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Abstract: The use of carriers to improve cannabidiol (CBD) bioavailability during digestion is at the
forefront of research. The main objective of this research was to evaluate CBD bioactivity and develop
CBD composites based on tailored carbon support to improve availability under digestive conditions.
The antioxidant capacity of CBD was evaluated using spectrophotometric methods, and anti-proliferative
assays were carried out using human colon carcinoma cells (SW480). Twenty-four composites of CBD +
carbon supports were developed, and CBD desorption tests were carried out under simulated digestive
conditions. The antioxidant capacity of CBD was comparable to and superior to Butylhydrox-ytoluene
(BHT), a commercial antioxidant. CBD reflected an IC-50 of 10,000 mg/L against SW480 cancer cells.
CBD in biological systems can increase the shelf life of lipid and protein foods by 7 and 470 days,
respectively. Finally, acid carbons showed major CBD adsorption related to electrostatic interactions, but
basic carbons showed better delivery properties related to electrostatic repulsion. A tailored composite
was achieved with a CBD load of 27 mg/g with the capacity to deliver 1.1 mg, 21.8 mg, and 4 mg to the
mouth, stomach, and duodenum during 18 h, respectively. This is a pioneering study since the carriers
were intelligently developed to improve CBD release.

Keywords: bioavailability; bioactivity; carbon support; CBD; composites; digestive

1. Introduction

Currently, approximately 60 different structures have been classified as cannabinoids,
with tetrahydrocannabinol (THC) and cannabidiol (CBD) having higher amounts in plants.
However, between these two substances, CBD has therapeutic properties, while THC can
lead to psychoactive effects [1,2]. Nevertheless, the consumption of CBD as medicine
is still a challenge because of its poor solubility in water, which reduces the options
for oral consumption [3,4]. Today, the use of nanocarriers seeks to improve the dosing
strategies used for active molecules such as CBD [5,6]. However, to date, the available
reports are insufficient as they focus on engineering support materials to establish strong
interacting complexes with high CBD loading but ignore the need to formulate reversible
complexes that allow the controlled release of CBD. These reversible complexes are crucial
to increasing the bioavailability of CBD from the supporting matrix when faced with
multifarious physiological conditions.

Wang et al. [7] reported the antioxidant activity of DPPH (2,2-diphenyl-1-picryl-
hydrazyl-hydrate), ABTS (2,2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), and FRAP
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(Ferric ion reducing antioxidant power) CBD-based nanocomplexes and described the
release of CBD from the carrier. However, the in vitro release tests were carried out under
simplified conditions using only digestive and duodenal enzymes; release tests in the
mouth were ignored, as well as carrier engineering. A subsequent study by Wang et al. [8]
established an experimental design for the formulation of an efficient CBD complex; how-
ever, release assays for all physiological conditions were again ignored. Years later, Wang
et al. [9] evaluated the effect of lipid carriers during CBD immobilization and conducted
CBD release trials under oral, gastric, and duodenal conditions. To date, this work is the
closest to the present research; however, the supports proposed by the authors were of a
lipid nature, which causes handling problems in the food industry, such as adherence to
containers, lipid peroxidation of the carrier, and decreased oral distribution. In recent years,
several studies have focused on complexes of a lipid nature [10–14]. Few authors have
developed non-lipid supports. Söpper et al. [15] evaluated the development of silica-based
nanocarriers for CBD loading. However, delivery trials throughout the entire gastroin-
testinal tract were ignored. Likewise, a single-carrier formulation was established, and no
optimization test was executed. Fraguas-Sánchez et al. [16] developed CBD nanocomplexes
based on poly-lactic-co-glycolic acid (PLGA) nanoparticles. Release studies were carried
out in buffered saline solutions, and no organic or inorganic ingredient that simulated
gastrointestinal conditions was used; therefore, it is impossible to determine the carrier’s
stability under the relevant conditions.

Many studies in the last four years have focused on developing non-lipid nanocomplexes
ideal for CBD immobilization. However, to the best of our knowledge, no studies in the
specialized literature report a carrier design that considers an appropriate relationship between
adsorption on the support and desorption from the support under relevant physiological
conditions [17–20]. In other words, most studies do not estimate the bioavailability (available
vs. delivered) of the CBD molecule from the carrier; added to this, the release tests are
incomplete when preparing buffered saline solutions or establishing a single condition (oral,
stomach, or duodenal) such as digestion. In this study, the formulation of a support to
promote CBD loading is as important as its formulation for the release of CBD from the
composite. It is worth mentioning that the formulation should not be irreversible to guarantee
the bioavailability and therapeutic effects of CBD under all physiological conditions.

Carbonaceous-based materials have been widely used as adsorbents thanks to their
large surface area, porous structure, adsorption properties, and chemical and thermal sta-
bility, as well as their regenerative, productive, and flexible characteristics. Carbonaceous
materials have porous structures that provide large surface areas. This large surface area
allows them to have more sites available to interact with the molecules they want to ad-
sorb [21]. Furthermore, the porous structures of these materials allow for a high adsorption
capacity. The pores act as traps for molecules, facilitating the capture of substances [22].
These materials have a high affinity for various compounds, including gasses, vapors,
and liquids. This is due to van der Waals interactions and, in some cases, the ability to
form hydrogen bonds with adsorbed molecules [23]. In addition, carbon-based materials
are usually very stable both chemically and thermally. This means they do not easily
break down or react with adsorbing substances, prolonging their life and effectiveness [24].
Many carbonaceous adsorbents can be regenerated and reused. This means that they can
be treated to eliminate adsorbed substances and be used again, making them economic and
ecological [25]. It is important to mention that they can be manufactured from various raw
materials, and their properties are adjusted through different activation processes, such as
steam or acid treatment. This allows adsorbents to be tailored for specific applications.

