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Abstract: Species tend to shift their suitable habitat both altitudinally and latitudinally under climate
change. Range shift in plants brings about habitat contraction at rear edges, forcing leading edge
populations to explore newly available suitable habitats. In order to detect these scenarios, modeling
of the future geographical distribution of the species is widely used. Vachellia negrii (Pic.-Serm.)
Kyal. & Boatwr. is endemic to Ethiopia and was assessed as vulnerable due to changes to its
habitat by anthropogenic impacts. It occurs in upland wooded grassland from 2000–3100 m.a.s.l.
The main objective of this study is to model the distribution of Vachellia negrii in Ethiopia by using
Maxent under climate change. Nineteen bioclimatic variables were downloaded from an open source.
Furthermore, topographic position index (tpi), solar radiation index (sri) and elevation were used.
Two representative concentration pathways were selected (RCP 4.5 and RC P8.5) for the years 2050
and 2070 using the Community Climate System Model (CCSM 5). A correlation analysis of the
bioclimatic variables has resulted in the retention of 10 bioclimatic variables for modeling. Forty-
eight occurrence points were collected from herbarium specimens. The area under curve (AUC) is
0.94, indicating a high-performance level of the model. The distribution of the species is affected
by elevation (26.4%), precipitation of the driest month (Bio 14, 21.7%), solar radiation (12.9%) and
precipitation seasonality (Bio15, 12.2%). Whereas the RCP 8.5 has resulted in decrease of suitable
areas of the species from the current 4,314,153.94 ha (3.80%) to 4,059,150.90 ha (3.58%) in 2050, this
area will shrink to 3,555,828.71 ha in 2070 under the same scenario. As climate change severely affects
the environment, highly suitable areas for the growth of the study subject will decrease by 758,325 ha.
The study’s results shows that this vulnerable, endemic species is facing habitat contraction and
requires interventions to ensure its long-term persistence.

Keywords: climate change; endemic; Maxent; range shift; Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr.;
vulnerable; Ethiopia

1. Introduction

Climate change affects species by pushing them to their ecological limit, resulting
in range shifts. Climate change is a key challenge for biodiversity and the functions of
ecosystems [1–3]. Various studies elsewhere have shown that climate change results in the
redistribution of species [4–7]. Species track suitable habitats at their leading edge [8] and
remain in their warm range edge due to phenotypic plasticity [9,10]. In cases where these
two options are not available to species, they are destined to extinction [11]. A recent review
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of studies on climate change and biodiversity has revealed a taxonomic bias where less than
2% of plants were examined for the effects of climate change [12]. The observed rate of past
climate change is slower than the future rate [13] and so are the rates of range shifts [14].
Climate change is not the only factor for species range shift [15–17]. Habitat degradation,
loss and invasive species intensify the effects of climate change on species [13,18].

Climate change is part of the history of our planet, and habitat contraction and
expansion has been well documented [19]. A recent example is the Pleistocene, where
repeated changes in species ranges were recorded [20]. Whereas past environmental
change has led to a cycle of species origination (speciation) and extinction, the impact of
the current human-driven climate change is unidirectional range shifts [7] whereby species
lose their genetic diversity at their rear edge. As a result, local extinctions of populations of
species are common, triggering an extinction vortex [21]. On the other hand, leading edge
populations tend to occupy novel ranges due to human-driving climate forcing [5]. How
and when species under these new physical conditions compensate for the lost segments
of their genetic diversity to ensure their long-term persistence is open to question [22,23].

Species of different taxonomic groups respond to climate change differently [1,2].
Butterflies have exhibited faster range shift than birds in Europe [18]. Latitudinal and
altitudinal range shift in plants is gradual and this is relatively readily detectable [24,25].
The effects of climate change on range restricted species, e.g., endemics, leads the loss of
their habitat due to warming [26–29]. Endemics have narrow geographic ranges and are
often linked to a specialized environmental niche, limited dispersal capacities, smaller
population sizes and limited adaptive capability [30]. Furthermore, regions with high
endemism are more likely vulnerable to climate change at both the species, population and
community levels [31,32].

Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. (Fabaceae) is endemic to Ethiopia and
has been assessed as vulnerable due to anthropogenic impacts to its habitat [33]. This tree
species has a flat crown and occurs in montane wooded grassland ranging in altitude from
2000–3100 m above sea level (m.a.s.l.) [34,35], as well as church forests [36]. V. negrii has a
small seed size compared to its pod width [37]. A sample of the seeds of this species has
been stored in Svalbard Global Seed Vault (Norway). It does not occur in the protected
area network of the country. The species has a wide variety of economic importance such
as forage for honeybees, building material for making plows, fuel wood and charcoal. It
also improves soil fertility through nitrogen fixation and serves as shade for the domestic
animals and people.

Species reach their ecological limits under continued climate change and either re-
spond to survive or perish [11]. Modelling future potential suitable ranges under differ-
ent climate change scenarios is useful to foster conservation and long-term persistence
of species [1]. Maxent is a useful and widely used tool for predicting the current and
future distribution of species and the performance of the model can be statistically evalu-
ated [38–41]. The main aim of this study is to predict the current and future distribution
the endemic Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. in Ethiopia under climate change.

2. Materials and Methods
Species Occurrence and Environmental Data

Presence data of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. were collected from
the field observation in northern Wollo, the National Herbarium of Ethiopia, using pub-
lished and unpublished materials. Forty-eight occurrence points were used in this study
(Figure 1).
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cessed on 20 May 2021) with 30s (~1 km2) from the observation data version 2.1 and 3 
topographic layers were used in this study (Table 1). To predict the future distribution of 
this species, the General Circulation Model (GCM) Community Climate System Model 
(CCSM ver.5) was used. The intermediate greenhouse gas scenario (RCP 4.5) and the high-
est emission scenario (RCP 8.5) from the fifth Report of the Intergovernmental Panel on 
Climate Change (IPCC5) were used. Furthermore, solar radiation data was downloaded 
from the www.worldclim.org (accessed on 20 May 2021) with the standardized tiff for-
mats [42–44]. Topographic factors (altitude and slope) were downloaded from Aster DEM 
(space born thermal emission and reflection radiometer Digital Elevation Model) from 
www.gscloud.cn (accessed on 24 May 2021) [45].  

Bioclimatic variables downloaded in TIFF file format and converted to Asci format 
by using SDM toolbox of ArcGIS version 10.5 [44]. In order to identify the multicollinear-
ity among the 19bioclimatic and topographic variables, Pearson’s correlation was used 
[43]. A correlation among the bioclimatic and topographic variables was assessed using 
the ENM tool in R package [46]. A cut-off point of <0.8 was used to exclude variables with 
high correlation from further analysis to minimize the effect of multicollinearity and 
model overfitting [47]. Out of the 22 environmental variables, 13 were considered for fur-
ther analyses in this study. 

  

Figure 1. Map of Africa and Ethiopia showing localities of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. occurrences.

The 19 bioclimatic variables downloaded from Worldclim (www.worldclim.org, ac-
cessed on 20 May 2021) with 30 s (~1 km2) from the observation data version 2.1 and
3 topographic layers were used in this study (Table 1). To predict the future distribution
of this species, the General Circulation Model (GCM) Community Climate System Model
(CCSM ver.5) was used. The intermediate greenhouse gas scenario (RCP 4.5) and the
highest emission scenario (RCP 8.5) from the fifth Report of the Intergovernmental Panel
on Climate Change (IPCC5) were used. Furthermore, solar radiation data was downloaded
from the www.worldclim.org (accessed on 20 May 2021) with the standardized tiff for-
mats [42–44]. Topographic factors (altitude and slope) were downloaded from Aster DEM
(space born thermal emission and reflection radiometer Digital Elevation Model) from
www.gscloud.cn (accessed on 24 May 2021) [45].

Table 1. Bioclimatic and topographic variables used in the species distribution modeling.

