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Abstract: This study aims to develop and evaluate an LSTM neural network for predicting household
energy consumption. To conduct the experiment, a testbed was created consisting of five common
appliances, namely, a TV, air conditioner, fan, computer, and lamp, each connected to individual smart
meters within a Home Energy Management System (HEMS). Additionally, a meter was installed
on the distribution board to measure total consumption. Real-time data were collected at 15-min
intervals for 30 days in a residence that represented urban energy consumption in Sincelejo, Sucre,
inhabited by four people. This setup enabled the capture of detailed and specific energy consumption
data, facilitating data analysis and validating the system before large-scale implementation. Using
the detailed power consumption information of these devices, an LSTM model was trained to identify
temporal connections in power usage. Proper data preparation, including normalisation and feature
selection, was essential for the success of the model. The results showed that the LSTM model was
effective in predicting energy consumption, achieving a mean squared error (MSE) of 0.0169. This
study emphasises the importance of continued research on preferred predictive models and identifies
areas for future research, such as the integration of additional contextual data and the development of
practical applications for residential energy management. Additionally, it demonstrates the potential
of LSTM models in smart-home energy management and serves as a solid foundation for future
research in this field.

Keywords: home energy management system (HEMS); artificial intelligence; deep learning; LSTM;
energy efficiency

1. Introduction

The International Energy Agency (EIA) and Colombia’s Mining and Energy Plan-
ning Unit (UPME) have projected increases in energy consumption both nationally and
internationally [1,2]. This growing demand for electricity poses significant environmental
challenges, especially in terms of CO2 emissions and sustainability. Construction, as a
leading global sector, has had a considerable impact on these challenges. This industry is
in the midst of a significant digital transformation, integrating advanced technologies that
facilitate energy optimisation [3]. Over the years, global efforts have been implemented to
address these issues, from the creation of the International Energy Agency in 1974 to the
adoption of the Kyoto Protocol in 1997 and the Paris Agreement in 2015 [4,5]. Globally, the
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building sector consumes about 36% of final energy and contributes 39% of CO2 emissions.
The building stock is expected to grow by 60% by 2050 [6]. With the growing concern for
sustainable buildings, it is essential to incorporate new systems and strategies in the early
design phase of building projects. Building information modelling (BIM) and sustainability
protocols have common goals: quality, efficiency, and sustainability [7]. In addition, smart
building construction couples sustainability with efficiency, integrating artificial intelligence
and IoT technologies to optimise operations and performance [8]. In this context, smart
microgrids have emerged as a solution to integrate advanced digital management technolo-
gies to optimise energy production, distribution, and consumption. The integration of these
sustainable buildings offers a solution that helps reduce dependence on fossil fuels and
minimises environmental impacts. These microgrids, managed by Energy Management
Systems (EMS), enable efficient energy production, distribution, and consumption. In
addition, they optimise the use of renewable energy sources, implement demand response,
and reduce costs and carbon emissions [9–14]. In recent years, the application of artificial
intelligence (AI) techniques to optimise energy consumption through an EMS has become
a promising approach [15]. AI, which is fundamental in energy management, is applied in
various areas, such as demand forecasting and energy use optimisation [16–19]. This tech-
nology has great potential to improve EMS efficiency by optimising energy consumption
and reducing peak demand [15,17]. AI, through consumption pattern analysis and system
coordination, is positioned as a key tool to promote energy efficiency in multiple contexts,
offering significant improvements in energy management [16,18].

In the domestic context, home energy management systems (HEMS) use AI technolo-
gies to reduce energy consumption and improve performance, making them an effective
solution to increase energy efficiency in homes [20].

The development of accurate predictive models for estimating household energy
consumption has become an area of growing interest, as efficient energy use is critical
for both reducing costs and mitigating the environmental impact associated with energy
consumption. Integrating AI techniques in energy management proposes a dynamic and
personalised approach that is capable of adapting and responding to individual needs
and consumption habits using advanced tools to analyse complex data and make optimal
decisions in an automated manner [21–23].

In this paper, a deep learning-based approach, specifically using LSTM neural net-
works, is presented to predict power consumption in a domestic environment. Long
Short-Term Memory (LSTM) networks are preferred in HEMS because of their ability to
model complex temporal dependencies and maintain long-term memory efficiently. This
specialised network (RNN) architecture is ideal for problems in which data are structured in
time series, such as home energy consumption prediction, as it can handle long sequences
of data and capture long-term dependencies in the information. Its architectural flexibility
allows it to adapt to the specific characteristics of the problem at hand, which is ideal in
applications such as HEMS, where past actions significantly affect future power manage-
ment decisions. Furthermore, according to a review conducted in [24], several authors
agree that LSTM outperforms the other short-term forecasting methods. The proposed
model uses power data collected from several common household electrical devices, such
as fans, computers, air conditioners, lamps, and TVs. Through the application of artificial
intelligence techniques, the aim was to build a system capable of providing accurate and
reliable predictions of energy consumption.

