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Abstract In the last decade, increasing knowledge of epigenetics has led to the development of 

DNA methylation-based models to predict age, which have shown high predictive accuracy. 

However, despite the value of teeth as forensic samples, few studies have focused on this source 

of DNA. This study used bisulfite pyrosequencing to measure the methylation levels of specific 

CpG sites located in the ELOVL2, ASPA, and PDE4C genes, with the aim of selecting the most 

age-informative genes, and determining their associations with age, in 65 tooth samples from 

individuals 15 to 85 years old. As a second aim, methylation data and measurements of relative 

telomere length in the same set of samples were used to develop preliminary age prediction 

models to evaluate the accuracy of both biomarkers together and separately in estimating age 

from teeth for forensic purposes. In our sample, several CpG sites from ELOVL2 and PDE4C 

genes, as well as telomere length, were significantly associated with chronological age. We 

developed age prediction quantile regression models based on DNA methylation levels, with 

and without telomere length as an additional variable, and adjusted for type of tooth and sex. 

Our results suggest that telomere length may have limited usefulness as a supplementary marker 

for DNA methylation-based age estimation in tooth samples, given that it contributed little 

improvement in the prediction errors of the models. In addition, even at older ages, DNA 

methylation appeared to be more informative in predicting age than telomere length when both 

biomarkers were evaluated separately. 
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Introduction 

 

Age estimation constitutes a challenging task for forensic scientists, despite the availability of 

several methods for forensic age assessment. Age can be estimated using procedures based on 

the examination of morphological changes that occur in bones and teeth with aging [1]. In 

addition, different approaches have been tried in recent decades based on the gradual alterations 

of biomolecules caused by the aging process, e.g. protein glycosylation, aspartic acid 

racemization, mitochondrial deletions, or telomere shortening [2–4]. Although these methods 

have been considered promising tools for forensic age estimation, especially when 

morphological information is limited, they still show certain limitations such as low accuracy or 

the lack of standardized protocols. In this regard it should be noted that whatever the method of 

assessment used, the accuracy of estimates is reduced in adults because the discrepancy between 

biological and chronological age becomes larger with increasing age. Moreover, the potential 

applicability of a given method also depends on the type and state of preservation of the 

material available for analysis [1], with mineralized tissues (bones and teeth) being the most 

informative samples for forensic purposes [1–5]. 

In the last few years, the increasing knowledge of epigenetics has led to the 

identification of a direct relationship between age and DNA methylation changes in specific 

regions of the genome – a correlation that can be useful for estimating chronological age [6]. 

DNA methylation can be defined as a chemical modification which, in eukaryotic cells, 

involves the presence of a methyl group at the 5′ position of a cytosine nucleotide that is 

followed by a guanine nucleotide, known as a CpG site [7]. Total DNA methylation levels 

decrease with aging, while certain CpG sites can become either hypermethylated, e.g. those 

located mainly in CpG islands (CpG dinucleotides clusters), or hypomethylated, e.g. those 

usually located outside CpG islands [8, 9]. In this connection, several studies of DNA 

methylation specifically for forensic age estimation have reported age prediction models based 

on different genes, tissues, detection technologies. and statistical age-predictive analyses, with 

predictive accuracies lower than 5 years [7, 10, 11]. Consequently, DNA methylation is 

currently considered as the most informative age prediction biomarker [7, 10].  

 Among the principal candidate genes for age prediction, the ELOVL2 gene (ELOVL 

fatty acid elongase 2), located in chromosome 6, is regarded as the best predictor in numerous 

studies [8, 12–20]. During aging, the ELOVL2 promoter becomes hypermethylated. Although 

this gene is considered the most promising locus for age prediction, the results need to be 

enhanced by additional markers to improve the accuracy of age estimates [14]. According to a 

systematic review of the literature on the most highly age-correlated CpG sites in the human 

genome (reviewed in [7, 10]), with particular attention to studies that reported reliable age 

prediction models based on a limited set of CpG sites [8, 19, 21, 22], ASPA (aspartoacylase) and 
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PDE4C (phosphodiesterase 4C) appear to be the most widely adopted genes along with 

ELOVL2. The ASPA gene, located on chromosome 17, has been included in several forensic age 

prediction models [8, 19, 21–24]. The most age-correlated CpG sites from ASPA become 

hypomethylated with increasing age. The PDE4C gene, located on chromosome 19, has also 

been explored as an age-predictive marker in several studies [8, 19, 21, 22, 25]. The most age-

correlated CpG sites in the PDE4C gene display increased methylation levels with age. DNA 

methylation levels of CpG sites from these genes have been measured not only in blood but also 

in mineralized tissue [8]. 