Hence, the objective of this research was to evaluate the biological properties of the
CBD molecule (antioxidant, antiradial, and antioxidative) and develop CBD composites
based on carbon materials of different physicochemical nature, determining the relationship
between the CBD adsorption on the carbon support and the desorption from the composites
at relevant physiological conditions. It is expected that the developed materials can open
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a wider landscape for easier use and formulation of CBD as a therapeutic solution for
different health conditions.

2. Materials and Methods
2.1. Materials

A standard solution of CBD (C21H30O2, 1.0 mg/mL in methanol, analytical standard,
for drug analysis, MW: 314.46 g/mol), ethanol, methanol, Trolox, DPPH (2,2-diphenyl-
1-picryl-hydrazyl-hydrate), ABTS (2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)),
tetrazolium red, FeCl3, terephthalate (TH), fluorescein (FL), 2′,7′-Dichlorofluorescein diac-
etate (DCHF) probe, AAPH (2,2′-azobis(2-methylpropionamidine) dihydrochloride) probe,
FeCl2, and Ethylenediaminetetraacetic acid (EDTA) (≥99% analytic grade) were provided
by Sigma Aldrich (St. Louis, MO, USA) and employed for antioxidant and antiradical
analysis. Linseed oil, collagen, and urea (≥80% purity) were purchased locally (Medellin,
Colombia) and used in the biological oxidative assays. Resorcinol, formaldehyde, Cesium
Carbonate, Barium Acetate, Phosphoric Acid, Ammonium Phosphate, Melamine, heptane,
and Span 80 (≥99% analytic grade) were purchased from Sigma Aldrich (St. Louis, MO,
USA) and used for the preparation of carbon supports. Finally, simulated physiological
media were formulated using NaCl, NaH2PO4, KCl, CaCl2, NH4Cl, glucose, bovine serum
albumin (BSA), pepsin, HCl, NaHCO3, KH2PO4, MgCl2, and NaOH (≥99% analytic grade)
obtained from Sigma Aldrich (St. Louis, MO, USA).

2.2. Methods
2.2.1. Cannabidiol (CBD) Identification

The CBD absorption spectrum was measured from 200 to 700 nm using a Genesys
20 Thermo Scientific (Waltham, MA, USA) UV-Vis spectrophotometer to determine the
maximum absorbance wavelength. A calibration curve was obtained at 255 nm for different
concentrations of CBD in ethanol (100 and 3000 mg/L).

2.2.2. Cannabidiol (CBD) Antioxidant Capacity

Total antioxidant activity was evaluated by in vitro colorimetric methods using DPPH, ABTS,
and FRAP probes suggested by Brand-Williams et al. [26], Re et al. [27], and Benzie et al. [28],
respectively. These probes change color because of the reception of radical hydrogen from
antioxidant molecules. For the tests, 50 µL of diluted CBD and 950 µL of the probes in solution
were mixed and incubated at room temperature in the dark for 30 min. The color change was
measured at 517, 734, and 590 nm for DPPH, ABTS, and FRAP, respectively, using a Genesys 20
Thermo Scientific UV-Vis spectrophotometer (Massachusetts, United States). The results were
compared with those of the reference antioxidant Trolox and expressed asµmol Trolox equivalents
per 100 g CBD (µmol ET/100 g CBD).

2.2.3. Cannabidiol (CBD) Antiradical Capacity

The antiradical activity was evaluated by in vitro fluorometric methods using TH, FL,
and DCHF probes to determine the trapping of radicals’ hydroxyl OH•, Peroxyl ROO•, and
total reactive oxygen species (ROS), as suggested by Yang and Guo [29], Ou et al. [30], and
Martín-Romero et al. [31]. The OH• radicals were generated through the Fenton Fe2+-EDTA-
H2O2 reaction, while the radical initiator AAPH was employed to create Peroxyl ROO• and
ROS. When the radicals were complexed with the target probes, their fluorescence profiles
were altered, and the ability of CBD to avoid alteration was monitored and compared with
a control scavenger. Dimethyl sulfoxide molecules were used as OH• scavengers, while
Trolox was used as a reference for ROO• and total ROS tests. For the assays, 50 µL of diluted
CBD, 50 µL of radical-generating solution, and 2900 µL of solution containing the probe
were used. The samples were incubated for at least 15 min in the dark, and fluorescence
readings were obtained using a Perkin Elmer (Waltham, MA, USA) LS45 spectrofluorimeter.
The results were compared with the reference scavenger and expressed as µmol scavenger
equivalents SE per 100 g CBD (µmol SE/100 g CBD).
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2.2.4. Cannabidiol (CBD) Anti-Proliferative Capacity

To determine antiproliferative activity, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) method was used, which is a colorimetric assay that al-
lows the measurement of cellular metabolic activity. Under certain conditions, NADPH-
dependent cellular enzymes can reflect the number of viable cells. These enzymes reduce
tetrazolium dye to its insoluble purple formazan form. However, loss of cellular life is
measured by the absence of the enzyme and the inability of the system to change its color.
The method described by Bahuguna et al. [32] was used in this study. For this purpose, an
isotonic saline solution was used to prepare CBD at 10, 100, 1000, and 10,000 mg/L, and
the viability of human colon carcinoma cells (SW480) in the presence of CBD solutions was
evaluated after 24 and 48 h of the assay.

