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a b s t r a c t

Information Theory provides a fundamental basis for analysis,
and for a variety of subsequent methodological approaches, in
relation to uncertainty quantification. The transversal character
of concepts and derived results justifies its omnipresence in
scientific research, in almost every area of knowledge, particu-
larly in Physics, Communications, Geosciences, Life Sciences, etc.
Information-theoretic aspects underlie modern developments on
complexity and risk. A proper use and exploitation of structural
characteristics inherent to spatial data motivates, according to
the purpose, special considerations in this context.

In this paper, some relevant approaches introduced regarding
the informational analysis of spatial data, related aspects con-
cerning complexity analysis, and, in particular, implications in
relation to the structural assessment of multifractal point pat-
terns, are reviewed under a conceptually connective evolutionary
perspective.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Since the appearance of the seminal paper by Shannon (1948), there has been immense lit-
rature devoted to the foundations and developments of Information Theory, a vast discipline
ith transversal implications in every field of knowledge. Besides many other proposals, Shannon
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entropy still remains as a benchmark concept from which, in particular, a number of generalizations
have been introduced, with Rényi entropy (Rényi, 1961) constituting the most representative one
under preservation of extensivity for independent systems.

In the last decades, ‘complexity’ has become a multiconceptual aspect of increasing interest for
research. In particular, from the point of view of quantification regarding structural characteristics
of a random system, Information Theory provides a meaningful and solid support for objective
formalization of complexity measures. In the context of Geography, Batty et al. (2014), extending
Batty’s (1974) original approach for ‘spatial entropy’ from a partitioning-based formal relation
between the discrete and continuous Shannon entropy versions, proposed a measure of ‘complexity’
under a restricted notion of departure from equilibrium (equiprobability). In parallel, in the ambit
of Physics, a different conception of ‘complexity’ was introduced (see, for instance, Huberman and
Hogg, 1986), as a departure from both equilibrium and singularity (i.e. degeneracy to a single state
with probability 1). Under this approach, the discrete product-type formulation by López-Ruiz et al.
(1995) for a balanced assessment of information and disequilibrium factors, and its exponential-
entropy version for continuous probability distributions proposed by Catalán et al. (2002), lead to
the formulation of a generalized complexity measure by López-Ruiz et al. (2009), a two-parameter
family which, in the end, quantifies in an exponential scale the variations of Rényi entropy with
respect to changes in the deformation parameter, for a given continuous probability distribution.
In fact, based on the notion by Campbell (1966) of exponential (Shannon and Rényi) entropy as a
measure of extent (‘diversity index’) of a probability distribution, either continuous or discrete, we
justify the significance of the two-parameter generalized complexity measure also for the discrete
case, giving then a proper complementary interpretation as a diversity ratio for both scenarios.
In particular, we show that Batty et al.’s approach to complexity can then be embedded as a
specific, partially degenerated case, into the generalized complexity measure family, for some fixed
parameter values.

A step further in the perspective presented in this paper is concerned with systems characterized
by multifractal measures (see, for instance, the accessible presentation by Harte, 2001). In some
general sense, multifractality has been generally identified and referred to in the literature as a form
of complexity. As a reference object of the multifractal formalism, the generalized Rényi dimensions
(and the singularity spectrum, its pair Legendre transform), defined in terms of the scaling behaviour
of Rényi entropy, constitute a key instrument for practical analysis in many fields of application,
and particularly in Geophysics. In this respect, a direct limiting connection between the above
mentioned two-parameter generalized complexity measure and the increments of the generalized
dimension curve was formally established in Angulo and Esquivel (2014), thus highlighting a precise
interpretation of the variational properties of the latter for quantitative complexity assessment in
the multifractal domain. In Esquivel et al. (2017), the complementary informativeness of the maps
of relative increments and, in particular, of the curve of derivatives of generalized dimensions was
further justified.

Beyond and complementarily with the informational ‘global’ comparison of two possible dis-
tributions on a given system directly from their marginal entropies, divergence measures are
formulated with the aim of quantifying their probabilistic structural coherence by a ‘local’ (state-
by-state) examination. Historically, as before, Kullback and Leibler (1951) divergence (as the
counterpart for Shannon entropy) and its generalization by Rényi (1961) divergence (correspond-
ingly for Rényi entropy) constitute, among many other available definitions, reference concepts in
the construction and multidisciplinary applications of Information Theory. In a parallel scheme to
the discussion outlined above, we analyse their implications in the context of complexity and mul-
tifractality. In this direction, Romera et al. (2011), adopting a similar product-type approach, now
based on Rényi divergence, proposed a two-parameter generalized relative complexity measure,
for ‘local’ assessment of complexity coherence between two continuous probability distributions.
From a formal and conceptual statement of a divergence-based ‘relative diversity index’, we also
justify the significance of the corresponding discrete version and, as before, give a complementary
related interpretation for both cases. Finally, based on a natural formulation of generalized relative
dimensions regarding the scaling behaviour of Rényi divergence in a multifractal context, we also
establish the direct limiting relation between the corresponding increments and the generalized
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relative complexity family, with a subsequent interpretation and derivation of related variational
tools for practical (multifractal) relative complexity assessment.

In summary, the aim of this paper is to present, in a schematic synthesis, a perspective
properly connecting, formally and conceptually, all the above mentioned aspects, from information
(Section 2) to complexity (Section 3) and, in particular, to multifractality (Section 4), with a parallel
reference to measures for ‘global’ and (comparative) ‘local’ structural assessment. Through the
study of a real seismic series (Section 5), focused on the temporal distribution and magnitudes of
registered events during different phases in the circumstance of a volcanic episode, we demonstrate,
in particular, the complementary usefulness of generalized dimensions and generalized relative
dimensions for analysis and interpretation. In Section 6, a concise conclusion is given, with an added
reference to some further aspects and alternative approaches.

2. Information entropy and divergence

In this section, formal and conceptual aspects focused on the definition of Shannon and Rényi
entropies, as well as Kullback–Leibler and Rényi divergences, are introduced. These constitute the
basis for the construction of product-type generalized complexity and generalized relative com-
plexity measures, respectively, as discussed in Section 3, as well as for the definition of generalized
dimensions and generalized relative dimensions in the multifractal domain, see Section 4. (Related
notions based on Tsallis entropy and divergence, as an alternative form of a deformation-parameter
generalization, are referred in Section 6.) In analogy to Campbell diversity index, a divergence-based
relative diversity index is proposed, both of which provide a specific interpretation for product
complexity and relative complexity measures addressed in Section 3. Batty’s approach to spatial
entropy, which connects with the discussion of discrete vs. continuous entropy versions, is also
introduced here, as a former step to a related notion of complexity associated with the information
difference, referred to in Section 3.