An important issue to take into account is the intertissue variability of DNA methylation 

patterns [26, 27]. In this regard, the analysis of teeth and bones deserves particular attention, 

since in many cases of forensic identification, dental and/or skeletal remains are the only 

available sources of DNA. Due to their high resistance to harsh conditions, including 

postmortem DNA decay, teeth are an excellent source of DNA of often better quality than bones 

[28]. Nonetheless, very few studies to date have considered tooth samples in their analyses of 

DNA methylation [8, 15]. 

 Therefore, this study aimed to measure the methylation levels of specific CpG sites 

located in the ELOVL2, ASPA, and PDE4C genes in order to assess their correlations with age 

in tooth samples. Candidate genes were selected among the most age-informative sets of a few 

genes, also considering that their methylation levels have been measured previously in teeth by 

pyrosequencing. As a second aim, the methylation data and measurements of relative telomere 

length in the same set of samples were used to develop preliminary age prediction models to 

evaluate the accuracy of both biomarkers together and separately in estimating age from teeth 

for forensic purposes. 

 

 

Material and methods 

 

Sample collection and DNA extraction 

Sixty-five healthy permanent teeth were collected from donors aged between 15 and 85 years 

(mean age: 34.85 ± 15.48 years) at the public Oral Health Service and private dental clinics in 

Granada (Spain). The distribution of the samples according to age, sex, and type of tooth is 

presented in Fig. 1. Teeth were extracted for periodontal, orthodontic, prosthetic, or surgical 

reasons and were free of caries, root canal treatments, or restorations. The chronological age for 

each case was calculated as the time from the individual’s date of birth to the date of tooth 

extraction. The research protocol, including a consent document for sample donors in 

compliance with applicable data protection regulations, was approved by the Ethics Committee 
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for Human Research of the University of Granada (Spain). The study was conducted in 

accordance with the ethical standards laid down by the Declaration of Helsinki. 

 

 

 

Fig. 1 Distribution of the samples (n = 65) according to chronological age by sex (a) and type of 

tooth (b) 

 

Each extracted tooth was washed and decontaminated before being pulverized under 

liquid nitrogen in a cryogenic laboratory mill. Then DNA was extracted with a standard organic 
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method and quantified with the Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen™, 

Carlsbad, CA, USA) according to the protocols described in previous work [3]. 

 

DNA methylation and telomere length measurements 

Samples of DNA (300 ng) were bisulfite converted with the EZ DNA Methylation-Gold™ Kit 

(Zymo Research, Irvine, CA, USA). Non-CpG cytosine residues were used as controls for 

bisulfite conversion. Then 2 µg of converted DNA was amplified by singleplex PCR in a total 

volume of 25 µl containing 0.2 µM of primers for the ELOVL2, ASPA, or PDE4C gene with the 

PyroMark PCR Kit (Qiagen, Hilden, Germany). Primers were designed with PyroMark Assay 

Design software, version 2.0.1.15 (Qiagen). All primer sequences are listed in Supplementary 

material, Table S1. The PCR reactions consisted of an initial activation step at 95°C for 15 min 

followed by 45 cycles of 30 s at 94°C, 30 s at 56°C, and 30 s at 72°C, and a final extension step 

at 72°C for 10 min. 

The CpG sites considered in this study were numbered chronologically for each 

amplicon (see Table 1). To determine CpG methylation levels, 15 µl of biotinylated PCR 

product was immobilized on streptavidin-coated Sepharose beads (GE Healthcare, Chicago, IL, 

USA) followed by annealing to 40 µl of 0.4 µM sequencing primer (primer sequences in 

Supplementary material, Table S1) at 80°C for 2 min with a subsequent 10 min cooling down 

period. Pyrosequencing was done with PyroMark Gold Q96 Reagents (Qiagen) in the PyroMark 

Q96 ID Pyrosequencing System (Qiagen) according to the manufacturer’s instructions. 

Methylated and non-methylated DNA (New England Biology, Ipswich, MA, USA) were 

included as controls in each assay. 

The pyrosequencing results were analyzed with PyroMark Q96 ID Software 2.5 

(Qiagen). Methylation level was expressed as the percentage of methylated cytosines over the 

total of methylated and non-methylated cytosines. Mean methylation level for each sample was 

estimated from triplicate determinations. Methylation data were expressed as the mean for each 

CpG site located in the ELOVL2, ASPA, or PDE4C genes.  

Telomere length was determined by quantitative real-time PCR according to the 

protocol described in [3]. The results were recorded as the average relative telomere length, 

represented by the ratio of relative telomere repeat copy number (T) to single-copy gene copy 

number (RPLP0 gene, S) [29]. To obtain the relative values, the T/S ratio at the third standard 

curve point was used as the reference. 
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Table 1 CpG sites identified for DNA methylation analysis, percentage of DNA methylation 

level, and age correlation coefficients for each CpG site 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
The CpG sites were numbered chronologically for each amplicon 

b
Methylation level (mean ± standard deviation) is expressed as the percentage of methylated 

cytosines over the total of methylated and non-methylated cytosines 

c
Pearson correlation coefficients (r) between methylation level and chronological age. 