2.2.5. Cannabidiol (CBD) in Oxidative Stability

The method proposed by Zapata et al. [33] was used to evaluate the ability of CBD
to protect against oxidative deterioration in complex systems. Linseed oil and collagen
were used as biological models to represent lipid and protein systems, respectively. To
induce oxidation, the systems were subjected to accelerated degradation conditions by
injecting air at a flow rate of 1150 mL/min at a temperature of 99.0 ± 0.1 ◦C and 10 mg/L of
sulfuric acid for 60 min. A system without CBD was used as a negative control. To evaluate
lipid oxidation, polar volatile compounds (PCs) were measured using a Testo 270 (Baden-
Württemberg, Germany) submersible cooking oil tester. This device measures the dielectric
constant of the oil, which is related to the amount of polar compounds generated during its
oxidative deterioration [29]; the results are reported as % PC. To assay protein oxidation,
the total carbonyls (TCs) were measured. To determine carbonyls, the spectrophotometric
method described by Fagan et al. [34] was used with some modifications, and the oxidized
extracts were mixed with dinitrophenyl hydrazine (DNFH) and incubated for 15 min in the
dark. Finally, the increase in absorbance of the DNFH–carbonyl complex was measured at
370 nm. The results were expressed in nmol of carbonyls/mg of protein.

2.2.6. Synthesis of Composites Based on Carbon Materials
Synthesis of Carbon Xerogels by Direct Emulsion

The protocol of Bailón-García et al. [35] with some modifications was used for the
synthesis of organic xerogels by direct emulsion (DE). The organic xerogels were prepared
by the polycondensation of resorcinol with formaldehyde in an aqueous medium using
the polymerization catalysts CsCO3 (Cs) and BaC4H6O4 (Ba). The resorcinol (24.8 g) and
polymerization catalyst, 0.073 g of Cs, and 0.058 g Ba were dissolved in deionized water
(1000 mL) using a three-neck glass reactor (2 L). The temperature was adjusted to 65 ◦C
under stirring (480 rpm), and then 36.5 g of formaldehyde solution was dripped. The
formed gels were aged at 65 ◦C for 24 h, filtered, and placed in acetone for 3 days to reduce
porosity collapse during the subsequent microwave drying process. The gels were dried by
microwave heating in an MS23J5133AG/AP oven (Suwon, South Korea) under an argon
atmosphere for 1 min at 384 W until a constant weight was achieved. The pyrolysis of
the organic xerogels was carried out at 900 ◦C for 2 h under N2 flow (300 cm3/min) using
a Tube Furnace KJ-T1400 (Zhengzhou, China). The carbon xerogels obtained by direct
emulsion catalysis with Cs and Ba were labeled as DECs and DEBa, respectively.

Synthesis of Carbon Xerogels by Inverse Emulsion

For the synthesis of organic xerogels by inverse emulsion, the protocol of Zapata-
Benabithe et al. [36], with some modifications, was used. The organic xerogels were
prepared via polycondensation. Resorcinol (24.8 g) and the polymerization catalyst (0.073 g
of Cs and 0.058 g of Ba) were dissolved in deionized water (33.8 mL) and 36.5 g of formalde-
hyde solution. The polycondensation reaction was performed at 65 ◦C for 62 min. The gels
were then emulsified by pouring into heptane (1000 cm3) containing Span 80 as a surfactant
using a three-neck glass reactor (2 L). The suspensions were stirred at a constant speed of
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480 rpm for 20–24 h at 65 ◦C, filtered, and immersed in acetone for three days. Subsequently,
the gels were dried using a microwave MS23J5133AG/AP oven (Suwon, South Korea) under
argon atmosphere for 1 min at 384 W until a constant weight. Finally, the samples were
carbonized using the procedure described above. The carbon xerogels obtained by inverse
emulsion catalysis with Cs and Ba were labeled as IECs and IEBa, respectively.

Synthesis of Carbon Xerogels in Pellets

For the synthesis of carbon xerogel pellets, the protocol of Morales-Torres et al. [37]
with some modifications was used. The organic xerogels were prepared by polyconden-
sation of resorcinol with formaldehyde in an aqueous medium. Resorcinol (24.8 g) and
the polymerization catalyst, 0.073 g of Cs, and 0.058 g of Ba were dissolved in deionized
water (1000 mL); the mixture was then placed in glass molds (30 cm length × 0.5 cm inner
diameter) sealed and cured as follows: 24 h at 25 ◦C, 24 h at 50 ◦C, and, finally, 72 h at
80 ◦C. After the curing cycle, the xerogel rods were cut into 2 cm tablets. The drying and
carbonization methods for organic xerogels in pellets were similar to those described above.
The carbon xerogels obtained from pellets catalyzed with Cs and Ba were labeled as PLCs
and PLBa, respectively.

2.2.7. Surface Modification of Carbon Supports

All carbon supports were dried at 110 ◦C for one day before modification. The method
used for modification was incipient impregnation, as described by Bailón-Garcia et al. [38]
with some modifications. Surface modifiers were prepared as follows: an appropriate
amount of modifier (Phosphoric Acid, Melamine, and Ammonium Phosphate) was dis-
solved in a minimum amount of water or ethanol (depending on the solubility) to add
heteroatoms of phosphorus (P), nitrogen (N), and nitrogen–phosphorus (NP). The MA solu-
tions were slowly dropped onto the support until completely moistened; the impregnated
supports were dried under an infrared lamp for 24 h and subsequently fixed at 700 ◦C for
1 h with N2 as an inert atmosphere. The final concentration of MA in the support was 4%
of this dry weight.

Finally, 24 materials were obtained using two catalysts, CsCO3 (Cs) and BaC4H6O4
(Ba), three synthesis methods, direct emulsion (DE), inverse emulsion (IE), and pellet
formation (PL), and four surface modifiers as controls (without modifiers), phosphorus (P),
nitrogen (N), and nitrogen–phosphorus (NP).

