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Abstract. This work presents a machine learning based study on peo-
ple detection using 2D Laser Range Finders (LRFs) combined with deep
learning methodologies, aimed at enhancing mobile robot capabilities in
various environmental conditions. The study introduces a novel integra-
tion of a monocular camera with an LRF on a mobile robot to improve
the accuracy and e�ciency of detecting and tracking people. By employ-
ing deep learning models such as CenterNet, the system leverages both
image and 2D range data to facilitate automatic labeling of datasets,
crucial for training robust classi�cation algorithms. In order to achieve
the best classi�er, two experimental studies are introduced in this work.
The former is carried out in a simulated environment and the latter
in real-world, o�ce-like environments. In simulations, various machine
learning models are trained and evaluated, showing signi�cant results
in distinguishing human legs from other objects. The transition to real-
world testing underscores the challenges and adaptations necessary to
achieve high accuracy and reliability in dynamic settings. The XGBoost
model emerged as the most e�ective classi�er in our study, achieving the
highest scores in accuracy, precision, recall, and F1-score, outperforming
other methods across these key metrics. This work aims to advance the
�eld of 2D LRF based people detection and also proposes a solution for
real-time applications, balancing precision and computational e�ciency.
Experimental results from both simulated and real-world environments
demonstrate the system's e�ectiveness.
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1 Introduction

Mobile robots rely on detecting and tracking people for applications like Human-
Robot Interaction (HRI), navigating crowded spaces, and safety in shared envi-
ronments [20]. Various computer vision techniques using Monocular, Stereo, and
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RGB-Depth cameras, including deep learning methods like YOLO, have proven
e�ective for these tasks [15]. Despite the advantages of vision systems, 2D Laser
Range Finders (LRFs) are favored in social and service robots for their reliability
and wide �eld of view, overcoming the limitations of vision sensors in adverse
conditions [4].

Detecting people using 2D laser technologies can be achieved through various
approaches, as outlined in the survey conducted by M. Sharif [22]. Some tech-
niques directly process laser measurements individually as inputs for supervised
machine learning algorithms. Conversely, alternative methods �rst cluster these
measurements and then derive features to characterize these clusters. In this
work, we will adopt the latter approach and propose a set of innovative features
compared to those described in the specialized literature.

Emerging studies utilize deep learning for enhanced detection from sensor
data, o�ering signi�cant improvements in reliability [21]. Given the absence of
automatic labeling tools for 2D laser data, this work explores the potential of
deep learning to automate the labeling of such datasets and the use of machine
learning approaches to generate e�cient leg detectors, aiming to enhance e�-
ciency and accuracy in diverse applications [14].

This work is organized as follows: Section 2 outlines the proposed system's
hardware and software, emphasizing camera and LRF integration. In Section 3,
deep learning methods for object detection are detailed, with a focus on the
CenterNet model. Section 4 describes the mobile robot's hardware and software
components. Section 5 discusses the simulated environment for leg detection
using 2D LRF and the associated machine learning training. Experimental eval-
uations in simulated and real-world conditions are covered in Sections 5 and 6,
respectively. The conclusions and some ideas on future work are commented in
Section 7.

2 Description of the proposal

In the initial phase of this study, we employ a simulated environment using Cop-
peliaSim to rigorously test our experimental setup. This approach ensures that
it performs e�ectively under controlled conditions designed to mirror real-world
scenarios. This simulation allows us to evaluate the detection capabilities and
overall system reliability without the complexity and variability inherent in phys-
ical environments. Through this simulation, we gain insights into the system's
performance, providing a foundation for further development and re�nement
before real-world application.

The next step involves using real-world data to validate the �ndings from our
simulations. Building on prior work in people detection, tracking [2], and auto-
matic labeling of 2D range data [1], this proposal introduces a re�ned method
by employing a monocular camera instead of the Kinect 1.0 sensor, avoiding
the Kinect's infrared drawbacks under certain lighting conditions. The system
incorporates a LRF sensor mounted 30 cm above the �oor on a mobile robot,
paired with a Jetson TX2 Developer Kit, which manages the camera and LRF
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integration. This setup captures both image and 2D range data alongside odom-
etry and velocity data, stored on an onboard SSD during navigation through an
o�ce-like environment.

