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Abstract: In this work, we deal with two approximation problems in a finite-dimensional generalized
Wendland space of compactly supported radial basis functions. Namely, we present an interpolation
method and a smoothing variational method in this space. Next, the theory of the presented method
is justified by proving the corresponding convergence result. Likewise, to illustrate this method,
some graphical and numerical examples are presented in R2, and a comparison with another work
is analyzed.
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1. Introduction

Frequently, positive kernels reproducing Hilbert spaces of continuous functions appear
in some applications, and they are presented as radial basis functions (RBFs),

Ψ(x, y) = ψ(⟨x − y⟩n), ∀ x, y ∈ Rn,

where ⟨ · ⟩n denotes the Euclidean norm in Rn, and ψ : [0,+∞) → R is a given smooth
univariate function.

The Wendland functions [1] yield compactly supported and differentiable functions in
Rn that reproduce kernels of Hilbert spaces isomorphic to the Sobolev space Hn/2+k+1/2(Rn).
Thus, when the dimension n is even, the order of this Sobolev space is not an integer.

Robert Schaback [2] extends the classical Wendland functions to the missing Wendland
functions that reproduce kernels of Hilbert spaces isomorphic to the Sobolev spaces of
integer order in even dimensions. Moreover, they have compact support. In this context,
in [3], Schaback and Wendland used compactly supported radial basis functions in order to
solve some partial differential equations.

In [4], Argáez, Hafstein, and Giesl provided a numerical code in C++ in order to
calculate explicitly the Wendland function with any given parameters. Previously, in [2],
Schaback and Zhu, in [5], used instead a code written in MAPLE. In [6], Chen and other
authors proposed a study of a surrogate model assisted by an evolutionary algorithm for
high-dimensional expensive optimization problems also using this type of radial basis
functions. Saberi et al. in [7] provided the required formulas in one dimension for the Rie-
mann Liouville fractional derivative of five kinds of RBFs, including the Powers, Gaussian,
Multiquadric, Matérn, and Thin-plate splines. After, they also considered the discretization
of the fractional diffusion equation with the RBF collocation method.
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Radial basis function (RBF) approximations have been used for some time to interpo-
late data on a sphere. In this context, Fornberg and Piret, in [8], extended the earlier works
for computations in three aspects: firstly, tested with a large number of different types of
radial functions; secondly, calculated in a stable way for e-values all the way down to the
parameter equal to zero; thirdly, results presented at both short and long times, in order to
contrast time scales appropriate for weather and for climate modeling, respectively.

In [9], Rosenfeld and Dixon developed a pseudo spectral method for the estimation of
the fractional Laplacian function using the approach by RBF interpolation.

Buhmann and Jager, in [10], presented the connections of the monotonicity properties
and the strict positive definiteness of vectorial functions. They studied a technique to
construct positive definite functions from multiple monotone functions.

Chernih et al., in [11], also demonstrated that with an appropriate rescaling of the
variables, both the original and the missing Wendland functions converge uniformly to
Gaussian, as the smoothness parameter tends to infinity.

To better understand the objective of this work, we believe that we should cite a
brief history of the theory of the approximation problem using variational spline functions.
The theory of the approach using variational splines was introduced by Attéia [12], based on
the Dm-splines functions, after Duchon [13] developed the idea, using the technique of the
minimization of quadratic functionals. We enriched this generic idea by minimizing various
types of quadratic functionals, first in Hilbert spaces and secondly in a finite element space,
such as in [14] by Kouibia et al. We studied some interpolation and smoothing methods
for constructing free-form curves and surfaces from a given Lagrangian and/or Hermite
data set. These methods consist of the minimization of a certain quadratic functional in a
Sobolev space.

In [15], Kouibia et al. presented an approximation method from a given scattered
data set, by minimizing a quadratic functional in a parametric finite element space. In [16],
Kouibia and collaborators considered the same problem from a given noisy data set;
meanwhile, in [17], they studied these problems in a bicubic spline functional space,
and the optimal solution was obtained by a suitable optimization of some parameters that
appear in the minimization functional.

In recent years, some of the authors of this article started to work on some problems
of approximation using the Wendland radial basis functions. Recent publications include,
for example, [18], where González et al. proposed an approximation method for solving
second-kind Volterra integral equation systems by radial basis functions. Recently, in [19],
Noorizadegan and Schaback introduced the evaluation condition number by a novel
assessment of conditioning in radial basis function methods.