2.2.8. Characterization of Carbon Supports

To determine the physical and chemical properties of the carbon supports, their shapes,
surface areas (SBET), and superficial charge densities were determined using scanning elec-
tron microscopy (SEM), N2 adsorption isotherms (Iso-N2), and point zero of charge (PZC),
respectively. An LEO GEMINI-1530 Carl Zeiss microscope (Berlin, Germany) was used for
the SEM analysis. At the same time, for PZC determination, each carbon was dispersed
in pH between 1 and 14 using NaOH (0.1 M) and HCl (0.01 M) stock solutions; each
dispersion was taken to the NanoPlus 3 equipment (Norcross, ATL), and its Zeta Potential
was determined. The pH vs. Zeta Potential relationship was plotted on the abscissa and
ordinate, respectively, and the intersection point with the abscissa was considered the
point zero of charge (PZC), that is, the pH at which the particle presents a zero-charge
density. Finally, the surface area (SBET) was calculated from N2 sorption isotherms for
carbons using a Quadrasorb SI instrument (Boynton Beach, FL, USA) and applying the
Brunauer–Emmett–Teller Equation [39] to the isotherms.

2.2.9. Adsorption Isotherms

The composites were formed following the protocol reported by Zapata et al. [40] with
some modifications, as follows: 100 mg of carbon supports and 10 mL of CBD ethanolic
solution (600 mg/L) were mixed at 150 rpm and 25 ◦C for 10 h. Then, the impregnated
carbons were centrifuged at 2000 rpm for 10 min, and the supernatant absorbance was mea-
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sured at 255 nm to calculate the final CBD concentration; subsequently, the concentration of
CBD on carbon supports was calculated using Equation (1), and the results were expressed
as mg CBD/g carbon support.

CBD on carbon supports =
[Ci − Cf] × V

M
(1)

where Ci is the initial concentration of CBD, Cf is the final concentration of CBD, V is the
assay volume, and M is the mass of carbon support.

To evaluate the phenomenology of the carbon+CBD interaction, adsorption isotherms
were constructed using Batch-type setups at 25 ◦C, varying the concentration of CBD in
10 mL of ethanol and keeping the amount of carbon constant (100 mg). The suspensions
were shaken at 200 rpm and allowed to equilibrate for 24 h. Then, the amount of CBD ad-
sorbed on the carbon surface was determined by UV-Vis spectrophotometry, the calibration
curve at 255 nm previously constructed (Absorbance = 0.9826 × CBD Concentration in
g/L − 0.1131), and Equation (1). The adsorption isotherm was constructed through the
relationship between the adsorbed quantity of CBD (Nads) and the un-adsorbed amount
(Ce) in each assembly, according to the method described by Franco et al. [41], and the
experimental data were fitted to the SLE model [42].

2.2.10. Complete Factorial Design

To determine the factors that most influence the immobilization of CBD on carbon sup-
ports, a complete 2 × 3 × 4 factorial design was used. The selected factors were the type of
catalyst with two levels (Cs and Ba), type of synthesis with three levels (direct, inverse, and
monolith synthesis), and a surface modifier with four levels (without modification, modi-
fied with nitrogen, modified with phosphorus, and modified with nitrogen–phosphorus).
The results of the factorial design were analyzed using the statistical software R Free Version
(Vienna, Austria), showing the effect of the factors on the adsorbed amount of CBD on the
carbon support (mg/g) through an analysis of variance (ANOVA) with a significance level
of α = 0.01 and an F means test corrected by Holm’s method [43] using the simple function
and interaction graphs.

2.2.11. Release Assays under Simulated Physiological Conditions

To simulate oral conditions, 1 mL of human saliva was mixed with 5 mL of water and
maintained at 37 ◦C under constant stirring at 55 rpm until use. Stomach conditions were
simulated with a 2:1 mixture of inorganic and organic solutions. The inorganic solution
was composed of 2.2 g of NaCl, 1.1 g of NaH2PO4, 1.1 g of KCl, 0.3 g of CaCl2, and 0.4 g
of NH4Cl, while the organic solution was composed of 0.43 g glucose, 0.17 g urea, 0.2 g
bovine serum albumin (BSA). and 0.5 g of pepsin equivalent per liter of water. The pH
was adjusted to 2.1 with HCl 0.1 M, and the mixture was homogenized at 55 rpm until use.
Finally, to simulate duodenal conditions, an inorganic solution composed of 3.7 g of NaCl,
1.8 g of NaHCO3, 0.2 g of KH2PO4, 1.9 g of KCl, and 0.1 g of MgCl2 per liter of water was
prepared. Then, 0.02 g urea, 0.2 g CaCl2, and 0.2 g albumin were added, and the mixture
was homogenized by stirring at 55 rpm. The pH of the solution was adjusted to 7.4 with
NaOH 0.1 M until use. For the release tests, the carbon support with the highest CBD
adsorption during composite formation was used. To carry out the delivery experiments,
100 mg of the optimal composites was exposed to 10 mL of oral medium for 5 min, 10 mL of
stomach solution for 5 h, and 10 mL of duodenal solution for 18 h. The assays were conducted
at 110 rpm and 37 ◦C to simulate the movement and gastrointestinal transit of food from the
mouth to the intestine. At each stage, the simulated medium was analyzed to determine the
amount of CBD released using spectrophotometry at 255 nm, as previously described.

2.2.12. Statistical Analysis

All assays were performed in triplicates. The reported results are expressed as the
mean ± standard deviation of the measurements. To evaluate the effect of the independent
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variables, an ANOVA was performed with a p level of significance equal to 0.01. The
software used for the analysis was the free version of Statgraphics Centurion 18 (Statgraph-
ics Technologies, Inc.). For results with statistically significant differences, alphabetical
superscripts were used. Likewise, error bars were added to the data for each curve.