The overall objective of this study is to develop and evaluate an LSTM neural network
model for predicting home energy consumption, with a focus on energy efficiency and
smart management. To achieve this goal, the following specific objectives are proposed:
first, to train an LSTM model using power data from various home-use devices to capture
temporal relationships in energy consumption; second, to perform careful data preparation,
including normalisation and selection of relevant features, to ensure the success of the
model; and finally, to evaluate the performance of the LSTM model in predicting energy
consumption and highlight its effectiveness using metrics such as Mean Squared Error
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(MSE). These objectives guide the development of this study and its contribution to smart
home energy management, providing a solid foundation for future research in this field.
The remainder of this paper is organised as follows: Section 2 explains the basic concepts;
Section 3 shows the related task; Section 4 discusses the methodology; Section 5 presents
the results; Section 6 suggests conclusions; and Section 7 suggests future work.

2. Basic Concepts
2.1. Home Energy Management Systems (HEMS)

HEMS are technology platforms designed to monitor, control, and optimise energy
consumption in homes in a smart and efficient manner. By integrating metering devices,
sensors, and management software, HEMS allows users to monitor and control the energy
use of devices and systems within the home, such as heating, lighting, and appliances,
with the goal of reducing costs, minimising environmental impacts, and improving home
comfort. By providing detailed information and control tools, HEMS enables users to make
informed decisions and adopt sustainable consumption habits [25]. Figure 1 shows an
example of the functional structure of a HEMS system; this figure is based on the one
developed by [26] and shows the structure of a HEMS with the five devices of the test
bench. Each device is connected to an individual smart meter, which measures and controls
the consumption of each device; in turn, these are connected to a meter in the distribution
box that measures the total consumption of the five devices. The consumption data is sent
to the AI module along with renewable energy availability, current energy tariff, and user
preferences to predict and then control the consumption of each of the five devices. The
yellow arrows indicate the data that enters the AI module to make predictions, the yellow
arrows indicate the data used to make control decisions, and the red arrows indicate the
orders that leave the AI module to be executed.
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2.2. Deep Learning (DL)

Artificial intelligence (AI) is a broad field that includes various techniques for machines
to perform tasks that normally require human intelligence. Deep learning is a subarea of
machine learning (ML), which in turn is a branch of AI. Deep learning is a machine-learning
technique that relies on artificial neural networks with multiple layers (depth) to learn
data representations in a hierarchical manner. DL uses a cascade of layers of nonlinear
computational modules, in which the input of each subsequent layer is based on the
output of the previous layer to identify and convert attributes [27–29]. It uses optimisation
algorithms to adjust the parameters of these networks so that they can automatically learn
to perform specific tasks, such as classification and pattern recognition [30].

2.3. LSTM (Long Short-Term Memory)

LSTM (Long Short-Term Memory) is a type of neural network used in the field of
deep learning to model data sequences and learn long-term dependencies. LSTMs are
designed for the use of memory units that can retain information for extended periods
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of time. These memory units contain input, output, and forgetting gates that control the
flow of information within the network, allowing them to learn and remember complex
patterns in the data sequences. This enables them to store data for longer periods and make
more accurate predictions [31]. LSTMs are commonly used in natural language processing,
machine translation, text generation, time-series analysis, and other applications where
sequence modelling is critical.

3. Related Tasks

In the context of energy consumption, optimisation is presented as a fundamental
pillar in the search for efficient solutions to problems involving high energy consumption.
As pointed out in [32], the central objective is to determine the best possible solution. In
this sense, AI is positioned as a fundamental component in which the creation of specific
algorithms using specific programming languages is essential. Considering these premises,
it is useful to explore AI algorithms used in the analysis of data from smart grids as well
as in the optimisation of decision-making processes in the energy context. This analysis
will allow for a better understanding of how AI can contribute to improving efficiency and
management in this area.

Research on the use of AI algorithms in the energy sector is extensive and diverse.
Ref. [33] highlighted the effectiveness of various algorithms, including machine-learning
methods, metaheuristic algorithms, and deep-learning algorithms. Ref. [34] discussed
the application of optimisation techniques to microgrids, highlighting the need for more
accurate algorithms. Ref. [35] explores the use of AI to improve energy efficiency in South
Africa, highlighting ANN and SVM and suggesting a DRL for home energy management.
Ref. [36] reviewed energy consumption prediction models, focusing on machine and deep
learning algorithms, proposing a combination of algorithms, and further research on
environmental and building factors. Ref. [37] explores the application of AI in energy
system scheduling, highlighting the relevance of algorithms such as differential evolution
and artificial neural networks to improve the efficiency and reliability of energy systems.
Table 1 summarises the authors and the algorithms used in each study.

Table 1. Use of AI Algorithms in the Energy Sector.