2.1. Entropy measures (Hartley, Shannon, Rényi)

2.1.1. Discrete probability distributions
‘Information content’ (Hartley entropy) — Hartley (1928). For a random selection of one element
within a finite set A of cardinality n, an appropriate measure of information under monotonicity,
additivity and normalization requirements is given by

log(n).

An extended interpretation, from this germinal notion introduced and justified by Hartley (1928) in
the context of telecommunications, leads to the following general formulation: For an event with
probability p of occurrence, the quantity

− log(p).

represents an appropriate measure of information, as before, under monotonicity, additivity and
normalization requirements. This can be viewed as the ‘information content’ provided by the
occurrence of that particular event.

Since the measure is intended for quantitative comparison purposes, and it can be more generally
defined except for any specified multiplicative constant, an arbitrary logarithmic base can be
adopted (Hartley, 1928, p. 540). In what follows, the natural logarithm ‘loge’, denoted as ‘ln’, is
used in all the formulations.

Shannon entropy — Shannon (1948). For a discrete probability distribution p̄ = (p1, . . . , pn), the
(Shannon) entropy (or ‘information entropy’) is defined as

H(p̄) := −

n∑
i=1

pi ln(pi) = E[− ln(p̄)].

hus, Shannon (1948) entropy is interpreted as the expected information content provided by the
ystem realization (outcome generation) based on p̄, i.e. the p̄-mean Hartley (extended) entropy.
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Fig. 1. Shannon entropy for p̄ = (p1, p2, p3), with values varying from 0, the minimum uncertainty at the degenerate
distributions corresponding to the vertices, to ln(3), the maximum uncertainty associated with the equiprobability central
point.

Among others, two well-known basic properties of Shannon entropy are:

• Minimum and maximum values of H:

Hmin = 0 Hmax = ln(n),

with Hmin being related to degenerate systems concentrating the probability mass in only
one of the possible states, e.g. p̄ = (1, 0, . . . , 0), and Hmax being reached only in the case
of equiprobability, i.e. p̄ = ( 1n , . . . ,

1
n ) =:

[ 1
n

]
(from now on, although the latter should be

properly written as Hmax(n) := H
([ 1

n

])
in reference to the specific number n of possible states

considered, this argument is omitted whenever it is implicitly understood).
• ‘Extensivity’ (or additivity property): The (joint) Shannon entropy of a system composed

by two independent systems, which are assumed to be characterized by two independent
respective discrete probability distributions, is equal to the sum of their individual (marginal)
Shannon entropies.

For illustration, Fig. 1 represents in a simplex plot the Shannon entropy values based on a ternary
ystem, characterized by a discrete probability distribution with n = 3 possible elementary events.

ényi entropy of order q — Rényi (1961). For a discrete probability distribution p̄ = (p1, . . . , pn), the
Rényi) entropy of order q is defined as

Hq(p̄) :=
1

1 − q
ln

(
n∑

i=1

pqi

)
=

1
1 − q

ln
(
E[p̄q−1

]
)

(q ̸= 1).

Historically, Rényi (1961) entropy perhaps constitutes the best-known and most-used generaliza-
tion of Shannon entropy, being formulated in terms of a ‘deformation parameter’ q whose meaning
is related to the q-power distortion effect derived on the reference probability distribution p̄:

p̄ = (p1, . . . , pn) −→ p̄q,∗ = (pq,∗1 , . . . , pq,∗n ), pq,∗i =
pqi∑
j p

q
j
.

ig. 2 displays the paths followed by the ternary probability distribution p̄q,∗ = (pq,∗1 , pq,∗2 , pq,∗3 )
s q tends from 1 to ∞ (left plot) or to 0 (right plot), assuming different starting distributions. In
articular, it can be observed that the centre of the triangle (three-dimensional simplex), the central

oints in the three edge segments (degenerate marginal two-dimensional sub-simplexes), and the
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Fig. 2. Paths followed by p̄q,∗ = (pq,∗1 , pq,∗2 , pq,∗3 ) as q tends from 1 to ∞ (left plot) or to 0 (right plot), from different
tarting distributions. In the first case, power distortion makes any non-equiprobable distribution move towards the edges
nd/or vertices; in particular, middle edge points attract those distributions having two dominant equiprobable states.
n the second case, conversely, any distribution without probability degeneracy for any of the states moves by power
istortion towards the simplex centre representing equiprobability; partial degeneracy with null probability for only one
tate makes the distribution tend towards the partial equiprobability represented by the middle point of the corresponding
dge; complete degeneracy in one state, represented by the vertices, results in invariance.

hree vertices (degenerate marginal one-dimensional sub-simplexes) represent stationary and/or
bsorbing points depending on the case.
Among others, as before, some well-known basic properties of Rényi entropy are:

• Shannon entropy is the limiting case of Rényi entropy as q → 1.
• Minimum and maximum values of Hq:

Hqmin = 0 Hqmax = ln(n).

• Rényi entropy satisfies ‘extensivity’ for independent systems.

Plots in Fig. 3 show the values of Rényi entropy for a ternary probability distribution under
ifferent specifications for the deformation parameter, namely q = 0.5, 2, 5 and 100.

Campbell diversity index — Campbell (1966). Given a discrete probability distribution p̄ = (p1, . . . ,
pn), Campbell (1966) justifies measuring the intrinsic number of states of the system, according to
p̄, by the exponential of Shannon entropy and, as an extension, of Rényi entropy; i.e. the numbers

DI(p̄) = eH(p̄) DIq(p̄) = eHq(p̄)

(write DI1(p̄) for DI(p̄)).
In particular:

• For a degenerate probability distribution, say p̄ = (1, 0, . . . , 0), we have DIq = 1.
• In the case of equiprobability, DIq = n.

Fig. 4 represents the values of Campbell diversity indices DI1(p̄) and DI2(p̄) for a ternary
probability distribution, p̄ = (p1, p2, p3).

As commented in Section 3, Campbell diversity index provides a meaningful direct interpretation
of generalized complexity measures based on Rényi entropy.

2.1.2. Continuous probability distributions
The definitions given in 2.1.1 of Shannon and Rényi entropies, as well as of Campbell diversity

index, are conveniently reformulated for continuous probability distributions. For a proper corre-
spondence between the discrete and continuous versions, the latter must be specifically interpreted
in terms of uncertainty at unit scale resolution, as discussed below. This constitutes the basis for
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Fig. 3. Rényi entropy of orders q = 0.5 (top left), 2 (top right), 5 (bottom left) and 100 (bottom right) for p̄ = (p1, p2, p3).
In all cases, values vary from 0, the minimum uncertainty at the degenerate distributions corresponding to the vertices,
to ln(3), the maximum uncertainty associated with the equiprobability central point, with dissimilar transition patterns
reflecting different distortion effects derived from the deformation parameter specifications. In particular, the monotonic
non-increasing character of Rényi entropy with respect to q is visualized.