Statistically significant correlations: 
*
(p < 0.05); 

**
(p < 0.001)

 

 

 

Statistical analysis 

A descriptive analysis of quantitative variables was carried out to obtain results reported here as 

the mean, standard deviation of the mean, and quartiles. For categorical variables, frequency 

Gene CpG site
a 

Chromosomal 

position 

Methylation 

level (%)
b
 
 

Age-correlation 

coefficients (r)
c
 

ELOVL2 CpG1 chr6:11,044,678 7.45 ± 2.14 0.166 

CpG2 chr6:11,044,672 4.65 ± 2.10 0.371
*
 

CpG3 chr6:11,044,667 4.13 ± 2.05 0.203 

CpG4 chr6:11,044,661 5.41 ± 1.97 0.256
*
 

CpG5 chr6:11,044,654 6.20 ± 4.39 0.377
*
 

CpG6 chr6:11,044,649 4.52 ± 2.08 0.423
**

 

CpG7 chr6:11,044,646 7.00 ± 3.67 0.363
*
 

CpG8 chr6:11,044,644 4.56 ± 2.11 0.233 

CpG9 chr6:11,044,642 4.95 ± 2.28 0.595
**

 

CpG10 chr6:11,044,639 4.77 ± 2.26 0.491
**

 

CpG11 chr6:11,044,636 5.01 ± 2.00 0.399
*
 

CpG12 chr6:11,044,633 4.81 ± 2.17 0.356
*
 

CpG13 chr6:11,044,631 5.06 ± 3.59 0.410
*
 

CpG14 chr6:11,044,625 7.96 ± 4.24 0.377
*
 

CpG15 chr6:11,044,617 7.69 ± 2.90 0.220 

ASPA CpG1 chr17:3,379,567 48.03 ± 7.66 ₋ 0.206 

PDE4C CpG1 chr19:18,343,916 12.66 ± 4.58 0.465
**

 

CpG2 chr19:18,343,911 12.12 ± 4.85 0.145 

CpG3 chr19:18,343,902 11.83 ± 3.81 0.206 

CpG4 chr19:18,343,889 8.96 ± 3.69 0.280
*
 

CpG5 chr19:18,343,881 11.58 ± 3.89 0.205 
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distribution was used. To compare the mean values for quantitative variables between sexes and 

types of tooth, nonparametric tests were used. Statistical dependence between variables was 

analyzed with the Pearson correlation coefficient (r).  

 Age prediction models were constructed with quantile regression analysis [30, 31] 

because of the non-normal distribution of age. Type of tooth (non-molar or molar) was included 

as a variable in all models in order to correct for the overrepresentation of molars in the sample. 

All models were computed including and excluding the variable sex (called SEX and NSEX, 

respectively). The CpG sites included in the models were selected with a stepwise ascending 

variable introduction strategy and a liberal entry criterion for predictor variables (p < 0.20). The 

variation inflation factor (VIF), which measures inflation of the variance of an estimated 

regression coefficient due to the presence of correlated predictors, was used to detect 

collinearity among predictor variables in the models. When VIF value is higher than 5, 

multicollinearity must be suspected [32, 33]. Pseudo R
2
 was calculated to report the percentage 

of age variation that was explained by a given model [31]. Predictive accuracy was measured as 

the mean absolute error (MAE) [34, 35], which was computed as the mean of the absolute 

deviations between observed and predicted age. To correct for overestimation of predictive 

accuracy, the prediction models were validated using k-fold and leave-one-out cross-validation 

[36]. In the k-fold cross-validation technique, the dataset was randomly split into k subsets of 

the same size, called folds. Taking into account the sample size, setting k to 7 yielded stable and 

robust models. Each fold was used once as a testing (or validation) set, while the remaining k-1 

folds formed the training set. The errors of each round were averaged to obtain the MAE. In the 

leave-one-out technique, one observation was left out of each round and age was predicted 

given all other observations. Predictive accuracy was also presented as the percentage correct 

classifications of actual age within a predicted age group. For this purpose, our sample was 

categorized by age into three groups, according to previous work [3]: young adults (15‒35 

years, n = 38), middle-aged adults (36‒55 years, n = 23), and older adults (>55 years, n = 4). 

 All analyses were done with Stata version 14.1 software (StataCorp, College Station, 

TX, USA). A value of p less than 0.05 was considered statistically significant. 

 

 

Results 

 

Mean DNA methylation levels for each of the 21 CpG sites located in the ELOVL2, ASPA, and 

PDE4C genes are presented in Table 1. No significant differences (p > 0.05) were observed 

when mean DNA methylation levels were compared between sexes (Supplementary material, 

Table S2) or types of tooth (Supplementary material, Table S3) for any of the CpG sites 

analyzed.  