Author Job Description Analyzed Algorithms

[33] Use of AI algorithms in the energy sector. Improvement of energy
generation, distribution, and commercialization processes.

Linear regression, K-nn, DT, extreme gradient
rise, MLP, ENN, LSTM, PSO, GA, CNN, DNN,

RNN, DBN, GAN, DRL, Q-learning, SOM

[34] Optimization techniques in microgrids. Importance of
accurate algorithms. DE, CRO, TLBO, PSO, DE, CRO, TLBO, PSO

[35] Using AI to improve energy efficiency in South Africa. Highlights
ANN and SVM. Suggests DRL for energy management in homes. ANN, SVM, DRL

[36] Energy consumption prediction models. Focus on deep and machine
learning algorithms. RNN, ANN, DNN, DNN, SVM

[37]
Application of AI in energy systems programming. It highlights the

relevance of algorithms such as differential evolution and
neural networks.

Differential evolution, ANN, RBF, BP

The articles discussed in Table 1 examine the use of AI algorithms in energy manage-
ment, including supervised and deep machine-learning techniques. They concluded that AI
improves the efficiency of energy management and highlighted the need for more accurate
forecasting models and hybrid techniques to address challenges in this field. Overall, they
highlight the critical role of AI in optimising energy management. Table 2 summarises
the works of several authors in the field of HEMS. These researchers explored different
approaches, from the use of artificial intelligence to optimisation algorithms, with the goal
of improving energy efficiency and providing innovative solutions for managing household
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energy consumption. Table 2 provides an overview of each author’s contributions and
their respective works in this emerging field.

Table 2. Contributions of AI Applications in HEMS.

Authors Job Description

[38] They analyze the applications of AI-based consumption optimization techniques for HEMS and their advantages
over traditional techniques.

[39] They provide an overview of reinforcement learning (RL) and its application in HEMS, highlighting the use of deep
neural network (DNN) models in RL.

[40] They present a smart home system that uses artificial intelligence and the Internet of Things to manage lighting
loads and HVAC systems.

[41] They present a smart home system based on artificial intelligence with variable learning rates to manage energy
consumption in homes.

[42] They propose a home energy management system based on a genetic algorithm for load scheduling, optimizing
energy use in homes.

[43] It proposes a model for recognizing energy consumption patterns in household appliances using an IoT platform
and machine learning techniques.

[44] It proposes a machine learning algorithm for activity-aware demand response in residential buildings, considering
energy savings and comfort requirements.

[45] It proposes a lightweight optimization algorithm called FastInformer-HEMS for HEMS with a PV storage unit.

In the analysis of the reviewed articles, the prominent use of deep neural networks,
particularly recurrent networks, to address the prediction of energy consumption in the
home stands out. Authors such as [39,43] employed artificial neural networks with back-
propagation to predict and regulate the use of electrical equipment based on environmental
and behavioural data. In addition, ref. [38] explored the potential of deep reinforcement
learning (DRL) techniques to further optimise HEMS by learning from user behaviour
and energy consumption patterns. This trend towards the use of deep recurrent neural
networks underscores their effectiveness in predicting and managing energy consumption
in residential environments, pointing to a key research area for future work in the field of
artificial intelligence applied to home energy management; the use of LSTM networks for
consumption prediction is highlighted by the good results they yield. Ref. [46] proposed an
intelligent microgrid architecture for HEMS using LSTM networks to improve forecasting
accuracy and optimise energy consumption. On the other hand, ref. [21] addressed the
analysis and prediction of energy consumption in residential and commercial buildings
using deep-learning models, specifically LSTM and GRU networks. They highlighted the
ability of these models to generate stable energy demand patterns and improve energy
efficiency. In addition, ref. [47] focused on the development of LSTM-based forecasting
models for HEMS, highlighting the ability of these models to improve forecasting accuracy
and generate stable energy demand patterns. Finally, refs. [48,49] proposed energy dispatch
strategies for microgrids using predictive algorithms based on LSTM neural networks and
mixed integer optimisation, achieving superior integration of renewable energy sources
and more efficient energy management. These models have demonstrated the ability to
capture and analyse complex patterns in energy consumption data, enabling more accurate
predictions and more efficient management of available energy resources. In addition to
providing greater forecasting accuracy, the use of LSTM networks in HEMS has enabled a
more effective optimisation of energy consumption, ensuring an optimal balance between
user comfort and energy efficiency. Table 3 shows a comparison of the advantages and
disadvantages of LSTM versus other algorithms.