Fig. 4. Campbell diversity indices DI1(p̄) (left) and DI2(p̄) (right) for p̄ = (p1, p2, p3). The values continuously vary from 1,
the minimum number of intrinsic states corresponding to the degenerate distributions at the vertices, to 3, the maximum
associated with the equiprobability distribution at the central point. Transitions differ according to the specified order,
i.e. the value of the deformation parameter.

Batty’s formalization of a concept of spatial entropy (Batty, 1974), later reinterpreted, in a certain
sense, as a form of complexity (see discussion in Section 3).

Shannon entropy, continuous version — Shannon (1948). For a continuous distribution with proba-
bility density function {f (x) : x ∈ Rd

}, the (Shannon) entropy is defined by

H(f ) := −

∫
d
ln(f (x))f (x)dx = E[− ln(f )].
R
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Well-known basic properties of continuous Shannon entropy are:

• Infimum and supremum of H:

Hinf = −∞ Hsup = +∞.

• Continuous Shannon entropy satisfies ‘extensivity’.

Rényi entropy of order q, continuous version — Rényi (1961). For a continuous distribution with
robability density function {f (x) : x ∈ Rd

}, the (Rényi) entropy of order q is defined by

Hq(f ) :=
1

1 − q
ln
(∫

Rd
f q(x)dx

)
=

1
1 − q

ln
(
E[f q−1

]
)

(q ̸= 1).

The following basic properties hold:

• Shannon entropy H(f ) is the limiting case of Rényi entropy Hq(f ) as q → 1.
• Infimum and supremum of Hq:

Hqinf = −∞ Hqsup = +∞.

• Continuous Rényi entropy satisfies ‘extensivity’ for independent systems.

Campbell diversity index, continuous version — Campbell (1966). The definition of Campbell diversity
index can be formally extended to systems characterized by continuous probability distributions.
For a continuous distribution with probability density function {f (x) : x ∈ Rd

},

DI(f ) = eH(f ) DIq(f ) = eHq(f )

(as before, DI1(f ) can be written for DI(f )). In this case, DIq(f ) varies on (0, +∞), with an appropriate
interpretation as a measure of ‘extent’ (or ‘spread’) of the distribution represented by f .

Continuous vs. discrete entropy versions. Despite their formal analogy (in fact, the same notation is
commonly used, except for the type of argument under consideration, implicit or explicitly), there is
not a direct correspondence between the definitions of discrete and continuous Shannon and Rényi
entropy versions. However, they are in fact related in terms of a proper interpretation of uncertainty
as a concept intrinsically linked to scale in the continuous probability distribution scenario. For
simplicity, this is justified below in reference to the particular case of equiprobability in dimension
d = 1.

For a continuous Uniform distribution U(IL) on the interval IL = [0, L] (L ∈ R+), we have

fU(IL)(·) ≡
1
L

−→ Hq(fU(IL)) = ln(L) (∀q).

ividing the interval IL into N subintervals of equal length, ∆ =
L
N , we obtain the corresponding

discrete distribution p̄∆
= (p∆

1 , . . . , p∆
N ) with

p∆
i =

1
L

· ∆ =
1
N

(∀i) −→ Hq(p̄∆) = ln(N) (∀q).

n general, we then have

Hq(fU(IL)) = ln(L) = ln(N · ∆) = Hq(p̄∆) + ln(∆).

n particular, for L ∈ N and N = L, i.e. ∆ = 1, the continuous and discrete entropy values coincide.
his equivalence supports the interpretation that the continuous entropy versions implicitly assume
hat uncertainty is quantified as a degree of determination of the system state up to unit scale
esolution. In fact, for L < 1, we have Hq(fU(IL)) < 0, consistently with the fact that in this case a
egree of determination strictly more precise than the unit scale is a priori implied by the specified
ange for the distribution support.

For general continuous probability distributions with support in R, negative entropy values can
thus be reinterpreted as ‘a positive degree of certainty’ about the system state at each realization,
with respect to the reference zero-entropy case represented by the standard U([0, 1]) distribution.
(This argument can be extended to the d-dimensional case under appropriate considerations.)
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Batty’s approach to ‘spatial entropy’ — Batty (1974), etc. Based on a Riemann-type approximation of
he integral defining the continuous Shannon entropy, Batty (1974) suggested to write

H(f ) = lim
∆xi→0

[
−

∑
i

pi ln
(

pi
∆xi

)]
,

or a partition of space into cells of size ∆xi, respectively, with pi being the probability mass
oncentrated on cell i. The term within brackets is interpreted as the spatial entropy corresponding
o that particular partition of space.

Batty et al. (2014) proposed rewriting this approximation in terms of the discrete Shannon
ntropy, as given by the decomposition

H(p̄) = −

∑
i

pi ln
(

pi
∆xi

)
−

∑
i

pi ln (∆xi) = S + Z,

where, as mentioned, S is the approximation to the continuous entropy based on the particular
artition of space adopted, and Z is explicitly interpreted by the authors as ‘‘the approximation to

the information associated with the sizes of the events comprising the distribution which enable
densities to be measured’’, pointing out that the interesting aspect to be examined on H(p̄) is the
‘‘numerical co-variation of its elements S and Z ’’.

In fact, from our previous interpretation in terms of scale, the term ln (∆xi) can be regarded as
the ‘spatial information content’ (in analogy to Hartley’s approach) of cell i intrinsic to its size, a
quantity which becomes negative for ∆xi < 1; hence, in this sense, the value

−Z =

∑
i

pi ln (∆xi)

epresents the p̄-mean spatial information content for this particular partition, noting that it tends
o −∞ as the partition gets indefinitely finer.

