
Citation: Felix-Saul, J.C.;

Garcia-Valdez, M.; Merelo Guervós,

J.J.; Castillo, O. Extending Genetic

Algorithms with Biological Life-Cycle

Dynamics. Biomimetics 2024, 9, 476.

https://doi.org/10.3390/

biomimetics9080476

Academic Editor: Huiling Chen

Received: 11 July 2024

Revised: 29 July 2024

Accepted: 3 August 2024

Published: 6 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Extending Genetic Algorithms with Biological
Life-Cycle Dynamics
J. C. Felix-Saul 1 , Mario García-Valdez 1,* , Juan J. Merelo Guervós 2 and Oscar Castillo 1

1 Division of Graduate Studies and Research, Tijuana Institute of Technology, Tecnológico Nacional de México
(TecNM), Tijuana 22414, Mexico; d20210001@tijuana.tecnm.mx (J.C.F.-S.); ocastillo@tectijuana.mx (O.C.)

2 Department of Computer Engineering, Automatics and Robotics, University of Granada,
18071 Granada, Spain; jmerelo@ugr.es

* Correspondence: mario@tectijuana.edu.mx

Abstract: In this paper, we aim to enhance genetic algorithms (GAs) by integrating a dynamic
model based on biological life cycles. This study addresses the challenge of maintaining diversity
and adaptability in GAs by incorporating stages of birth, growth, reproduction, and death into the
algorithm’s framework. We consider an asynchronous execution of life cycle stages to individuals
in the population, ensuring a steady-state evolution that preserves high-quality solutions while
maintaining diversity. Experimental results demonstrate that the proposed extension outperforms
traditional GAs and is as good or better than other well-known and well established algorithms
like PSO and EvoSpace in various benchmark problems, particularly regarding convergence speed
and solution qu/ality. The study concludes that incorporating biological life-cycle dynamics into
GAs enhances their robustness and efficiency, offering a promising direction for future research in
evolutionary computation.

Keywords: evolutionary algorithms; genetic algorithms; computational optimization; bio-inspired
algorithms

1. Introduction

Biological processes have always inspired evolutionary algorithms, embodying the
principle “Let nature be your guide” [1]. This bio-inspired approach spans various research
fields, including artificial intelligence, machine learning, and complex system modeling.

In particular, evolutionary algorithms (EAs) have been successfully applied to solving
complex optimization problems by mimicking the adaptive processes observed in the
natural world [2]. Genetic Algorithms (GAs) [3,4] are canonical examples of these adaptive
algorithms, using a population of candidate solutions and a process inspired by natural
selection to improve the proposed solutions. These algorithms are generally designed to
find optimal or near-optimal solutions by iteratively applying an evolutionary process to
the population of candidate solutions. The process consists of these tasks: creating an initial
population of potential solutions to the optimization problem (initialization), selection, the
interchange of genetic material (through crossover or other operators), random change
(through mutation or other mechanism), and termination criteria. Many other optimization
meta-heuristics inspired by natural processes have been proposed [5–9], but in this work,
we are interested in algorithms that operate on populations of candidate solutions. Some
noteworthy examples are the Particle Swarm Optimization (PSO) [10,11] algorithm that
simulates the social behavior of birds and the Ant Colony Optimization algorithm, inspired
by the foraging behavior of ants [12,13].

A critical challenge of these algorithms is that they can incur high computational
cost, mainly because evaluating the fitness of each candidate solution can be computa-
tionally expensive, especially for difficult optimization problems where each evaluation
involves solving complex equations or running time-consuming simulations. Researchers
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are actively exploring various strategies to mitigate these costs and reduce execution times.
A common approach is using parallel and distributed computing to significantly reduce the
time required to find optimal solutions by executing multiple evaluations simultaneously
across multiple processors or computing nodes. Some versions of these algorithms have
been adapted to work in parallel by distributing the processing using many smaller pop-
ulations [14–16] or multiple threads or nodes [17–20] to evaluate the fitness of candidate
solutions. This multi-population approach mimics the concept of island models [21], where
each population evolves independently.

In early studies [22,23], we proposed using cloud computing to reduce the execution
time of evolutionary algorithms by using an event-driven architecture for the asynchronous
execution of isolated populations. This architecture is independent of the underlying
population-based algorithm because it is applied at the population level. In these works,
populations are data units that are asynchronously processed by processing nodes that
communicate with each other through a message broker.

An advantage of having multiple isolated populations is that they can maintain diverse
solutions across different nodes, reducing the risk of premature convergence to local optima.
These algorithms can combine local search strategies with global communication, leading
to a better balance between exploration and exploitation. Asynchronous algorithms do not
require all processes to wait during communication, which can lead to reduced waiting
times and better use of computational resources.

In this paper, we propose an algorithm that keeps the advantages of the asynchronous,
event-driven, multi-population approach we just mentioned but uses a single population
instead. The algorithm is an extension to the canonical GA but adds to the model the
parallel and asynchronous nature of the real world.

The algorithm applies the operators found in a GA through the following life cy-
cle stages: growth, reproduction, and death. These stages can be applied in parallel to
individuals in a population following the main characteristics of a steady-state genetic
algorithm (SSGA) [24,25]. Unlike traditional GAs, which replace the entire population at
each generation, SSGAs update the population continuously [26]. This involves selecting
a few individuals, creating offspring, and then replacing some individuals in the popu-
lation, typically one or two, in each iteration. By replacing only a small portion of the
population at a time, SSGAs reduce the disruption caused by large-scale replacements seen
in generational GAs. This strategy helps preserve good solutions and maintain diversity,
by keeping in the population different individuals in different areas of the search space.
In our proposal, individuals have an age attribute and the GA mechanisms for parent
selection, mutation, and replacement of individuals are applied asynchronously to them
within the population, considering that each individual is in a particular life cycle stage.

The main contributions of this paper are as follows:

• We propose the Life Cycle Genetic Algorithm (LCGA), an extension of an SSGA, that
incorporates the life cycle stages of animal species with an asynchronous execution
model that allows individuals to have an independent life cycle.

• We incorporate the concept of age into the individuals in the population, which
controls the application of genetic operators and the removal of individuals.

• In the event of population extinction, we also introduce a population restart mecha-
nism based on the best historical solutions.

The experiments section of our paper comprehensively evaluates LCGA’s performance.
The first evaluation uses the COCO framework’s evaluation data to compare LCGA against
the GA, PSO, and EvoSpace algorithms. For our final experiment analysis, we used the
CEC-2017 mathematical functions to compare the LCGA against the Fuzzy Marine Predator
Algorithm (FMPA) [27], a recent nature-inspired algorithm with similar characteristics.

The paper’s organization or structure is as follows. Section 2 shows a literature review
and discusses existing genetic and evolutionary algorithms, identifying gaps that LCGA
aims to fill. Section 3 focuses on our proposed algorithm description and details of the stages
of the algorithm—birth, growth, reproduction, and death—drawing parallels to biological
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processes. Section 4 shows the experimental setup and results; it presents the methodology
for testing LCGA’s efficacy against benchmark problems and other algorithms, followed by
Section 5, a discussion. This section analyzes the obtained results. Finally, Section 6 focuses
on the conclusion and future work, summarizes findings, highlights LCGA’s contributions
to evolutionary computation, and suggests directions for further research.

2. Related Work

We now present a brief overview of current population-based optimization algorithms
and lifecycle models related to our work, focusing on the main concepts and strategies they
employ to solve complex optimization problems. Building upon the foundation laid by
Holland [3], other EAs have been proposed.

An important EA variant is called Evolutionary Strategies (ES) [28], a type of algorithm
that focuses on optimizing real-valued functions, which uses mutation as the main operator
with recombination, when used, combining the parameters of parents to generate the
offspring. In ES, several replacement strategies consider the offspring and the parents
when selecting individuals to continue in the next population. A successful type of ES
is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [29]; this algorithm
is particularly effective in high-dimensional and complex problem spaces [30]. CMA-
ES iteratively generates improved candidate solutions by sampling from a multivariate
normal distribution centered around a mean vector, which is updated based on the selected
top-performing individuals. The algorithm dynamically adapts the covariance matrix,
capturing variable dependencies and adjusts the step size to balance exploration and
exploitation. In contrast with a traditional GA, in CMA-ES, properties of the population
as a whole are used to generate new siblings. Later successful variants of this algorithm
include RB-IPOP-CMA-ES [31].

The approach applied by ES is similar to the one in Estimation of Distribution Algo-
rithms (EDAs) [32], where a selected set of solutions in the population is used to estimate a
probability distribution that generates new candidate solutions. This probability distribu-
tion depends on analyzing frequencies of the most successful individuals, the elite. In this
paper, we will employ a similar strategy in the context of restarting the algorithm once the
population has been extinguished.

Other properties of the population are used by other evolutionary algorithms, for in-
stance, Differential Evolution (DE) [33] considers distance information in the population
to generate new candidate solutions that are random deviations of current solutions. This
algorithm has also evolved and spawned many variants that have reached very competi-
tive results in the COCO benchmarks, which we are using in this paper; variants such as
JADE [34], SHADE [35], or SaDE [36].

In DE, new candidate solutions are generated by adding the weighted difference
between two randomly selected parents. Candidate solutions are then evaluated against
predetermined individuals, and if they have better fitness, they replace the individual
with which they were compared; otherwise, they are discarded. On the other hand,
other bio-inspired algorithms, such as the Particle Swarm Optimization (PSO) [10,11],
also consider the information of the population but go even further by considering the
position of each candidate solution in the search space. Unlike GAs that involve genetic
operations and selection processes, PSO simulates a continuous flow of particles across the
search landscape. Crucially, particles are not replaced between iterations but can adjust
their positions based on interactions and shared information within the swarm, allowing
them to identify local or global optima effectively. The PSO algorithm has inspired the
evolutionary counterpart; an example is the neighborhood-based mutation operator [37].
This operator uses a neighborhood structure to guide mutation, enhance local search
capability, and balance exploration and exploitation. It is similar to the mutation operator
found in a GA but focuses on exploiting local information, which is considered more
efficient in specific scenarios. Other Swarm Intelligence (SI) algorithms add some form of
hierarchy to the population; for instance, the Gray Wolf Optimizer (GWO) [38] divides the
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population into a hierarchy that intends to balance exploration and exploitation effectively.
We consider the techniques found in these algorithms to be relevant to the design of
EA variants.

More recent bioinspired algorithms use some form of adaptation of parameters. An in-
stance of these algorithms is the Fuzzy Marine Predator Algorithm (FMPA), which inte-
grates a generalized type-2 fuzzy system with the Marine Predator Algorithm (MPA) [39] to
dynamically adjust parameters and enhance optimization performance. This combination
allows FMPA to effectively handle uncertainties and balance exploration and exploitation
through the predator-prey model. FMPA has demonstrated superior results on CEC-2017
benchmark functions and is particularly effective in optimizing fuzzy controllers for mobile
robots. Its robust performance, adaptability, and advanced handling of uncertainties make
it a worthy benchmark for comparing and evaluating our research results for developing
and improving the LCGA algorithm.

We also follow the research of Salgotra et al. [40], which introduced an enhanced
version of the Cuckoo Search (CS) algorithm, termed CSsin, which incorporates several
modifications to improve its performance on the CEC 2017 and CEC 2020 benchmark
problems. Some of its key enhancements include new global and local search techniques,
a dual search strategy to balance exploration and exploitation, a linearly decreasing switch
probability to maintain this balance, and a linearly decreasing population size to reduce
computational load. We also compare our algorithm against this enhanced version of the
CS algorithm.

Some works explore the life cycle of organisms to improve the optimization process.
An early example is the LifeCycle Model proposed by Krink et al. [41] designing a hybrid
optimization framework inspired by biological life cycles, a model that integrates three
distinct optimization techniques: Particle Swarm Optimization (PSO), genetic algorithms
(GA), and hill climbers (HC). This model allows each candidate solution to dynamically
transition between these three optimization methods based on performance and fitness
improvements. The LifeCycle model capitalizes on the strengths of each technique: PSO
for exploration, GA for diversification and recombination, and HC for fine-tuning local
solutions. This self-adaptive strategy balances exploration and exploitation, aiming to
improve overall optimization performance. Both the LifeCycle Model and our research
share a foundation in biological inspiration and self-adaptation, enhancing the optimiza-
tion processes through hybrid approaches. While the LifeCycle Model employs distinct
transitions between PSO, GA, and HC, our research focuses on evolutionary dynamics
within genetic algorithms, potentially offering more subtle transitions within a single
evolutionary framework.

In another paper, Karami et al. [42] presented an evolutionary optimization algorithm
inspired by the natural life cycle of plants, the Plant Life Cycle (PLC) algorithm. It is
based on biological processes such as pollination, fertilization, seed dispersal, and local
competition to find optimal solutions. Compared to our research, both algorithms share
a foundation in biological inspiration and structured optimization processes. However,
the PLC algorithm uniquely integrates plant-inspired strategies, while our study focuses
on evolutionary dynamics within the genetic algorithm framework, aiming for advanced
evolutionary strategies and efficient optimization in diverse and complex problem spaces.

