the node used for the experiments.

Table 2. Summary of hardware and software configuration.

Category Specifications

Hardware
Architecture x86_64
Processors 2× Intel Xeon E5-2640 v4 @ 2.40 GHz, 10 cores each, 90W TDP each
RAM 126 GB
GPUs 3× NVIDIA GeForce GTX 1080 Ti, 250W TDP, 11 GB each

1× NVIDIA TITAN Xp, 250W TDP, 12 GB
Power Meters OpenZmeter

Software
Operating system Ubuntu 24.04 LTS
Python version 3.10.14
CodeCarbon version 2.4.1

2.7. Experimental Setup

The experiment measured and evaluated the energy consumption of various frame-
works using time series analysis techniques on the Australian beer production dataset,
which was divided into training and test sets, with the test set corresponding to a 12-month
time horizon. Models analyzed included ARIMA, SARIMA, Prophet, and LSTM, with
LSTM implementations tested in Keras, TensorFlow, and PyTorch. The libraries used were
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Statsmodels for ARIMA and SARIMA, prophet for Prophet, and keras, TensorFlow, and
PyTorch for LSTM.

Hyperparameter optimization was performed using auto_arima for ARIMA and
SARIMA, GridSearchCV for Prophet and LSTM in Keras and TensorFlow, and Optuna [21]
for LSTM in PyTorch. Each model configuration was executed 15 times to ensure the result
validity and enable comparative energy consumption measurements. Table 3 summarizes
the models, libraries, parameter optimizers, and the number of runs per experiment.

Table 3. Summary of models, libraries, parameter optimizers, and energy consumption measurement.

Model Libraries Optimizer Exec. Count

ARIMA Darts auto_arima 15
ARIMA Statsmodels auto_arima 15
LSTM Keras GridSearchCV 15
LSTM PyTorch Optuna 15
LSTM TensorFlow GridSearchCV 15

Prophet Darts GridSearchCV 15
Prophet Prophet GridSearchCV 15

SARIMA Statsmodels auto_arima 15

The optimized parameters for each implemented time series model include: for
Prophet, changepoint_prior_scale, seasonality_prior_scale, and holidays_prior_scale to control
trend changes, seasonality, and holiday effects. In ARIMA and SARIMA (Statsmodels),
p and q are adjusted, along with d (differencing) and seasonal components (P, Q, D) in
SARIMA, while ARIMA in Darts automatically adjusts these parameters. LSTM models in
Keras, PyTorch, TensorFlow, and Darts optimize hidden_dim and units.

3. Experimental Results

In this section, we present the results obtained from various executions. For the
analysis, one library from each model has been selected that achieves the best performance,
as indicated by the RMSE and MAE. This selection is highlighted in bold in Table 4.

Table 4. Summary of libraries, RMSE, MAE, average energy consumption, and CO2 emissions by
model.

Library
Avg Energy (kWh)

CO2 Emissions (kgs) MAE RMSE
oZm CC

ARIMA

Darts 0.000336 0.000233 0.000051 0.164000 0.188000
Statmodels 0.000318 0.000200 0.000044 0.105000 0.122000

LSTM

Darts 0.002428 0.000967 0.000210 0.136533 0.168400
Keras 0.001591 0.000705 0.000153 0.149600 0.173667

PyTorch 0.000992 0.000439 0.000096 0.133533 0.154067
TensorFlow 0.002061 0.000877 0.000191 0.144000 0.167000

Prophet

Darts 0.000335 0.000198 0.000043 0.070000 0.083000
Prophet 0.001157 0.000705 0.000153 0.099000 0.117000

SARIMA

Statmodels 0.012674 0.008666 0.001884 0.050000 0.063000

Note: The bold rows correspond to the best-performing libraries of each model based on RMSE and MAE.
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Figure 1 illustrates the average energy consumption in kilowatt–hours (kWh) for
different models and libraries, as measured by two energy meters: openZmeter and Code-
Carbon. The models evaluated include ARIMA implemented with Statsmodels, LSTM
using PyTorch, Prophet with Darts, and SARIMA with Statsmodels. The SARIMA model
measured by openZmeter shows the highest energy consumption, followed by the same
model measured by CodeCarbon. The other models demonstrate a significantly lower
energy consumption.
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Figure 1. Average Energy Consumption (kWh) of the Best Models and Libraries, as measured by
openZmeter and CodeCarbon

In Figure 2, the root mean square error (RMSE) and mean absolute error (MAE) of
different forecasting models implemented with various libraries. The models evaluated
include ARIMA with Statmodels, LSTM with PyTorch, Prophet with Darts, and SARIMA
with Statmodels. The chart highlights that SARIMA-Statmodels achieves the lowest error
rates, indicating superior accuracy, followed by Prophet-Darts, ARIMA-Statmodels, and
LSTM-PyTorch.
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Figure 2. Comparison of RMSE and MAE across different models and libraries

Figure 3 shows a comparison of average CO2 emissions in kilograms for different
machine learning models and libraries. The evaluated models include ARIMA, LSTM, and
SARIMA, implemented in libraries such as Darts, Statmodels, Keras, PyTorch, and Tensor-
Flow. The SARIMA model using Statmodels shows the highest emission (0.001884 kgs),
while ARIMA with Statmodels and Prophet with Darts exhibit the lowest emissions, with
values of 0.000044 kgs and 0.000043 kgs, respectively. These results highlight the impor-
tance of considering CO2 emissions when selecting models and libraries, particularly for
sustainable development.
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Figure 3. Comparison of CO2 emissions using different models and libraries

4. Discussion

The comparative analysis between different models and libraries reveals several key
findings. ARIMA-based models show a significantly lower energy consumption (0.000336
and 0.000318 kWh) than LSTM models (0.002428 kWh). Regarding CO2 emissions, ARIMA
is also superior, with average emissions of 0.000051 and 0.000044 kg, versus the higher
emissions of LSTM. Additionally, ARIMA implemented with Statmodels demonstrates
a better accuracy (MAE of 0.105 and RMSE of 0.122), being more efficient in both energy
and accuracy. It is important to note that LSTM is the only model utilizing GPU, while
the others use only CPU. LSTM models, although more complex, have a higher resource
consumption and longer execution times, which is crucial in real-time applications.

5. Conclusions

This article presents a preliminary analysis indicating that ARIMA models, especially
when implemented with libraries such as Statmodels, are significantly more efficient in
terms of energy consumption and CO2 emissions, while also providing adequate accuracy.
In contrast, although LSTM models offer certain advantages in specific scenarios due to
their ability to capture nonlinear relationships and long-term dependencies, their high
energy consumption, higher CO2 emissions, and prolonged execution times may limit their
applicability in situations where these factors are critical.

Future research could focus on expanding the study to include different types of
data and applications to verify whether the current findings hold in other contexts; in-
vestigating optimization and compression techniques for LSTM models to reduce their
energy consumption and CO2 emissions without sacrificing accuracy; exploring new model
architectures that can offer an optimal balance between energy efficiency and accuracy;
analyzing the impact of different hardware infrastructures on energy consumption and
CO2 emissions to determine optimal configurations; and evaluating the scalability of these
models in large-scale systems, considering both the energy aspects and factors of accuracy
and execution time.
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