.2. Divergence measures (Kullback–Leibler, Rényi)

Measures of entropy can be used for a first comparison, in ‘global’ terms, of the uncertainty
ssociated with different probability distributions on a given system. However, since very different
robability distributions may lead to the same entropy values, a ‘local’ comparison based on the
pecific assignment of probabilities for each possible state provides the relevant information for
tructural assessment. This is the general purpose of divergence measures. Here, the definitions of
he Kullback–Leibler and Rényi divergence measures are introduced. A notion of a ‘relative diversity
ndex’, in analogy to Campbell’s diversity index approach, is stated.

ullback and Leibler (1951) and Rényi (1961) divergence measures. For two discrete probability
istributions p̄1 = (p11, p12, . . . , p1n) and p̄2 = (p21, p22, . . . , p2n) (with p̄1 being absolutely
ontinuous with respect to p̄2), on a given set of n states, Kullback–Leibler (directed) divergence
nd Rényi (directed) divergence of order q of p̄1 from p̄2 are respectively defined as

KL(p̄1∥p̄2) :=

∑
i

p1i ln
(
p1i
p2i

)
= Ep̄1

[
ln
(
p̄1
p̄2

)]
,

Hq(p̄1∥p̄2) :=
1

q − 1
ln

(∑
i

p1i

(
p1i
p2i

)q−1
)

=
1

q − 1
ln

(
Ep̄1

[(
p̄1
p̄2

)q−1
])

(q ̸= 1).

or q → 1, H (p̄ ∥p̄ ) tends to KL(p̄ ∥p̄ ) (hence with the latter being also denoted as H (p̄ ∥p̄ )).
q 1 2 1 2 1 1 2
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Similarly, for two continuous distributions with respective probability density functions
f (x) : x ∈ Rd

}
and

{
g(x) : x ∈ Rd

}
(with f being absolutely continuous with respect to g), the

directed) divergences of f from g are correspondingly defined as

KL(f ∥g) :=

∫
Rd

f (x) ln
(
f (x)
g(x)

)
dx = Ef

[
ln
(
f
g

)]
,

Hq(f ∥g) :=
1

q − 1
ln

(∫
Rd

f (x)
(
f (x)
g(x)

)q−1
)

=
1

q − 1
ln

(
Ef

[(
f
g

)q−1
])

(q ̸= 1).

s before, for q → 1, Hq(f ∥g) tends to KL(f ∥g) (also denoted as H1(f ∥g)).

A ‘pivotal’ quantity: The ‘information difference’. There is one particular instance for which Kullback–
Leibler and Rényi divergences are equal to the differences of the corresponding Shannon and Rényi
entropies, respectively. This is related to the concept of ‘information difference’, which is reviewed
later in Section 3 in the context of complexity.

For a discrete probability distribution p̄ = (p1, p2, . . . , pn), the information difference is defined
as the entropy defect with respect to the case of equiprobability,

ID(p̄) := Hmax − H(p̄) = ln(n) − H(p̄) = KL
(
p̄∥
[
1
n

])
.

More generally, the information difference of order q is defined as

IDq(p̄) := Hqmax − Hq(p̄) = ln(n) − Hq(p̄) = Hq

(
p̄∥
[
1
n

])
,

hich includes the previous case for q = 1 under the aforementioned limiting equivalence. The
ivergence expression reflects the fact that the ‘locality’ aspect, in comparing probabilities for
ach specific state, becomes irrelevant in this particular case due to uniformity in the reference
istribution.
In the continuous case, since in general Shannon and Rényi entropies are unbounded, such
concept of information difference can be defined only under restrictions for which a certain
istribution with maximum entropy may exist. In particular, and for simplicity, let us consider the
ubclass, denoted here as PI , of continuous probability distributions with support contained in a
iven compact subset I ⊂ R with positive Lebesgue measure, λ(I) > 0. The distribution within PI

with the maximum (Shannon, Rényi) entropy, HPI
qmax , is the continuous Uniform distribution on I ,

denoted U(I), with probability density function

fU(I) ≡
1

λ(I)

(except possibly for a subset I0 ⊂ I with λ(I0) = 0), noting that

HPI
qmax

= Hq(fU(I)) = ln(λ(I)),

for all q. For any probability distribution in PI , say with probability density function f , the
corresponding information difference and information difference of order q, both relative to the
ubclass PI , can be defined, respectively, as

ID(f ) := HPI
max − H(f ) = ln(λ(I)) − H(f ) = KL

(
f ∥fU(I)

)
,

nd

IDq(f ) := HPI
qmax

− Hq(f ) = ln(λ(I)) − Hq(f ) = Hq
(
f ∥fU(I)

)
.
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A ‘relative diversity index’. Following Campbell’s ‘diversity index’ approach, a related notion of a
‘relative diversity index’ is formulated here is terms of divergence.

For two discrete probability distributions, denoted p̄1 = (p11, p12, . . . , p1n) and p̄2 = (p21, p22,
. . . , p2n), on a given set of n states, the ‘relative diversity index’ and ‘relative diversity index of order
q’ of p̄1 with respect to p̄2 are respectively defined as

DI(p̄1∥p̄2) = eKL(p̄1∥p̄2), DIq(p̄1∥p̄2) = eHq(p̄1∥p̄2) (q ̸= 1)

(as before, DI1(p̄1∥p̄2) can be written for DI(p̄1∥p̄2)).
In particular, for p̄2 ≡

[ 1
n

]
,

DIq

(
p̄1∥

[
1
n

])
=

n
DIq(p̄1)

.

lso, for p̄1 ≡ p̄2, we have that DIq(p̄1∥p̄2) = 1. In general, the relative diversity index (of order q) can
be interpreted as a measure of the structural departure of p̄1 from p̄2 in terms on the state-by-state
probability contribution to diversity.

The concept of relative diversity index (of order q) can be similarly formulated and interpreted
for continuous probability distributions, by exponentiation, under the corresponding definitions of
Shannon and Rényi divergences given above (details are omitted).

3. Complexity and relative complexity measures

In this section, we address some formulations of complexity and relative complexity measures,
based on the concepts of entropy and divergence introduced in Section 2, which have received
special attention in the literature. As a preliminary form, proposed in the context of Geography,
we refer to the notion of complexity by Batty et al. (2014), specifically understood as a departure
from equilibrium. A more general statement, emerged from Physics originally under the notion of
complexity as a departure from both equilibrium and degeneracy, was developed as a product-
type two-parameter measure defined by the exponential of the difference of Rényi entropies,
for complexity, and of Rényi divergences, for relative complexity, of different orders. The former
mentioned preliminary form can be interpreted as a very special case of the generalized complexity
measure for certain fixed parameter values. Both generalized complexity and relative complexity
measures are properly interpreted from their straightforward expression in terms of the diversity
and relative diversity indices introduced in Section 2. The usefulness of maps based on relative
increments and, in particular, of the curves of derivatives of Rényi entropy and divergence with
respect to the deformation parameter is justified for complexity and relative complexity assessment
(see related elements in Section 4 in the context of multifractal complexity and relative complexity
assessment).