Although the LSTM model is essential for capturing temporal relationships in energy
consumption data, it is not the only model that can be used for this task. Other deep learning
models, such as standard recurrent neural networks (RNN), convolutional neural networks
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(CNN), and attention models (Transformers), can also be applied to predict household
energy consumption; however, according to the literature review, the LSTM model is
considered superior for predicting energy consumption in HEMS due to its ability to
capture long-term and complex dependencies in the time series. Unlike traditional models
such as ARIMA and SARIMA, which are effective for stationary and clearly patterned data
but less efficient in handling nonlinear dependencies and abrupt changes, LSTM can learn
and retain long-term patterns due to its specialised memory architecture. Although GRU
models also provide good results and are faster to train, LSTM has demonstrated higher
accuracy in predicting complex time series due to its more robust design. LSTM’s ability to
handle long and complex sequences makes it the preferred choice for HEMS applications.
These results support the continuation of research and development in this field, as they
offer a transformative perspective for sustainable energy management in homes.

Table 3. Comparison LSTM versus other algorithms.

Author Model Description Advantages Disadvantages

[50] LSTM
Recurrent neural networks

specialized in capturing long-term
dependencies.

Handles long sequences well,
captures complex

temporal dependencies.

Handles long sequences well,
captures complex

temporal dependencies.

[51,52] Bi-LSTM

LSTM variant that processes the
sequence in both directions

(forward and backward) to capture
more complete dependencies.

Capture future and past
context dependencies, better

accuracy in
complex sequences.

Increased training time and
computational complexity.

[53] Stacked LSTM

Variant of LSTM with multiple
stacked layers, allowing the

capture of more complex and
abstract features of the data.

Improved modeling
capability for complex

time series.

Increased complexity and
training time.

[54] GRU
Similar to LSTM but with a

simpler architecture and
fewer parameters.

Faster to train than LSTM,
similar ability to capture
temporal dependencies.

It may not be as accurate as
LSTM in some cases.

[55] Bi-GRU GRU variant that processes the
sequence in both directions.

Captures future and past
context dependencies,

improves accuracy.

Increased computational
complexity and
training time.

[56] Stacked GRU
GRU variant with multiple stacked

layers, enhancing the ability to
capture complex data features.

Improved modeling
capabilities for complex

time series.

Increased complexity and
training time.

[56,57] ARIMA
Time series model using

autoregression and integration to
handle non-stationarity.

Good for stationary data and
time series with
clear patterns.

It does not handle well time
series with complex

dependencies or
abrupt changes.

[58] SARIMA
ARIMA extension that

incorporates seasonality in the
time series.

Handles data with
seasonality well, improves
predictions in time series

with clear seasonal patterns.

Complexity in the
identification and adjustment

of seasonal parameters.

[59] Prophet

Model developed by Facebook for
time series forecasting that

handles seasonality and
vacations automatically.

Easy to use, good results on
data with multiple
seasonalities and
vacation effects.

Less customizable for
specific cases compared to

ARIMA/SARIMA.

[52,60] XGBoost
Boosting algorithm that combines

several decision trees to
improve accuracy.

Very accurate, handles data
with non-linear and complex

characteristics well.

Requires careful tuning of
hyperparameters, can be

computationally expensive.

4. Materials and Methods

A set of data was obtained to perform the experimentation. For this purpose, a test
bench was created that included five typical household appliances: a TV, air conditioner,
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fan, computer, and lamp [61]. These five applications have been selected because they
represent a significant part of the daily household energy consumption since they tend
to be in frequent use and, therefore, have a constant consumption that is relevant for
the prediction and management of energy in the home. In addition, these applications
have greater availability and consistency of consumption data over time considering that
accurate and continuous data collection is fundamental to training deep learning models
such as LSTM. Unlike other devices, such as, washing machines, dryers, and hairdryers
that may be more sporadic and less predictable in use, they are not used with the same
daily frequency and may have more random usage patterns. Each of these five appliances
on the test bench is connected to individual smart meters, allowing the detailed tracking
of their energy consumption to form an HEMS. In addition, a meter was installed in the
distribution box to measure the total consumption generated by the appliances connected to
the testbed. The dataset used to feed the model was real-time data collected by HEMS. This
dataset includes a detailed record of the power consumption of each appliance connected
to the testbed. These data were collected at regular fifteen-minute intervals, capturing daily
patterns for 30 days.

The measurement devices were strategically installed at a selected residence within
the study area, as shown in Figure 1. This residence was chosen for its representativeness
of typical energy consumption conditions in an urban area of the municipality of Sincelejo,
in the department of Sucre, and it is inhabited by four people (three adults and one child).
Figure 2 provides an accurate visualisation of the locations of these devices on a Google
Map map. The arrangement of devices in a single residence allows for a detailed and
specific capture of energy consumption in that household, which facilitates a thorough
analysis of consumption patterns. The decision to test the Home Energy Management
System (HEMS) in a single home with a test bed of five appliances is based on the need
to conduct an initial pilot test in a controlled environment to evaluate the feasibility and
effectiveness of the system before scaling up to a larger number of homes. This allows the
minimisation of costs and resources, debugging and tuning the system, collecting specific
energy consumption data, validating results, and establishing the credibility of the HEMS
before its large-scale implementation, thus optimising its performance and ensuring a
successful transition to future large-scale environments. The selected home was located
in the centre of a residential area approximately 5 km in diameter, ensuring that the data
collected reflected a representative range of consumption conditions within the community.
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The experimental development followed the stages shown in Figure 3, which origi-
nated from the CRISP-DM approach [62], which is commonly used in data-mining projects.
This process consists of five steps, the main contribution of which is the development of
the model.
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4.1. Understanding the Data