In this work, we deal with the smoothing problem in a finite-dimensional generalized
Wendland functions space; formulating the problem of smoothing variational splines by
generalized Wendland functions, we show how to compute, in practice, the solution of such
a problem, and the method is justified by proving the corresponding convergence result.
In order to illustrate the method, some graphical and numerical examples are presented in
R2, and a comparison with another work is analyzed.

The remainder of this manuscript is organized as follows. In Section 2, we present
some notations and preliminaries that are necessary to formulate the problem. Section 3 is
devoted to studying the generalized Wendland compactly supported radial basis functions,
while Section 4 is dedicated to developing the problem of the smoothing variational splines
by generalized Wendland functions. In the last section, we finish this article by illustrating
some numerical and graphical examples and presenting a comparison with another work.

2. Notations and Preliminaries

Given an open convex bounded set Ω ⊂ R2, let Hs(Ω) be the usual Sobolev space of
order s equipped with the semi-inner products given by

(u, v)ℓ = ∑
|α|=ℓ

∫
Ω

uα(x)vα(x)dx, ℓ = 0, . . . , s,
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for any u, v ∈ Hs(Ω); the corresponding semi-norms

|u|ℓ = (u, u)
1
2
ℓ , ℓ = 0, . . . , s;

the inner product ((u, v))s =
s

∑
ℓ=0

(u, v)ℓ; and the corresponding norm ∥u∥s = ((u, u))
1
2
s .

Let Rn,k be the space of real matrices with n rows and k columns, equipped with the
inner product

⟨A, B⟩n,k =
n

∑
i=1

k

∑
j=1

aijbij, ∀ A = (aij) 1≤i≤n
1≤j≤k

, B = (bij) 1≤i≤n
1≤j≤k

∈ Rn,k,

and the corresponding norm ⟨A⟩n,k = ⟨A, A⟩
1
2
n,k.

3. Generalized Wendland Compactly Supported Radial Basis Functions

Definition 1. Let there be ψ : [0,+∞) → R as a continuous function, a set Ω ⊂ R2, and a finite
set TN = {ξ1, . . . , ξN} of points of Ω; the linear space generated by the functions set

SN = {ψ(⟨· − ξ1⟩2), . . . , ψ(⟨· − ξN⟩2)} (1)

is called the radial basis functions space relative to the function ψ and the centers set TN , where
< · , · >2 is the Euclidean inner product in R2.

Definition 2. Consider a function u ∈ C(Ω) and the radial basis function su,TN ∈ SN given by

su,TN (x) =
N

∑
i=1

ciψ(⟨x − ξ i⟩2), x ∈ Ω, (2)

where c1, . . . , cN ∈ R are determined by the interpolating conditions

su,TN (ξ i) = u(ξ i), 1 ≤ i ≤ N. (3)

Then, su,TN , if it exists, is called the interpolation RBF of u in SN (relative to ψ and TN).

Remark 1. The interpolation RBF su,TN exists, and it is unique if and only if

det((ψ(⟨ξ i − ξ j⟩2))1≤i,j≤N) ̸= 0.

Robert Schaback in [2] considered the integral operator

Iα( f )(t) =
∫ ∞

t
f (s)

(s − t)α−1

Γ(α)
ds,

for all α > 0, t ≥ 0.

Consider the truncated power functions for all µ > 0.

aµ(s) = (1 −
√

2s)µ
+.

Since the Iα operators preserve compact supports and are applicable to aµ for all
α, µ > 0, we can define aµ,α = Iα(aµ).
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Definition 3. We call generalized Wendland functions to Ψµ,α given by

Ψµ,α(r) = aµ,α(
r2

2
), ∀ α, µ > 0,

which are well defined and supported in [0, 1].

Remark 2. Taking into account the above definition, we have

Ψµ,α(t) =
∫ 1

t
s(1 − s)µ (s

2 − t2)α−1

Γ(α)2α−1 ds, ∀t ∈ [0, 1].

In [2], the author deduces an algorithm for constructing the generalized Wendland
functions for even dimensions 2m in the following way (Table 1):

Ψ2m,(2ℓ−1)/2(r) = r2ℓpm,ℓ(r2)L(r) + qm,ℓ(r2)S(r), r ∈ [0, 1],

for any integers m, ℓ ≥ 0, with

L(r) = log
(

r
1 +

√
1 − r2

)
, S(r) =

√
1 − r2,

and pm,ℓ, qm,ℓ as two associated polynomials of degree m − 1 and m − 1 + ℓ, respectively.

Table 1. Some generalized Wendland functions in even dimensions.