This data supports o�ine deep learning analysis on powerful machines using
TensorFlow 2 Object Detection API [12]. A speci�c focus is on the Center-
Net HourGlass104 Keypoints 512x512 model [27], trained on the COCO 2017
dataset [17], to detect people in images. This model helps in keypoint detection,
aiding in the identi�cation of human legs through images, which are then cor-
related with 2D range data for automatic labeling. The labeled data facilitates
the development of a binary classi�er for detecting people's legs via machine
learning algorithms.

3 Deep learning based object detection

3.1 Two and one stage approaches

Object detection methods, essential for identifying categories like people and
animals in images, have advanced signi�cantly with deep learning, particularly
through Convolutional Neural Networks (CNN) [10]. These methods fall into
two primary categories: two-stage and one-stage approaches.

Two-stage approaches, such as R-CNN [10] and its successors, Fast-RCNN [9]
and Faster-RCNN [19], involve �rst extracting Regions of Interest (RoIs) and
then classifying them. Innovations include Mask-RCNN [11] for simultaneous
object and mask detection, and R-FCN [8], which employs position-sensitive
score maps. Cascade R-CNN [5] addresses over�tting by training sequential de-
tectors with increasing Intersection over Union (IoU) thresholds.

One-stage approaches, exempli�ed by YOLO [25] and SSD [18], streamline
the process by directly classifying and regressing anchor boxes, eliminating the
need for separate RoI extraction. Keypoint-based methods like CenterNet [28]
represent objects using keypoints, which simpli�es bounding box determination
and avoids traditional anchor box disadvantages.

3.2 CenterNet

CenterNet utilizes a single central point in an object's bounding box for repre-
sentation, regressing other properties like size and pose from image features [27].
A keypoint heatmap generated by a fully convolutional network aids in detecting
object centers, and bounding boxes are predicted from these peaks. The model
uses dense supervised learning for training and operates in real-time without
non-maximal suppression during inference.

CenterNet not only provides excellent speed-accuracy trade-o�s on the COCO
dataset but also allows for multi-person pose estimation, identifying human joints
as o�sets from the center [6]. Various applications have demonstrated Center-
Net's e�cacy, such as fault diagnosis in train catenaries [7], biometric recogni-
tion [26], vehicle detection [23], and real-time person detection in surveillance [3].
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For this project, a CenterNet HourGlass104 Keypoints 512x512 model pre-
trained on the COCO 2017 dataset [17] was selected based on its optimal balance
between speed and accuracy. This model is integral to detecting people and
their keypoints within our collected dataset, demonstrating its versatility and
robustness in object detection.

4 System overview

The system consists of three primary hardware components. The �rst is a Peo-
pleBot mobile robot equipped with an LRF SICK LMS200 [13], which has a
180º �eld of view and is capable of accurate measurements up to 8 meters. The
second component is an NVIDIA Jetson TX2 Developer Kit, mounted on top
of the LRF. This integrated unit features both GPU and CPU, optimized for
high e�ciency and power, supporting an onboard camera with a resolution of
640 x 480 at 30 frames per second. The Jetson TX2 operates on Ubuntu 18.04
and connects to the robot's sensory system via USB. The third component is a
laptop, positioned on the robot and connected to the Jetson TX2 via Ethernet,
serving as the user interface.

The software architecture of the system is developed in C++, utilizing Aria
and ArNetworking libraries provided by the robot manufacturer for program-
ming and network communication, although only Aria is needed due to the direct
wired connection of the Jetson TX2 which replaces the robot's original onboard
computer. The Jetson TX2 is powered by a LiPo battery, similar to those used in
drones, while the robot operates on a standard plumb battery system. OpenCV
library manages the image processing, and both laser measurements and images
are saved directly to an SSD connected to the Jetson TX2.

5 Leg detection using 2D LRF in simulated environments

To evaluate the e�ectiveness of various techniques for detecting people using 2D
LRF data, a simulated environment was utilized. CoppeliaSim was chosen for
its straightforward integration with several programming languages, including
Python, which facilitated the simulation process.

Python was the primary programming language employed in this study due
to its widespread adoption in research and data science. Its clear syntax and a
comprehensive array of specialized libraries support e�cient, complex data anal-
ysis and model development. Key libraries used include NumPy for numerical
computations, Pandas for data manipulation, scikit-learn for machine learning,
and OpenCV for computer vision. This combination of accessibility and robust
functionality makes Python especially suitable for conducting data-driven re-
search e�ciently.