Finally, Zhong et al. [43] introduced two novel strategies to enhance the Vegetation
Evolution (VEGE) algorithm. The dynamic maturity strategy allocates more resources to
better-performing individuals, allowing them to generate more seeds based on their fitness,
promoting competition, and improving search efficiency. Both the enhanced VEGE algo-
rithm and our research draw inspiration from natural processes to improve optimization
performance. They incorporate adaptive strategies to dynamically enhance their ability to
find global optima, and emphasize maintaining population diversity to prevent premature
convergence. However, VEGE uses a plant-inspired strategy focusing on growth and seed
dispersal phases, while our research focuses on evolutionary dynamics within genetic



Biomimetics 2024, 9, 476 5 of 37

algorithms. VEGE employs diverse mutation methods to enhance diversity, whereas our
approach uses different mutation and crossover techniques.

A concept we are using in this algorithm, age, has also inspired different algorithms,
mainly in the context of another bio-inspired algorithm, artificial immune systems, al-
though it had been previously introduced in the realm of genetic algorithms [44]. This
algorithm assigned an age to every individual, as well as a maximum age. This changes
every generation, with mutation and crossover rates depending on the age. The “survival
rate” of an individual depends not only on fitness, but also on age, with probability de-
scending up to a maximum age, and birth rate following a “lifecycle” pattern, increasing
up to an “adult” age, then decreasing. The use of age-stratified population is analyzed
theoretically, and its results were proved successful empirically. A similar approach, called
the age-layered population structure (ALPS), was introduced slightly later [45]. This algo-
rithm introduces diversity by the random inclusion of 0-aged individuals, but organizes the
population by strata according to their age, which is related to the age of their oldest parent
(we should maybe note that using here the concept of age is maybe stretching the metaphor
a bit too far). By restricting reproduction and other operators to individuals within the same
age stratus, they avoid domination of the population by “older” individuals with a higher
fitness, allowing the exploration of different areas of the fitness landscape. The introduction
of random individuals is similar to the restart step that we introduce in this algorithm.

In our case, we propose an extension to the original GA, adding some of the elements
described above but keeping the main structure of the GA. In our previous work, we
proposed a distributed EA cloud-native architecture [23] to run multiple EA instances
in parallel, including GAs, PSO, and other population-based variants. Mixing distinct
EAs with different characteristics and behaviors in a single run gave favorable results,
showing the potential of combining different algorithms. Expanding this idea, we intended
to create a new EA that could asynchronously parallelize various operators and strategies
using a single population and, if possible, a single metaphor. The algorithm mimics the
life cycle of animals, which naturally incorporates some of the elements found in the
above-related works.

3. Algorithm Proposal

We show the general concept of the proposed algorithm in contrast with a standard GA
in Figure 1. To the left, we have a GA where the genetic operators are executed sequentially
and applied to the entire population. After each iteration, a new generation replaces the
original population. To the right, we have the LCGA algorithm. In this case, operators are
not applied sequentially to the entire population but to samples of individuals. This means
that different GA operators are applied to individual population members simultaneously.
Operators are distributed as independent processes, each representing a life cycle stage.
The parallel execution of each stage mimics the asynchronous and continuous population
dynamics observed in biological systems. Stages are represented by boxes of different
colors, showing the operators being executed as flowchart boxes. Standard GA operators
are displayed in black, while LCGA operators and flow are shown in light blue. Stages do
not have a sequence and can be executed in parallel.

The algorithm does not have generations; instead, it uses an age parameter to control
the size of the population by removing unwanted individuals and replacing them with new
ones. The growth stage increases the age of individuals and applies the mutation operator.
The reproduction stage is responsible for selecting parents and applying the crossover
operator. Finally, the death process selects the oldest, unfit individuals in the population
and removes them. When required, the algorithm restarts the population with the best
historical solutions if the population becomes extinct.
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Figure 1. General model concept for the LCGA algorithm.

As a proof of concept, in this paper, we decided to execute the processes stochastically
to simulate these characteristics. After a population sample is taken, a stage is chosen
randomly and applied to the sample; this is shown in Algorithm 1. These processes could
be executed in parallel in a distributed environment, allowing for a more efficient and
dynamic execution.

The algorithm requires the following parameters: P is a reference to the empty popu-
lation, PS is the population size, D is the dimensionality of the problem, LB is the lower
bound of the search space, and UB is the upper bound. The algorithm also requires a
reference to fitness function to to be used in the evaluation process Fitness. As mentioned
earlier, the current algorithm selects a random stage to execute.

As mentioned, our algorithm follows the classic genetic algorithm, where all the
individuals (candidate solutions) have a genotype (or chromosome) composed of a list
of values. We calculate their fitness with the evaluation of the Fitness function. Next, we
explain each of the stages in detail.
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Algorithm 1 LCGA main pseudocode

Require: P = PS, D, LB, UB, Fitness INITIALIZEPOPULATION(P, PS, D, LB, UB, Fitness)
EVALUATE(P, Fitness)

1: while solution not found and termination conditions not met do
2: stage← RANDOMSTAGE(1, 3)
3: if stage = 1 then
4: GROWTHSTAGE
5: else if stage = 2 then
6: REPRODUCTIONSTAGE
7: else
8: DEATHSTAGE
9: end if

10: if P = then
11: POPULATIONRESTART
12: end if
13: EVALUATE(P, Fitness)
14: end while

3.1. Population Initialization

The first steps of the algorithm are the same as in a traditional GA, where we ini-
tialize the population with a set of randomly created individuals. When initializing the
population, diversity is essential to the evolutionary processes [46], which is why, in the
Population Initialization phase, we generate new random individuals to join the initial
population. The initialization procedure is shown in Algorithm 2, which requires the
following parameters: P is a reference to the empty population, PS is the population size,
which is number of individuals to be generated by the procedure, D is the dimensionality
of the problem, LB is the lower bound of the search space, and UB is the upper bound. We
use the GenerateChromosome procedure to create a new random individual, and then we
add it to the population.

Algorithm 2 Initialize Population Procedure

1: procedure INITIALIZEPOPULATION(P, PS, D, LB, UB)
2: for n = 1, . . . , PS do
3: chromosome← GENERATECHROMOSOME(D, LB, UB)
4: ADDTOEVALUATION(P, chromosome)
5: end for
6: end procedure

3.2. Evaluation

Following initialization, the algorithm evaluates each individual’s fitness in the same
manner as a GA, where the genotype undergoes evaluation to determine its aptitude.

As we can see in Algorithm 3, the evaluation process is also responsible for controlling
and verifying whether the exit conditions require terminating the experiment, such as
whether it has found an acceptable solution or reached the maximum number of evaluations.
Evaluation must be performed after each individual’s life cycle stage. The algorithm
requires a reference to fitness function to to be used in the evaluation process Fitness and
the population P to be evaluated. The algorithm keeps track of the number of evaluations
performed, and if the termination conditions are met, the experiment is terminated.
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Algorithm 3 Evaluation

1: procedure EVALUATE(P, Fitness)
2: for all individuals in P do
3: if individual is not evaluated then
4: new_ f itness← FITNESS(individual)
5: UPDATEINDIVIDUAL(individual, new_fitness)
6: INCREMENTEVALUATIONS
7: end if
8: if TerminationConditionsMet then
9: TERMINATEEXPERIMENT

10: end if
11: ADDTOPOPULATION(P, individual)
12: end for
13: end procedure

3.3. Growth

The growth process will take sample of individual to increase their age parameter,
and apply with certain probability the mutation operator. We display the growth stage in
Algorithm 4. The algorithm requires a reference to the population P to take the sample to
be grown, and the sample size SS to be used in the growth process. For each individual in
the sample, we increment their age and calculate the mutation rate.

Algorithm 4 Growth

1: procedure GROWTHSTAGE(P)
2: sample← GETPOPULATIONSAMPLE(P, SS)
3: for all individuals in sample do
4: INCREMENTAGE(individual)
5: mutation_rate← CALCULATEMUTATIONRATE(individual)
6: if PERFORMMUTATION(individual, mutation_rate) then
7: ADDTOEVALUATION(individual)
8: else
9: ADDTOPOPULATION(individual)

10: end if
11: end for
12: end procedure

LCGA introduces a dynamic mutation rate based on the specific age of each individual.
We propose using a cosine function scaled to age. This ratio resembles adapting the
mutation rate parameter values at runtime [47]. We chose the cosine function because it
shows a curve similar to the growth of an individual. Age is scaled to π (π is equivalent to
the maximum age in years) to evaluate age in scale with the cosine function. We convert
it to a percentage to calculate the absolute value and round it to integers. When the
mutation rate exceeds the maximum, we adjust it according to the limit configured as “max
mutation”.

agesc = π(
age

agemax
) (1)

µ = |100 · cos(agesc)| (2)

where π is the ratio between the circumference of a circle and its diameter, with a value of
approximately 3.14159, agesc is the ratio of age on a π scale, with values between 0 and π,
age is the age of the individual, agemax is the maximum age to continue in the population,
and µ is the mutation rate.
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3.4. Reproduction

The reproduction stage, shown in Algorithm 5, starts with selecting two parents from
population P by performing a tournament selection from a random population sample of
size k. Once we have the two parents, we initiate the crossover process. We propose an
alternative strategy that uses the genetic information from the parents to determine the
range of values from which the offspring is going to be created. In this strategy, the value of
each corresponding gene in the two parents is used as the lower and upper limits of a range.
A new value for the corresponding gene in the offspring is then randomly selected from
within this range. This is equivalent to a BLX-α crossover with α = 0 [48] or a restricted
intermediate recombination [49]. Mathematically, this can be expressed as follows.

Let us denote the two parents as P1 and P2, and let their corresponding genes be g1
and g2, respectively. For a given gene position i:

• The gene in the first parent at position i is gi
1.

• The gene in the second parent at position i is gi
2.

Algorithm 5 Reproduction

1: procedure REPRODUCTIONSTAGE(P, k)
2: sample← GETPOPULATIONSAMPLE(P, k)
3: parent1← SELECTPARENTTOURNAMENT(S)
4: if parent1 is not null then
5: sample← GETPOPULATIONSAMPLE(P, k)
6: parent2← SELECTPARENTTOURNAMENT(S)
7: if parent2 is not null then
8: o f f spring← PERFORMCROSSOVER(parent1, parent2)
9: for all child in offspring do

10: ADDTOEVALUATION(child)
11: end for
12: ADDTOPOPULATION(P, parent2)
13: end if
14: ADDTOPOPULATION(P, parent1)
15: end if
16: end procedure

In this strategy, the new value for the corresponding gene in the offspring at posi-
tion i, denoted as gi

offspring, is randomly selected from a range determined by gi
1 and gi

2.
Mathematically, this can be expressed as:

gi
offspring ∼ Uniform(min(gi

1, gi
2), max(gi

1, gi
2))

where Uniform(a, b) represents a uniform distribution between a and b. This means that
gi

offspring is a random value drawn from the interval [min(gi
1, gi

2), max(gi
1, gi

2)].

In summary, for each gene position i, the offspring’s gene gi
offspring is randomly chosen

within the range defined by the corresponding genes in the parents, ensuring that the new
gene value lies between the values of the two parents’ genes.

Following the algorithm, we add the offspring to the evaluation queue to calculate
its fitness. The evaluation queue is a list of individuals that need to be evaluated, and it is
processed by the evaluation procedure. We also add the parents back to the population.

3.5. Death

To maintain population balance and impose survival pressure, we use the death
stage. We use an incremental rate that represents the adversities of nature, seen as the
environmental demands required for the survival of individuals.

As shown in Algorithm 6, the death stage requires a reference to the population P
to be evaluated. We take a sample of the population to evaluate each individual. We
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calculate the relative fitness of each individual in the sample, and compare it with the
dynamically adjusted survival threshold. If the individual’s relative fitness is not greater
than the survival threshold, the individual is removed from the population. The survival
threshold is calculated using Equation (3), which adjusts the threshold value based on
the number of times the death process has been executed and the maximum number of
evaluations. The algorithm starts with a minimum value survivemin and progresses to a
maximum value survivemax, increasing the selection pressure. The pressure factor is used to
reduce the steps needed to reach survivemin, where pressure ≥ 1 and pressure < evalmax.

Algorithm 6 Death

1: procedure DEATHSTAGE(P)
2: sample← GETPOPULATIONSAMPLE(P, sample_size)
3: for all individuals in sample do
4: if individualage < agemax then
5: if individual f itness > f itnessbest then
6: f itnessbest ← individual f itness
7: ADDTOPOPULATION(P, individual)
8: else
9: f itnessrelative ← f itnessbest/individual f itness

10: if SURVIVALTHRESHOLD( f itnessrelative) then
11: ADDTOPOPULATION(P, individual)
12: end if
13: end if
14: end if
15: end for
16: end procedure

Survival Threshold (survival)

To decide if an individual survives or dies, we consider the following elements:

• Age: If an individual is older than a maximum age, the individual dies and is removed
from the population. Fitness is ignored in this case.