Ψ2,1/2(r) =
√

2
3
√

π
(3r2L(r) + (2r2 + 1)S(r)),

Ψ2,3/2(r) = −
√

2
60
√

π
(15r4L(r) + (8r4 + 9r2 − 2)S(r)),

Ψ2,5/2(r) =
√

2
2520

√
π
(105r6L(r) + (48r6 + 87r4 − 38r2 + 8)S(r)),

Ψ4,1/2(r) =
√

2
30
√

π
((45r4 + 60r2)L(r) + (16r4 + 83r2 + 6)S(r)),

Ψ4,3/2(r) = −
√

2
420

√
π
((105r6 + 210r4)L(r) + (32r6 + 247r4 + 40r2 − 4)S(r)).

Theorem 1. Let there be Ω ⊂ R2, TN = {ξ1, . . . , ξN} ⊂ Ω as a centers set, and n, k ∈ N. Let
s f ,TN be the interpolation RBF of f ∈ Hk+2(Ω) relative to TN from Ψk+2,k+1/2 = Ψα+3/2,α, with
α = k + 1/2.

Let
h = sup

x∈Ω
min

1≤i≤N
⟨x − ξ i⟩2

be the fill distance of TN in Ω, where < · >2 denotes the Euclidean norm in R2.

Then,
| f − s f ,TN |j ≤ Chk+2−j∥ f ∥k+2, ∀ j = 0, . . . , k + 2, (4)

where C is independent of f .

Proof. Applying ([20], Proposition 3.2) for α = 0, s = 0, and τ = k + 2, it is verified that
k + 2 > α + 1; thus, there exists a real constant C > 0, independent of f , such that

∥ f − s f ,TN∥0 ≤ Chk+2∥ f ∥k+2. (5)

From Madych-Nelson ([21], Theorem 6), it is verified that

(Ψk+2,k+1/2(⟨· − ξ j⟩2), s f ,TN ) = s f ,TN (ξ j),
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and
(Ψk+2,k+1/2(⟨· − ξ j⟩2), f ) = f (ξ j) = s f ,TN (ξ j),

where ( · , · ) denotes the inner product in the dual space of SN .
Then, (Ψk+2,k+1/2(⟨· − ξ j⟩2), s f ,TN − f ) = 0, for all i = 1, . . . , N, and we have that

s f ,TN − f is orthogonal to SN .
Thus, for any s ∈ SN , it is verified that ((s f ,TN − s, s f ,TN − f ))k+2 = 0, and we ob-

tain that

∥s − f ∥2
k+2 = ∥s − s f ,TN + s f ,TN − f ∥k+2 = ∥s − s f ,TN∥

2
k+2 + ∥s f ,TN − f ∥2

k+2.

Hence, we have
∥s f ,TN − f ∥2

k+2 ≤ ∥s − f ∥2
k+2,

and taking s = 0, we conclude that

∥s f ,TN − f ∥k+2 ≤ ∥ f ∥k+2. (6)

From (5), (6), and Jiayin ([22], Lemma 3.3.3), we can affirm that there exists C > 0,
independent of f , such that

∥ f − s f ,TN∥j ≤ Chk+2−j∥ f ∥k+2, ∀ j = 0, . . . , k + 2.

Then, there exists C > 0, independent of f , such that

| f − s f ,TN |j ≤ Chk+2−j∥ f ∥k+2, ∀ j = 0, . . . , k + 2,

and (4) holds.

4. Smoothing Variational Splines by Generalized Wendland Functions

Given a function f ∈ Hk+2(Ω) with k ≥ 0 and a finite set of points A = {a1, . . . , an} ⊂ Ω,
we consider the functional θ : Hk+1(Ω) → Rn given by

θv = (v(ai))1≤i≤n ∈ Rn,

and for any ε > 0, let Γ be the functional defined on Hk+2(Ω) by

Γ(v) = ⟨θv − θ f ⟩2
n + ε|v|2k+2.

Remark 3. The first term of Γ(v) indicates how well v approaches f in a least discrete square sense.
The second term represents a classical smoothness measure weighted by the parameter ε.