8 

 In order to detect the most age-correlated CpG sites, age-correlation values were 

estimated from DNA methylation data. Table 1 shows the Pearson correlation coefficients for 

each detected CpG site and chronological age. CpG site methylation in ELOVL2 and PDE4C 

genes was positively correlated with age. Several CpG sites from ELOVL2 were significantly 

associated with age, with CpG9 (r = 0.595, p < 0.001), CpG10 (r = 0.491, p < 0.001), and CpG6 

(r = 0.423, p < 0.001) identified as the most age-correlated sites. For the PDE4C gene, the 

significantly age-correlated CpG sites were CpG1 (r = 0.465, p < 0.001) and CpG4 (r = 0.280, 

p < 0.05). A negative correlation was found between methylation and age for the only CpG site 

in the ASPA gene; however, this correlation was not statistically significant (r = −0.206, 

p > 0.05). 

 Regarding telomere length (the other biomarker of aging analyzed here), no significant 

differences were found when mean relative telomere length was compared between sexes 

(p > 0.05; Supplementary material, Table S4). Regarding the type of tooth, our results showed 

significantly higher relative telomere length in molars (p < 0.001; Supplementary material, 

Table S4). A significant negative correlation between relative telomere length and chronological 

age was observed (r = −0.549, p < 0.001; Supplementary material, Fig. S1).  

 The values obtained for DNA methylation and telomere length were used as a training 

set to build multivariate quantile regression models for age estimation. All models were 

computed first by excluding the variable sex (models A_NSEX, B_NSEX, and C_NSEX), and 

later by including this variable (models A_SEX, B_SEX, and C_SEX). Prediction performance 

parameters for each model were calculated and are presented in Table 2. In the first model 

(model A_NSEX), we included nine CpG sites from the ELOVL2 (CpG4, CpG6, CpG8, CpG9, 

CpG13, and CpG15) and PDE4C (CpG1, CpG2, and CpG4) genes, and obtained an MAE of 

5.08 years in the training set. Model B_NSEX, which included only relative telomere length, 

yielded an MAE of 6.89 years in the training set. However, when relative telomere length and 

the nine CpG sites considered in model A_NSEX were included in a new model (model 

C_NSEX), the predictive accuracy of the model showed only slight improvement, yielding an 

MAE (5.04 years) similar to model A_NSEX. When the variable sex was included in these 

models, MAE values were slightly lower (4.84 years for model A_SEX, 6.71 years for model 

B_SEX, and 4.80 years for model C_SEX). The scatter plots for predicted versus chronological 

age for all models are shown in Fig. 2, Fig. 3, and Fig. 4. The VIF, used to detect collinearity, 

was never greater than 5 for any of the variables included in the models. Cross-validation of the 

quantile regression models for our data displayed somewhat higher MAE values, ranging from 

6.06 years in model C_SEX to 7.45 years in model B_SEX (Table 2). 
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Table 2 Accuracy of age prediction models based on quantile regression analysis 

Model
a 

Pseudo R
2 

MAE
 

MAE
 
(k-

fold CV)
 

MAE
 

(LOOCV)
 

Model A_NSEX: Age (years) = 32.269 – 18.142 × tooth_type – 0.870 × CpG4 ELOVL2 + 0.241 × CpG6 ELOVL2 

– 2.822 × CpG8 ELOVL2 + 3.523 × CpG9 ELOVL2 + 0.773 × CpG13 ELOVL2 – 0.493 × CpG15 ELOVL2 + 0.807 

× CpG1 PDE4C – 0.113 × CpG2 PDE4C + 0.691 × CpG4 PDE4C 

0.584 5.08 7.05 6.43 

Model A_SEX: Age (years) = 34.602 – 3.584 x sex – 16.761 × tooth_type – 0.871 × CpG4 ELOVL2 + 0.339 × 

CpG6 ELOVL2 – 1.984 × CpG8 ELOVL2 + 3.973 × CpG9 ELOVL2 + 0.340 × CpG13 ELOVL2 – 0.521 × CpG15 

ELOVL2 + 0.854 × CpG1 PDE4C – 0.227 × CpG2 PDE4C + 0.539 × CpG4 PDE4C 

0.603 4.84 6.24 6.16 

     Model B_NSEX: Age (years) = 56.467 – 24.237 x tooth_type – 6.667 x relative_T/S_ratio 0.436 6.89 7.17 7.16 

Model B_SEX: Age (years) = 67.731 – 4.414 x sex – 19.226 x tooth_type – 13.729 x relative_T/S_ratio 0.450 6.71 7.45 7.34 

     Model C_NSEX: Age (years) = 35.507 – 18.076 × tooth_type – 1.711 x relative_T/S_ratio – 0.834 × CpG4 