3.1. Entropy and complexity

Complexity uniquely as a departure from equilibrium. Shannon (1948) defined the relative entropy of
a discrete probability distribution p̄ = (p1, . . . , pn) as the [entropy] ratio

H(p̄)
Hmax

,

that is, the normalization of entropy with respect to the maximum entropy corresponding to
equiprobability. He then called [relative] redundancy its complement,

R(p̄) = 1 −
H(p̄)
Hmax

.

Rewritten in terms of the information difference ID(p̄) = Hmax − H(p̄), as

R(p̄) =
Hmax − H(p̄)

=
ID(p̄)

=
KL
(
p̄∥
[ 1
n

])
,

Hmax Hmax Hmax
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Fig. 5. Information difference (or ‘complexity difference’) ID(p̄) (left), and LMC complexity measure CLMC (p̄) (right), for
p̄ = (p1, p2, p3). In these two plots, the main conceptual difference for ‘complexity’, understood as a measure of departure
rom equilibrium in the first case, and as a balance measure of departure from both equilibrium and degeneracy in
he second case, is clearly visualized comparing the respective structural patterns. As a result, in particular, these two
easures have an opposite behaviour for distributions in proximity to the vertices.

he redundancy of p̄ can be interpreted as a normalized measure of departure from equilibrium,
hence representing, in a certain sense, the relative loss of freedom in the occurrence of the system
states implied by its probabilistic structure.

Batty (1974) incorporated these concepts in his work, adopting from Theil (1967) (see also Theil,
1972) the name ‘information gain’ for ID(p̄) (in this sense, ‘[relative] redundancy’ can be identified
s ‘relative information gain’). Further, Batty et al. (2014) explicitly call ID(p̄) the ‘complexity

difference’, and R(p̄) the ‘complexity ratio’, of p̄. Thus, the concept of ‘complexity’ is interpreted
by the authors in the specific sense of divergence from equiprobability.

The left plot of Fig. 5 shows the values of information difference (‘complexity difference’), ID(p̄),
for a ternary probability distribution, p̄ = (p1, p2, p3).

It is clear that similar concepts, such as ‘relative entropy of order q’ and ‘[relative] redundancy
of order q’, can be defined in terms of Rényi entropy. Furthermore, as commented before, related
versions for continuous probability distributions are meaningful under restriction to subclasses for
which a maximum (Shannon, Rényi) entropy distribution may exist.

‘Product’ complexity measures. In Physics, a different concept of complexity arose (e.g., Huberman
and Hogg, 1986) under the idea that perfect order and complete disorder both reflect, although in
an opposite sense, lack of structural richness in a system, and hence minimal complexity scenarios.

In particular, this notion was adopted by López-Ruiz et al. (1995) in their formulation of a
product-type complexity measure defined as

CLMC (p̄) = H(p̄) · D(p̄) =

(
−

n∑
i=1

pi ln(pi)

)(
n∑

i=1

(
pi −

1
n

)2
)

,

here the factors H(p̄) and D(p̄) quantify, respectively, the ‘information’ and ‘disequilibrium’ of the
ystem characterized by the probability distribution p̄. Thus, the balance of these two ‘inner’ and
outer’ structural aspects of the distribution is evaluated for complexity assessment.

The right plot of Fig. 5 represents the LMC complexity values for a ternary system.
For a proper adaptation to the continuous case, Catalán et al. (2002) proposed the modified

xponential version defined, for a given probability density function f on R, as

C exp
LMC (f ) := eH(f )

· D(f ) =

(
exp

{
−

∫
R

f (x) ln(f (x))dx
})(

−

∫
R

f 2(x)dx
)

= eH1(f )−H2(f )

formal extension to distributions with support in Rd is immediate).
But in fact, following Campbell’s (1966) approach to measuring diversity, this formulation can

exp
¯ H1(p̄)−H2(p̄). Hence, for both
lso be adopted as properly meaningful for the discrete case, CLMC (p) := e
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cases, the C exp
LMC complexity measure can be interpreted as the ratio of Campbell diversity indices of

orders 1 and 2,

C exp
LMC (p̄) =

DI1(p̄)
DI2(p̄)

C exp
LMC (f ) =

DI1(f )
DI2(f )

.

A further step, for a ‘natural’ generalization of Rényi-entropy-based product complexity mea-
ures, was given, in the continuous case, by López-Ruiz et al. (2009) under the two-parameter
ormulation

Cα,β (f ) := eHα (f )−Hβ (f ),

or 0 < α, β < ∞. (As is assumed in Section 4.1, this definition can be formally extended
lso covering the negative range for parameters α and β , with proper specifications regarding the
roperties satisfied by the measure.)
As before, this measure can be meaningfully adopted for the discrete case,

Cα,β (p̄) := eHα (p̄)−Hβ (p̄).

gain, in terms of Campbell diversity indices of orders α and β ,

Cα,β (p̄) =
DIα(p̄)
DIβ (p̄)

, Cα,β (f ) =
DIα(f )
DIβ (f )

.

n particular, we then have

C exp
LMC (·) ≡ C1,2(·).

urthermore, noting that, in the discrete case,

Hα

([
1
n

])
= ln(n) = H0(p̄),

for all α ≥ 0, and for all p̄ = (p1, . . . , pn) with pi > 0, i = 1, . . . , n, the ‘complexity difference’ ID(p̄)
and the ‘complexity ratio’ R(p̄) (as named by Batty et al., 2014) can also be seen as special limit
cases of the generalized two-parameter complexity measure for α → 0 and β = 1, according to
the relations

ID(p̄) = ln
(
C0,1(p̄)

)
, R(p̄) =

ln
(
C0,1(p̄)

)
Hmax

=
ln
(
C0,1(p̄)

)
ln(n)

= ln
[(

C0,1(p̄)
) 1

ln(n)

]
.

Plots in Fig. 6 show the values of Cα,β (p̄) for a ternary distribution, p̄ = (p1, p2, p3), based on the
specifications (α, β) = (1, 2), (2, 10), (0.5, 1) and (0.5, 10), respectively.

In practice, the maps{
Cα,β (p̄) : 0 ≤ α, β < ∞

}
,

ossibly restricted to some subregion within the (α, β)-parameter space, provide a useful represen-
ation of complexity patterns under this approach (and similarly for the continuous case; related
ormal details and comments are omitted in the remainder of this section). In addition, marginal
epresentations (with a possible rescaling) of

Cα,β (p̄) vs. eHα (p̄), and Cα,β (p̄) vs. eHβ (p̄),

or fixed values of β and α, respectively, are of interest to assess the relative contribution of the
actors to the product complexity.