• Best fitness: If the individual is young enough and has the best fitness in the population,
it survives.

• Relative fitness: If the relative fitness of the individual is greater than the dynamically
adjusted survival threshold, the individual survives.

The relative fitness of an individual is established by comparing its fitness with the
best fitness found in the population. This is only evaluated for those individuals that do
not have the best fitness. The fitness is expressed as a ratio between the individual’s fitness
f itness(indi) and the best fitness best found in the population. In the case of a minimization
problem, the ratio is calculated as best/ f itness(indi), and because f itness(indi) > best > 0,
the domain is [0, 1], we multiply this value by 100 to have a domain of [0, 100].

The relative fitness is compared against a survival threshold survival that is dynami-
cally calculated. The threshold value starts with a minimum value survivemin to a maximum
value survivemax, increasing as the algorithm progresses. If the current relative fitness of
the individual is not greater than the survival threshold, the individual dies and is removed
from the population. The threshold starts with a low value to allow fitness that is not too
close to the best, and progresses to a higher value to increase the selection pressure. To
keep track of the progress, we use the number of times the death process has been executed
deathi and the maximum number of evaluations evalmax established for the algorithm
(evalmax > 0). We can use a pressure factor to reduce the steps needed to reach survivemin,
pressure ≥ 1, and pressure < evalmax.



Biomimetics 2024, 9, 476 11 of 37

Below, we show Equation (3), required to calculate this value:

survival = survivemin + deathi ·
survivemax − survivemin

evalmax
· pressure (3)

where deathi is the number of process interactions with the population, survivemin is the
starting-point initial lower value to allow fitnesses not too close to the best, survivemax is
the final target, a higher value to increase the selection pressure progressively, evalmax is
the maximum number of evaluations to interrupt the experiment, pressure is a multiplier to
the increment in the survival threshold, and survival is the dynamically adjusted survival
threshold required at this time.

In our initial test experiments, we used a survival threshold (survivemin and survivemax,
respectively) of 80 to 100 with pressure = 1, and at the end of the evaluations, found that
when we operated these values, a population with great diversity is generally far from
our expected solution and not a satisfactory result. To achieve a more solid convergence,
we decided to increase the pressure to 3.5, and saw a better performance on the algorithm
behavior where it slightly exceeded the results of a GA. Following this trend, we decided
to increase the pressure to 6 for all the experiments presented in this research, with which
obtained the best outcomes, as shown in the experiments Section 4 of this document.

3.6. Restart

As mentioned, the main task of the death stage is to add selective pressure to the
population. A consequence of this is that as time progresses, all individuals in the popu-
lation can eventually be removed. Other authors have used similar strategies to remove
specific individuals from the population or even delete the entire population if stagnation is
detected. For instance, in Guimaraes et al. [50], an annihilator operator is proposed to delete
duplicate individuals and those with a domain-specific range of values. The annihilator
operator can also be applied to remove the entire population if the population converges to
a particular minimum.

To restart a population, we propose the generation of new individuals that are in
the vicinity (in the search space) of the best individual. To achieve this, we use the best
individual found so far, the champion, and a another member of the elite collection, chosen
at random. We generate new individuals between these two points, but not in a linear
way, but using the Fibonacci sequence. We call this strategy a Fibonacci projection, where
in this context, projection refers to the generation of new intermediate points between two
points, by using a rule or transformation, in this case, distances (velocity) derived from the
Fibonacci sequence, using the golden ratio [51–55]. For instance, if we have two scalars a
and b, we can generate new points between them by following a Fibonacci sequence, as
shown in Figure 2. By selecting other points, and now showing the results in 3D space, we
can generate the points shown in Figure 3. We briefly mention this strategy in a previous
work [56].

Figure 2. Fibonacci-based projection between two scalars; the lines are derived from the golden ratio.

We detail the restart mechanism in Algorithms 7 and 8, but first, we explain the main
variables and structures used:

• Let E be an ordered list (by fitness) of the elite individuals;
• Let Ebest be the best individual (E[0]) and Cbest be its chromosome;
• Let P be the previous population;
• Let PS be the size of the original population;
• Let Pnew be the new population being created;
• Let Erandom be a randomly selected elite individual and Crandom be its chromosome;
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• Let GetFibonacciChromosome be the function that modifies the chromosome using a
Fibonacci-based method;

• Let + be an operator that sums two chromosomes as vectors;
• Let FM the number of individuals to generate in each iteration.

Algorithm 7 Restart (Fibonacci projection)

1: function CREATEFIBONACCIPOPULATION(P, E, Ebest, PS, FM)
2: if P = [] then
3: Pnew ← {Ebest}
4: while |Pnew| < PS do
5: Erandom ∼ Uniform(E).
6: P′new = Pnew ∪ {Erandom} .
7: x ← 0
8: while x < FM do
9: Crandom ← GETFIBONACCICHROMOSOME(Crandom)

10: Cnew ← Crandom + Cbest ▷ Vector addition
11: P′new ← Pnew ∪ {Cnew}
12: if |Pnew| ≥ PS then
13: break
14: end if
15: x ← x + 1
16: end while
17: end while
18: return Pnew
19: end if
20: end function

Algorithm 8 Get Fibonacci Chromosome

1: function GETFIBONACCICHROMOSOME(C)
2: x ← 0
3: d← LENGTH(chromosome)
4: F ← []
5: goldenRatio← 1.61803398875
6: goldenRatio← goldenRatio × UNIFORM(0.95, 1.05) ▷ Randomize the golden ratio
7: while x < d do
8: Fx ← Cx

goldenRatio
9: x ← x + 1

10: end while
11: return F
12: end function

Figure 3. Fibonacci-based generation of new points in 3D space.

3.7. Complexity of the Optimization Method

The computational complexity of the algorithm described earlier, like most population-
based algorithms, is primarily influenced by the evaluation of the fitness functions. There-
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fore, a more accurate estimation of performance is the number of function evaluations
needed to reach a particular target. The BBOB benchmark functions provide reports on
this estimated performance. Assuming the fitness function operates as a black box with a
complexity of O(1) and is executed sequentially, the overall complexity of the algorithm
can be described as O(m · n), where m is the number of iterations and n is the population
size. Initialization of the population has a complexity of O(n), with n representing the
number of candidate solutions. After evaluation, there is a step for updating the solution,
which typically has a complexity of O(m · n) +O(m · n · l), where l is the number of pa-
rameters in the fitness function. Finally, sorting the population by fitness adds a complexity
of O(n log n).

Regarding space complexity, the algorithm requiresO(n) space to store the population
and the historically best-found individuals used for population restart.

4. Experiments

The experimental evaluation of LCGA involves comparing our algorithm with the ref-
erenced single objective, continuous mathematical functions included in the COCO Bench-
mark Framework [57], to compare LCGA against other classical bioinspired algorithms,
such as GA and PSO, a distributed version of GA and PSO using EvoSpace. As a second
validation alternative for our algorithm, we evaluated its performance against the Fuzzy
Marine Predator Algorithm (FMPA) [27], a recent bioinspired algorithm with dynamic adap-
tation of parameters. For this comparison, we use the mathematical benchmark functions
introduced in the Competition on Evolutionary Computation 2017 (CEC-2017) [58].

We also compare the LCGA with current state-of-the-art continuous optimization
algorithms within the context of the CEC 2017 benchmarks by extending the comparison
of Salgotra et al. [40], which included the algorithms SaDE [36], JADE [34], SHADE [35],
MVMO [59], CV1.0, and CVnew.

The reader needs to note that while the black-box COCO Benchmark Framework and
CEC-2017 benchmarks aim to represent the difficulties found in real-world optimization
problems and are widely used in the evolutionary computation community, they may
not fully capture the complexity and diversity of actual real-world optimization scenarios.
Additionally, several “no free lunch” (NFL) theorems [60] establish that the performance
of an optimization algorithm can be highly problem-specific. As a result, the transfer-
ability of algorithm performance from one problem or problem class to another is highly
unpredictable and cannot be assumed.

4.1. Evaluation of Mathematical Benchmark Functions: COCO Framework

To obtain reliable results that allow us to evaluate the algorithm’s behavior and
compare it against other algorithms, we consider it valuable and necessary to use an
external tool: the COCO (COmparing Continuous Optimizers) Benchmark Framework.
It is a platform for comparing continuous optimizers in a black box setup. Its goal is to
automate the task of comparing numerical optimization algorithms. As an alternative
for comparison, we will also use the evaluation results with the COCO reporting tool to
visually compare the performance of our algorithm and other options.

We justify using the COCO Benchmark Framework based on the document “The COCO
Platform for Comparing Continuous Optimizers in a Black-Box Setting” [57] by Hansen et al.
This section outlines the chosen evaluation functions and dimensions for benchmarking.
The evaluation extends to the COCO Benchmark Framework, encompassing 24 functions
across dimensions 2 to 40. This external validation tool offers a broader perspective on
LCGA’s performance and the results to compare with other established algorithms.

4.1.1. Experimental Setup for COCO Benchmark Framework

This section details specifications for the COCO Benchmark Framework experiments,
including the evaluation functions, dimensions, and instances. The random movement of
optimal points adds a layer of robustness to the evaluation.
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Below, in Table 1, we list the 24 evaluation functions that the COCO Benchmark
Framework uses to obtain the comparison results of our algorithm, where it evaluated
each function’s dimensions of 2, 3, 5, 10, 20, and 40. COCO evaluated 15 instances for each
of these dimensions, and for each instance, the tool performed a random movement to
relocate the optimal point of the function in the plane.

In the General Configuration shown in Table 2, we enumerate the configuration values
used to run our research experiments for this tool. We chose these parameter values to
balance exploration and exploitation, maintain diversity, and ensure robust and efficient
optimization performance. We will describe each of the configuration parameters next.

• Benchmark function: Specifies that the algorithm will be tested across all available mathemati-
cal benchmark functions to ensure a comprehensive evaluation of its performance.

• Population: Indicates the population’s size at the algorithm’s first steps, meaning
the number of individuals (potential solutions) generated at the population initial-
ization step. A larger population can provide greater diversity but requires more
computational resources.

• Sample size: Represents the number of individuals sampled from the population to
apply certain genetic operations (or life-cycle steps), maintaining a manageable subset
for operations while still reflecting the population’s diversity.

• Evaluations: Specifies the maximum number of fitness evaluations allowed, calculated
as 10,000 times the problem’s dimensionality. This parameter controls the computa-
tional budget allocated for the optimization process.

• Mutation rate: Defines the rate or probability at which modifications are introduced
in an individual each time it suffers the growth (or aging) step Section 3.3. A higher
mutation rate can increase population’s genetic diversity and help escape local optima
but disrupt convergence if it is too high.

• Max age: Sets the maximum age for individuals in the population. Once the individuals
reach this age, they are removed by the death step, mimicking the natural life-cycle
and ensuring continuous population turnover.

• Survival Threshold: Is another criteria used during the death step Section 3.5, to decide
if an individual survives or dies. As shown in Equation (3), it is computed with the
following elements: Survive min, Survive max, and Pressure in conjunction with the
individual’s fitness. In combination, all three survival threshold elements control
population pressure and avoid overcrowding.

Survive min: This is the minimum survival rate, or the death’s initial relative fitness
required by the survival threshold when compared to the best-found fitness.
Survive max: This is the maximum survival rate, or the death’s final relative fitness
required by the survival threshold when compared to the best-found fitness.
Pressure: Refers to survival pressure and measures the intensity of death applied.
Higher pressure favors the fittest individuals more strongly, potentially speeding
up convergence but risking loss of diversity.

System Requirements Specification (SRS). To perform the experimental tests, we used
a computer with the following hardware characteristics: processor Intel(R) Core(TM) i7-
10750H CPU @ 2.60 GHz, minimum RAM required is 16 GB (we recommend 32 GB), and
required space on the hard disk is 350 megabytes for COCO. The test computer’s software
characteristics are Windows 11 Home Single Language, Version 23H2, System Type 64-bit
OS, and x64-based processor. The programming language is Java, and the source code
is in text files; therefore, any editor will be suitable to edit the source code. It requires
installing (Java Development Kit (JDK) https://www.oracle.com/mx/java/technologies/
downloads/, accessed on 10 July 2024) version 17.0.1 or above, with its corresponding
configuration for the system environment variables. We used the default Windows Command
Prompt application to compile the source code and run the tests. The instructions for
compiling and running the code are available in the source-code README file at the

https://www.oracle.com/mx/java/technologies/downloads/
https://www.oracle.com/mx/java/technologies/downloads/
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(GitHub repository https://github.com/jcarlosfelix/lcga, accessed on 10 July 2024). Please
consult the Data Availability Statement at the end of this document.