ELOVL2 + 0.067 × CpG6 ELOVL2 – 2.763 × CpG8 ELOVL2 + 3.460 × CpG9 ELOVL2 + 0.862 × CpG13 

ELOVL2 – 0.517 × CpG15 ELOVL2 + 0.702 × CpG1 PDE4C – 0.099 × CpG2 PDE4C + 0.666 × CpG4 PDE4C 

0.587 5.04 6.83 6.51 

Model C_SEX: Age (years) = 39.130 – 4.057 x sex – 16.276 × tooth_type – 1.881 x relative_T/S_ratio – 1.039 × 

CpG4 ELOVL2 + 0.373 × CpG6 ELOVL2 – 1.876 × CpG8 ELOVL2 + 4.046 × CpG9 ELOVL2 + 0.488 × CpG13 

ELOVL2 – 0.821 × CpG15 ELOVL2 + 0.837 × CpG1 PDE4C – 0.255 × CpG2 PDE4C + 0.496 × CpG4 PDE4C 

0.607 4.80 6.13 6.06 

MAE mean absolute error (in years), k-fold CV k-fold cross-validation, LOOCV leave-one-out cross-validation 

a
The CpG sites are detailed in Table 1.  

In all models, the variable tooth_type took the value 0 when the tooth was not a molar and 1 when it was a molar. Models A_SEX, B_SEX, and C_SEX 

included the variable sex, which took the value 0 when the sex of the donor was unknown, 1 when the tooth belonged to a man, and 2 when it belonged to a 

woman
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Fig. 2 Predicted versus chronological age for the training set (n = 65) in model A_NSEX and 

model A_SEX. Age prediction models are detailed in Table 2 
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Fig. 3 Predicted versus chronological age for the training set (n = 65) in model B_NSEX and 

model B_SEX. Age prediction models are detailed in Table 2 
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Fig. 4 Predicted versus chronological age for the training set (n = 65) in model C_NSEX and 

model C_SEX. Age prediction models are detailed in Table 2 

 

 

 Table 3 shows the predictive potential of the age prediction models according to the 

percentages of correct and incorrect classifications in each age group. The highest percentages 

of correct classifications (from 94.7% to 100%) were always obtained in the youngest age group 

(young adults: 15‒35 years). In addition, these percentages decreased with increasing age in all 

models, and the decreases were largest in models that did not include DNA methylation markers 

(models B_NSEX and B_SEX). 

 

 

 

 

 

 

 

 



13 

Table 3 Number and percentage of correct and incorrect age group classifications in each age 

prediction model 

Model
a 

Actual age 

group
b 

Predicted age group 

15‒35 years 36‒55 years >55 years 

A_NSEX 15‒35 years 37 (97.4%)
*
 1 (2.6%) 0 

36‒55 years 5 (21.7%) 16 (69.6%)
* 

2 (8.7%) 

>55 years 0 1 (25%) 3 (75%)
*
 

A_SEX 15‒35 years 37 (97.4%)
*
 1 (2.6%) 0 

36‒55 years 5 (21.7%) 17 (73.9%)
* 

1 (4.4%) 

>55 years 0 1 (25%) 3 (75%)
*
 

     B_NSEX 15‒35 years 38 (100%)
* 

0 0 

36‒55 years 11 (47.8%) 12 (52.2%)
*
 0 

>55 years 2 (50%) 2 (50%) 0
*
 

B_SEX 15‒35 years 37 (97.4%)
* 

1 (2.6%) 0 

36‒55 years 9 (39.1%) 14 (60.9%)
*
 0 

>55 years 1 (25%) 2 (50%) 1 (25%)
*
 

     C_NSEX 15‒35 years 37 (97.4%)
*
 1 (2.6%) 0 

36‒55 years 5 (21.7%) 17 (73.9%)
*
 1 (4.4%) 

>55 years 0 1 (25%) 3 (75%)
* 

C_SEX 15‒35 years 36 (94.7%)
*
 2 (5.3%) 0 

36‒55 years 5 (21.7%) 16 (69.6%)
*
 2 (8.7%) 

>55 years 0 1 (25%) 3 (75%)
* 

a
Age prediction models are detailed in Table 2 

b
Young adults (15‒35 years, n = 38); middle-aged adults (36‒55 years, n = 23), and older adults 

(>55 years, n = 4)
 

*
Correct age group classifications 

 

 

Discussion 

 

Age-associated methylation was investigated for specific CpG sites located in the ELOVL2, 

ASPA, and PDE4C genes. In our sample, no significant differences were found in methylation 

levels between sexes for any CpG site, as others reported for the same and other genes [8, 9]. 