3. Results and Discussion
3.1. Cannabidiol (CBD) Bioactivity
3.1.1. Antioxidant and Anti-Radical Capacity

Antioxidant capacity is the ability of a compound to reduce a certain number of free
radicals to avoid their damaging effects on living tissues. The antioxidant capacity of CBD
was determined using the FRAP reducing power and the capture of ABTS and DPPH
radicals. Table 1 summarizes the obtained results. The ABTS values were higher than the
DPPH and FRAP values, which is associated with difficulty accessing the active centers of
DPPH and FRAP, unlike ABTS. Therefore, it is difficult to achieve the orientation of CBD
and DPPH or FRAP molecules for the transfer of electrons between them. In a similar study
carried out on different THC and CBD molecules, a greater antioxidant capacity measured
by the ABTS assay was also observed [44].

Table 1. Antioxidant capacity of CBD measured by in vitro spectrophotometric techniques, DPPH,
ABTS, and FRAP at 25 ◦C. All assays were performed in triplicate n = 3; in all cases, values are
statistically different.

Technique TEAC (µmol Trolox/100 g CBD)

ABTS 79,609 ± 2586
DPPH 3385 ± 63
FRAP 5259 ± 194

The antioxidant activity of CBD can be attributed to the phenolic group present
in its structure, which has two -OH groups that can easily donate hydrogen atoms or
electrons (inductive effect) to stabilize radicals, added to its cyclic structure that allows the
resonance of unpaired electrons after the formation of the phenoxyl radical, interrupting
the propagation of radicals (resonant effect) [45]. To place the CBD antioxidant results in
context, they were compared with those reported for butylated hydroxytoluene (BHT),
a widely used commercial antioxidant. The ABTS assay for CBD indicated that it had a
similar capacity to that of BHT [46]. However, the DPPH and FRAP results were lower than
those for BHT [47,48], which is related to CBD’s more voluminous structure compared with
that of BHT and its steric complexity to attack voluminous radicals. However, in biological
tissues, the presence of small and bulky antioxidants is necessary to attack all types of
radicals, from small reactive oxygen species generated during cellular respiration [49] to
radicals such as oxidized biomolecules [50]. Spectrophotometric tests are the first approach
for determining the antioxidant quality of samples. However, the evaluation of ROS
trapping as initiators of biomolecule oxidation is a relevant physiological approach to the
performance of CBD. Table 2 presents the ability of CBD to trap total ROS, hydroxyl radicals
•OH, and peroxyl radicals ROO•.

Table 2. The antiradical capacity of CBD measured by in vitro fluorimetric techniques, including the
DCFH assay, terephthalic assay, and ORAC assay, at 37 ◦C and phosphate buffer solution (PBS) at pH
= 7.4. All assays were performed in triplicate n = 3; in all cases, the values are statistically different.

Technique Radical
Result (per 100 g)

CBD Sample BHT Reference

DCFH assay Total ROS 4236 ± 213 µmol equivalents Trolox 5143 ± 239 µmol equivalents Trolox
TEREPHTHALIC assay •OH 1549 ± 77 mmol equivalents DMSO 227 ± 14 mmol equivalents DMSO
ORAC assay ROO• 156,472 ± 10,600 µmol equivalents Trolox 63,719 ± 3580 µmol equivalents Trolox
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Table 2 shows the antiradical activity results using BHT as a reference. CBD presented
an ORAC value 2.4 times higher than that of BHT. Regarding the trapping capacity of
total ROS, CBD is comparable to BHT, whereas the scavenging capacity of •OH radicals is
six times better for CBD. These results are promising because BHT is a synthetic antioxidant
commonly used in food, cosmetics, and pharmaceutical products to prevent oxidation and
extend the shelf life of these products. However, recent reports [51] have indicated that
BHT can have significant toxicological effects.

Animal studies have shown that high doses of BHT can induce liver damage, including
hepatomegaly and alterations in liver enzyme levels. Other studies [52] have suggested
that BHT may be genotoxic and promote tumor development in certain contexts. Evidence
suggests that BHT can interfere with thyroid function and reproduction. Animal studies
have indicated hormonal alterations and adverse effects on fertility [53]. It has also been
suggested that BHT may have neurotoxic effects [54]. Finally, there are reports [55] that
exposure to BHT can cause respiratory irritation and allergic skin reactions in humans.

Despite these potential adverse effects, BHT continues to be approved by several
regulatory agencies as a safe additive within the established consumption limits. However,
continuous evaluation and caution regarding its use are recommended. Therefore, the
discovery of natural CBD-type molecules with superior antioxidant performance and no
toxicological effects has become an alternative to synthetic antioxidants. Finally, several
studies have demonstrated the efficacy of CBD as a therapeutic molecule [56–58]. For
example, given its ability to be selective cytotoxic, CBD seems to be focused on inhibiting
the characteristics of cancer cells, including rapid DNA replication, altered metabolism
(Warburg effect), elevated expression of receptors or markers on the surface, and acidic and
hypoxic microenvironment, among others.

3.1.2. Anti-Proliferative Capacity

Figure 1 shows the results of CBD anti-proliferative activity on human colon carcinoma
cells (SW480).
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Figure 1. Viability of human colon carcinoma cells (SW480) exposed to CBD in solution at con-
centrations between 10 and 10,000 mg/L evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) method.