Table 1. COCO evaluation functions.

Fx Function Name

f1 Sphere
f2 Ellipsoid separable
f3 Rastrigin separable
f4 Skew Rastrigin-Bueche separable
f5 Linear slope
f6 Attractive sector
f7 Step-ellipsoid
f8 Rosenbrock original
f9 Rosenbrock rotated

f10 Ellipsoid
f11 Discus
f12 Bent cigar
f13 Sharp ridge
f14 Sum of different powers
f15 Rastrigin
f16 Weierstrass
f17 Schaffer F7, condition 10
f18 Schaffer F7, condition 1000
f19 Griewank-Rosenbrock F8F2
f20 Schwefel x * sin(x)
f21 Gallagher 101 peaks
f22 Gallagher 21 peaks
f23 Katsuura
f24 Lunacek bi-Rastrigin

Table 2. COCO—LCGA general configuration.

Configuration Value

Benchmark function ALL
Population 500
Sample size 20
Evaluations 10,000 * Dim

Mutation rate 7
Max age 40

Survive min 80
Survive max 100

Pressure 6

4.1.2. COCO Benchmark Framework: LCGA Evaluation Results

Graphical summaries generated by the COCO Benchmark Framework illustrate
LCGA’s performance across 24 functions and multiple dimensions, where the evaluation
results provide insights into the algorithm’s adaptability and efficiency. COCO generates
Figure 4, where the graph summarizes the evaluation for the 24 functions of the COCO
Benchmark Framework.

Figure 4 summarizes the evaluation results of the LCGA across 24 benchmark functions
using the COCO framework. Next, we will explain how to interpret the results presented
in the figure.

X-axis: log10(# f-evals/dimension). This axis represents the number of function
evaluations per dimension, plotted on a logarithmic scale (base 10). It provides a normalized
view of the computational effort required by the algorithm, making it easier to compare
across different dimensions.

https://github.com/jcarlosfelix/lcga
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Y-axis: Fraction of function-target pairs that reached the target error level (1.00× 10−8).
This axis shows the fraction of function-target pairs for which the LCGA algorithm successfully
reached the target error level (1.00× 10−8). It indicates the algorithm’s success rate, with higher
values representing better performance.
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Figure 4. COCO Benchmark Framework: LCGA summary.

Each curve represents a different dimensionality (2D, 3D, 5D, 10D, 20D, and 40D).
The curves show the LCGA’s performance overview across various dimensions, indicating
how quickly and effectively it reaches the target error level as the number of evaluations
increases. Higher curves indicate better performance, representing a more significant
fraction of successful assessment for the given number of function evaluations. Steeper
curves suggest rapid convergence to the target error level. The following is the figure’s plot
annotations:

• f1–f24: Indicates that the performance data covers 24 benchmark functions from the
COCO framework.

• 51 targets: 100..1 × 10−8: Refers to the range of target values (error levels) used in the
evaluation, from 100 to 1 × 10−8.

• 15 instances: Denotes that each function evaluation was repeated 15 times to ensure
robustness and reliability of the results.

• v2.6: Version of the COCO framework used for benchmarking.

4.1.3. Comparative BBOB Plot

This section introduces the comparison plot showing the LCGA against GA [3],
PSO [61], and EvoSpace [62], with subsequent sections for each comparison. This bench-
mark tool facilitates comparison analysis with previously evaluated algorithms; it presents
the functionality of generating a graphical report utilizing evaluation data from the BBOB
data archive. In the following section, we will show the comparison with the algo-
rithms GA [63] (Genetic Algorithm 013), PSO [64] (Particle Swarm Optimization 026),
and EvoSpace [65] (EvoSpace-PSO-GA 153), whose evaluation data results are available in
the link https://numbbo.github.io/data-archive/bbob/, accessed on 10 July 2024.

The plot shows empirical runtime distributions, defined by the number of function
evaluations divided by dimension. Because the number of evaluations increases with the
dimension, the plot uses a logarithmic scale. The BBOB benchmark uses all functions
with a range of target values (error) going from 100 to 1 × 10−8. The fraction of function-
target pairs corresponds to the fraction of successful targets achieved within the maximum
number of function evaluations, indicated by a cross. Algorithms with plots with a higher
fraction and fewer function evaluations are better. Plots are shown for each dimension.

Each of the following Figures 5–7 compares the performance of the LCGA versus
another specific algorithm across various dimensions using the COCO (Comparing Contin-

https://numbbo.github.io/data-archive/bbob/


Biomimetics 2024, 9, 476 17 of 37

uous Optimisers) benchmark framework. The navy blue marks our proposed LCGA, while
the pink color is for the algorithm in comparison; as a reference, the beige marks the best
algorithm evaluated in 2009 (best 2009). In the top-left corner are the two dimensions (2D);
top-right corner for three dimensions (3D); middle-left for five dimensions (5D); middle-
right for ten dimensions (10D); bottom-left corner 20 dimensions (20D); and bottom-right
corner for 40 dimensions (40D).

It is critical to highlight that the comparative results for the GA, PSO, and EvoSpace algo-
rithms experiment results are available at the following (COCO repository
https://numbbo.github.io/data-archive/bbob/, accessed on 10 July 2024), with the identi-
fication numbers 013, 026, and 153, respectively. One of the essential features of COCO is that
before publishing, the COCO team verifies the legitimacy of the published results so they can
have their validation and support. We must mention that in the following Figures 6 and 7,
we are missing the results for the 40 dimensions for the PSO and EvoSpace algorithms; we
understand one of the reasons these results were unavailable is because the computers required
too many computational resources to complete these tests, which at the time were unavailable
to the researchers who published their work using this benchmark tool.
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Figure 5. Comparative statistical analysis of the LCGA algorithm against the GA for dimensions 2, 3,
5, 10, 20, and 40, respectively, from top-left to right-bottom. On the X-axis, we will find the number of

https://numbbo.github.io/data-archive/bbob/
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evaluations per dimension on a logarithmic scale of 10 for each graph. On the Y-axis, we will see the
percentage of occasions in which the target error was found (target error 1.00 × 10−8). The curves
show each algorithm’s performance overview, indicating how quickly and effectively it reaches the
target error level as the number of evaluations increases. Higher curves indicate better performance,
representing a more significant fraction of successful assessment for the given number of function
evaluations. Steeper curves suggest rapid convergence to the target error level.
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Figure 6. Comparative statistical analysis of the LCGA algorithm against the PSO for dimensions 2, 3,
5, 10, and 20, respectively, from top-left to right-bottom. On the X-axis, we will find the number of
evaluations per dimension on a logarithmic scale of 10 for each graph. On the Y-axis, we will see the
percentage of occasions in which the target error was found (target error 1.00 × 10−8). The curves
show each algorithm’s performance overview, indicating how quickly and effectively it reaches the
target error level as the number of evaluations increases. Higher curves indicate better performance,
representing a more significant fraction of successful assessment for the given number of function
evaluations. Steeper curves suggest rapid convergence to the target error level. As mentioned earlier,
the figure does not include the results for the 40 dimensions of the PSO algorithm because the data
were unavailable for said dimension.



Biomimetics 2024, 9, 476 19 of 37

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EvoSpace-

LCGA

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.6

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LCGA

EvoSpace-

best 2009bbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.6

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LCGA

EvoSpace-

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.6

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs
EvoSpace-

LCGA

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.6

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EvoSpace-

LCGA

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
15 instances

v2.6

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LCGA

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.6

Figure 7. Comparative statistical analysis of the LCGA algorithm against the EvoSpace for dimensions
2, 3, 5, 10, and 20, respectively, from top-left to right-bottom. On the X-axis, we will find the number
of evaluations per dimension on a logarithmic scale of 10 for each graph. On the Y-axis, we will see
the percentage of occasions in which the target error was found (target error 1.00 × 10−8). The curves
show each algorithm’s performance overview, indicating how quickly and effectively it reaches the
target error level as the number of evaluations increases. Higher curves indicate better performance,
representing a more significant fraction of successful assessment for the given number of function
evaluations. Steeper curves suggest rapid convergence to the target error level. As mentioned earlier,
the figure does not include the results for the 40 dimensions of the EvoSpace algorithm because the
data were unavailable for said dimension.

4.1.4. LCGA Comparison with GA

Figure 5 compares the performance of the Life Cycle Genetic Algorithm (LCGA) and
Genetic Algorithm (GA) across various dimensions using the COCO benchmark framework.
The pink color marks GA, while navy blue is for LCGA. We can observe the following
behaviors if we analyze each chart from the figure.

For the 2D chart, LCGA shows a rapid increase in the fraction of function-target pairs,
achieving nearly 100 percent at around 102 evaluations per dimension. At the same time,
GA demonstrates a slower increase, not reaching the same level of success within the given
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number of examinations. In the 3D chart, LCGA and GA show a slower increase than in
the 2D case. LCGA still outperforms GA, reaching higher success fractions faster. For the
5D chart, the performance gap between LCGA and GA widens, with LCGA achieving
higher success rates quickly, while GA’s performance increase is much slower, indicating
struggles with higher dimensions. In the 10D chart, LCGA continues to maintain a lead,
although with a less steep increase compared to lower dimensions. GA displays a gradual
performance improvement, but has yet to reach the success rates of LCGA. For the 20D
chart, the success rate for both algorithms diminishes as dimensionality increases. LCGA’s
success fraction peaks earlier than GA’s, suggesting better efficiency in higher dimensions.
In the final 40D chart, LCGA and GA struggle in 40D space with significantly lower success
fractions. Despite the lower success rate, LCGA outperforms GA, indicating a more robust
performance in high-dimensional spaces.

Based on Figure 5, we can observe that the LCGA consistently outperforms the Ge-
netic Algorithm (GA) across all dimensional spaces in the COCO benchmark framework.
The LCGA’s ability to reach higher success fractions quickly, especially in lower dimensions,
suggests it has a more efficient search and optimization process. As dimensions increase,
both algorithms experience a decline in performance, but LCGA’s slower decline rate
suggests it is better at managing the complexity of high-dimensional spaces. Despite the
overall lower success rate, the robustness of LCGA in the 40D space indicates its potential
utility in solving complex, high-dimensional problems where traditional algorithms like
GA may falter. This performance advantage could be due to LCGA’s dynamic adaptation
strategies, which include more effective mutation, crossover, and selection processes closer
to the adaptive processes observed in natural evolution.

4.1.5. LCGA Comparison with PSO

Figure 6 compares the performance of the Life Cycle Genetic Algorithm (LCGA) and
Particle Swarm Optimization (PSO) across various dimensions using the COCO benchmark
framework. The pink color marks PSO, while navy blue marks LCGA. We can observe the
following behaviors if we analyze each chart from the figure.

For the 2D chart, PSO starts stronger than LCGA, maintaining its peak performance as
the number of evaluations increases. PSO peaks earlier, indicating higher efficiency in 2D
spaces. In the 3D chart, LCGA and PSO start similarly, but PSO again outperforms LCGA
with fewer evaluations needed to reach a higher success rate. LCGA gradually increases,
indicating it is less efficient than PSO in 3D spaces. For the 5D chart, the gap between
LCGA and PSO reduces, with LCGA demonstrating a significantly higher success rate in a
small chart segment. For the 10D chart, PSO initially leads, while LCGA gains momentum
at the middle of the chart and flips, leading to never losing again. PSO’s performance lags
LCGA, indicating potential scalability issues as dimensions grow. The 20D chart shows
that the gap between LCGA and PSO widens in favor of LCGA. LCGA performs better,
but as the problem space expands, both algorithms significantly reduce success rates as
expected. PSO shows a more pronounced decline, reinforcing its scalability challenges.
For the 40D chart, no data were available to compare for the PSO algorithm.

Based on Figure 6, the comparison between LCGA and PSO across various dimensions
shows that PSO generally begins with a strong performance in lower dimensions (2D
and 3D). Still, LCGA begins to outpace PSO as the complexity increases (5D and beyond).
LCGA’s initial slower start suggests that exploring the solution space may take longer but
eventually surpasses PSO’s early gains, particularly as the dimensions grow, suggesting
better long-term efficiency and scalability. Without data for the 40D chart for PSO, we
can infer that LCGA’s strategies could be more robust in high-dimensional spaces. This
trend indicates that while PSO may be advantageous for quick optimization in more
straightforward problems, LCGA’s approach might be more suitable for complex problems
where a balance between exploration and exploitation is critical.
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4.1.6. LCGA Comparison with EvoSpace

Figure 7 compares the performance of the Life Cycle Genetic Algorithm (LCGA) and
the EvoSpace algorithm across various dimensions using the COCO benchmark frame-
work. The pink color marks EvoSpace, while navy blue marks LCGA. We can observe the
following behaviors if we analyze each chart from the figure.