The data used to feed the model were collected through a HEMS consisting of a
network of meters; one meter to measure total consumption, and five disaggregated meters;
one for each device in the test bed. The structure of this meter network can be seen in
Figure 1. Figure 4 shows photos of the meters used.

Designs 2024, 8, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 4. Network meters. (a) Meter connected to the circuit to measure the total consumption of 
the five devices; (b) individual consumption meter connected to each of the five devices of the test 
bench. 

The dataset consists of a time series of energy consumption records from five 
household devices (TV, air conditioner, fan, computer, and lamp), collected over 30 days, 
and recorded at 15-minute intervals. It is classified as a time-series database because each 
record is associated with a point in time and follows a chronological order, which allows 
the analysis and modelling of consumption patterns over time. 

Additionally, this dataset comprises seven numeric variables distributed in seven 
columns: timestamp, which indicates the time at which the data were recorded and is in 
date and time format, with 15-minute intervals between each record. Fan, PC, AC, Lamp, 
and TV represent the energy consumption of specific devices in the home, such as a fan, 
computer, air conditioner, lamp, and TV, respectively, and the values are expressed in 
fractions of the energy consumption. Table 4 lists the average daily energy consumption 
values for each device. The Total Power shows the total energy consumption of the 
household in each time interval, which corresponds to the consumption of all devices. 
Each row represents a record of energy consumption at a specific time, providing a time 
series of data that can be used for analysis and modelling in the context of HEMS, or for 
other purposes related to energy efficiency and home management. This dataset has a set 
of 2.882 data taken from 30 December 2023 to 29 January 2024. 

Table 4. Average power per day per appliance. 

Appliance Average Power (W) 
Television 0.63414 

Air Conditioning 8.433 
Computer 0.035638 

Lamp 0.1753 
Fan 1,073,838 

4.2. Data Preparation 
The process begins with data exploration to understand its structure and 

peculiarities, including the identification of outliers or null values. Table 5 presents a 
sample of the original data set. 

Table 5. Sample of the original dataset. 

TimeStamp Ventilador PC AC Lampara TV Potencia Total 

12/29/2023 17:30:00 0.0215 0.0 
0.000

0 
0.0048 0.0002 0.0265 

12/29/2023 17:45:00 0.0276 0.0 
0.000

0 
0.0094 0.0004 0.0374 

Figure 4. Network meters. (a) Meter connected to the circuit to measure the total consumption of the
five devices; (b) individual consumption meter connected to each of the five devices of the test bench.

The dataset consists of a time series of energy consumption records from five house-
hold devices (TV, air conditioner, fan, computer, and lamp), collected over 30 days, and
recorded at 15-min intervals. It is classified as a time-series database because each record is
associated with a point in time and follows a chronological order, which allows the analysis
and modelling of consumption patterns over time.

Additionally, this dataset comprises seven numeric variables distributed in seven
columns: timestamp, which indicates the time at which the data were recorded and is in
date and time format, with 15-min intervals between each record. Fan, PC, AC, Lamp,
and TV represent the energy consumption of specific devices in the home, such as a fan,
computer, air conditioner, lamp, and TV, respectively, and the values are expressed in



Designs 2024, 8, 78 9 of 19

fractions of the energy consumption. Table 4 lists the average daily energy consumption
values for each device. The Total Power shows the total energy consumption of the
household in each time interval, which corresponds to the consumption of all devices. Each
row represents a record of energy consumption at a specific time, providing a time series
of data that can be used for analysis and modelling in the context of HEMS, or for other
purposes related to energy efficiency and home management. This dataset has a set of
2.882 data taken from 30 December 2023 to 29 January 2024.

Table 4. Average power per day per appliance.

Appliance Average Power (W)

Television 0.63414

Air Conditioning 8.433

Computer 0.035638

Lamp 0.1753

Fan 1,073,838

4.2. Data Preparation

The process begins with data exploration to understand its structure and peculiarities,
including the identification of outliers or null values. Table 5 presents a sample of the
original data set.

Table 5. Sample of the original dataset.