5.1 Data Collection Process

The data collection process for leg detection using a 2D LRF was meticulously
designed within the CoppeliaSim simulation environment. Three unique scenar-
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ios were crafted to closely replicate real-world dynamics and interactions. These
scenarios include a single person moving along a prede�ned path, a static group
of people, and an assortment of non-human objects that mimic the shape of
human legs.

(a) (b)

(c)

Fig. 1: Multiple scenarios for data collection: (a) Single person following a path;
(b) Multiple people in stationary positions; (c) Objects-only scenario.

The detailed process for collecting the 2D LRF data is as follows:

� Single Person Scenario: The scene incorporates only the Pioneer robot
model and a person model that follows a prede�ned path (Bill on track).
The robot remains stationary while the person navigates a path composed
of consecutive S shapes, initially in a perpendicular direction, which then
shifts to a parallel orientation. The exact path is illustrated in �gure 1a. This
scene is designed to capture samples of legs in motion. This speci�c scenario
is crucial as leg detection of a moving person appears slightly distorted due
to the sampling speed of the 2D LRF.
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� Multiple Person Scenario: In this scene, 25 person models are used, com-
prising 13 standing models (Standing Bill) and 12 sitting models (Sitting
Bill). Each model is randomly rotated to ensure a variety of perspectives be-
fore data collection begins. The robot moves along a prede�ned path, marked
by yellow arrows in �gure 1b, while the person models remain stationary.

� Objects Only Scenario: This setup is �lled with diverse objects includ-
ing walls, rectangles, and cylinders of various sizes, arranged to simulate
a complex environment. The goal is to gather non-leg samples, enhancing
the dataset's diversity. The robot navigates a prede�ned path, indicated by
yellow arrows in �gure 1c, during data collection.

After a comprehensive data collection process, we now turn our attention to
the next section where we will delve into the speci�cs of how we have applied
clustering to our collected data.

5.2 Clustering

In our simulated environment, we chose to use settings that replicate those of
the physical LRF SICK LMS200 laser sensor. This decision ensures that the
simulated robot's operational characteristics align closely with those of its real-
world counterpart. Speci�cally, the simulated Pioneer robot employs a 2D LRF
that provides a 180-degree �eld of view with an angular resolution of 0.5 degrees,
positioned approximately 30 cm above the ground.

(a) (b)

Fig. 2: Outline of a person's leg in both simulated (a) and real world (b) envi-
ronments.

When a standing person is scanned by this LRF, the image appears as two
closely spaced semi-circumferences, as illustrated in Figure 2. Each sensor scan
generates 361 polar coordinates, which are then transformed into Cartesian co-
ordinates for further analysis.
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One of our primary objectives is to discern features within the sensor's �eld
of view, particularly focusing on the lower portion of a person, such as legs. To
approach this challenge, we adopted a binary classi�cation framework. The goal
is to categorize the data into two groups: representations of human legs and all
other objects. While this method enhances our ability to distinguish between
various shapes, it is important to recognize the limitations inherent in using
laser-based technology. For instance, objects like table legs or other cylindrical
items that mimic the dimensions of human legs can pose challenges for accurate
di�erentiation. Thus, while our approach provides a structured way to analyze
the sensor data, the precision of distinguishing between very similar shapes solely
through this method can vary.

Given the variable nature of the cluster sizes in our dataset, we incorporated
a variety of features for cluster characterization. These features are drawn from
established practices in related research and general techniques employed for
polygon characterization.

5.3 Features extraction

To prepare data samples for machine learning tasks, we extract a comprehensive
set of geometric features from the clusters, expanding upon successful meth-
ods like the Leigh's detector [16]. The comprehensive set of features utilized to
describe the clusters includes:

� Depth: Measurement of the cluster's extent from the front to the back.
� Width: Measurement across the widest part of the cluster perpendicular to
the depth.

� Perimeter: The total length around the boundary of the detected cluster.
� Radius: The radius of the circle that best �ts the point cloud as determined
by the Taubin �t.

� Sigma: The mean squared error (MSE) between the �tted circle and the
actual points in the cloud, indicating the �t's accuracy.

� Area: Area of the polygon calculated using the shoelace formula.
� Distance: Distance from the centroid of the point cloud to the 2D LRF,
providing a spatial reference.

� Number of points: Number of points comprising the cluster, re�ecting its
density and complexity.

� Angles: Sum of the internal angles of the polygon, which helps in under-
standing the geometric structure.

Given the typical appearance of a leg in laser-based imagery resembling semi-
circles, the algebraic circle �t method developed by G. Taubin [24] is applied.
This technique allows us to identify the circle that most accurately represents
the shape of the point cloud.