For the 2D chart, LCGA performs better at fewer evaluations. LCGA achieves a slightly
higher success rate at about 102 evaluations per dimension. In the 3D chart, EvoSpace
surpasses LCGA in the latter half of the curve, indicating a higher efficiency. In the 5D chart,
the gap between algorithms shows a slight dominance for EvoSpace at a higher number of
evaluations for lower-dimension problems. For the 10D chart, the success rates for both
algorithms begin to plateau, with LCGA leading, though by a smaller margin. EvoSpace
shows a slower increase and, in the end, reaches a success rate similar to LCGA’s within
the evaluation limits. In the 20D chart, LCGA maintains a higher success rate across the
evaluations, indicating a steadier performance in higher dimensions. EvoSpace’s success
rate is lower, showing that it may struggle more as the problem dimensionality increases.
For the 40D chart, no data were available to compare for EvoSpace.

Based on Figure 7, the analysis of the COCO benchmark framework comparison
between LCGA and EvoSpace across various dimensions suggests that EvoSpace may have
an early advantage in lower dimensions but is overtaken by LCGA in specific scenarios,
as it shows LCGA performs better as the problem complexity increases, particularly in
20D. The absence of data for EvoSpace in 40D prevents a direct comparison at this highest
level of complexity. These trends imply that while EvoSpace might be more efficient in
some mid-range dimensional spaces, LCGA potentially offers a more consistent and robust
approach to higher-dimensional optimization challenges. The adaptability and scalability
of LCGA could be more advantageous for complex problems where a strategic balance
between exploration and exploitation over many evaluations is crucial.

4.1.7. LCGA Comparison with Multiple GA Variants

To validate and demonstrate the effectiveness of the proposed strategy versus existing
GA variants, in the following Figure 8, we compare the statistical analysis of the LCGA
algorithm against the GA and some of its improved derivate algorithms available at the
(COCO repository https://numbbo.github.io/data-archive/bbob/, accessed on 10 July
2024). Next, we will briefly describe each reference algorithm.

• The Real-Coded Genetic Algorithm (RCGA) [66] employs floating-point representation
for candidate solutions, enhancing its ability to solve complex real-valued optimization
tasks. This algorithm utilizes tournament selection for parent selection, arithmetical
crossover for recombination, and an adaptive-range variant of non-uniform mutation
to introduce variability. The RCGA employs multiple independent restart mechanisms,
which initiate a new optimization run whenever the algorithm meets its stopping
criteria without carrying over any previous information.

• The Direction-Based Real-Coded Genetic Algorithm (DBRCGA) [67] enhances tra-
ditional real-coded genetic algorithms by incorporating a direction-based crossover
(DBX) operator. This algorithm leverages relative fitness information to guide the
crossover operation in a direction that significantly improves objective fitness. It
employs a ranking selection (RS) mechanism to maintain population diversity and
uses a dynamic random mutation (DRM) operator to introduce variability and prevent
premature convergence.

• The Projection-Based Real-Coded Genetic Algorithm (PRCGA) [68] enhances the
traditional RCGA by incorporating a projection-based exploratory search mechanism.
This method projects a candidate solution onto a vector defined by the difference
between two other solutions, effectively guiding the search toward promising regions
of the solution space. PRCGA uses tournament selection for parent selection, blend-
α crossover for recombination, and non-uniform mutation to introduce variability.

https://numbbo.github.io/data-archive/bbob/
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Additionally, it includes a stagnation alleviation mechanism that refreshes a portion of
the population when diversity drops below a threshold.

• The CGA-grid16 [69] algorithm is a cellular genetic algorithm in which the population
is structured on a 4 × 4 grid (16 individuals). Each individual in the population has
four neighbors in a north-east–west-south (NEWS) configuration. The algorithm uses
a rank-based selection process for crossover and mutation, promoting diversity while
facilitating the gradual spread of superior solutions throughout the grid.

• CGA-grid100 [69] is a variant of the cellular genetic algorithm with a larger population
structured on a 10 × 10 grid (100 individuals). Like CGA-grid16, each individual
has four neighbors (NEWS) and undergoes rank-based selection for crossover and
mutation. The increased population size allows for greater exploration of the solu-
tion space.

• CGA-ring16 [69] employs a unidirectional ring topology for its population of 16 indi-
viduals. In this configuration, each individual has only one neighbor, forming a simple,
linear ring. Due to the single-neighbor structure, the selection of mates is deterministic,
simplifying the selection process and enhancing the spread of superior genes.

• CGA-ring100 [69] extends the ring topology to a larger population of 100 individuals.
Each individual again has a single neighbor, forming a unidirectional ring. The de-
terministic selection process ensures efficient crossover and mutation operations.
With the increased population size, CGA-ring100 benefits from enhanced exploration
capabilities and maintains high diversity.

• The GA-100 [69] algorithm is a generational, single-population genetic algorithm with
a population size of 100 individuals. It uses rank-based selection for choosing parents,
followed by crossover and mutation to generate offspring. This algorithm aims to
balance exploration and exploitation through its generational approach, where the
entire population is replaced by offspring in each generation.

Analyzing LCGA’s performance across dimensions from Figure 8, the comparative
analysis and the visual evidence lead us to the following statement. In the lower dimen-
sions (2D and 3D), the Life Cycle Genetic Algorithm (LCGA) demonstrates rapid success. It
consistently outperforms the traditional Genetic Algorithm (GA) and other variants, show-
casing its efficiency in simpler problem spaces. As the dimensionality increases to 5D and
10D, LCGA maintains a lead over the different algorithms, with the gap narrowing slightly
but still exhibiting faster convergence. In the 20D space, LCGA’s superior performance
is evident as it achieves a higher success rate across the evaluations, indicating robust
adaptability in more complex scenarios. Even in the highly challenging 40D space, where
both LCGA and GA experience a decline in performance due to the increased complexity,
LCGA still maintains a higher success rate, demonstrating its capability to handle complex,
high-dimensional problems effectively.

As a comparative advantage, LCGA’s rapid and higher success in lower dimensions
indicates a more efficient search and optimization process than traditional GA and its
variants. As dimensionality increases, LCGA shows a slower decline in performance,
suggesting superior management of high-dimensional spaces, likely due to its dynamic
adaptation strategies in its life-cycle stages (or processes). This robustness and consistency
across various dimensions highlight LCGA’s potential for complex optimization challenges.
The algorithm’s ability to outperform other GA variants, particularly in higher-dimensional
and more complicated problem spaces, underscores its effectiveness and reliability, making
it a promising tool for solving intricate optimization tasks. In summary, the comparative
analysis and the visual evidence from Figure 8 strongly support the superior performance
of LCGA over traditional and enhanced GA variants, particularly in higher-dimensional
spaces and complex optimization tasks.
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Figure 8. To demonstrate the effectiveness of the proposed strategy versus existing GA variants, we
compare the statistical analysis of the LCGA algorithm against the GA and some of its improved
derivate algorithms (available at the COCO repository https://numbbo.github.io/data-archive/
bbob/, accessed on 10 July 2024). We display dimensions 2, 3, 5, 10, 20, and 40, respectively, from top-
left to right-bottom. The curves show each algorithm’s performance overview, indicating how quickly
and effectively it reaches the target error level as the number of evaluations increases. Higher curves
indicate better performance, representing a more significant fraction of successful assessment for
the given number of function evaluations. Steeper curves suggest rapid convergence to the target
error level.

4.2. Evaluation of CEC-2017 Reference Mathematical Functions

We perform comparison experiments using the reference mathematical functions pre-
sented in the CEC-2017 [58] to compare our proposal first against the Fuzzy Marine Predator
Algorithm (FMPA) [27], where we can quantify the results so that through its statistical anal-
ysis, we can study the behavior of the algorithm in greater detail. Furthermore, we extend
the comparison to other state-of-the-art continuous optimization algorithms. Experiments
are conducted across 30 CEC-2017 mathematical functions, varying dimensions from 10 to
100. The LCGA algorithm, employing the continuous range crossover strategy, is compared
with FMPA. Statistical analyses, including Z-tests, provide a robust comparative study.

https://numbbo.github.io/data-archive/bbob/
https://numbbo.github.io/data-archive/bbob/
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The choice of CEC-2017 mathematical functions is justified by referencing Awad et al. [58].
This section outlines the experimental setup, emphasizing the dimensions and the number
of runs.

4.2.1. Fuzzy Marine Predator Algorithm (FMPA)

The Marine Predator Algorithm (MPA) has been effectively utilized in various do-
mains [39], showcasing improved outcomes over earlier approaches to diverse chal-
lenges [27]. These include forecasting COVID-19 spread and control systems design.
Notable applications comprise integrating neuro-fuzzy models with MPA for enhanced
biomethane production, employing hybrid intelligence methods for structural integrity
assessment, optimizing photovoltaic system designs for maximal output under shading,
refining fuzzy PID controller parameters, advancing digital image segmentation through
multilevel thresholds and innovating X-ray image segmentation for swift COVID-19 detec-
tion in chest scans by leveraging a specialized MPA.

Researchers have integrated Fuzzy Logic Controllers (FLC) with traditional controls to
boost system efficiency. Lately, there is a growing practice of optimizing fuzzy controllers
using metaheuristics methods for ideal parametrization, reducing the target objective
function. A recent work, the Fuzzy Marine Predator Algorithm (FMPA) [27], extends
MPA with generalized type-2 fuzzy systems to adjust parameters. This algorithm has
been benchmarked for its efficacy, notably in optimizing mobile robot controllers, showing
improved solution quality and handling of uncertainties. It also serves as a comparative
baseline for our proposal, using the FMPA as a comparative benchmark. We chose the
FMPA as a reference because it is a recent bioinspired algorithm with dynamic adaptation
of parameters that is used in real-world applications.

It is essential to mention that the complete test suite for CEC-2017 consists of 30 math-
ematical functions in the dimensions 10, 30, 50, and 100, for which we have provided
the full results of our algorithm in Table 4 (LCGA Evaluation Results for the CEC-2017
Mathematical Functions), for the benefit of future publications, as other researchers will be
able to compare their results against our algorithm proposal, contrast its findings, and high-
light the improvements. In this particular case, when comparing our results with the
FMPA algorithm publication [27], we only found published results for the first 19 functions.
For this reason, the comparison against the algorithm above can only show the contrast
for the 19 available benchmark evaluation functions, as shown in Tables 6–8 (comparative
statistical analysis of the CEC-2017 mathematical functions evaluation).

4.2.2. LCGA Experimental Setup

In our experiment section, we performed multiple tests to match and compare with
the FMPA published results. In the following section, we outlined detailed experimen-
tal setups for LCGA, specifying dimensions, runs, and the Z-test statistical test with a
95 percent confidence level. The general configuration table shows the parameters used
in the experiments. For each of the 30 CEC-2017 mathematical functions, we evaluated
the 10, 30, 50, and 100 dimensions. We executed 51 runs for each dimension, according
to the CEC specifications. We finish with the Z-test statistical test with a confidence level
of 95 percent to determine the best alternative. We used the LCGA algorithm for our
experiments, using the Continuous Range Crossover breeding strategy for reproduction
mentioned in Section 3.4.

In the General Configuration shown in Table 3, we enumerate the configuration
values used to run our research experiments for the CEC-2017 benchmark problems. We
chose these parameter values to balance exploration and exploitation, maintain diversity,
and ensure efficient optimization performance. Previously, we described each configuration
parameter in Section 4.1.1.

System Requirements Specification (SRS). We used a computer with the hardware and
software characteristics described earlier in Section 4.1.1 to perform the experimental tests,
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with the only difference being the hard space needed to store the results of all the CEC-2017
benchmark functions of nearly 200 gigabytes.

Table 3. LCGA general configuration.

Configuration Value

Benchmark function ALL
Population 500
Sample size 20
Evaluations 10,000 * Dim

Mutation rate 7
Max age 5

Survive min 80
Survive max 100

Pressure 6

4.2.3. LCGA Evaluation Results for the CEC-2017 Mathematical Functions

This section presents the evaluation results of LCGA across various mathematical
functions and dimensions, showcasing its performance and providing a foundation for
subsequent statistical analyses. The following Table 4, describes the LCGA evaluation
results for the CEC-2017 mathematical functions for 10, 30, 50, and 100 dimensions.

Table 4. LCGA evaluation results for the CEC-2017 mathematical functions.