Similarly, no statistically significant differences between types of tooth were found for any 

methylation marker, in line with what others found in a previous study of ELOVL2, FHL2, and 

PENK genes in a limited number of premolars and molars [15]. To our knowledge, ours is the 



14 

first study designed to analyze and compare methylation levels of DNA extracted from all four 

types of tooth (incisors, canines, premolars, and molars). Our findings suggest the feasibility of 

this approach regardless of the type of tooth analyzed. However, the present results should be 

considered with caution due to the limited sample size for incisors, canines, and premolars. 

 The CpG sites most strongly associated with chronological age in our sample were 

CpG9 ELOVL2 , CpG10 ELOVL2 , CpG1 PDE4C, and CpG6 ELOVL2 , all with Pearson 

correlation coefficients higher than 0.4 (Table 1). The correlation between DNA methylation 

and chronological age for CpG sites located in ELOVL2 and PDE4C genes was previously 

reported in several studies [7, 12–18, 20, 22, 24]. On the other hand, and in contrast to 

previously published results [8, 19, 21, 23, 24], we did not find a significant correlation between 

ASPA DNA methylation and age. Nevertheless, large variations in the association between age 

and methylation levels with aging were previously reported in blood [8, 19, 21], as well as in 

buccal swabs and saliva samples [22]. In addition, the significant negative correlation found 

here between relative telomere length and chronological age (Supplementary material, Fig. S1) 

was consistent with results obtained in previous work [3]. In parallel with these results, mean 

relative telomere length was found not to be affected by sex, and to be significantly higher in 

molars (Supplementary material, Table S4). The fact that molars in our sample, as in a previous 

study [3], belonged mostly to the youngest individuals may have affected these results regarding 

the differences between types of tooth. 

 We used the present dataset to develop multivariate quantile regression models for age 

estimation. The method of choice for age prediction modeling with DNA methylation markers 

should be determined by the normal or non-normal distribution of CpG methylation, the 

linearity of the relationships, collinearity, and non-constant variance or heteroscedasticity in the 

dataset [11]. The influence of these factors has led forensic researchers to use different 

statistical approaches, including multivariate quantile regression [9, 19, 37]. Quantile regression 

appeared to perform better when the data were characterized by non-constant and non-normally 

distributed variance [37], as in our dataset. In addition, all models were adjusted for type of 

tooth in order to control for the overrepresentation of molars in the sample (n = 51) as a 

potential confounding factor. We built an initial age prediction model (model A_NSEX, Table 2 

and Fig. 2) that included nine CpG sites located in the ELOVL2 and PDE4C genes; this model 

yielded an MAE of 5.08 years. This prediction error is in line with those of previously published 

DNA methylation-based age estimation models (reviewed in [7, 10, 11]). Specifically for teeth, 

Bekaert et al. [8] reported a multivariate quadratic regression model constructed from the 

methylation level of seven CpG sites located in the PDE4C, ELOVL2 and EDARADD genes in 

29 dentine samples, with an R
2
 of 0.74 and a mean absolute deviation between chronological 

and predicted age of 4.86 years. In related research, Giuliani et al. [15] presented different 

multiple linear regression models built from a limited number of dental pulp, dentine, 
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cementum, or cementum and pulp samples, and including 5, 8, or 13 CpG sites located in the 

ELOVL2, FHL2, and PENK genes. Their models yielded an R
2
 of 0.50‒0.97 and a median 

absolute difference between chronological and predicted age of 1.20‒7.07 years in the training 

set, depending on the tissues analyzed. In contrast, the present model, which included only 

relative telomere length (model B_NSEX, Table 2 and Fig. 3), provided a higher MAE (6.89 

years). Moreover, the addition of relative telomere length to the variables included in model 

A_NSEX only slightly improved the prediction error in the training set (model C_NSEX, Table 

2 and Fig. 4). Consequently, DNA methylation appeared to be more informative than telomere 

length for estimating age in our sample. These results may indicate the limited usefulness of 

telomere length as a supplementary marker for age estimation based on DNA methylation in 

teeth. Therefore, the present findings suggest that including more than one parameter in the 

models does not always improve the accuracy of age estimation, in contrast to what others have 

suggested for the combined analysis of parameters concerning different biological levels [38–

40]. Nevertheless, it should be remembered that our models require validation with other 

datasets. 

 Although the present results showed that sex did not play a significant role in the age 

associations (Supplementary material, Table S2 and Table S4), after adjustment for sex, all 

models showed slightly better predictive accuracies, as seen in Table 2, Fig. 2, Fig. 3, and Fig.4. 

However, from a forensic point of view, an age prediction model that does not include sex as a 

predictor variable may be more useful, since in many cases only a fragment of mandible (or just 

a single tooth) is recovered, and the sex of the remains is unknown.  

 Since additional data could not be gathered, cross-validation was performed to assess 

the testing error of our age prediction models, as others have suggested [36]. It should be taken 

into account that any cross-validation mechanism, especially k-fold cross-validation, produces 

extraordinarily variable results with a sample of the size we studied. Therefore, leave-one-out 

cross-validation is more advisable for training sets of small sizes [36], as is the case here. 