The results demonstrated the ability of CBD to influence the viability of human colon
carcinoma cells, highlighting its antiproliferative properties. CBD reflected an IC50 of
>10,000 mg/L (>32 µM) at 24 h, whereas the mean lethal dose using CBD at 48 h was
~10,000 mg/L (32 µM). The IC50 (half inhibitory concentration) is the concentration of
CBD necessary to inhibit the biochemical function of SW480 cancer cells by 50%. Medica-
tions such as Doxorubicin (adriamycin), imatinib (Gleevec), gefitinib (Iressa), trastuzumab
(herceptin), and cisplatin, used today in anticancer therapy, report IC50 values of up to
10 µM [59]. Although the IC50 values were on the same scale, they were below those found
in the present study for CBD. These findings provide a starting point for the development
of cannabinoid-based anticancer drugs. The antiproliferative effect of CBD has been associ-
ated with its ability to promote cancer apoptosis [60], inhibit proliferation [61], reduce the
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invasion and metastasis of cancer cells [62], alter the tumor microenvironment [63], and
induce autophagy [60].

3.1.3. Oxidative Stabilization

In the present study, the ability of CBD to prevent oxidation of complex systems
such as lipids and proteins was also evaluated, and the results are shown in Figure 2a
and 2b, respectively. Linseed oil was selected as a lipid model because of its high content
of unsaturated fatty acids (>80%), which are susceptible to peroxidation [64]. Likewise,
collagen was selected as a protein model because it plays multiple roles in meat muscle.
Similarly, both models can predict CBD behavior under physiological conditions. The
results demonstrated the ability of CBD to inhibit the peroxidation of linseed oil, which
was subject to the concentration of CBD in the model system. For example, reductions of
up to 18% in 60 min were reported using 8000 mg/L CBD. Likewise, the ability of CBD to
inhibit protein oxidation was also dependent on concentration; reductions of up to 94%
were reported using 8000 mg/L CBD.
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Figure 2. Formation of (a) polar compounds and (b) total carbonyls by accelerated oxidation of
linseed oil and collagen in the presence of CBD (0 mg/L–8000 mg/L) at 99.0 ± 0.1 ◦C and 10 mg/L
of sulfuric acid for 60 min with 1150 mL/min of air.

A general approach was used to determine the number of days the shelf life of a specific
food increases using an antioxidant that reduces lipid peroxidation by 18%. Assuming a
constant peroxidation rate, we can say that in 30 days, peroxidation reached 100% of the
critical level. The peroxidation rate was 3.33% per day. An antioxidant that protects against
lipid peroxidation by 18%, such as CBD, reduces the daily rate of peroxidation by 18%. This
means that the new daily rate would be 82% of the original, that is, 2.7% per day. With the new
peroxidation rate, the number of days it took to reach 100% of the critical level was calculated,
and it was concluded that CBD in polyunsaturated lipid systems (susceptible to oxidation)
could increase shelf life from 30 to 37 days. If the same exercise was performed for protein
systems, in which the incorporation of 8000 mg/L of CBD reduced oxidation by 94%, it can
be concluded that the shelf life of a protein-based food could be increased from 30 days to
500 days. This is a simplified calculation, and the actual shelf life may vary based on other
food-specific factors and storage conditions [65,66]. However, it provides a snapshot of CBD



Pharmaceutics 2024, 16, 1132 10 of 19

protection in complex biological systems. The biological stability results allow us to conclude
that the inclusion of CBD in foods prevents rancidity caused by the oxidation of fats and oils,
as well as the loss of nutritional qualities, by preventing the oxidation of fat-soluble vitamins
contained therein. Finally, CBD, as a food antioxidant, can preserve the color of foods by
preventing the oxidation of natural pigments, among others [67,68].

However, antioxidants in food can also strengthen the endogenous antioxidant system
of consumers. For example, an antioxidant capable of inhibiting lipid peroxidation, such
as CBD, can also prevent the oxidation of low-density lipoproteins (LDLs), which are
key players in the formation of atherosclerotic plaques in arteries [69] and damage to
blood vessel cells during the development of hypertension [70]. CBD also prevents the
generation of mutagenic products from peroxidation, which damages DNA and contributes
to cancer progression [71]. CBD inhibits the accumulation of lipid peroxidation products
that can induce neuronal damage associated with Alzheimer’s disease [72]. Finally, the
oxidative stress involved in the degeneration of dopaminergic neurons in Parkinson’s can
also be reduced by CBD [73]. Similarly, antioxidants capable of protecting against protein
oxidation have been associated with disease prevention. For example, CBD can prevent
the oxidation of proteins such as beta-amyloid and tau proteins related to Alzheimer’s
disease [74] and the oxidation of the alpha-synuclein protein that forms Lewy bodies, which
are a hallmark of Parkinson’s disease [75]. CBD can inhibit the oxidation of superoxide
dismutase and prevent the degeneration of motor neurons [76]. Type 2 diabetes mellitus,
metabolic syndrome, nonalcoholic steatohepatitis, hepatitis, systemic lupus erythematosus,
and rheumatoid arthritis are diseases associated with protein oxidation [77].

3.2. Composites Based on Carbon Materials
3.2.1. Carbon Support Properties

In the present investigation, 24 different carbons were synthesized for use as supports
to improve CBD biodistribution under physiological conditions. Characterization tests of
the carbon supports were carried out to correlate their physicochemical properties with
CBD immobilization capacity. Figure 3 shows the morphology of the base carbons (without
surface modifications) obtained using scanning electron microscopy (SEM).

The results suggest that the carbons formed three-dimensional networks of agglomer-
ated primary particles that have variable sizes from the micrometric regimen; the primary
particles of the pellets were smaller (<1 µm) than those of the powder gels obtained by
direct and reverse emulsion (>1 µm). All materials presented interparticle spaces with pore
size on a micrometric scale where CBD molecules can be housed. On the other hand, to
identify the fundamental physicochemical parameters in the CBD + carbon interaction,
properties such as surface area (SBET) and point zero of charge (PZC) were assessed for all
the materials. The results are presented in Table 3.