Variable Variable Type Unit

Bio 1 Annual Mean Temperature ◦C
Bio 2 Mean Diurnal Range (Mean of monthly (max temp–min temp)) ◦C
Bio 3 Isothermality (BIO2/BIO7) (×100) ◦C
Bio 4 Temperature Seasonality (standard deviation ×100) ◦C
Bio 5 Max Temperature of Warmest Month ◦C
Bio 6 Min Temperature of Coldest Month ◦C
Bio 7 Temperature Annual Range (BIO5-BIO6) ◦C
Bio 8 Mean Temperature of Wettest Quarter ◦C
Bio 9 Mean Temperature of Driest Quarter ◦C

Bio 10 Mean Temperature of Warmest Quarter ◦C
Bio 11 Mean Temperature of Coldest Quarter ◦C
Bio 12 Annual Precipitation ◦C
Bio 13 Precipitation of Wettest Month Mm
Bio 14 Precipitation of Driest Month Mm
Bio 15 Precipitation Seasonality (Coefficient of Variation) Mm
Bio 16 Precipitation of Wettest Quarter Mm
Bio 17 Precipitation of Driest Quarter Mm
Bio 18 Precipitation of Warmest Quarter Mm
Bio 19 Precipitation of Coldest Quarter Mm

Elevation Altitude M
Solar radiation Solar radiation

Slope Slope %

www.worldclim.org
www.worldclim.org
www.gscloud.cn
www.gscloud.cn
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Bioclimatic variables downloaded in TIFF file format and converted to Asci format by
using SDM toolbox of ArcGIS version 10.5 [44]. In order to identify the multicollinearity
among the 19bioclimatic and topographic variables, Pearson’s correlation was used [43].
A correlation among the bioclimatic and topographic variables was assessed using the
ENM tool in R package [46]. A cut-off point of <0.8 was used to exclude variables with
high correlation from further analysis to minimize the effect of multicollinearity and model
overfitting [47]. Out of the 22 environmental variables, 13 were considered for further
analyses in this study.

3. Data Analysis

Maxent software version 3.4.4 was downloaded from http://www.cs.princeton.edu/
schapire/MaxEnt/ (accessed on 30 May 2021) and used for modeling the current and
future distribution of the species. Maxent is not disposed to sample size and can produce
species response curves. All environmental layers have been converted and overlaid onto
the same pixel size of 30 m and projected as an ASCII raster grid format. The generated
model was evaluated by calculating the AUC of ROC graph [48,49]. The data for species
distribution classified as training and test data with proportion of 75% and 25% for the
total occurrence record data.

AUC is an effective and efficient independent threshold index with the capacity of
assessing the model’s capacity to distinguish the presence and absence. AUC values are
categorized in to five different classes based on performance [50,51]. The performance
classes are failing (0.5 to 0.6), bad (0.6 to 0.7), reasonable (0.7 to 0.8), good (0.8 to 0.9)
and great (0.9 to 1). Models with values less than 0.5 indicates that the occurrence in the
real-life scenario is rare or can be considered as a guesstimate [52] Jackknife was run to
systematically exclude each variable or evaluate the leading bioclimatic or topographic
variables. Jack knife evaluates the leading variables in determining the potential distribu-
tion of species [53]. The relationship between the environmental and topographic factors
and the potential habitat for the species is determined from the created response curve
from the model [54,55].

4. Result
4.1. Correlation among the Environmental Variables

The Pearson’s correlation has resulted in the removal of Bio 5, Bio 6, Bio 8, Bio 10, Bio
11, Bio 13 and Bio 16 from further analysis due to their high multicollinearity (Table 2).