LCGA CEC-2017 . 10D CEC-2017 . 30D CEC-2017 . 50D CEC-2017 . 100D

Fx Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

F1 1.1944E+03 1.4963E+03 4.1209E+03 3.7733E+03 2.4089E+03 3.0316E+03 6.2414E+03 4.8433E+03
F2 3.1589E+02 1.2929E+03 4.8743E+10 9.6983E+10 1.1921E+15 7.9339E+15 2.4258E+40 1.5841E+41
F3 3.4086E+02 7.0737E+02 3.1160E+03 2.1122E+03 1.0477E+04 4.0503E+03 4.6086E+04 9.4932E+03
F4 7.5915E+00 1.3342E+01 9.2684E+01 2.0569E+01 1.2352E+02 5.7181E+01 3.1222E+02 5.8262E+01
F5 9.4707E+00 3.5336E+00 8.0514E+01 1.8340E+01 1.8301E+02 2.5057E+01 5.5042E+02 4.9878E+01
F6 1.3253E-02 2.6043E-02 3.1026E-02 4.8007E-02 3.9868E-02 4.5024E-02 3.8646E-02 2.3243E-02
F7 2.4902E+01 6.8532E+00 1.5288E+02 3.0759E+01 3.2224E+02 5.6997E+01 9.2211E+02 1.1134E+02
F8 7.8721E+00 3.1877E+00 7.3613E+01 1.6509E+01 1.7896E+02 3.0522E+01 5.7996E+02 6.0357E+01
F9 9.9384E+00 1.3370E+01 7.6487E+02 4.1142E+02 3.2164E+03 1.0212E+03 1.3728E+04 2.0331E+03

F10 5.1135E+02 2.4348E+02 2.8804E+03 5.4171E+02 4.8975E+03 7.5793E+02 1.1883E+04 1.1807E+03
F11 1.1628E+01 5.8848E+00 9.7325E+01 3.6948E+01 3.1707E+02 3.4108E+02 2.1841E+03 1.1782E+03
F12 1.0486E+05 3.3360E+05 1.2479E+06 9.1424E+05 3.3163E+06 1.7724E+06 1.3494E+07 5.8015E+06
F13 6.9911E+03 6.3627E+03 9.2334E+03 7.8685E+03 2.2810E+03 2.5780E+03 2.9032E+03 1.9734E+03
F14 1.8604E+03 3.1363E+03 2.7176E+05 2.8365E+05 1.0176E+06 9.6677E+05 1.6446E+06 7.3152E+05
F15 2.8548E+03 4.1876E+03 3.5396E+03 4.7118E+03 3.4140E+03 3.5109E+03 2.0752E+03 2.2205E+03
F16 1.4380E+02 9.0688E+01 1.2422E+03 2.7231E+02 1.8152E+03 4.8596E+02 4.4579E+03 5.5859E+02
F17 1.3496E+01 1.3512E+01 6.1596E+02 1.7523E+02 1.4731E+03 3.8094E+02 3.3357E+03 4.9967E+02
F18 7.1687E+03 6.0118E+03 9.2606E+05 1.2131E+06 2.3988E+06 1.2071E+06 1.5574E+06 7.8375E+05
F19 3.5845E+03 4.4515E+03 5.0993E+03 5.7244E+03 1.1802E+04 6.3737E+03 1.1868E+03 1.2703E+03
F20 5.4050E+00 5.3584E+00 4.4557E+02 2.0099E+02 1.1021E+03 3.0317E+02 3.0783E+03 5.8148E+02
F21 1.4766E+02 5.2493E+01 2.7832E+02 1.7123E+01 3.9174E+02 3.7305E+01 7.9039E+02 5.9096E+01
F22 1.0715E+02 4.7288E+00 1.5949E+02 4.1872E+02 5.4797E+03 1.5516E+03 1.3071E+04 2.2196E+03
F23 3.2240E+02 7.8443E+00 4.9030E+02 3.9744E+01 7.6391E+02 8.7777E+01 9.8955E+02 7.1272E+01
F24 3.0737E+02 9.7077E+01 6.8270E+02 7.1288E+01 1.0985E+03 1.2919E+02 1.7787E+03 1.3972E+02
F25 4.3426E+02 2.2304E+01 4.0106E+02 2.1026E+01 5.6636E+02 2.3436E+01 8.2694E+02 5.1965E+01
F26 3.6661E+02 9.7987E+01 2.3078E+03 1.0223E+03 4.8879E+03 9.5080E+02 1.3429E+04 3.3451E+03
F27 3.9134E+02 9.0523E+00 4.9104E+02 1.7150E+01 5.8851E+02 1.4963E+02 7.8407E+02 1.7421E+02
F28 4.0440E+02 9.5670E+01 4.3487E+02 2.5479E+01 5.4744E+02 3.7986E+01 6.4166E+02 5.9264E+01
F29 2.9154E+02 2.6736E+01 8.0196E+02 1.7880E+02 1.2022E+03 3.0951E+02 3.3027E+03 4.0229E+02
F30 3.3099E+04 6.8265E+04 1.1008E+03 1.3508E+03 3.2905E+03 3.3981E+03 5.2712E+03 3.8947E+03
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4.2.4. Statistical Analysis for the Comparative Study of the LCGA vs. FMPA Algorithms

Statistical analyses, including Z-tests, contribute to a comprehensive comparative
study between LCGA and FMPA. Inferences drawn from these analyses explain the
strengths and weaknesses of each algorithm under scrutiny. The emphasis is on the
significance of statistical rigor in establishing the credibility of algorithmic comparisons.
We used a left-tailed Z statistical test, found in Table 5. We display the Z-test equation in (4).

Table 5. Left-tailed Z statistical test.

Parameter Name Value

Significance Level 0.05
Rejection Region [−∞ : −1.6449]

Acceptance Region [−1.6449 : ∞]
n 51

Null hypothesis Ho: µ1 > µ2
Alternative hypothesis Ha: µ1 < µ2

µ1 LCGA
µ2 VERSUS

Z =
x1 − x2√

σ2
1

n1
+

σ2
2

n2

(4)

Table 6 presents the comparative statistical analysis of the evaluation of CEC-2017
mathematical functions for 30 dimensions. Table 7 enlists the comparative results of the
statistical study for the same benchmark for 50 dimensions. Finally, in Table 8, we can find
the comparative statistical examination for the evaluation results for 100 dimensions.

Table 6. Comparative statistical analysis of the CEC-2017 mathematical functions evaluation,
30 dimensions.

CEC-2017 . 30D LCGA FMPA

Fx Z Mean Std. Dev. Mean Std. Dev.
F1 −5.39E+00 4.12E+03 3.77E+03 2.53E+07 2.57E+07
F2 NA 4.87E+10 9.70E+10 NA NA
F3 9.52E+00 3.12E+03 2.11E+03 3.00E+02 0.00E+00
F4 −1.07E+02 9.27E+01 2.06E+01 4.00E+02 0.00E+00
F5 −1.63E+02 8.05E+01 1.83E+01 5.00E+02 0.00E+00
F6 −7.81E+02 3.10E−02 4.80E−02 6.06E+02 4.25E+00
F7 −8.34E+01 1.53E+02 3.08E+01 7.39E+02 3.04E+01
F8 −3.14E+02 7.36E+01 1.65E+01 8.00E+02 0.00E+00
F9 −2.08E+03 7.65E+02 4.11E+02 1.23E+05 6.51E+01

F10 2.48E+01 2.88E+03 5.42E+02 1.00E+03 0.00E+00
F11 −1.16E+02 9.73E+01 3.69E+01 1.23E+03 4.56E+01
F12 −3.54E+00 1.25E+06 9.14E+05 2.13E+06 1.17E+06
F13 7.00E+00 9.23E+03 7.87E+03 1.51E+03 2.87E+02
F14 6.80E+00 2.72E+05 2.84E+05 1.61E+03 2.38E+01
F15 3.00E+00 3.54E+03 4.71E+03 1.56E+03 3.18E+01
F16 −1.05E+01 1.24E+03 2.72E+02 1.70E+03 1.15E+02
F17 −4.42E+01 6.16E+02 1.75E+02 1.87E+03 7.79E+01
F18 5.44E+00 9.26E+05 1.21E+06 1.86E+03 4.11E+01
F19 3.93E+00 5.10E+03 5.72E+03 1.95E+03 4.37E+01

Total (W) 11 of 18 µ1: LCGA µ2: GT2FLS
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Table 7. Comparative statistical analysis of the CEC-2017 mathematical functions evaluation,
50 dimensions.

CEC-2017 . 50D LCGA FMPA

Fx Z Mean Std. Dev. Mean Std. Dev.
F1 5.39E+00 2.41E+03 3.03E+03 1.19E+02 8.02E+01
F2 NA 1.19E+15 7.93E+15 NA NA
F3 1.79E+01 1.05E+04 4.05E+03 3.00E+02 0.00E+00
F4 −3.45E+01 1.24E+02 5.72E+01 4.00E+02 0.00E+00
F5 −9.03E+01 1.83E+02 2.51E+01 5.00E+02 0.00E+00
F6 −5.29E+02 3.99E−02 4.50E−02 6.11E+02 6.32E+00
F7 −7.16E+01 3.22E+02 5.70E+01 9.19E+02 1.31E+01
F8 −1.45E+02 1.79E+02 3.05E+01 8.00E+02 0.00E+00
F9 −1.91E+00 3.22E+03 1.02E+03 3.51E+03 3.07E+02

F10 3.67E+01 4.90E+03 7.58E+02 1.00E+03 0.00E+00
F11 −2.11E+01 3.17E+02 3.41E+02 1.33E+03 2.17E+01
F12 1.34E+01 3.32E+06 1.77E+06 1.68E+03 2.73E+02
F13 3.03E−02 2.28E+03 2.58E+03 2.26E+03 3.24E+03
F14 7.51E+00 1.02E+06 9.67E+05 1.51E+03 6.82E+01
F15 3.73E+00 3.41E+03 3.51E+03 1.58E+03 7.15E+01
F16 −2.30E+00 1.82E+03 4.86E+02 1.99E+03 1.84E+02
F17 −5.45E+00 1.47E+03 3.81E+02 1.77E+03 6.00E+01
F18 1.42E+01 2.40E+06 1.21E+06 1.83E+03 3.06E+01
F19 7.17E+00 1.18E+04 6.37E+03 3.10E+03 4.51E+03

Total (W) 9 of 18 µ1: LCGA µ2: GT2FLS

Table 8. Comparative statistical analysis of the CEC-2017 mathematical functions evaluation,
100 dimensions.

CEC-2017 . 100D LCGA FMPA

Fx Z Mean Std. Dev. Mean Std. Dev.
F1 −8.74E+01 6.24E+03 4.84E+03 6.55E+04 0.00E+00
F2 NA 2.43E+40 1.58E+41 NA NA
F3 3.44E+01 4.61E+04 9.49E+03 3.00E+02 0.00E+00
F4 −1.08E+01 3.12E+02 5.83E+01 4.00E+02 0.00E+00
F5 7.22E+00 5.50E+02 4.99E+01 5.00E+02 0.00E+00
F6 −5.27E+02 3.86E−02 2.32E−02 6.75E+02 7.02E+00
F7 4.44E−01 9.22E+02 1.11E+02 9.02E+02 2.33E+02
F8 −2.60E+01 5.80E+02 6.04E+01 8.00E+02 0.00E+00
F9 4.50E+01 1.37E+04 2.03E+03 9.10E+02 1.18E−13

F10 6.58E+01 1.19E+04 1.18E+03 1.00E+03 0.00E+00
F11 4.80E+00 2.18E+03 1.18E+03 1.39E+03 5.43E+01
F12 −1.25E+01 1.35E+07 5.80E+06 1.10E+09 4.75E+08
F13 −9.18E+00 2.90E+03 1.97E+03 1.86E+07 1.11E+07
F14 1.60E+01 1.64E+06 7.32E+05 6.70E+03 2.59E+03
F15 −8.74E+00 2.08E+03 2.22E+03 1.40E+06 8.76E+05
F16 2.58E+00 4.46E+03 5.59E+02 2.65E+03 3.82E+03
F17 −1.65E+01 3.34E+03 5.00E+02 5.19E+03 4.81E+02
F18 6.45E+00 1.56E+06 7.84E+05 7.14E+05 3.89E+05
F19 −1.34E+01 1.19E+03 1.27E+03 5.28E+06 2.15E+06

Total (W) 9 of 18 µ1: LCGA µ2: GT2FLS

4.2.5. Comparative Results

To validate our research, we performed the statistical Z-test with a confidence level of
95 percent to analyze the alternatives we present in this proposal. To reduce uncertainty in
the discovery of mathematical knowledge and to have greater precision in our comparison
analysis, we consider studying the algorithms in both directions interesting. With the
above, we mean the first of them is the one we showed in the previous Section 4.2.4, where
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for µ1, we use LCGA, and for µ2, we handle FMPA. In its counterpart, we do the inverse,
where for µ1 we use FMPA, and for µ2, we use LCGA.

Below, in Table 9, we show the comparative Z-test statistical summary for evaluating
mathematical functions of the CEC-2017 for both LCGA and FMPA algorithms, with the
total number of times there was significant evidence that the algorithm was better with
a 95 percent confidence. The same table has a column named Non-Signif. that indicates
the number of times the statistical analysis found no significant evidence to claim neither
algorithm was better than its counterpart. The graphical representation of this data can be
found in the following Figure 9, including 30, 50, and 100 dimensions.