Table 3. Point zero of charge (PZC) and surface area (SBET) physicochemical properties for the
24 synthesized carbon supports. All assays were performed in triplicate n = 3. The same superscript
letters for different materials indicate that the values are not statistically different.

Carbon Support PZC SBET m2/g

DECs 9.8 ± 0.4 a 646 ± 3 a

DECsN 10.1 ± 0.3 a 632 ± 1 b

DECsP 2.5 ± 0.2 b 317 ± 2 c

DECsNP 4.4 ± 0.4 c 549 ± 2 d

DEBa 9.3 ± 0.4 a 673 ± 3 e

DEBaN 10.3 ± 0.3 a 738 ± 2 f

DEBaP 2.6 ± 0.2 b 577 ± 1 g

DEBaNP 3.6 ± 0.4 c 540 ± 3 h

IECs 10.0 ± 0.3 a 652 ± 4 a

IECsN 9.9 ± 0.2 a 589 ± 1 j
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Table 3. Cont.

Carbon Support PZC SBET m2/g

IECsP 2.4 ± 0.2 b 455 ± 1 k

IECsNP 2.6 ± 0.2 d 348 ± 2 l

IEBa 9.5 ± 0.3 a 761 ± 4 m

IEBaN 10.1 ± 0.2 a 622 ± 3 n

IEBaP 2.6 ± 0.2 b 647 ± 4 a

IEBaNP 2.9 ± 0.1 d 614 ± 3 o

PLCs 9.1 ± 0.4 a 583 ± 2 g

CsPLN 8.5 ± 0.2 e 537 ± 3 h

PLCsP 2.5 ± 0.2 b 245 ± 5 p

PLCsNP 2.9 ± 0.1 d 301 ± 3 q

PLBa 9.0 ± 0.4 a 683 ± 2 r

PLBaN 7.8 ± 0.1 f 638 ± 2 s

PLBaP 2.7 ± 0.2 b 346 ± 5 l

PLBaNP 2.9 ± 0.2 d 566 ± 4 t
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The porous area was affected by the functionalization of the material, which was
expected because the chemical groups tend to lodge in free spaces, providing new chemical
characteristics to the material. The unmodified and nitrogen-modified (N) carbons revealed
basic surfaces with PZC greater than 7.0, which was due to the presence of only carbon
structures and the inclusion of nitrogenous+ compounds that behave like bases given their
ability to accept electrons, as stated in the Lewis acid–base theory. In contrast, carbons
modified with phosphorus (P), or phosphorus–nitrogen (NP), presented PZC lower than
7.0, indicating acidic surfaces that are related to the presence of phosphate groups (PO4

3−)
rich in electrons to donate, which gives them surface acidity according to Lewis theory [78].
It is expected that materials with higher SBET host a greater amount of adsorbate; however,
this would be a simplistic conclusion if we consider that there are chemical mechanisms
that are also involved in the interaction of the adsorptive couple.

3.2.2. CBD Adsorption on Carbon Supports

The results of the adsorption capacity of CBD on each of the carbon supports are shown
in Figure 4. The highest CBD adsorption capacities were obtained for acidic materials (PZC
< 7.0) modified with P or NP, with adsorption values of up to 92.5%, whereas the lowest
adsorption values were reported for basic carbons, with a maximum adsorption of 63%.

Figure 4. Adsorption capacity of CBD on carbon supports using 100 mg of carbon supports and
10 mL of CBD ethanolic solution (600 mg/L) at 150 rpm and 25 ◦C temperature for 10 h.

The materials that adsorbed the most and the least CBD were PLBaP and DEBa, with
adsorptions of 92.5% (55.5 mg/g) and 27.19% (16.3 mg/g) and with areas of 346 and 673,
respectively, which allows us to conclude that adsorption does not seem to be determined
by the area but by the chemistry surface of the carbon supports. To determine the influence
of PZC and SBET on the adsorptive capacity of the materials, Pearson’s correlations were
calculated, and the results are shown in Figure 5.

The results revealed that the Point of Zero Charge (PZC) has a greater influence on
the adsorption capacity of CBD on carbon supports than SBET. The Pearson’s correlation
coefficients between SBET and CBD adsorptions were between 0.02 and 0.99, with an
average of 0.548. In contrast, for the relationship between PZC and CBD adsorptions,
these coefficients ranged between 0.62 and 0.92, with an average of 0.81. However, for
pellet carbons, both SBET and PZC appeared to be decisive in defining the adsorption of
CBD. Similarly, the results indicated an inverse relationship between the PZC of the carbon
supports and their CBD adsorption capacities. That is, acidic materials with PZC values
lower than 7.0 (modified with P or NP) showed better adsorbent capacities, up to four times
higher than those reported for other materials (Figure 4). To explain this phenomenon,
it is necessary to consider that the carbon supports modified with phosphorus (P) and
nitrogen–phosphorus (NP) presented an acid PZC < 3. This implies that at the pH of the
CBD solution (pH = 6.5), the carbon support acquires a negative charge. This charge allows
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electrostatic interaction with CBD, which has a pKa of 9.13, and is positively charged; in
this case, the intermolecular forces between the adsorbent pair would be of the ion–ion
attraction (CBD+ vs. CARBON−). However, the use of unmodified carbon or carbon
modified with nitrogen (PZC > 7) suggests an electrostatic repulsion between the adsorptive
pair. A representation of this phenomenon is presented in Figure 6.
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3.2.3. CBD Release Assays from Carbon Supports

Twelve complexes were chosen for the release assays under simulated physiological
conditions. In addition to the carbon support with the highest percentage of CBD adsorp-
tion (acids), others with intermediate and low adsorption (basic and neutral) were selected.
The results of CBD release for the selected systems are shown in Figure 7.
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Figure 7. (a) CBD release kinetics from the CBD + carbon complexes to simulated oral, gastric,
and duodenal physiological conditions at 37 ◦C and (b) CBD released from the complexes for each
simulated oral, gastric, and duodenal physiological condition expressed as mg of CBD released per g
of carbon support and % CBD released.