Although cross-validation errors were somewhat higher than training errors for all models 

(Table 2), leave-one-out cross-validation yielded errors closer to training errors than those 

provided by k-fold cross-validation. In addition, the models that included DNA methylation 

markers as predictors (model A_NSEX, model C_NSEX, model A_SEX, and model C_SEX) 

showed larger differences between training and cross-validation errors. This finding suggests 

overestimation of the predictive capacity of these models, possibly explained by their greater 

complexity. However, the most complex model (model C_SEX) included 12 variables and had 

53 degrees of freedom, which clearly demarcates it from the saturated model. Moreover, 

multicollinearity can be ruled out since the VIF was never greater than 5 for any of the predictor 

variables [32, 33]. 
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One of the main limitations of age estimation methods is that their accuracy becomes 

lower with increasing age. It is well known that molecular changes with aging can be influenced 

by a variety of external and internal factors. Age-related DNA methylation changes do not occur 

at a constant rate throughout life, but accumulate rapidly up to adulthood [41]. Similarly, rates 

of telomere attrition vary markedly at different ages. Telomere length is rapidly reduced in early 

childhood, followed by an apparent plateau until young adulthood and gradual attrition 

throughout adult life [42]. In all models built with our sample, predictive accuracy decreased 

with increasing age (Table 3). Models A_NSEX (including DNA methylation markers) and 

C_NSEX (including DNA methylation markers and telomere length) showed similar 

percentages of correct classification in the older age groups, and model B_NSEX (including 

telomere length) presented the lowest percentages (Table 3). Similar results were obtained when 

these models were adjusted for sex. Thus, the combined use of different biomarkers of aging did 

not improve predictive accuracy at older ages in our sample, in contrast to what others have 

suggested [38, 40]. Moreover, DNA methylation was shown to be more accurate than telomere 

length in predicting age at older ages. 

In conclusion, several CpG sites from the ELOVL2 and PDE4C genes, as well as 

telomere length, were significantly associated with chronological age in our sample of human 

teeth. We developed accurate age prediction quantile regression models for tooth samples, 

adjusted for type of tooth and sex, using DNA methylation markers with and without telomere 

length as an additional variable. Our results suggest that telomere length may have limited 

usefulness as a supplementary marker in DNA methylation-based age estimation in tooth 

samples, given that the latter marker appeared to be more informative than telomere-based age 

estimation when both biomarkers were evaluated separately. However, the prediction models 

reported here should be validated with large datasets in order to ascertain the testing error of the 

method. Another task for future research is to assess the applicability of our approach in teeth 

from cadavers with different postmortem intervals. 
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SUPPLEMENTARY MATERIAL 

 

Supplementary Table S1 Primer sequences for pyrosequencing assays of each gene analyzed 

Primer  Sequence  

ELOVL2 forward  GAGGTTTTTGTGGGAGAG  

ELOVL2 reverse  ACCCCACTCACCATAATC  

ELOVL2 sequencing  TTTGTGGGAGAGGGG  

ASPA forward  TTTTGGAGGAATTTATGGGAATGAGT  

ASPA reverse  TACCTCCAACCCTATTCTCTAAATCTC  

ASPA sequencing  TTTTGGTTAAGTATTGGTTAG  

PDE4C forward  AAGGGGTAGAGGTTTGTAGTA  

PDE4C reverse  CCACCCCTACCTAAAAATAACTTTTTCCT  

PDE4C sequencing  GGTAGTTATAGTATGATTAGAGT  
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Supplementary Table S2 Percentage of DNA methylation levels by sex for each of the CpG 

sites analyzed 

Gene CpG 

number
a
 

Methylation level (%)
b
 

Men (n = 19) Women (n = 43) 

ELOVL2 CpG1 6.95 ± 2.21 7.72 ± 2.12 

CpG2 4.50 ± 2.07 4.81 ± 2.16 

CpG3 3.63 ± 1.50 4.46 ± 2.24 

CpG4 5.09 ± 1.97 5.60 ± 2.03 

CpG5 7.15 ± 6.51 5.95 ± 3.17 

CpG6 4.33 ± 1.81 4.69 ± 2.22 

CpG7 7.81 ± 4.53 6.78 ± 3.32 

CpG8 4.27 ± 2.02 4.86 ± 2.07 

CpG9 4.52 ± 2.46 5.18 ± 2.27 

CpG10 4.81 ± 2.33 4.77 ± 2.32 

CpG11 4.75 ± 1.93 5.01 ± 1.99 

CpG12 4.83 ± 2.06 4.89 ± 2.29 

CpG13 5.70 ± 5.12 4.85 ± 2.84 

CpG14 7.98 ± 4.73 8.12 ± 4.13 

CpG15 6.77 ± 2.03 8.08 ± 3.17 

ASPA CpG1 50.51 ± 7.00 47.06 ± 8.01 

PDE4C CpG1 12.00 ± 5.48 12.83 ± 3.79 

CpG2 13.40 ± 6.26 11.51 ± 4.13 

CpG3 11.90 ± 4.12 11.90 ± 3.77 

CpG4 9.70 ± 4.46 8.65 ± 3.42 

CpG5 11.93 ± 3.76 11.35 ± 3.89 

a
The CpG sites are detailed in Table 1 

b
Methylation level (mean ± standard deviation) is expressed as the percentage of methylated 

cytosines over the total of methylated and non-methylated cytosines 

 