TimeStamp Ventilador PC AC Lampara TV Potencia Total

12/29/2023 17:30:00 0.0215 0.0 0.0000 0.0048 0.0002 0.0265

12/29/2023 17:45:00 0.0276 0.0 0.0000 0.0094 0.0004 0.0374

12/29/2023 18:00:00 0.0328 0.0 0.0000 0.0144 0.0002 0.0474

12/29/2023 18:15:00 0.1005 0.0 0.5048 0.0126 0.0002 0.6181

12/29/2023 18:30:00 0.1215 0.0 0.7856 0.0128 0.0002 0.9201

The data were then normalised using the MinMaxScaler class from the scikit-learn
library, ensuring that it was within the range [0, 1]. Then, we select the relevant features
that cover the power consumption of various household devices, such as fans, computers,
air conditioners, lamps, televisions, and the total power consumed. Finally, the size of the
time window used to generate the input and output sequences for the LSTM model was
defined. The graph in Figure 5 shows the average power per device on a specific day; in
this case, 1 February 2024. In the graphs, the x-axis represents the hours of the day, and the
y-axis represents the average consumption in KW. The air conditioning was placed on a
different y-axis because of its high consumption; when it was graphed together with the
other appliances, only the air-conditioning graph could be seen.
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4.3. Model Development

Machine learning methods were employed using MinMaxScaler libraries from
sklearn.preprocessing, plot_model from Tensorflow. keras. utils, Sequential, LSTM, and
Dense from Tensorflow. keras. models, train_test_split from sklearn. model_selectio,
Matplotlib, Numpy, and Pandas in the Google Colaboratory environment using Python
programming language.

Prior to model creation, the normalised data were split into training and test sets in
a ratio of 70% for training and 30% for testing using the train_test_split function of the
scikit-learn library. Subsequently, we defined the LSTM model using the TensorFlow and
Keras libraries, structuring the model with an LSTM layer followed by a dense layer for
each device in the dataset. The model was then compiled using the Adam optimiser and
the mean square error (MSE) loss function. Finally, model training was performed on the
training data over a specified number of epochs using a defined batch size and validation
split of the training set.

4.4. Model Evaluation

We evaluated the performance of the trained model on the test set by making pre-
dictions and calculating the MSE between the predictions and actual values. In addition,
the loss during training was visualised to understand the learning of the model over
epochs. Finally, a scatter plot was generated that compared the actual values with the
model predictions, providing a visual perspective of its performance.
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4.5. Deployment

The deployment phase involved applying the trained model to new data to make
predictions. This involves loading the previously trained LSTM model with the load_model
function of TensorFlow and Keras, as well as importing future data, representative of the
energy consumption of various household devices, from an Excel file using the Pandas
library. Future data are then prepared for processing, including time format conversion,
selection of relevant columns, data normalisation using a MinMax scaler, and creation of
input and output sequences for the LSTM model. The loaded model was then used to make
predictions on future data by applying the model’s prediction functions and reversing
the normalisation of the predictions to obtain the original values. These predictions were
added to the future dataset for further analysis and visualisation. Finally, the results include
predictions combined with future data. This deployment stage is essential to implementing
the trained model in a production environment and using it to make predictions based on
real-world data.

This methodology provides a systematic approach for the development and evaluation
of an LSTM model to predict energy consumption in a domestic environment.

4.6. LSTM Model Architecture

The architecture of the LSTM (Long Short-Term Memory) model used to predict
energy consumption in the home is composed of several layers that allow for capturing
and processing the temporal information of the input data. The architecture of this model
consists of a hidden LSTM layer and dense output layer, as shown in Figure 6. The arrows
indicate the inputs and outputs at each layer.
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The structure of the model architecture is described in detail below:

4.6.1. Tickets

Input refers to the characteristics or variables used to make predictions. These inputs
are the data fed to the model at each time step or instance so that they can learn and make
predictions. In this specific case of the LSTM model for predicting energy consumption
in a household, the inputs are the power measurements in KWh of different electrical
devices (fan, computer, air conditioner, lamp, and TV) and the total power recorded at time
intervals. These measurements were used to predict future energy consumption. Each
input represents the value of a feature at a specific time step within a time window, and
the LSTM model learns to use this historical information to make accurate predictions
regarding future energy consumption.

4.6.2. LSTM Layer (Hidden)

The LSTM layer, an essential component of the model, was responsible for capturing
the temporal dependencies in the sequence data. This layer is composed of a series of
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LSTM cells, each with internal feedback connections that allow them to remember the
relevant input sequence information over time. The LSTM units in this layer sequentially
process the time windows of the input data, generating internal representations that capture
the temporal patterns in energy consumption. In the developed model, the LSTM layer
consisted of 50 LSTM neurones. Each unit has its own internal memory and is capable of
learning and remembering long-term patterns in sequential data.

4.6.3. Dense Output Layer

After the LSTM layer, a dense layer is added that uses the outputs of the LSTM units
as inputs and produces the final predictions for each household device in the dataset.
Each device had a unit in this dense layer, which enabled the model to generate specific
predictions for each device. That is, in this case, this layer has six units (fan, computer, air
conditioner, lamp, television, and total power).