For α = β (which would correspond to the map main diagonal) we invariably have the constant
alue Cα,β (·) ≡ 1, which is not informative. Observing that the generalized complexity measure
α,β (p̄) in effect quantifies, in an appropriate scale, the incremental (Rényi) entropic response
f the distribution p̄ with respect to changes of the deformation parameter, we can justify the
omplementary use, for complexity assessment, of the relative increment function

ln
[(

Cα,β (p̄)
) 1

α−β

]
=

Hα(p̄) − Hβ (p̄) (or
(
Cα,β (p̄)

) 1
α−β = e

Hα (p̄)−Hβ (p̄)
α−β ),
α − β
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Fig. 6. Generalized complexity measure Cα,β (p̄) for p̄ = (p1, p2, p3), with (α, β) = (1, 2) (top left), (2,10) (top right), (0.5,1)
bottom left) and (0.5,10) (bottom right). Noting that in all the cases α has been taken lower than β (complexity values
ould be their corresponding multiplicative inverses by interchanging α and β), the minimum value 1 is always reached

or the singular points represented by the centre, the three edge middle points, and the three vertices, which in fact
epresent the invariant ternary distributions under power distortion. The transition patterns, including the locations of
he maximal points and their associated complexity values, vary depending on the two-parameter specifications.

nd, in particular, of its limit as β → α for fixed α, that is, the (curve of) derivatives of Hα(p̄) with
espect to α,

H ′

α(p̄), (or, respectively, eH
′
α (p̄))

optionally, in both cases, displayed with a change of sign for positiveness, according to the
ecreasing monotonicity of Rényi entropy with respect to the deformation parameter). This quantity
s indeed informative about the entropic sensitivity of p̄ to local infinitesimal changes of the
eformation parameter. (This idea is introduced in Esquivel et al., 2017, in relation to multifractal
ystems and generalized Rényi dimensions; see Section 4.)
Fig. 7 shows the values of the derivative of Rényi entropy, H ′

α(p̄), at α = 2, for a ternary discrete
probability distribution p̄ = (p1, p2, p3).

3.2. Relative entropy and relative complexity

Generalized relative complexity — Romera et al. (2011). In analogy to the product-type formulation
f the two-parameter generalized complexity measure referred in Section 3.1, Romera et al. (2011)
roposed (as before, in the context of Physics) the formulation of a measure of (directed) relative
omplexity between two given probability densities,

{
f (x) : x ∈ Rd

}
and

{
g(x) : x ∈ Rd

}
(with f

eing absolutely continuous with respect to g), as

Cα,β (f ∥g) := eHα (f ∥g)−Hβ (f ∥g),

or 0 < α, β < ∞ (again, the definition can be extended for any real value of the parameters, as
onsidered in Section 4.2). This measure is then based on the ‘local’ (state-by-state) comparison of
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Fig. 7. Derivative of Rényi entropy, H ′
α , at α = 2, for p̄ = (p1, p2, p3). The structure of this plot shows the intrinsic value

of −H ′
α as a one-parameter generalized complexity measure, under the notion of ‘complexity’ as a departure from both

equilibrium and degeneracy.

the distributions involved, specifically quantifying the sensitivity of Rényi divergence with respect
to changes in the deformation parameter.

As before, this measure can be meaningfully adopted for the discrete case: For two discrete
probability distributions p̄1 = (p11, p12, . . . , p1n) and p̄2 = (p21, p22, . . . , p2n) on a given set of n
states,

Cα,β (p̄1∥p̄2) := eHα (p̄1∥p̄2)−Hβ (p̄1∥p̄2).

In terms of the relative diversity index introduced in Section 2, we can therefore also rewrite

Cα,β (p̄1∥p̄2) =
DIα(p̄1∥p̄2)
DIβ (p̄1∥p̄2)

, Cα,β (f ∥g) =
DIα(f ∥g)
DIβ (f ∥g)

,

ith the correspondingly added interpretation.
Plots in Fig. 8 display the ternary simplex representations of the generalized relative complexity

alues with varying p̄ = (p1, p2, p3) and fixed q̄ = (0.2, 0.3, 0.5), for different parameter values,
amely (α, β) = (1, 2), (2, 10), (0.5, 1), (0.5, 10), respectively. The non-symmetric character of the
easure with respect to the roles of p̄ and q̄, as is intrinsic to the definition of Rényi divergence, can
e observed comparing the two plots in Fig. 9, where in one case the simplex coordinates correspond
o varying p̄ = (p1, p2, p3), with q̄ = (0.2, 0.3, 0.5) as a fixed distribution, and conversely, in the
ther case the simplex coordinates correspond to varying q̄ = (q1, q2, q3), with p̄ = (0.2, 0.3, 0.5)
s the fixed distribution, both scenarios under the same parameter specifications, (α, β) = (0.5, 1).
In the particular case where the reference distribution is uniform, i.e. for p̄2 ≡

[ 1
n

]
, the

eneralized relative complexity measure is equivalent to the generalized complexity measure in
he following reciprocal sense:

Cα,β

(
p̄1∥

[
1
n

])
=

1
Cα,β (p̄1)

= Cβ,α(p̄1).

Along the same lines as described in Section 3.1, maps based on (relative) increments and, in
articular, the curve of Rényi divergence derivatives with respect to the deformation parameter are
seful for relative complexity assessment (further details are omitted; see Section 4.2 in relation to
eneralized relative dimensions).

. Multifractality: Generalized dimensions and complexity

In this section, in the context of multifractality, we first recall the meaningful limiting functional
onnection between the increments of generalized Rényi dimensions and the two-parameter
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Fig. 8. Generalized relative complexity measure Cα,β (p̄∥q̄) for p̄ = (p1, p2, p3), q̄ = (0.2, 0.3, 0.5), with (α, β) = (1, 2) (top
eft), (2,10) (top right), (0.5,1) (bottom left) and (0.5,10) (bottom right). In all the cases, the maximum value 1 is reached
or p̄ equal to the fixed reference distribution q̄. Structural patterns vary depending on the two-parameter specifications,
ith lack of triangular symmetry due to departure of q̄ from the central equiprobability distribution.