Let SN be the radial basis functions space relative to the function ψk+2,k+ 1
2

and the
centers set TN , and consider the following minimization problem: find σ ∈ SN such that

∀ v ∈ SN , Γ(σ) ≤ Γ(v). (7)

Suppose that A is a Pk+1(Ω)-unisolvent set; that is,

ker θ ∩ Pk+1(Ω) = {0}, (8)

and suppose that

sup
x∈Ω

min
a∈A

⟨x − a⟩2 = o(
1
n
), n → +∞. (9)
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Theorem 2. Problem (7) has a unique solution, called the smoothing variational spline in SN
associated with A, θ f , and ε, which is the unique solution of the following variational problem: find
σn ∈ SN , such that

∀ v ∈ SN , ⟨θσn, θv⟩n + ε(σn, v)k+2 = ⟨θ f , θv⟩n. (10)

Proof. From (8), we have that the bilinear application η : Hk+2(Ω) × Hk+2(Ω) → R,
given by

η(u, v) = 2(⟨θu, θv⟩n + ε(u, v)k+2),

is continuous and Hk+2(Ω)-elliptic. Applying the Lax–Milgram Lemma ([23],
Theorem 3.8.2) for η and the continuous linear application ℓ : Hk+2(Ω) → R given by
ℓ(v) = 2⟨θ f , θv⟩n, there exists σn ∈ SN , such that

∀ v ∈ SN , η(σn, v) = ℓ(v),

and (10) holds. Moreover, σn minimizes the functional φ(v) = 1
2 η(σn, v)− ℓ(v) = Γ(v)−

⟨θ f ⟩2
n; thus, σn is the solution to Problem (7).

To compute the solution function σn, for i = 1, . . . , N, let wi ∈ SN be the function

wi(ξ) = ψk+2,k+ 1
2
(⟨ξ − ξ i⟩2), ∀ ξ ∈ Ω;

then, σn =
N

∑
i=1

ciwi. Applying Theorem 2, we obtain that c = (c1, . . . , cN)
⊤ ∈ RN is the

solution to the linear system
(AA⊤ + εR)c = Aθ f ,

where its coefficients are given as follows:

A = (θwi)1≤i≤N ∈ RN,n,

and
R = ((wi, wj)k+2)1≤i,j≤N .

Now, we prove that the smoothing variational spline σn converges to the function f
under suitable hypotheses.

Theorem 3. Suppose the hypotheses (8) and (9) hold and that

ε = o(1), n → +∞, (11)

and
n2h2k+4

ε
= o(1), n → +∞. (12)

Then, one has
lim

n→+∞
∥σn − f ∥k+2 = 0.

Proof. Let s f ,TN be the interpolation RBF of f relative to TN from ψk+2,k+1/2; then,
Γ(σn) ≤ Γ(s f ,Tn), and one has

⟨θσn − θ f ⟩2
n + ε|σn|2k+2 ≤ ⟨θs f ,TN − θ f ⟩2

n + ε|s f ,TN |
2
k+2. (13)

From (4), there exists C > 0, such that

|s f ,TN |
2
k+2 ≤ C∥ f ∥2

k+2, (14)
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and
⟨θ f − θs f ,TN ⟩

2
n ≤ n2Ch2k+4∥ f ∥2

k+2. (15)

Thus, from (13)–(15), we have that

|σn|2k+2 ≤ 1
ε
⟨θ f − θs f ,TN ⟩

2
n + |s f ,TN |

2
k+2 ≤ (

n2h2k+4

ε
+ 1)C∥ f ∥2

k+2,

and from (12), we conclude that there exists C1 > 0 and n1 ∈ N, such that

|σn|2k+2 ≤ C1, ∀ n ≥ n1. (16)

Moreover, from (13)–(15), we have that

⟨θσn − θ f ⟩2
n ≤ (n2h2k+4 + ε)C∥ f |2k+2,

and from (11) and (12), there exists C2 > 0 and n2 ∈ N, such that

⟨θσn − θ f ⟩n ≤ C2, ∀ n ≥ n2. (17)

From (16) and (17), we can deduce that there exists a real constant C > 0 and n0 ∈ N,
such that

∥σn∥k+2 ≤ C, n ≥ n0,

which means that the family (σn)n≥n0 is bounded in SN . It follows that there exists a
subsequence (σnl )l∈N with lim

l→+∞
nl = +∞ and an element f ∗ ∈ Hk+2(Ω), such that

σnl converges weakly to f ∗ in Hk+2(Ω).

Finally, reasoning as in the points (3), (4), and (5) of the proof of ([24], Theorem VI-3.2),
we obtain the result.

5. Numerical and Graphical Examples

To show the effectiveness of the method, we computed two relative error estimations
given by

EI =

√√√√√√√√√
5000

∑
i=1

(s f ,TN (ai)− f (ai))
2

5000

∑
i=1

f (ai)
2

, ES =

√√√√√√√√√
5000

∑
i=1

(σn(ai)− f (ai))
2

5000

∑
i=1

f (ai)
2

,

with {a1, . . . , a5000} ⊂ I as five thousand distinct random points, which are some approxi-
mations of the relative error of s f ,TN and σn, respectively, with respect to f in L2(I).