4.2. Model Evaluation

Validation guarantees the reliability of modeling results. In this study, the AUC value
showed that the Maxent model performed well (AUC = 0.940) under the current scenario
(Figure 2). The distribution of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. under the
current climatic conditions is highly influenced by elevation, Bio 14 (precipitation of the
driest month), Bio 1 Annual Mean Temperature, Bio 15 (precipitation seasonality) and
solar radiation (Table 3). Furthermore, the contributions of these variables are higher than
the others.

http://www.cs.princeton.edu/schapire/MaxEnt/
http://www.cs.princeton.edu/schapire/MaxEnt/
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Table 2. Correlation result of bioclimatic and topographic variables.

layer Sri Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19 Elv Asp

Sri 1 0.25 –0.15 0.33 −0.49 0.13 0.34 −0.41 0.29 0.23 0.13 0.35 −0.45 −0.44 −0.23 0.36 −0.47 −0.23 −0.035 −0.36 −0.31 −0.25

Bio1 1 −0.45 −0.53 0.41 0.96 0.96 −0.04 0.97 0.97 0.98 0.98 −0.63 −0.618 −0.32 0.16 −0.60 −0.36 −0.54 −0.31 −0.96 −0.43

Bio2 1 0.40 −0.05 −0.26 −0.63 0.70 −0.50 −0.47 −0.42 −0.46 0.36 0.46 0.10 0.03 0.44 0.13 0.28 0.22 0.58 0.22

Bio3 1 −0.87 −0.62 0.42 −0.35 −0.56 −0.46 −0.62 0.39 0.38 0.34 0.29 0.08 0.31 0.29 0.41 0.18 0.45 0.15

Bio4 1 0.58 0.23 0.63 0.40 0.34 0.53 0.25 −0.21 −0.10 −0.25 −0.04 −0.08 0.137 0.28 −0.02 −0.28 −0.04

Bio5 1 0.85 0.22 0.93 0.90 0.97 0.91 −0.60 −0.55 −0.35 0.16 −0.54 0.29 0.41 −0.30 −0.89 −0.38

Bio6 1 −0.31 0.94 0.94 0.91 0.97 −0.633 −0.64 −0.29 0.18 −0.63 −0.38 −0.38 −0.341 −0.96 −0.43

Bio7 1 −0.07 −0.12 0.06 −0.16 0.077 0.19 −0.10 −0.04 0.20 −0.33 −0.53 0.08 0.19 0.11

Bio8 1 0.91 0.952 0.94 −0.72 −0.71 −0.33 0.15 −0.70 −0.07 −0.012 −0.45 −0.94 −0.44

Bio9 1 0.95 0.96 −0.52 −0.55 −0.23 0.10 −0.52 −0.36 −0.49 −0.19 −0.94 −0.39

Bio10 1 0.94 −0.59 −0.55 −0.34 0.15 −0.53 −0.27 −0.53 −0.27 −0.93 −0.39

Bio11 1 −0.63 −0.60 −0.30 0.20 −0.59 −0.38 −0.51 −0.31 −0.97 −0.44

Bio12 1 0.85 0.57 −0.31 0.91 −0.34 0.44 0.77 0.61 0.35

Bio13 1 0.12 0.11 0.98 0.56 0.23 0.72 0.63 0.37

Bio14 1 −0.67 0.26 0.177 0.46 0.30 0.30 0.24

Bio15 1 0.01 0.974 −0.35 −0.09 −0.14 −0.09

Bio16 1 −0.75 0.25 0.78 0.61 0.35

Bio17 1 0.52 0.26 0.33 0.26

Bio18 1 0.12 0.49 0.21

Bio19 1 0.33 0.23

Elv 1 0.46

Asp 1

Note: The bold once are auto correlated variables need to be removed from the model inorder to avoid over fitting of model.
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Table 3. Percent contribution of variables and species response to different climatic scenarios (%c = percent contribution
and PI = permutation importance).

Variables Code
Current

2050 2070

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

%c PI %c PI %c PI %c PI %c PI

Annual Mean Temperature Bio 1 0.2 0.9 0 4.5 0 0.8 0 4.7 0 2.2

Mean Diurnal Range (Mean of monthly
(max temp–min temp)) Bio 2 2.9 2.1 0 0.4 0 9.5 0 0 0 0

Isothermality (P2/P7) × (100) Bio 3 0.1 0.1 0 5.5 0 3.7 0 0 0 0

Temperature Seasonality (standard
deviation × 100) Bio 4 4.6 13.9 0 16.7 0.2 0 0 7.5 0 3.7