It is essential to include a description of the activation functions and hyperparameter
configurations in this section. Activation functions are essential elements in neural networks
that control the manner in which information flows through different layers. The LSTM
layer uses the default hyperbolic tangent activation function (tanh) for the long-term and
short-term memory units; this function is used to regulate the flow of information in the
long-term and short-term memory units, ensuring training stability and capturing relevant
information over time. In contrast, in the dense layer, the default linear activation function
is used, which performs a linear transformation of the input data without introducing
additional nonlinear transformations. This is useful in regression problems, in which one
seeks to predict numerical values directly. Regarding the hyperparameter settings, the
model architecture involves the appropriate selection of parameters such as the number of
LSTM units, learning rate of the optimiser, and batch size during training.

The LSTM model architecture provides a flexible and powerful structure for modelling
temporal patterns in energy-consumption data, allowing the model to effectively capture
complex temporal relationships and make accurate predictions.

4.7. Model Development

The development of the LSTM model for predicting home energy consumption in-
volves a series of steps, from the initial model building to training and evaluation. It starts
with the construction of a sequential model using the TensorFlow and Keras libraries in
Python, which is composed of an LSTM layer followed by a dense layer that provides
predictions for each household device in the dataset. Then, the model was compiled using
the Adam optimiser, and the mean square error (MSE) loss function was used to measure
the discrepancy between the model predictions and the actual energy consumption values,
and other model parameters were configured.

Subsequently, the model was trained using the normalised training data. During
training, the weights of the neural connections were adjusted to minimise the loss function.
During each epoch, the model weights are updated using the error backpropagation
algorithm.

Once the training was completed, the model performance was evaluated using the
test set by making predictions on the test data and calculating the MSE between the model
predictions and actual values. In addition to MSE, the loss during training was visualised
to understand how the model learnt over epochs. Finally, additional adjustments can
be made to the model, such as modification of the network architecture, optimisation of
hyperparameters, or inclusion of regularisation techniques, in pursuit of improving the
model performance by careful iteration throughout these stages.

5. Results and Discussion

After completing the process of developing and evaluating the LSTM model for
predicting household energy consumption, the following results were obtained: In terms of
model performance, it was observed that the LSTM showed good performance in predicting
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energy consumption, as indicated by the low loss in the test set and the MSE obtained. In
the model evaluation process for the test set, 20 evaluation iterations were completed, and
each iteration took approximately 1 s, with a processing speed of approximately 3 ms per
step. The main result was the MSE on the test set, with a value of 0.0169. This MSE value
indicates that, on average, the model predictions deviate by approximately 0.0169 KW2

from the actual values in the test set. The lower this value, the better the model performance,
as it indicates a smaller discrepancy between the model predictions and the actual values.
In this case, an MSE of 0.0169 suggests that the model makes fairly accurate predictions of
household energy consumption from the time-series data provided.

Figure 7 shows the “Graph of Loss during Training”. This graph shows how the loss
(in this case, the MSE) of the model changed over time (epochs) during the training process.
The loss was plotted on the y-axis (vertical), with units of mean square error (MSE), and the
number of epochs was plotted on the X-axis (horizontal), with units of number of epochs
(1, 2, 3, . . ., n). In the graph, the blue line reflects the loss in the training set, and the orange
line indicates the loss in the validation set. This provides information about how the model
is learning during training and whether overfitting occurs (when the loss in the training
set continues to decrease, whereas the loss in the validation set begins to increase). In
the case of this model, the loss decreases in both the training set and the validation set as
the training progresses, indicating that the model learns correctly and generalises well to
unseen data.
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Figure 8 shows the scatter plot for this model, comparing the actual values (X-axis)
with the model predictions (Y-axis) for the test set. Each point on the plot represents an
instance of data in the test set. Actual values were plotted on the x-axis (horizontal), with
units of observed values, and model predictions were plotted on the y-axis (vertical), with
units of predicted values. The points in the plot are evenly distributed around a diagonal
line (the line where the predicted values are equal to the actual values), indicating good
agreement between the model predictions and the actual values.

Figure 9 presents the residual plot generated using this model, showing the relation-
ship between the actual values and the model residuals. The residuals are the differences
between the actual values and model predictions. In the graph, actual values are plotted
on the X-axis (horizontal), with units of observed values, and residuals are plotted on the
y-axis (vertical), with units of differences between actual and predicted values. In this
model, the residuals were randomly distributed around the horizontal line at y = 0 (the
black dashed line in the graph). This indicates that there are no discernible patterns in the
model errors, and that the residuals have a normal distribution around zero, suggesting
that the model correctly captures the variability in the data. This indicates that the model
consistently and accurately predicts over the full range of true values.
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A comparison of actual values with model predictions using scatter plots and residual
analysis provided a deeper understanding of the model’s performance and revealed areas
for improvement. The model was validated by assessing its generalisation ability using
separate training and test sets, which provided a measure of its ability to make accurate
predictions of unobserved data during training.