Fig. 9. Generalized relative complexity measure Cα,β (p̄∥q̄) for varying p̄ = (p1, p2, p3) and fixed q̄ = (0.2, 0.3, 0.5) (left),
and for varying q̄ = (q1, q2, q3) and fixed p̄ = (0.2, 0.3, 0.5) (right), in both cases with (α, β) = (0.5, 1). The different
patterns in these plots reflect the non-symmetric roles of the argument distributions p̄ and q̄, in agreement with the
directed nature of Rényi divergence on which the generalized relative complexity measure is based.

generalized complexity measure described in Section 3.1, as established in Angulo and Esquivel
(2014) and Esquivel et al. (2017). Thereafter, from a natural divergence-based formulation of
generalized Rényi relative dimensions, regarding the assessment of the local relation between
two given multifractal measures, a parallel functional connection is determined, in this case, with
the two-parameter generalized relative complexity measure described in 3.2. The instrumental
significance of related maps of increments and, in particular, curves of derivatives, complementarily
from both – ordinary and relative – forms of generalized dimensions, is illustrated in Section 5.
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4.1. Entropy and complexity — multifractality

Generalized Rényi dimensions — Hentschel and Procaccia (1983) and Grassberger (1983). For a mul-
tifractal measure µ with support in the d-dimensional Euclidean space, the generalized Rényi
imension (or generalized fractal dimension, or simply generalized dimension, etc.) of order q (with

q ∈ R) is defined by the rate of divergence of Rényi entropy of order q (or Shannon entropy in
the case q = 1) of the ‘partition’ probability distributions Pε associated with lattice coverings of
decreasing box width ε, as follows:

Dq := lim
ε→0

1
q − 1

ln

(∑
k∈Kε

µq
[Bε(k)]

)
ln (ε)

(q ̸= 1),

D1 := lim
ε→0

∑
k∈Kε

µ[Bε(k)] ln (µ[Bε(k)])

ln (ε)
,

here Kε denotes the set of non-µ-null boxes of width ε (see, for example, Harte, 2001).
Motivated by preliminary developments, and due to their specific interpretation, three particular

rders have been of common use in applications: D0, the ‘capacity’; D1, the ‘information dimension’,
and D2, the ‘correlation exponent’ (among various other denominations; see, for example, Grass-
berger, 1983; Hentschel and Procaccia, 1983). Further, considering that the generalized dimension
curve is monotonically non-increasing, and constant for a monofractal measure, the range D−∞−D∞

is sometimes referred to as the ‘multifractal step’, reflecting in a certain sense the richness of the
multifractal measure.

Limiting relation between the generalized complexity measure Cα,β (·) and the generalized Rényi dimen-
sions Dq(·) — Angulo and Esquivel (2014) and Esquivel et al. (2017). From the approximation (as
ε → 0)

e−Hq(Pε ) ∼ εDq (∀q),

we have

Cα,β (Pε) = eHα (Pε )−Hβ (Pε ) ∼ εDβ−Dα .

Accordingly, the incremental function of the generalized dimension curve, Dα − Dβ , can be
interpreted as a generalized complexity measure in the multifractal domain. In practice, the
(α, β)-maps based on

Dα − Dβ ,
Dα − Dβ

α − β
,

nd, in particular, the curve of derivatives

D′

α

as the limit main diagonal of the latter), are meaningful for complexity assessment.

.2. Divergence and relative complexity — relative multifractality

eneralized relative Rényi dimension. Under the same fundamental justification underlying the
oncept of divergence for a ‘local’ assessment in the structural comparison of two probability
istributions, a definition of generalized relative Rényi dimensions can be introduced in reference to
he limiting behaviour of Rényi divergences of different orders for lattice coverings of decreasing box
idth. The formulation adopted here (in contrast to related proposals in the literature) is consistent
ith the fact that, for two given distributions, Rényi divergence is a non-decreasing function of



J.M. Angulo, F.J. Esquivel, A.E. Madrid et al. / Spatial Statistics 42 (2021) 100462 17

w

the deformation parameter q: For two (multifractal) measures µ1 and µ2 (with µ1 assumed to be
absolutely continuous with respect to µ2), the generalized relative Rényi dimension of order q of
µ1 with respect to µ2 is defined by

Dq(µ1∥µ2) := lim
ε→0

1
1 − q

ln

(∑
k∈Kε

µ
q
1[Bε(k)]µ

1−q
2 [Bε(k)]

)
ln (ε)

(q ̸= 1),

D1(µ1∥µ2) := lim
ε→0

∑
k∈Kε

µ1[Bε(k)] ln
(

µ1[Bε(k)]
µ2[Bε(k)]

)
ln (ε)

,

here, as before, Kε denotes the set of non-µ2-null boxes of width ε.

Limiting relation between the generalized relative complexity measure Cα,β (·∥·) and the generalized
relative Rényi dimensions Dq(·∥·). Similarly to the argument given in Section 4.1, the following
approximation holds as ε → 0:

Cα,β (P1,ε∥P2,ε) ∼ εDβ (µ1∥µ2)−Dα (µ1∥µ2).

Hence, the incremental function of the generalized relative dimension curve can be interpreted as
a generalized relative complexity measure in the multifractal domain. Analogous considerations
proceed regarding the usefulness of related (α, β)-maps and, in particular, the curve of derivatives
for relative complexity assessment.

5. Real data illustration: Seismic series — El Hierro (Canary Islands, Spain)

In this section, we analyse a series of 11.142 seismic events that occurred in the area of the
volcanic island of El Hierro (Canary Islands, Spain), from July 19, 2011, until January 7, 2012, related
with the well-known high activity episode involving the submarine eruption of October 10, 2011.
This phenomenon has been the object of investigation in a number of studies focusing on different
aspects and from various perspectives (see, for instance, Angulo and Esquivel, 2014; Esquivel and
Angulo, 2015, and references therein).

For comparison purposes, in reference to the evolutionary dynamics, the series is divided into
three subperiods (named phases A, B and C), the central of which (phase B) contains the mentioned
eruption. Fig. 10 (taken from Esquivel and Angulo, 2015) displays the spatial projection of epicentres
(top plot) and the temporal sequence of magnitudes (bottom plot) corresponding to the registered
events.

In this study, we are interested in assessing possible structural changes, corresponding to the
three specified phases, based on the different complexity patterns derived from evaluation of
generalized dimensions and generalized relative dimensions, as explained in Sections 4.1 and 4.2.

In the first stage, the analysis only takes into account the temporal distribution of events for
each subperiod. Its multifractal nature is reflected in the respective generalized dimension curves,
as shown in Fig. 11. There is evidence of an abrupt change from phase A to phase B, with a significant
shortening of the range (multifractal step), which tends to be reversed from phase B to phase C. The
map of relative increments and, in particular, its limit diagonal representing the derivatives of the
generalized dimension curve, respectively displayed in Figs. 12 and 13, clearly discriminate central
phase B from phases A and C, without much relative difference between the latter two.