Temperature Annual Range (P5–P6) Bio 7 0.1 0.2 0 6.3 0 3.8 0 7.1 0.8 4.7

Annual Precipitation Bio12 0.1 2.4 0 2.5 0 0 0 4.1 0 2.7

Precipitation of Driest Month Bio 14 21.7 27.2 3 2.1 1 0.9 0 10.3 2 6.8

Precipitation of Seasonality (Coefficient
of Variation) Bio 15 12.2 6.8 2.0 11.6 1 1.1 0 12.7 2 33.9

Precipitation of Warmest Quarter Bio 18 12.7 6.5 3.0 24.7 1 14.1 0 1 0 2.1

Precipitation of Coldest Quarter Bio 19 4 1.1 0 2.3 2 10.6 0 12.2 2 2.4

Elevation Elev 26.4 30.4 50 17.1 60 22.4 79.4 21.1 70 27.4

Solar radiation Sr 12.9 6.8 29.2 3.7 32.8 32.3 16.1 17.2 16 10.5

Slope Slp 2.1 1.5 12.8 2 0.9 4.5 2 6.7 3.7

4.3. Response Curves of Bioclimatic Variables

The response curves show the relationships of probability of occurrence of Vachelliane-
grii (Pic.-Serm.) Kyal. & Boatwr. and each environmental variable (Figure 3). The species
response curve describes the relationship between the topography and bioclimatic factors
and species occurrence probability (Figure 3). Elevation, precipitation of the driest month
(Bio 14), 26.4 percent and 21.7 percent, respectively, contributed the most to the spread
of the species. The relevance of the bioclimatic and topographic variables of elevation
and precipitation of the driest month (Bio 14) contribute the greatest percentages (30.4
and 27.2, respectively), followed by temperature seasonality (Bio 15), contributing13.9 in
permutation (Table 3). The response curves for the important variables show that they
have a greater influence on the distribution of Vachellianegrii (Pic.-Serm.) Kyal. & Boatwr.
(Figure 4). The suitability for growth increases as the altitudinal range increases, and ideally
fits in the range of 2000 to 3000 m, where the rainfall of the driest month is adequate for the
species’ survival and growth ranges from 5 to 10m3 during the driest season.
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4.4. Potential Distribution of Vachellia negrii

Modelling the potential distribution Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. shows
that it occurs on both sides of the Rift Valley (Figure 5). It has a relatively higher range on
the north and northwestern highlands of Ethiopia than on the southeastern highlands. In
the latter, its highly suitable habitats are confined to the Bale Mountain range and Gara
Muleta and its surroundings. In north and northwestern Ethiopia, highly suitable areas
for this species are in moist and dry Afromontane forests. Moderately suitable habitats of
this species occur at the fringes of the highly suitable areas and are much more extensive
(Table 4).
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Table 4. Suitable areas for the distribution of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr.

Climatic Period RCP

Classes of Suitable Habitats

Highly Suitable Moderately Suitable Low Suitable Unsuitable

Hectares % Hectares % Hectares % Hectares %

Current 4,314,153.941 3.80 9,394,670.699 8.29 18,423,842.68 16.26 81,177,180.2 71.64

2050
RCP 4.5 4,059,150.901 3.58 8,491,245.863 7.49 17,529,132.28 15.47 83,230,318.48 73.45

RCP 8.5 3,745,769.595 3.3 7,303,036.612 6.45 16,657,887.62 14.28 85,603,153.7 75.97

2070
RCP 4.5 3,555,828.711 3.13 6,675,597.149 5.89 14,063,493.76 12.41 89,014,927.9 78.55

RCP 8.5 2,676,601.245 2.36 10,035,562.54 8.85 14,171,535.86 12.50 86,426,147.87 76.27
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4.5. Important Environmental Variables for Future Geographic Distribution of Vachellia negrii

The importance of environmental variables for the prediction of the distribution of
Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr for in the scenarios (RCP 4.5 and 8.5) are
different for mid-century and for2070 (Figure 6). There is also a within-scenarios variation.
The distribution of this species is mainly determined by elevation, precipitation of the
driest month (Bio 14) and precipitation of the warmest month (Bio 18) for RCP 4.5 in 2050.
For RCP 4.5 in 2070, Bio 14 and elevation are the main factors restricting the distribution of
this species. Whereas Bio 18 is the main limiting factor for RCP 8.5 in 2050, Bio 14 limits
the distribution of this species. Elevation determines the distribution of Vachellia negrii
(Pic.-Serm.) Kyal. & Boatwr. in both 2050 and 2070 for RCP 8.5.
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4.6. Predicted Distribution of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr.