CBD release from the carbon support occurred in the following order: IECsN > DECsN
> IECs > DECs > DECsP > DECsNP > IECsP > PLCsNP > IECsNP > PLCsP. Interestingly,
the results revealed that CBD was released in greater proportion from materials that pre-
sented lower adsorbent tendencies (Figure 4). These materials correspond to basic carbons
generated in the absence of modifiers and the presence of nitrogen modifiers. In contrast,
acidic materials presented difficulties in releasing CBD molecules under all physiological
conditions evaluated. This is associated with the establishment of strong ion–ion attractions
when using this type of adsorptive couple. In practical terms, while a material such as
PLCsP has the capacity to adsorb 90.07% of the available CBD (54 mg/g), under simulated
physiological conditions, it is only capable of releasing 6% of CBD (3.1 mg/g). There-
fore, the bioavailability of the CBD active molecule when using the complex is less than
10%. Inversely, a material such as IECsN that adsorbed 45% of the available CBD by not
establishing irreversible interactions could deliver 27 mg/g of CBD under physiological
conditions, resulting in a bioavailability of 100%. According to the latest recommendations
from the Food Standards Agency, adults should limit their consumption of CBD in food
products to 10 mg per day [79]; therefore, the use of 370 mg of IECsN would provide
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the recommended dose. To achieve the same dose through the use of complexes based
on PLCsP and analogs, between 1 and 3 g of product are required, which translates into
greater costs and biological implications. Another significant point is that the composites
based on IECsN and DECsN presented complete desorption through the three simulated
physiological systems because of the electrostatic weakening of the adsorptive couple
subjected to different conditions of pH, agitation, and ionic strength [7]. The kinetics of
CBD release from the optimal materials, IECsN and DECsN, were fitted to the Higuchi
model [80], and the adjustment coefficients R in both cases were greater than 0.90. This
fitting allows us to conclude that CBD diffusion occurs in a single dimension and that the
dissolution and swelling of the carbon are negligible. However, the diffusivity of CBD is
constant, and perfect immersion conditions are always reached in the dissolution medium.
The Higuchi model is widely used to describe the release of poorly soluble drugs, such as
CBD, in aqueous media from a solid matrix as a carbon support. The model also allowed us
to calculate the Higuchi dissolution constant (KH); the KH value was 0.044 and statistically
the same for both materials, which translates into a CBD release of 0.044 mg per minute
from 1 g of support. Finally, to understand the phenomenology of the interaction between
IECsN and the DECsN carbon support and CBD molecule during the formation of the best
composites, adsorption isotherms were obtained, and the results are shown in Figure 8.
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Figure 8. CBD adsorption isotherm on (a) IECsN (▲) and (b) DECsN (■) using 100 mg of carbon support
and different concentrations of CBD at 25 ◦C and fit to the experimental data to SLE model (---).

According to UIPAC reports, the adsorption isotherms are type II, characteristic of
macroporous solids such as carbon supports, which represents the adsorption of CBD in
monolayers and multilayer without restrictions on the heterogeneous surfaces of the IECsN
and DECsN carbon supports. The isotherms were concave at low relative concentrations
and convex at high concentrations. Concentrations of 33 mg/L and 24 mg/L indicate the
values for which the monolayer coating of the IECsN and DECsN carbon supports occurs,
respectively, indicating the principle of multilayer adsorption. Based on the isotherms, the
amount of CBD that can be adsorbed (Nmax) on carbon supports can be up to 100 mg/g,
according to the SLE model [42]. For this type of material, an important conclusion is that
type II isotherms occur for completely reversible adsorption, which would explain the
bioavailability of CBD when it is immobilized on IECsN and DECsN supports.

4. Conclusions

In this study, the biological properties of CBD, such as its antioxidant capacity, ability
to capture radical species, and antiproliferative effects, were successfully investigated.
The results highlighted CBD as a phytochemical with comparable benefits and, in some
cases, superior to those reported for widely used commercially used antioxidants such as
BHT. After the biological properties of CBD were analyzed, 24 types of carbon supports
with different physical and chemical characteristics were synthesized. The adsorption
tests indicated that, in this case, the chemical properties of the carbon supports have a
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greater impact on the adsorption of CBD than their textural properties. Inverse correlations
between point zero of charge and CBD adsorption were found in 90% of the cases (acidic
carbon absorbed more CBD). However, as in most studies, an exclusive evaluation of
the conditions that favor the formation of CBD + carbon composites is insufficient. The
irreversibility of the composites and the conditions under which the active molecule CBD
is released toward the target organs for which they were designed are unknown. The
results of this study revealed that the ideal carbon supports for composite formulations
showed lower CBD release rates under simulated physiological conditions (irreversible
adsorption). Therefore, increasing the bioavailability of CBD is not recommended. In
contrast, basic materials with intermediate adsorption released a greater amount of CBD
during the digestive processes, which was facilitated by the intrinsic electrostatic repulsion
between the adsorbent couple. These pioneering findings suggest that we should be careful
when formulating CBD-based complexes to increase their solubility and availability.
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