With a comprehensive set of features de�ned for each cluster, we them pro-
ceed to the model training phase.

People detection on 2D laser range finder data using deep learning and machine
learning 241



8 J. Abrego et al.

5.4 Model Training

The next phase of our research involves training various machine learning mod-
els, primarily selected from the scikit-learn library. Our selection encompasses
a range of robust algorithms including Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Random Forest, and AdaBoost. Additionally, XG-
Boost, though not part of scikit-learn, has been included due to its e�cacy in
handling large and complex datasets.

The simulated environment dataset comprised 18,890 positive samples (60%)
and 12,536 negative samples (40%), revealing an initial class imbalance. To ad-
dress this, we balanced the dataset by randomly sampling from the positive class
to match the size of the negative class, using a �xed seed for consistent results.
This adjustment ensures equal representation of both classes, facilitating more
e�ective and unbiased model training.

We allocated 75% of this balanced dataset for training and the remaining
25% for testing. The splitting process was conducted through a strati�ed ran-
dom selection using a prede�ned seed to ensure the reproducibility of our re-
sults. To optimize the models, we utilized a grid search coupled with 5-fold
cross-validation to determine the best hyperparameters for each algorithm. This
structured approach aims to maximize the predictive accuracy and reliability of
our classi�cation models.

With the model training complete, we now move on to evaluate their per-
formance. In the next section, we will present key metrics such as accuracy,
precision, recall, and the f1-score, providing a clear overview of the di�erent
models' e�ectiveness.

5.5 Performance metrics

Table 1: Performance metrics of various classi�cation models evaluated on the
test split of the dataset, sorted by f1-score. The highest scores for each metric
are highlighted in bold.

Model Accuracy Precision Recall F1-Score

XGBoost 0.994 0.994 0.993 0.994
Random Forest 0.992 0.990 0.995 0.992
KNN 0.992 0.991 0.993 0.992
SVM (kernel=rbf) 0.990 0.990 0.990 0.990
AdaBoost 0.981 0.977 0.985 0.981
SVM (kernel=linear) 0.966 0.946 0.989 0.967
SVM (kernel=poly) 0.963 0.957 0.969 0.963

The analysis of various machine learning algorithms on the dataset highlights
distinct performances, suitable for di�erent practical applications. The XGBoost
exhibited superior metrics (accuracy, f1-score, precision each at 0.994, and recall
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at 0.993), suggesting its robustness in achieving high predictive accuracy. It is
followed closely by the KNN and Random Forest, both showcasing high accuracy
and f1-score around 0.992, with Random Forest slightly outperforming in recall
(0.995). For detailed performance metrics of each model, see Table 1.

The SVM with an RBF kernel also performed commendably, maintaining
balanced metrics around 0.990, although other kernel types showed reduced ef-
fectiveness. The AdaBoost and SVM with a linear kernel demonstrated moderate
success.

Moving forward from our simulation results, the next phase of our study
involves applying the best models to a real-world setting to validate their practi-
cal e�cacy. This step is crucial for transitioning from a controlled experimental
environment to actual operational scenarios, where variables and conditions are
more dynamic and unpredictable.

6 Real World Environment

In the real-world phase, we leverage an automatic labeling process facilitated
by deep learning models specializing in pose estimation. This approach aims
to enhance the accuracy of data annotation, which is pivotal for training and
validating our machine learning models under real-world conditions.

6.1 Data Collection Process

Data was gathered using the PeopleBot mobile robot equipped with an LRF
SICK LMS200. The robot captured multiple sequences, collecting both 2D laser
data and visual images via an onboard camera on the Jetson TX2 development
board. The scenarios involved both static and dynamic elements: the robot re-
mained stationary while multiple individuals walked in its vicinity, and in other
tests, the robot moved, simulating the task of following a designated person.
This movement was managed using an industrial joystick. Although the focus
of this study does not include robot control�which will be explored in future
work�the recorded scenarios were designed to re�ect the expected operational
conditions of the mobile robot in real-world settings.

The primary environments for these recordings were o�ce-like spaces, in-
cluding corridors, o�ce rooms, and larger indoor areas such as conference rooms
and hallways. This setup aimed to simulate typical interactions and navigational
challenges the robot would face in a working environment.

In total, 9,241 frames across three di�erent sequences were captured with the
robot in stationary positions, and 6,320 frames in �ve sequences where the robot
was manually controlled to mimic the behavior of following a person.