The predicted distribution of highly suitable habitats for Vachellia negrii (Pic.-Serm.)
Kyal. & Boatwr. decreases for both climate change scenarios (Figure 7). The species loses its
northern range of highly suitable areas, and the southeastern range is more or less limited
to Gara Muleta and its surroundings. Highly suitable habitats for this species decrease by
5.9% under RCP 4.5. in 2050 and 13.2% for RCP 8.5 in 2070 (Table 4). The decline of highly
suitable habitats for this species is dramatic for RCP 8.5 in 2050 and 2070, i.e., 17.6% in 2050
and 38% in 2070. A similar trend was observed for moderately and low suitable habitats.
An exception is a slight increase in moderately suitable habitats for RCP 8.5 in 2070.
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5. Discussion

Forecasting the future of climate change and its influence on species distribution is
essential due to the wide range of climate simulation findings [56,57]. The distribution and
well-being of forest ecosystems will be altered in either a positive or negative way by future
global warming. In Ethiopia, the spread of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. is
now threatened. This vulnerable species is affected by both anthropogenic and climatic
forces. The current impacts of climate change are affecting the whole world, especially in
developing countries due to extreme population growth and illegal poaching [58]. Maxent
modeling will have an effect on allocating the areas and the species which are endangered
and in need of conservation [57].

5.1. Model Performance and Percent Contribution of Variables

According to Pearson et al., an AUC greater than 0.75 is a clear illustration of the
strength and efficiency of a good species distribution (niche) model (2007). The model’s
AUC of 0.94 indicates that it is within the acceptable limits [57,59]. Because AUC val-
ues greater than 0.75 are considered informative [50], our results show that the model
performed well in distinguishing between true and false positives [60]. The exclusion of
variables owing to autocorrelation resulted in a flawless model outcome, according to
references [61,62]. The topographic and climatic factors were shown to be autocorrelated,
resulting in (Table 2) topographic variables (elevation and slope), precipitation (Bio 12,
Bio 14, Bio 15, Bio 18 and Bio 19), temperate (Bio 1, Bio2, Bio3, Bio4 and Bio7) and solar
radiation. Elevation has a significant role in determining the range of a species’ habitat.
As seen in Figure 4, the most suitable areas are found at elevations of 2500 m.a.s.l. When
predicting the distribution of organisms, elevation is one of the most essential factors to
consider [16].

5.2. Current Distribution

The species’ present distribution is limited to the highlands of Tigray, Amhara, Oromia
and Dire Dawa. The spread of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr is constrained
by elevation. Even a small number of bioclimatic factors [63,64] affects the distribution.
Bioclimatic variables that were employed to anticipate the distribution of suitable land
did not adequately determine microclimates [57,65–67]. Although elevation is the most
important factor in the distribution model, solar radiation also has a role in the species’
future and current spread. Elevation influences the species’ microclimate, which has a
direct impact on distribution [67,68].

Growing may also be possible at various elevations around the country [68–70]. Other
variables that influence distribution, such as Bio14 and Bio15, also have a role. The
temperature during the dry season and the precipitation throughout the dry and rainy
seasons have an impact on species survival and recruitment. Because water is involved in
all of the physiological activities of the species, the availability of water throughout the dry
season promotes flowering and seed dispersal [71].