Table 9. Comparative Z-test statistical summary for the evaluation of mathematical functions of
the CEC-2017.

Dim Z-test LCGA FMPA Non-Signif.

30D Total (W) 11/18 7/18 0/18
50D Total (W) 9/18 8/18 1/18

100D Total (W) 9/18 8/18 1/18

0

2

4

6

8

10

12

30D 50D 100D

Comparative Z-Test statistical summary

LCGA FMPA Non Signif.

Figure 9. CEC-2017 statistical Z-test comparison: total number of times there was significant evidence
that the algorithm was better with a 95 percent confidence.

The statistical comparison tables present the performance of LCGA against FMPA
using the Z-test for the CEC-2017 benchmark in 30 dimensions. By analyzing the results
shown, it is possible to make the following inferences: LCGA has a significant edge over
FMPA in most of the functions tested; this is demonstrated by the win tallies (11 out of 18 for
LCGA and 7 out of 18 for FMPA), indicating that LCGA is more effective in most benchmark
functions. Moreover, the magnitude of the Z-scores shows considerable differences in mean
scores between the two algorithms, with LCGA frequently achieving better optimization
results with lower standard deviations, hinting at its consistent performance. These results
suggest that LCGA might be a preferable algorithm for problems represented within the
CEC-2017 benchmark, particularly when seeking reliable performance across multiple runs
and diverse optimization problems.

The table comparing LCGA and FMPA for the CEC-2017 benchmark in 50 dimensions
shows a nearly even split in wins between the algorithms, with LCGA winning 9 of
18 instances and FMPA winning 8 of 18 benchmark functions; this suggests that both
algorithms have comparable performance across a range of complex, high-dimensional
optimization problems. However, the individual Z-scores and mean values indicate that
the differences in performance can be substantial depending on the specific function chosen
for optimization. The standard deviations suggest that the reliability of each algorithm
may vary, with some functions showing more variability in the results. Overall, the choice
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between LCGA and FMPA may depend on the specific characteristics of the problem at
hand, with neither algorithm showing a definitive edge across all tested functions.

The comparison between LCGA and FMPA for the CEC-2017 benchmark in 100 dimen-
sions shows LCGA slightly outperforming FMPA in 9 out of 18 functions. LCGA’s wins
are distributed across a range of functions, suggesting versatility. In contrast, FMPA has a
stronger showing in 8 out of 18 functions. Notably, the large Z-scores in some functions
indicate significant performance differences. The high mean and standard deviation values
in certain functions for both algorithms suggest variable performance, which might reflect
the complexity inherent in the 100-dimensional search space. This evaluation highlights the
importance of selecting an appropriate optimization algorithm based on the specific nature
and dimensionality of the problem. Through statistical analysis, our proposed strategy
is considered an excellent alternative to the marine algorithm improved with a type 2
generalized fuzzy system.

4.3. State-of-the-Art: Evaluation of CEC-2017 Mathematical Benchmark Functions

In their research, Salgotra et al. [40] presented a detailed analysis and enhancement of
the Cuckoo Search (CS) algorithm, introducing an improved version named CSsin. This
enhanced version addresses several key areas to optimize its performance on the CEC
2017 and CEC 2020 benchmark problems, known for their complexity and diversity. We
will briefly enumerate some critical enhancements in CSsin in the following paragraph.
For the global search technique, the CSsin algorithm employs a new Cauchy-distributed
global search during the initial iterations, which aids in extensive search space exploration,
preventing the algorithm from getting trapped in local optima. The global search equation
leverages the Cauchy distribution’s fat-tailed property to make larger steps, enhancing the
search process’s global exploration capabilities. For the local search technique, CSsin uses a
sinusoidal adaptive decreasing adjustment inspired by the LSHADE-cnEpSin algorithm.
This adjustment ensures efficient local exploitation, refining solutions within promising
regions of the search space.

Another essential feature is CSsin incorporates a dual search strategy to balance
exploration (searching new areas) and exploitation (refining known good areas). This
strategy helps achieve a dynamic balance between the two phases, improving overall
optimization performance. On the other hand, another of its features is that it uses a linearly
decreasing switch probability to transition smoothly from exploration to exploitation over
iterations. This gradual decrease ensures that the algorithm initially explores broadly
and then focuses on exploiting the best solutions found. This strategy promotes linearly
decreasing the population size with iterations to reduce the computational burden. This
method maintains diversity in the early stages and enhances convergence speed in the later
stages by focusing computational resources on the most promising solutions.

State-of-the-Art Comparison.

• SaDE: the Self-adaptive Differential Evolution with Neighborhood Search (SaDE) [36];
• JADE: the Adaptive Differential Evolution with Optional External Archive [34];
• SHADE: the Success-History-Based Parameter Adaptation for Differential Evolution

(SHADE) [35];
• MVMO: The Determination of Dynamic Wind Farm Equivalents using Heuristic

Optimization [59];
• CV1.0 and CVnew: CV1.0 uses Cauchy and Normal distributions to enhance explo-

ration and exploitation, while CVnew introduces parameter adaptation and popula-
tion reduction strategies [40];

• RB-IPOP-CMA-ES: Another state-of-the-art algorithm to consider is the IPOP-CMA-ES
and its improved version RB-IPOP-CMA-ES [31].

Statistical Significance. To validate our research, we performed the statistical Z-test
with a 95 percent confidence level to analyze the alternatives we present in this proposal.
In the following Tables 10–12, we display the comparative Z-test statistical summary for
evaluating 30 mathematical functions of the CEC-2017 benchmark problems to indicate
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if LCGA is significantly better than or competitive with state-of-the-art algorithms. Each
column shows the statistical values for an algorithm, where we group each of the 30 bench-
mark functions in three rows: mean (Mean), Standard Deviation (St.Dv), and comparison
result (Comp.).

According to our Z-test with a 95 percent confidence level, there are three possible
comparison values: “-” means that our proposed LCGA performs better than the algorithm
under consideration; “+” represents the opposite; and “=” indicates that the statistical
analysis found no significant evidence to claim neither algorithm was better than its
counterpart. On the last row for each column, the comparison value is displayed in terms of
win/tie/loss (w/t/l), where win gives the accumulated minus (“-”), highlighted in green,
the tie gives the total number of equals (“=”) found, and loss shows the accumulated plus
(“+”) counts highlighted in red.

In Tables 10–12, we display the CEC-2017 statistical results for 50 dimensions for the
benchmark functions 1 to 10, 11 to 20, and 21 to 30, respectively. Table 13 displays the
CEC-2017 summarized statistical results for all 50D functions (1 to 30).

Table 10. CEC-2017 statistical results for 50D, benchmark functions: 1 to 10. There are three possible
comparison values: “-” means that our proposed LCGA performs better than the algorithm under
consideration; “+” represents the opposite; and “=” indicates that the statistical analysis found no
significant evidence to claim neither algorithm was better than its counterpart. On the last row for
each column, the comparison value is displayed in terms of win/tie/loss (w/t/l), where win gives
the accumulated minus (“-”) highlighted in green, the tie gives the total number of equals (“=”) found,
and loss shows the accumulated plus (“+”) counts highlighted in red.

Fx Stats SaDE JADE SHADE MVMO CV1.0 CVnew CSsin RB-IPOP-
CMA-ES LCGA

Mean 1.21E+03 5.23E-14 0.00E+00 1.33E-05 1.00E+10 1.00E+10 1.00E+10 1.13E-07 2.41E+03
St.Dv 1.97E+03 2.51E-14 0.00E+00 5.60E-06 0.00E+00 0.00E+00 0.00E+00 4.26E-08 3.03E+03F1
Comp. + + + + - - - +
Mean 9.27E+01 1.31E+13 1.08E+12 1.80E+17 1.00E+10 1.00E+10 1.00E+10 2.77E+05 1.19E+15
St.Dv 4.12E+01 8.53E+13 4.39E+12 1.27E+18 0.00E+00 0.00E+00 0.00E+00 1.98E+06 7.93E+15F2
Comp. = = = = = = = =
Mean 2.71E+02 1.77E+04 0.00E+00 5.30E-07 1.95E+04 8.71E+04 1.07E+04 0.00E+00 1.05E+04
St.Dv 8.28E+02 3.70E+04 0.00E+00 1.09E-07 6.27E+03 4.08E+03 6.68E+03 0.00E+00 4.05E+03F3
Comp. + = + + - - = +
Mean 8.92E+01 4.96E+01 5.68E+01 3.58E+01 1.16E+02 2.67E+01 1.88E+01 2.96E+01 1.24E+02
St.Dv 4.21E+01 4.71E+01 8.80E+00 3.66E+01 6.27E+03 5.92E+00 3.45E+01 4.07E+01 5.72E+01F4
Comp. + + + + = + + +
Mean 9.23E+01 5.42E+01 3.28E+01 8.07E+01 3.41E+02 2.39E+02 3.09E+02 2.79E+00 1.83E+02
St.Dv 1.86E+01 8.80E+00 5.03E+00 1.64E+01 8.02E+01 3.80E+01 2.10E+01 1.44E+00 2.51E+01F5
Comp. + + + + - - - +
Mean 7.43E-03 1.44E-13 8.38E-04 5.43E-03 4.85E+01 4.07E+01 1.00E+01 1.63E-07 3.99E-02
St.Dv 2.35E-02 9.11E-14 1.01E-03 3.30E-03 4.85E+01 8.14E+00 5.20E+00 1.38E-07 4.50E-02F6
Comp. + + + + - - - +
Mean 1.40E+02 1.01E+02 8.09E+01 1.23E+02 2.74E+02 2.22E+02 1.39E+02 5.66E+01 3.22E+02
St.Dv 1.97E+01 6.48E+00 3.78E+00 1.27E+01 7.29E+01 3.49E+01 9.71E+01 1.39E+00 5.70E+01F7
Comp. + + + + + + + +
Mean 9.42E+01 5.52E+01 3.23E+01 7.59E+01 3.29E+02 2.50E+02 3.17E+02 2.58E+00 1.79E+02
St.Dv 1.77E+01 7.76E+00 3.82E+00 1.61E+01 7.29E+01 4.51E+01 2.43E+01 1.79E+00 3.05E+01F8
Comp. + + + + - - - +
Mean 4.83E+01 1.17E+00 1.11E+00 7.38E+00 1.00E+04 1.06E+04 1.11E+04 0.00E+00 3.22E+03
St.Dv 6.29E+01 1.31E+00 9.37E-01 5.77E+00 2.90E+03 3.10E+03 1.00E+03 0.00E+00 1.02E+03F9
Comp. + + + + - - - +
Mean 6.60E+03 3.75E+03 3.34E+03 3.49E+03 7.10E+03 6.09E+03 4.97E+03 1.73E+03 4.90E+03
St.Dv 1.63E+03 2.54E+02 2.94E+02 4.31E+02 5.34E+02 3.55E+02 5.83E+02 9.53E+02 7.58E+02F10
Comp. - + + + - - = +

Total w/t/l 1/1/8 0/2/8 0/1/9 0/1/9 7/2/1 7/1/2 5/3/2 0/1/9
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Table 11. CEC-2017 statistical results for 50D, benchmark functions: 11 to 20. There are three possible
comparison values: “-” means that our proposed LCGA performs better than the algorithm under
consideration; “+” represents the opposite; and “=” indicates that the statistical analysis found no
significant evidence to claim neither algorithm was better than its counterpart. On the last row for
each column, the comparison value is displayed in terms of win/tie/loss (w/t/l), where win gives
the accumulated minus (“-”) highlighted in green, the tie gives the total number of equals (“=”) found,
and loss shows the accumulated plus (“+”) counts highlighted in red.