Having described the data collection process and the operational settings,
we now turn our attention to the methodology for processing this data. The
next section delves into the automatic data labeling process, which utilizes pose
estimation techniques.

People detection on 2D laser range finder data using deep learning and machine
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6.2 Automatic labeling using bounding box and keypoints

Leveraging 2D range data for leg detection involves machine learning techniques
applied to datasets that ideally represent realistic operational scenarios, as dis-
cussed in Section 1. Our approach uses a pre-trained CenterNet HourGlass104
Keypoints (CHK) model to identify bounding boxes and keypoints for legs, fa-
cilitating the automatic labeling of 2D range data. The process integrates the
detection of people in images from an onboard camera with the localization of
corresponding laser points.

(a) (b)

Fig. 3: (a) Keypoints diagram of CenterNet HourGlass104 Keypoints. (b) Bound-
ing box and keypoints supplied by CenterNet Hour Glass104 Keypoints detector.

Bounding boxes and keypoints for human legs are de�ned by speci�c key-
points: kpi13 and kpi15 for the left leg, and kpi14 and kpi16 for the right leg, as
illustrated in Fig. 3. 2D laser points are clustered using the jump distance al-
gorithm, with valid clusters transformed and projected onto image coordinates
using the robot's camera calibration parameters.

The calibration process involves capturing images of a checkerboard pattern
from various angles to compute the camera's intrinsic (focal length, optical cen-
ters) and extrinsic (position and orientation in relation to the robot) parameters.
This alignment is essential for enabling a seamless overlay of laser data onto the
visual images and facilitates the accurate identi�cation and labeling of leg clus-
ters based on the proximity of laser points to the keypoints on the images.

The process begins by projecting the 2D LRF data onto the image captured
by the RGB camera using a transformation matrix. This alignment allows us
to overlay the LRF data onto the corresponding visual content accurately. Once
aligned, the CenterNet model identi�es key points on the person, speci�cally
kpi13, kp

i
15, kp

i
14, and kpi16, which correspond to the left knee, left foot, right

knee, and right foot, respectively.
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(a) (b)

Fig. 4: (a) Projection of 2D laser range data to colour image. (b) Assignment of
the projections of clusters to detect legs.

Considering the LRF primarily captures data at shin height and there are
no direct equivalent keypoints, a new reference point for each leg is created by
calculating the midpoint between the knee and foot keypoints. The distance
between this newly established midpoint and the nearest LRF point cluster is
then measured. If this distance is within a prede�ned threshold and the rest of
the points in that cluster are nearby, then the cluster is marked as a positive leg
detection, indicating the presence of a person's leg.

Clusters not identi�ed as legs are labeled as negative samples, representing
background objects. This selective �ltering aims to ensure the data used for
training and validation is both relevant and accurately labeled.

The process is visualized in Fig. 4a which illustrate the integration of image
and laser data, and Fig. 4b showing the assignment of clusters to detected leg
keypoints.

With our data now accurately labeled using the automated process, we pro-
ceed to characterize the data using the techniques outlined in section 5.2 before
moving to the next phase where once again we will train a selection of ma-
chine learning models. This stage will leverage adjustments and enhancements,
informed by the insights gathered during the prior phases.

An experimental study, outlined in the following section, selects the optimal
machine learning algorithm for classifying these features, ensuring robust leg
detection using 2D range data.

6.3 Model training

Following the evaluation criteria outlined in section 5.5, we narrowed down the
selection to models that achieved an F1-score of 99% or higher. This criterion
ensured that only the most accurate models were considered for training on
real-world data. This select group includes: XGBoost, Random Forest, KNN
and SVM (with RBF kernel).

People detection on 2D laser range finder data using deep learning and machine
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Given the close performance results of these models, a new metric, inference
time, has been introduced to �nd the best trade-o� between computing time
and performance. This metric measures the speed at which a model can process
input data and return a result, an essential factor for real-time applications. The
inclusion of inference time helps assess the practicality of deploying these models
in scenarios where response speed is critical.

After characterization, we obtained a dataset consisting of 19,632 samples,
balanced evenly across both classes. The same methodology outlined in section
5.4 was used to split the dataset, and also for selecting the best hyperparameters
for the di�erent models.

With our dataset prepared and models optimized, we then proceed to a
detailed evaluation. In the upcoming section, we will analyze model e�ectiveness
using both traditional accuracy metrics and the newly introduced inference time,
ensuring a better understanding of their potential for real-world applications.