It is possible to say that the results of the LSTM model represent a significant advance
towards improving household energy management [63–65], by providing accurate and
reliable predictive tools that can contribute to optimising energy use and promoting sustain-
able practices. A comparison has been made of two days of predictions, versus two days of
actual data for the same date. The graph in Figure 10 shows this comparison for each of
the five devices; the x-axis represents the time every 25 min and the y-axis represents the
energy consumption in KW. As you can see, the values are very close, which shows that
the model is efficient when making predictions. It is important to note that the randomly
selected days coincided with Saturday and Sunday, days when the PC is not normally
used; therefore, the PC graph did not generate consumption for these days, neither in the
predictions nor in the future data, because its consumption was zero KW. For this reason, it
was decided to exclude this graph from Figure 10.
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This approach considers all the devices simultaneously when training the LSTM
model. Each appliance has its own output layer in the model, allowing it to learn the
complex relationships between different devices to make accurate predictions of the energy
consumption of the home as a whole. Furthermore, it is notable that this new study can
contribute to the analysis of energy efficiency in homes, allowing them to predict their
future efficiency and thus identify possible measures to implement. This perspective is
fundamental in the context of energy efficiency, as it provides insights that can guide
concrete actions to improve consumption and reduce environmental impact. Furthermore,
the findings of this study can serve as a starting point for future research in the field of
energy efficiency, opening the door to new development and optimisation opportunities in
this area.

6. Conclusions

In this study, an LSTM model was developed and evaluated to predict home energy
consumption using power data from various home-use devices. This paper presents an
approach that uses LSTM neural networks to predict home energy consumption, demon-
strating its effectiveness in capturing temporal relationships in power consumption data.
The architecture of the LSTM model provides a flexible and scalable structure that can be
adapted to different datasets and input conditions, suggesting its applicability and exten-
sion to other time-series prediction scenarios. The evaluation results showed a remarkable
correspondence between the model predictions and actual data, further supporting the
effectiveness of the proposed approach. Despite these achievements, there are opportuni-
ties to further improve the model and explore new research directions, such as exploring
alternative model architectures, integrating additional contextual data, and developing
practical applications for smart-home energy management. Unexpected events, such as
temporary absences or changes in consumption patterns, can significantly influence the
accuracy of predictions. To address this concern, a comprehensive analysis of the LSTM
model’s ability to adapt to sudden changes in input data and to appropriately generalise to



Designs 2024, 8, 78 16 of 19

scenarios not seen during training, such as temporary absences or changes in household
dynamics, was conducted. This could involve exploring regularisation techniques, data
augmentation, or incorporating additional contextual information to improve the ability of
the model to capture variations in energy consumption behaviour. In addition, it should be
noted that the LSTM model is designed to capture the typical behaviour of a home, and
atypical events such as the absence of occupants can be considered anomalous data that
require special handling.

7. Future Work

In future work, the integration of additional contextual data, such as weather data,
user behaviour information, or economic data, can be considered to improve the predictive
capability of the model and better capture external factors influencing energy consumption.
In addition, a systematic search for hyperparameters can be performed to optimise the
model configuration and improve its performance in terms of accuracy and generalisation
to different contexts and conditions. In addition to the metrics used for MSE and prediction
accuracy, other evaluation metrics, such as the coefficient of determination (R²), can be
considered to assess the model’s performance in a more comprehensive manner.

Other areas of exploration include the development of more advanced regularisation
techniques to avoid over-fitting and the creation of intuitive user interfaces and practical
applications that allow end users to interact with energy consumption prediction models in
real time. In addition, further validation of the trained model in real-world environments
can be performed to evaluate its performance and effectiveness under real-world usage
conditions, considering factors such as seasonal variability, user behaviour, and fluctuations
in power supply. In this context, it is important to mention that the adoption of digital
methodologies, such as Building Information Modelling (BIM), can optimise energy use
and reduce carbon emissions, providing a comprehensive solution for energy efficiency in
the building industry [66,67].

In the future, consideration should also be given to improving the robustness and gen-
eralisation of LSTM models in the face of unexpected changes in consumption patterns to
ensure their reliability and usefulness in practical home energy management applications,
for which BIM could be a solution, because this technology has the potential to optimise
energy use in various energy-intensive operations while aiming to reduce carbon emissions
and maintain energy efficiency, thus providing a comprehensive solution for energy effi-
ciency in the building manufacturing industry [67,68]. The use of the BIM methodology,
implemented with IoT devices and artificial intelligence algorithms, allows the creation of
a digital twin that replicates the real building and contains all the necessary information to
control the construction process, from concept to maintenance [69]. Digital management
achieved through BIM allows the construction industry to improve all phases, from better
resource planning to improved collaboration between various disciplines, helping to keep
the project on time and on budget [68].
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