Fx Stats SaDE JADE SHADE MVMO CV1.0 CVnew CSsin RB-IPOP-
CMA-ES LCGA

Mean 1.09E+02 1.36E+02 1.20E+02 4.74E+01 1.66E+02 1.18E+02 1.17E+01 1.83E+02 3.17E+02
St.Dv 3.54E+01 3.39E+01 2.93E+01 8.72E+00 3.38E+01 1.91E+01 2.91E+01 5.20E+01 3.41E+02F11
Comp. + + + + + + + +
Mean 1.11E+05 5.14E+03 5.13E+03 1.29E+03 1.00E+10 1.00E+10 1.00E+10 2.44E+06 3.32E+06
St.Dv 6.20E+04 3.32E+03 2.87E+03 2.79E+02 0.00E+00 0.00E+00 0.00E+00 1.74E+07 1.77E+06F12
Comp. + + + + - - - =
Mean 1.21E+03 3.03E+02 2.65E+02 4.37E+01 1.00E+10 9.80E+09 1.10E+10 1.65E+03 2.28E+03
St.Dv 1.45E+03 2.69E+02 1.49E+02 1.76E+01 0.00E+00 1.40E+09 0.00E+00 1.15E+03 2.58E+03F13
Comp. + + + + - - - =
Mean 2.18E+03 1.05E+04 2.15E+02 4.85E+01 2.05E+02 3.98E+01 2.23E+04 2.42E+02 1.02E+06
St.Dv 2.20E+03 3.11E+04 7.29E+01 1.21E+01 2.13E+01 1.62E+01 1.72E+04 7.07E+01 9.67E+05F14
Comp. + + + + + + + +
Mean 3.35E+03 3.49E+02 3.22E+02 4.46E+01 1.37E+09 2.85E+02 1.13E+04 5.29E+02 3.41E+03
St.Dv 2.79E+03 4.42E+02 1.42E+02 1.12E+01 3.47E+09 3.54E+02 6.02E+03 1.15E+02 3.51E+03F15
Comp. = + + + - + - +
Mean 8.17E+02 8.56E+02 7.33E+02 8.40E+02 1.53E+03 1.44E+03 7.23E+02 8.90E+02 1.82E+03
St.Dv 2.34E+02 1.75E+02 1.88E+02 1.93E+02 2.74E+02 2.10E+02 1.79E+02 3.66E+02 4.86E+02F16
Comp. + + + + + + + +
Mean 5.08E+02 6.00E+02 5.16E+02 5.19E+02 1.25E+03 1.13E+02 1.50E+02 3.98E+02 1.47E+03
St.Dv 1.53E+02 1.21E+02 1.11E+02 1.33E+02 1.85E+02 1.92E+02 1.16E+02 1.58E+02 3.81E+02F17
Comp. + + + + + + + +
Mean 3.24E+04 1.89E+02 1.89E+02 4.17E+01 5.21E+02 1.51E+02 1.73E+05 3.57E+02 2.40E+06
St.Dv 1.68E+04 1.25E+02 1.03E+02 1.94E+01 1.19E+02 4.43E+01 7.91E+04 1.56E+02 1.21E+06F18
Comp. + + + + + + + +
Mean 1.13E+04 3.24E+02 1.59E+02 1.73E+01 1.73E+02 5.57E+01 5.84E+03 1.39E+02 1.18E+04
St.Dv 1.68E+04 1.25E+03 5.68E+03 5.13E+00 4.17E+02 1.10E+01 3.15E+03 4.77E+01 6.37E+03F19
Comp. = + + + + + + +
Mean 3.52E+02 4.38E+02 3.33E+02 3.29E+02 1.05E+03 2.81E+02 2.31E+02 5.47E+02 1.10E+03
St.Dv 1.50E+02 1.33E+02 1.20E+02 1.47E+02 2.14E+02 1.65E+02 9.73E+01 2.33E+02 3.03E+02F20
Comp. + + + + = + + +

Total w/t/l 0/2/8 0/0/10 0/0/10 0/0/10 3/1/6 2/0/8 3/0/7 0/2/8

Table 12. CEC-2017 statistical results for 50D, benchmark functions: 21 to 30. There are three possible
comparison values: “-” means that our proposed LCGA performs better than the algorithm under
consideration; “+” represents the opposite; and “=” indicates that the statistical analysis found no
significant evidence to claim neither algorithm was better than its counterpart. On the last row for
each column, the comparison value is displayed in terms of win/tie/loss (w/t/l), where win gives
the accumulated minus (“-”) highlighted in green, the tie gives the total number of equals (“=”) found,
and loss shows the accumulated plus (“+”) counts highlighted in red.

Fx Stats SaDE JADE SHADE MVMO CV1.0 CVnew CSsin RB-IPOP-
CMA-ES LCGA

Mean 2.87E+02 2.51E+02 2.33E+02 2.77E+02 5.41E+02 1.18E+02 1.57E+02 2.06E+02 3.92E+02
St.Dv 1.36E+01 9.63E+00 5.11E+00 1.60E+01 6.27E+01 8.77E+01 9.74E+01 3.23E+00 3.73E+01F21
Comp. + + + + - + + +
Mean 2.92E+03 3.33E+03 3.17E+03 3.26E+03 7.33E+03 5.77E+03 1.00E+02 2.05E+03 5.48E+03
St.Dv 3.24E+03 1.80E+03 1.55E+03 1.71E+03 1.99E+03 3.64E+02 3.91E-01 1.76E+03 1.55E+03F22
Comp. + + + + - = + +
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Table 12. Cont.

Fx Stats SaDE JADE SHADE MVMO CV1.0 CVnew CSsin RB-IPOP-
CMA-ES LCGA

Mean 5.22E+02 4.79E+02 4.59E+02 5.04E+02 7.74E+02 1.87E+02 4.51E+02 4.23E+02 7.64E+02
St.Dv 2.05E+01 1.17E+01 8.75E+00 1.71E+03 8.06E+01 5.11E+01 7.88E+01 1.39E+01 8.78E+01F23
Comp. + + + = = + + +
Mean 5.89E+02 5.31E+02 5.31E+02 5.83E+02 8.32E+02 3.25E+02 6.87E+02 4.91E+02 1.10E+03
St.Dv 1.86E+01 7.62E+00 7.45E+00 1.69E+01 1.21E+01 8.95E+01 3.57E+01 5.73E+00 1.29E+02F24
Comp. + + + + + + + +
Mean 5.71E+02 5.19E+02 5.06E+02 5.09E+02 5.43E+02 4.70E+02 4.26E+02 4.81E+02 5.66E+02
St.Dv 3.05E+01 3.48E+01 3.64E+01 3.12E+01 1.51E+01 2.26E+01 2.08E+01 5.18E+00 2.34E+01F25
Comp. = + + + + + + +
Mean 2.52E+03 1.61E+03 1.41E+03 1.93E+03 2.48E+03 1.16E+03 3.00E+02 6.55E+02 4.89E+03
St.Dv 3.37E+02 1.21E+02 9.78E+01 2.86E+02 1.88E+03 1.56E+03 4.57E-02 3.01E+02 9.51E+02F26
Comp. + + + + + + + +
Mean 7.10E+02 5.50E+02 5.49E+02 5.43E+02 7.38E+02 4.53E+02 5.97E+02 6.08E+02 5.89E+02
St.Dv 6.65E+01 2.34E+01 2.78E+01 1.75E+01 8.21E+01 7.17E+01 3.22E+01 5.86E+01 1.50E+02F27
Comp. - + + + - + = =
Mean 4.99E+02 4.91E+02 4.79E+02 4.64E+02 4.94E+02 4.58E+02 4.13E+02 4.70E+02 5.47E+02
St.Dv 1.53E+01 2.08E+01 2.41E+01 1.50E+01 1.93E+01 2.33E-01 1.83E+01 1.94E+01 3.80E+01F28
Comp. + + + + + + + +
Mean 5.11E+02 4.77E+02 4.87E+02 4.89E+02 1.69E+03 1.45E+03 8.03E+02 6.69E+02 1.20E+03
St.Dv 1.37E+02 8.06E+01 1.05E+02 1.40E+01 2.29E+02 1.68E+02 1.24E+02 1.99E+02 3.10E+02F29
Comp. + + + + - - + +
Mean 8.07E+05 6.68E+05 6.82E+05 5.81E+05 4.64E+06 6.02E+05 1.64E+05 6.46E+06 3.29E+03
St.Dv 8.33E+04 9.25E+04 8.51E+04 1.02E+04 8.59E+06 2.99E+04 6.25E+05 5.07E+06 3.40E+03F30
Comp. - - - - - - - -

Total w/t/l 2/1/7 1/0/9 1/0/9 1/1/8 5/1/4 2/1/7 1/1/8 1/1/8

Table 13. CEC-2017 summarized statistical results for 50D.

Fx Stats SaDE JADE SHADE MVMO CV1.0 CVnew CSsin RB-IPOP-
CMA-ES LCGA

F1–F10 w/t/l 1/1/8 0/2/8 0/1/9 0/1/9 7/2/1 7/1/2 5/3/2 0/1/9 LCGA
F11–F20 w/t/l 0/2/8 0/0/10 0/0/10 0/0/10 3/1/6 2/0/8 3/0/7 0/2/8 LCGA
F21–F30 w/t/l 2/1/7 1/0/9 1/0/9 1/1/8 5/1/4 2/1/7 1/1/8 1/1/8 LCGA

Total w/t/l 3/4/23 1/2/27 1/1/28 1/2/27 15/4/11 11/2/17 9/4/17 1/4/25 LCGA

5. Discussion

In our statistical comparison, we draw the following conclusions based on the COCO
benchmark framework results analysis comparing LCGA with the GA, PSO, and EvoSpace
algorithms. The COCO experiment analysis indicates that the LCGA demonstrates superior
performance relative to the GA within the entire range of dimensional spaces tested in the
COCO benchmark framework. LCGA exhibits a marked proficiency in attaining elevated
success ratios swifter, particularly in reduced dimensional scenarios, indicative of its supe-
rior search efficacy and optimization capabilities in this context. Although a performance
differential is evident for both algorithms in increased dimensionality, LCGA manifests
a more gradual performance deterioration. This resilience hints at its enhanced ability to
navigate the complexities of optimizing in extensive multi-dimensional landscapes.

In the COCO comparative study of LCGA and PSO, the analysis across a spectrum of
dimensions reveals that while PSO typically exhibits robust early performance in simpler
two- and three-dimensional spaces, LCGA gains a competitive edge in more complex
scenarios, starting from five dimensions onward. The results’ analysis indicates that while
LCGA may take more time initially to sample the solution space, its performance trajectory
exceeds that of PSO’s quick outset, especially as the problem’s complexity escalates. Such
observations imply that LCGA may possess superior long-term efficiency and scalability
when tackling increasing dimensionality problems.
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The comparative study between LCGA and EvoSpace for the COCO benchmark
framework reveals an initial dominance by EvoSpace in lower-dimensional settings, which
subsequently cedes ground to LCGA in certain conditions: LCGA’s enhanced performance
with increased problem complexities, notably in the 20D context. This observation sug-
gests that while EvoSpace may excel within mid-dimensional ranges, LCGA may deliver a
more uniform and resilient strategy when confronted with high-dimensional optimization
challenges. LCGA’s adaptability and scalability could present significant advantages in
complex scenarios that demand a nuanced equilibrium between exploration and exploita-
tion throughout extensive evaluation processes.

Moving on to the second experiment, using the CEC-2017 benchmark across multiple
dimensions for our statistical comparison, the LCGA performance against the Fuzzy Marine
Predator Algorithm (FMPA) reveals distinct outcomes based on problem complexity and
dimensionality. At the 30-dimensional level, LCGA shows a clear advantage, winning 11
out of 18 benchmark functions. Its efficacy in handling various optimization challenges
with greater consistency and reduced variability in results demonstrates that LCGA can
be relied upon for robust performance across diverse scenarios. Moving to 50 dimensions,
the competition between LCGA and FMPA becomes more evenly matched, with each
algorithm excelling in roughly half of the test cases. Suggesting that while LCGA maintains
strong performance, FMPA catches up in certain functions. Choosing between the two will
depend on specific problem characteristics and optimization needs. The near-even split
highlights that both algorithms can adapt to complex, high-dimensional spaces, but their
effectiveness can vary significantly depending on the challenge function for optimization.

In the 100-dimensional tests, LCGA displays its versatility by outperforming FMPA
in most functions, underscoring its capacity to adapt to high-dimensional and complex
problem spaces. Despite this, both algorithms exhibit high variability in their results,
attributed to the inherent challenges of navigating expansive search spaces. This variability
emphasizes the importance of selecting an optimization algorithm that addresses the
problem’s specific nature and can manage the increased complexity introduced by higher
dimensions. Overall, the comprehensive statistical analysis underscores LCGA’s potential
as a superior alternative to the marine algorithm improved with a type-2 generalized
fuzzy system, particularly in scenarios requiring dependable performance across various
complex and varied optimization problems. The data support LCGA’s suitability for
complex environments where the strategic balance between exploration and exploitation is
crucial for achieving optimal solutions.

6. Conclusions and Future Work

This paper aims to provide a comprehensive overview of the Life Cycle Genetic
Algorithm, its design rationale, experimental evaluations, and comparative analyses against
existing algorithms. The LCGA algorithm mimics the life cycle stages of animal—birth,
growth, reproduction, and death—to find the optimum of complex real-valued functions,
including multimodal ones. Moreover, the document details the algorithm’s structure,
stages, and comparative performance against established benchmarks, highlighting its
potential for addressing complex optimization problems.

As future work for this line of research, we can mention the following alternatives:
implementing the algorithm in the cloud to confirm whether the performance or precision
of the results obtained by this different implementation strategy improves. Likewise, we
could explore the algorithm’s behavior when working on the same computer in a multi-
thread implementation technique, taking advantage of the architecture of several cores in
a processor.
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