From Theorems 1 and 3, these relative error estimations EI and ES tend to 0 as n tends
to +∞, under adequate conditions.

Consider the Franke function (see [25]), given by

f (x, y) = 0.75e−
1
10 (9x+1)2− 1

49 (9y+1)2 − 0.2e−((9x−7)2+(9y−4)2)

+0.5e−
1
4 ((9x−3)2+(9y−7)2) + 0.75e−

1
4 ((9x−2)2+(9y−2)2),

for any (x, y) ∈ Ω = (0, 1)× (0, 1).
Moreover, the discrete space that we use to calculate the approximated solution σn

is the RBFs space constructed from the generalized Wendland function Ψ2,1/2 and the
centers set

TN =

{(
i

r − 1
,

j
r − 1

)
i, j = 0, . . . , r − 1

}
,
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with N = r2.
Table 2 shows the relative error estimation ES with r = 10 (N = dim SN = 100)

and n = 1000 for different values of ε; this specific parameter is introduced to avoid any
oscillation. In this case, EI = 5.8496 × 10−3. We observe that there exists an optimum value
of ε that could be estimated minimizing ES.

Table 2. Computed relative error estimation ES with r = 10 and n = 1000 for different values of ε.
EI = 5.8496 × 10−3.

ε ES

10−1 3.4819 × 10−2

10−2 8.5638 × 10−2

10−3 6.1827 × 10−3

10−4 5.2971 × 10−3

10−5 7.2971 × 10−3

10−6 3.1421 × 10−3

10−7 3.7435 × 10−3

10−8 3.3564 × 10−3

10−9 2.9671 × 10−3

10−10 3.1934 × 10−3

10−11 3.2573 × 10−3

10−12 3.0629 × 10−3

10−13 3.0529 × 10−3

10−14 3.0917 × 10−3

10−15 3.0927 × 10−3

Table 3 shows the relative error estimation ES with r = 10 (N = dim SN = 100) and
ε = 10−9 for different values of n. In this case, EI = 5.8496 × 10−3. We observe that ES
decreases when n increases, and it seems that it tends to stabilize.

Table 3. Computed relative error estimation ES with r = 10 and ε = 10−9 for different values of n.
EI = 5.8496 × 10−3.

n ES

100 5.7736 × 10−3

500 3.5199 × 10−3

1000 3.0276 × 10−3

2500 2.9316 × 10−3

5000 2.7236 × 10−3

Table 4 shows the relative error estimations EI and ES with n = 1000 and ε = 10−9 for
different values of r. We observe that EI and ES decrease when r increases.

Table 4. Computed relative error estimations EI and ES with n = 1000 and ε = 10−9 for different
values of r.

r EI ES

5 5.9404 × 10−2 4.4007 × 10−2

7 3.1667 × 10−2 2.5946 × 10−2

10 5.8496 × 10−3 3.0276 × 10−3

12 3.9227 × 10−3 1.8972 × 10−3

Figure 1 shows the graphs of the function f , and Figure 2 shows the interpolation RBF
s f ,TN and the smoothing variational spline σn for r = 10, n = 1000, and ε = 10−9, from left
to right. We obtained that EI = 5.8496 × 10−3 and ES = 3.0276 × 10−3.
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Figure 1. Graph of the function f .

Figure 2. Graphs of the interpolation RBF s f ,TN and the smoothing variational spline σn for r = 10,
n = 1000, and ε = 10−9, from left to right.

6. Conclusions

While the method developed in this work is known, the use of the generalized Wend-
land compactly supported RBFs in this context is totally new. In fact, the question that
one can ask is why use these functions? The answer is that the time cost of programming
these functions is quite reduced, if we compare it, for example, to the variational splines
mentioned in the references [14–17]. Moreover, the order of the degree of approximation,
represented with the calculation of the estimate of the interpolation error EI and the smooth-
ing error ES, with 500–1000 approximation points are of an order between 1.8972 × 10−3

and 3.0276 × 10−3 in most cases, as shown in Tables 2–4, while in Table 2 subsection 5.2.2
of [14], the degree of approximation with 900 points of approximation is 8.8 . . . × 10−3. All
this shows the improvement and the effectiveness of the approximation method studied in
this manuscript.

As a subject for another manuscript in the future or as an open topic, we think it is
possible to extend the study to higher dimensions.
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