 

 

 

 

 

 



22 

Supplementary Table S3 Percentage of DNA methylation levels by type of tooth for each of 

the CpG sites analyzed 

a
The CpG sites are detailed in Table 1 

b
Methylation level (mean ± standard deviation) is expressed as the percentage of methylated 

cytosines over the total of methylated and non-methylated cytosines 

 

 

 

 

 

 

 

Gene CpG 

number
a 

Methylation level (%)
b
  

Incisors  

(n = 6) 

Canines  

(n = 4) 

Premolars  

(n = 4) 

Molars  

(n = 51) 

ELOVL2 CpG1 7.68 ± 3.69 7.20 ± 1.04 8.18 ± 3.03 7.39 ± 1.96 

CpG2 6.15 ± 2.50 4.01 ± 1.72 6.40 ± 1.85 4.39 ± 2.00 

CpG3 5.38 ± 1.85 4.07 ± 1.61 6.18 ± 2.83 3.83 ± 1.95 

CpG4 7.65 ± 3.31 5.96 ± 2.34 5.95 ± 1.32 5.06 ± 1.64 

CpG5 13.75 ± 9.10 5.16 ± 2.65 8.31 ± 3.57 5.23 ± 2.63 

CpG6 6.78 ± 2.11 4.27 ± 1.97 7.70 ± 3.07 4.02 ± 1.61 

CpG7 13.12 ± 5.45 6.07 ± 2.75 9.05 ± 2.90 6.19 ± 2.78 

CpG8 6.58 ± 2.84 3.71 ± 1.30 5.83 ± 2.29 4.29 ± 1.93 

CpG9 6.68 ± 3.12 5.97 ± 2.01 7.16 ± 2.03 4.49 ± 2.04 

CpG10 8.18 ± 3.14 4.99 ± 1.01 6.38 ± 2.12 4.22 ± 1.82 

CpG11 7.10 ± 2.76 4.68 ± 1.73 6.03 ± 1.52 4.71 ± 1.83 

CpG12 6.85 ± 2.68 4.94 ± 2.19 6.36 ± 2.10 4.44 ± 1.98 

CpG13 10.00 ± 7.99 4.03 ± 1.36 6.99 ± 1.30 4.41 ± 2.48 

CpG14 12.98 ± 6.16 6.96 ± 3.36 12.13 ± 8.52 7.13 ± 3.00 

CpG15 8.86 ± 3.25 9.92 ± 7.67 8.34 ± 3.30 7.32 ± 2.19 

ASPA CpG1 50.28 ± 7.06 46.93 ± 10.91 34.17± 8.56 48.93 ± 6.45 

PDE4C CpG1 15.48 ± 6.05 14.05 ± 1.94 13.45 ± 2.26 12.16 ± 4.61 

CpG2 13.22 ± 2.96 9.22 ± 1.12 11.35 ± 2.02 12.28 ± 5.30 

CpG3 11.61 ± 2.40 12.05 ± 3.58 11.87 ± 2.64 11.84 ± 4.10 

CpG4 8.63 ± 2.60 9.62 ± 3.19 8.80 ± 3.54 8.96 ± 3.91 

CpG5 11.49 ± 3.14 11.23 ± 3.36 12.72 ± 3.80 11.53 ± 4.08 
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Supplementary Table S4 Relative telomere length by sex and type of tooth  

 n Relative T/S ratio
a 

Sex
 

Men 19 0.97 ± 0.32 

Women 43 0.92 ± 0.31 

Type of 

tooth 

Incisors 6 0.72 ± 0.34 

Canines 4 0.52 ± 0.11 

Premolars 4 0.55 ± 0.03 

Molars 51 1.03 ± 0.26
* 

n number of cases 

a
 Relative telomere length (mean ± standard deviation) is expressed as the ratio of relative 

telomere repeat copy number (T) to single-copy gene copy number (S), as described in [29] 

*
Significant differences between molars and incisors (p < 0.05), molars and canines (p < 0.01), 

and molars and premolars (p < 0.01)  
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Supplementary Fig. S1 Correlation between relative telomere length (expressed as relative T/S 

ratio) and chronological age (r = −0.549, p < 0.001) 

 

 