Now, observing that the mean levels, the ranges, and likely the general patterns of the mag-
nitudes represented in Fig. 10 (bottom plot) appear to be different, particularly from phase A to
phases B and C, we include in the analysis jointly the temporal location and magnitude, paired
for each event. As a starting point, it is expected that the physical association between these
two aspects, under a relatively regular regime, becomes altered as the dynamics becomes more
unstable. For assessment, we then consider, for each partition (with interval length ε) of the

¯
temporal domain, two distributions: Pε (the frequency distribution), obtained from box-counting



18 J.M. Angulo, F.J. Esquivel, A.E. Madrid et al. / Spatial Statistics 42 (2021) 100462
Fig. 10. El Hierro data: epicentres on contoured island (top), and temporal sequence of magnitudes (bottom). Events
corresponding to phases A, B and C are distinguished by different blue colours; the green star corresponds to the main
volcanic eruption. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

of events, and Ēε (the accumulated energy distribution), obtained from ‘weighted box counting’,
where each event is weighted by the amount of released energy according to its magnitude (see
Angulo and Esquivel, 2014; Esquivel and Angulo, 2015, for details). The degree of (multifractal) local
coherence between the underlying multifractal measures, respectively denoted p̄ and ē, within each
subperiod, is quantified in terms of the corresponding generalized relative dimensions. Since these
are non-symmetric, we calculate Dq(p̄∥ē), Dq(ē∥p̄), and their arithmetic mean (among other available
symmetrization options) for a visual reference.

In Fig. 14, we can observe that the generalized relative dimension curves significantly differ
between the three subperiods. First, and noting that the curves would be constantly equal to level
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Fig. 11. Generalized Rényi dimension curves, showing different multifractal patterns for the three subperiods (phases A,
B, and C).

Fig. 12. Maps of relative increments Dα−Dβ

α−β
for the three subperiods (from left to right: phases A, B and C). The multifractal

omplexity structural pattern for phase B notably differs from the corresponding patterns for phases A and C, which are
elatively similar.

only in the (unrealistic) case where p̄ ≡ ē, it is clear that there is a higher dissociation between
he distributions of events and their magnitudes in phases B and C with respect to phase A. Further
omparing phases B and C, we can see that there is a much higher degree of asymmetry, with
q(p̄∥ē) above Dq(ē∥p̄), in the latter, which, according to local assessment intrinsic to the definition
f Rényi divergence, can be interpreted in the sense that, in this phase, temporal concentrations
f events of relatively lower magnitude appear to be predominant in contrast with temporal
oncentrations of released energy from a lower number of events. These effects are enhanced in
he corresponding maps of relative increments shown in Fig. 15 and, in particular, in the curves
f derivatives of the generalized relative dimensions displayed in Fig. 16, where a distinguishable
nversion regarding the levels of the curves Dq(p̄∥ē) and Dq(ē∥p̄) for the approximate interval
q ∈ (2, 5) (and similarly in the negative range) is revealed in the central phase B.
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Fig. 13. Derivatives of the generalized Rényi dimension curves for the three subperiods (phases A, B and C). The difference
between phase B and the two phases A and C is enhanced regarding the corresponding minimum derivative values.

Fig. 14. Generalized relative Rényi dimension curves for the three subperiods (from left to right: phases A, B and C),
based on p̄ as the frequency distribution and ē as the accumulated energy distribution. A higher dissociation between
oth distributions is observed in phases B and C with respect to phase A, with a more significant asymmetry in phase C.

. Conclusion and further remarks

A synthetic perspective focused on the fundamental role of Shannon and Rényi entropies, as
ell as Kullback–Leibler and Rényi divergence, as a basis for information and complexity analysis
f spatial data, possibly of a multifractal nature, is presented. In each step, the complementary
nterpretation of entropy-related and divergence-related measures for ‘global’ and ‘local’ structural
ssessment of the distributions involved is emphasized.
Well-known product-type generalized complexity measures (based on Rényi entropy) and, being

ormalized under a parallel conception, product-type generalized relative complexity measures
based on Rényi divergence), originally arisen in the context of Physics under the notion of



J.M. Angulo, F.J. Esquivel, A.E. Madrid et al. / Spatial Statistics 42 (2021) 100462 21
Fig. 15. Values of Dα (p∥e)−Dβ (p∥e)
α−β

(top) and Dα (e∥p)−Dβ (e∥p)
α−β

(bottom), for the three subperiods (from left to right: phases A,
B and C). Here, clear dissimilarities between the three patterns reveal the different multifractal complexity structures for
phases A, B and C in relation to the joint assessment of the temporal distribution and magnitude of events.

Fig. 16. Derivatives of the generalized relative Rényi dimension curves for the three subperiods (from left to right: phases
A, B and C). Multifractal complexity structural differences, in relation to the joint assessment of the temporal distribution
and magnitude of events, are reflected in various features.

complexity as a balance of departure from equilibrium and degeneracy, are reinterpreted in terms
of diversity and relative diversity indices. A former proposal of complexity uniquely as divergence
from equiprobability is formally identified as a particular case under this approach.

Parallel limiting connections of the mentioned two-parameter complexity and relative com-
plexity measures with corresponding increments of generalized Rényi dimensions and generalized
relative Rényi dimensions with respect to the deformation parameter are highlighted, thus justifying
the practical usefulness of related tools for multifractal complexity assessment. These include, in
particular, incremental maps and derivative curves, as illustrated in the analysis of a real seismic
series, where, among other aspects, the degree of association between the temporal distribution
of events and their magnitudes is evaluated on different subperiods for assessment of structural
dynamics changes.
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Related complementary aspects and alternative developments in this context are mentioned
below.

Under the original notion and basic formalization of product-type complexity measures for a
joint assessment of information and disequilibrium, Martin et al. (2006) studied different options
for the choice of appropriate factors; in particular, they considered the non-extensive Tsallis
entropy and divergence measures (Tsallis, 1988), which have also attracted singular attention in
diverse fields of application. Angulo and Esquivel (2014) proposed a Tsallis-entropy-based version
of multifractal generalized dimensions, used in Angulo and Esquivel (2015) for the formulation
of mutual-information-related generalized dependence coefficients in the multifractal domain. In
another direction, Alonso et al. (2016) defined a concept of ‘generalized mutual complexity’ based on
generalized Rényi relative complexity measures for structural dependence assessment in a random
vector, applied, in particular, to the formulation of a complexity-related optimality criterion for
sampling network design.

Some approaches to ‘spatial entropy’ based on the decomposition of information, explicitly
analysing heterogeneity and dependence in relation to the underlying spatial configuration, have
been also introduced in the literature; among related references, see O’Neill et al. (1988), Riitters
et al. (1996), Li and Reynolds (1993), Karlström and Ceccato (2002), Leibovici (2009), Leibovici et al.
(2011), Leibovici et al. (2014) and Altieri et al. (2017, 2019), etc.
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