5.3. Future Distribution

Climate change has a significant impact on the geographic range of Vachellia negrii
(Pic.-Serm.) Kyal. & Boatwr. according to the IPCC climate change scenario. Highly suit-
able, moderately suitable, low suitable and unsuitable are the four categories of appropriate
regions predicted by the model. Climate change would have a negative influence on the
niche of the species [28,72]. As a result, the suitable habitat range decreases (Figure 8).
References 43, 52 and 66 predict that the species will make a significant shift to a more
appropriate habitat. Climate change is the most significant factor, although habitat degra-
dation, invasive species invasions, biodiversity loss and land conversion also contribute to
the species’ decreasing land mass [9,10].
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Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. thrives in environments that are ideal for
its distribution, which decrease by 73.86% in 2050 of RCP 4.5 and 7% in 2070of RCP 4.5.
The species’ habitat suitability decreases in 2050 based on RCP 8.5, but increases in 2070
based on RCP 8.5. The Ethiopian highlands, similar to all other highlands, are undergoing
climate change, which has a beneficial impact on species growth [67]. If the temperature
rises on a regular basis, it will alter the seasonal growth of species [73,74].

Highly suitable areas for distribution of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr.
decreases by 73.86% in 2050 of RCP 4.5 and an increase in 7% in 2070of RCP 4.5. The
projection of the species in 2050 based on RCP 8.5 shows a decrease in the moderately
suitable areas, but in the case of 2070 RCP 8.5, there is an increase in the habitat suitability.
Ethiopian highlands, similar to any other highlands, are facing change in temperature,
which affects the species growth positively [67]. The increase in temperature would also
affect the seasonal growth of species if it occur son a continuous basis [73,74].

5.4. Range Shift

The moderate, low and high potentials from the landscape and regions with adequate
habitats for growth and survival showed a decline in both the mid-century (2050s) and the
end-of-century (2070s) periods (Figure 8). As a result, a rise in temperature may compel
their habitat to move from a lower to a higher elevation, causing habitat contraction and
expansion, in this case, contraction [57,75,76]. In addition, invading species tend to decrease
and alter the distribution of native species in the region [21,71,77,78]. According to the
findings, the species range decreases from the total land mass of 104,429,094.6 ha with no
occupancy, whereas 5,753,201.233 ha is deemed as an appropriate habitat in both situations,
but climate change has caused 2,915,668.9450000003 ha to be lost. Several new studies on
climate change and global warming demonstrate that variations in temperature have an
impact on biodiversity distribution [78,79].

5.5. Conservation Strategy

In forest and land management, the ultimate goal of species distribution modeling
(SDM) is to create future information about species distribution. The (SDM’s) findings
will encourage conservationists to develop and use coping mechanisms. The suitable
region of the species’ geographical range has shifted, according to the current research.
Environmental plans must be based on research findings and recommendations. The
species should be included in a list that may be planted during the country’s yearly green
movement, increasing the availability of the species in the country’s high lands [55]. During
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the country’s yearly greening, these designated appropriate regions would be used for
planting. The government and stakeholders must focus on planting rare and endemic
endangered species since the allocated sites for yearly plantation are ideal habitats for the
species. In addition to the Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. plantation, the
closure area would have an effect on safeguarding other treated plants and facilitating the
establishment of additional species from seed banks [80,81].

6. Conclusions

Climate change is affecting the geographic distribution of Vachellia negrii (Pic.-Serm.)
Kyal. & Boatwr. according to the present research. The model clearly demonstrates
that the range of appropriate habitat for the species is shrinking. This has long-term
consequences for the survival of the species. As a result, yearly tree-planting activities
in Ethiopia should take into account predicted climatic conditions as well as the planting
of Vachellia negrii (Pic.-Serm.) Kyal. & Boatwr. in appropriate habitats. For the Ethiopian
government’s annual plantation, the central highlands are now the most favored planting
regions. Because these areas have been recognized as appropriate, it is suggested that these
species be introduced. It is advised that these plants be planted on the hilltops since these
areas have been designated as suitable. Efforts to conserve these severely endangered
species should be made in general. Other endangered plant species, in addition to Vachellia
negrii (Pic.-Serm.) Kyal. & Boatwr., should be conserved, therefore seed banks, botanical
gardens and other insitu conservation techniques should be prioritized. To assist in the
rescue of these species from extinction in the wild, further physiological, ecological, and
microclimate research should be conducted.
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