6.4 Performance metrics

To comprehensively assess the performance of our models, we focused on cal-
culating the mean inference time. This metric represents the average processing
time required for 1,000 samples across 19 distinct splits of our complete bal-
anced dataset. Additionally, we calculated the standard deviation to evaluate
the variability in processing times across these splits.

These tests were conducted using a high-performance laptop equipped with
an Intel Core i7-12650H processor, featuring a 24 MB L3 cache, speeds up to
4.70 GHz, 10 cores, and 16 threads. The system also includes 16 GB of DDR5
RAM operating at 4800 MHz across two modules. The laptop also features an
NVIDIA GeForce RTX 4070 mobile GPU; however, this component was not
utilized in the current stage of testing as our analysis was con�ned to machine
learning models that did not leverage GPU acceleration.

Table 2: Performance metrics of various classi�cation models evaluated on the
test split of a real world dataset, sorted by f1-score. The highest scores for each
metric are highlighted in bold.
Model F1-Score Accuracy Precision Recall Mean (ms) STD (ms)

XGB 0.9944 0.9944 0.9946 0.9943 2.0 0.4
RandomForest 0.9941 0.9941 0.9953 0.9928 23.1 1.6
KNeighbors 0.9930 0.9930 0.9946 0.9914 57.4 4.8
SVC (kernel=rbf) 0.9913 0.9914 0.9960 0.9867 343.1 12.7

In the real-world dataset, the evaluation of machine learning algorithms (Ta-
ble 2) has yielded results that closely align with those obtained in the simulated
environment, demonstrating a strong consistency across di�erent experimental
setups. The XGBoost model has continued to exhibit exceptional performance,
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achieving the highest f1-score of 0.9944, which correlates precisely with its accu-
racy. This high degree of accuracy and precision (0.9946) coupled with a nearly
identical recall (0.9943) underscores its robustness in handling real-world data.
Additionally, the algorithm bene�ts from a notably e�cient execution time, av-
eraging just 2.0 milliseconds per instance with a minimal standard deviation of
0.4 milliseconds, highlighting its suitability for applications requiring high-speed
data processing.

Random Forest also shows excellent performance, slightly surpassing XG-
Boost in precision but with a longer execution time. However, its capacity for
easy explainability may render it particularly valuable in scenarios where under-
standing model decisions is crucial, despite the slower performance.

K-Nearest Neighbors (KNN) and the Support Vector Machine (SVM) with
an RBF kernel, while robust, are slower and slightly less e�ective in terms of
recall and overall f1-score compared to XGBoost and Random Forest. The sig-
ni�cant processing time of the SVM, in particular, could be a drawback in rapid
decision-making environments. These �ndings con�rm the suitability of XGBoost
and Random Forest for practical applications, emphasizing the need to balance
performance metrics and operational requirements when selecting algorithms.

For an in-depth understanding of the models con�guration settings, we present
the speci�c parameters used for the three top-performing algorithms in our
study:

� Random Forest is set with an entropy criterion, a maximum depth of 12,
and 100 estimators. The maximum features are determined by the square
root of the total number of features, which optimizes the diversity and com-
putational e�ciency of the model.

� XGBoost a maximum depth of 6 with 200 estimators to balance learning
capacity and prevent over�tting, ensuring high precision and recall in its
performance metrics.

� KNN employs the ball tree algorithm with 11 neighbors and weights by
distance, using the Manhattan distance metric (p=1). This con�guration en-
hances sensitivity to local data structures, bene�cial for our complex dataset.

7 Conclusions

The integration of deep learning-based pose estimation with traditional 2D Laser
Range Finders (LRFs) has signi�cantly enhanced mobile robots' ability to detect
human presence. The automated fusion of image and 2D range data streamlines
the creation of accurate training datasets, crucially reducing the manual e�ort
and time involved in labeling.

Experimental results validate the e�ectiveness of the proposed system, par-
ticularly highlighting the performance of the XGBoost model, which demon-
strates high accuracy and reliability in both simulated and real-world settings.
This model pro�ciently distinguishes between human �gures and other objects,
ensuring practical utility in operational environments.

People detection on 2D laser range finder data using deep learning and machine
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Future work will focus on developing people tracking capabilities using the
predictions generated by models trained in this study. This advancement aims
to enhance the real-time tracking and interaction capabilities of mobile robots
in complex environments, further bridging the gap between laboratory settings
and real-world applications.
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