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Abstract 14 
This research article delves into methodological challenges in scientometrics, focusing on errors stemming from 15 
the selection of classification schemes and document types. Employing two case studies, we examine the impact 16 
of these methodological choices on publication and citation rankings of institutions. We compute seven 17 
bibliometric indicators for over 8,434 institutions using 23 different classification schemes derived from 18 
Clarivate’s InCites suite, as well as including all document types versus only citable items. Given the critical role 19 
university rankings play in research management and their methodological controversies, our goal is to propose a 20 
methodology that incorporates uncertainty levels when reporting bibliometric performance in professional 21 
practice. We then delve into differences in error estimates within research fields as well as between institutions 22 
from different geographic regions. The findings underscore the importance of responsible metric use in research 23 
evaluation, providing valuable insights for both bibliometricians and consumers of such data. 24 
 25 
Keywords Responsible metrics; institutions rankings; citation indicators; publication counts; classifications of 26 
science; professional bibliometrics 27 

Introduction 28 

General Context 29 

Errors constitute an inherent and inevitable aspect of the scientific process. Achieving perfect 30 

accuracy is unattainable, as tools for measurement will always include some level of uncertainty 31 

(Scuro 2004). According to the Joint Committee for Guides in Metrology (BIPM et al. 2008), 32 

uncertainty is defined as a ‘parameter associated with the result of a measurement, that 33 

characterizes the dispersion of the values that could reasonably be attributed to the measurand’ 34 

(p. 2), where the measurand refers to the object being measured.   35 

 36 

In the field of scientometrics, uncertainty and errors in measurement are usually overlooked. 37 

This is problematic for various reasons. First, neglecting uncertainty leads to the misuse of 38 

bibliometric indicators, which are then employed to legitimize decisions in conditions of limited 39 

trust or political controversy (Ràfols et al. 2016). The professionalization of bibliometrics in 40 

academic libraries (Gorraiz et al. 2020; Gumpenberger et al. 2012) and Higher Education 41 

planning and research administration (Cox et al. 2019) has elevated bibliometric reporting to a 42 

valuable resource for decision-making. The widespread of metrics either explicitly or implicitly 43 

in research assessment exercises to support and judge individuals, departments or institutions 44 

(e.g., Hammarfelt and Rushforth 2017; Moed 2008) has created a landscape of tools and 45 

commercial solutions designed to respond to such demand. Bibliometric suites such as InCites 46 
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(from Clarivate) or Scival (Elsevier) offer a battery of research indicators based respectively on 1 

bibliographic data from Web of Science and Scopus aimed at responding at this demand. These 2 

indicators are not only built based on different sets of publications, but their definition also 3 

differs leading sometimes to contradictory results for monitoring a common object (Robinson-4 

Garcia et al. 2020). 5 

 6 

Second, bibliometric indicators are usually reported with high levels of precision, being the 7 

more evident example the inclusion of up to three decimals of the Journal Impact Factor. This 8 

is particularly worrying given the fact that even Garfield himself considered the impact factor 9 

accurate only up to one decimal place (Bensman 2007). In later years he admitted that the only 10 

reason ISI calculated the impact factors reported in the JCRs out to three decimal places was to 11 

avoid the large number of ties that would have resulted in listing many journals alphabetically 12 

in the impact factor rankings. Any analysis carried out under such a premise would de facto 13 

lose their validity, and we should not forget that this error has a profound effect particularly at 14 

the lower frequencies on ordinal rankings by the impact factor, on which most journal 15 

evaluations are based (Schloegl and Gorraiz 2010). 16 

 17 

This sense of false precision is also present in league tables and rankings in which variations in 18 

positions may be the result of noise rather than improvement or decay, affecting the prestige of 19 

those being portrayed in such tables (Bastedo and Bowman 2010; Gadd et al. 2021). While 20 

there have been some efforts to recognize this uncertainty, such as the inclusion of stability 21 

intervals in the Leiden Ranking and the introduction of position intervals in the Shanghai 22 

Ranking below a certain threshold, these measures are, at best, modest. Among the many causes 23 

for error or uncertainty in league tables we identify four types: 1) those derived from the 24 

misassignment of research outputs (Waltman et al. 2012), 2) those derived from unequal 25 

coverage of fields and locations in the database (Hicks 1999; Rafols et al. 2019; van Leeuwen 26 

et al. 2001), 3) those inherent to the metadata such as incompleteness or low quality metadata 27 

(Franceschini et al. 2015, 2016; Guerrero-Bote et al. 2021; Selivanova et al. 2019), and 4) those 28 

derived from methodological choices. By the latter we refer to choices which can affect the 29 

results without having a priori criteria set to justify such choices.  30 

Objectives of the study 31 

Our ultimate goal is to propose a methodological framework for evaluating measurements of 32 

error and variability when reporting bibliometric indicators in professional practice. This is 33 

particularly important if we aim to advocate and promote a responsible use of metrics in 34 

research evaluation in times when their use are more questioned than ever (Torres-Salinas et al. 35 

2023). Both, bibliometricians and producers of bibliometric data and indicators, have the 36 

responsibility of bridging towards professionals and scientists (Leydesdorff et al. 2016) 37 

consuming this data and promoting good practices on the use of such metrics. 38 

 39 

In this paper we showcase an specific case study in which errors can be quantified, derived 40 

from methodological choices. Specifically, we will focus on two case studies: 41 

 42 

• Diverging classification schemes. Here errors arise from the selection of a given 43 

classification scheme over another one when producing field normalized indicators 44 

(Ruiz-Castillo and Waltman 2015). In this study we will focus on this latter aspect of 45 

indicator variability by computing the same set of indicators on the same set of 46 

publications using up to 23 different classification schemes. Differences are due to how 47 

publications are categorized differently according to each classification. Also, they can 48 

be due to the inclusion or exclusion of some of the records due to their unfitness 49 
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regarding the classification scheme (e.g., the Essential Science Indicators classification 1 

scheme does not consider the fields of Arts and Humanities). 2 

• Selection of document types. The second case study is derived from the definition and 3 

selection of document types included in each analysis (Moed and Van Leeuwen 1995). 4 

Here we will focus on estimating errors derived from including either all document 5 

types in an analysis or only citable items. 6 

 7 

In both cases we will be using publication and citation rankings of institutions as a means to 8 

showcase how different indicators are affected by these errors and how it affects the positioning 9 

of institutions in these rankings. It is important to emphasize that the indicators used in our 10 

study, including those available through InCites, are part of a larger methodological framework 11 

focused on evaluating measurement errors and variability. This framework aims to improve the 12 

accuracy and reliability of bibliometric analyses, particularly when applied to institutional 13 

rankings, which use in in research management is specially controversial (Gadd 2020).  14 

Structure of the paper 15 

 16 

The paper is structured as follows. Next, we review literature related to methodological 17 

challenges imposed by the selection of classification schemes and definition of document types. 18 

Then we define our methodological design for measuring errors in scientometrics. Here we 19 

build on a previous study (Robinson-Garcia et al. 2023) to compute error estimates of 7 20 

bibliometric indicators by using up to 23 different classification schemes. We use the InCites 21 

bibliometric suite to calculate these indicators at the institutional level, analyzing a total of 22 

8,433 institutions. Third, we report average relative error estimates when considering different 23 

classification schemes at an aggregated level. We analyze differences in errors when accounting 24 

for all document types versus when considering only citable documents (articles, reviews and 25 

letters). Furthermore, we look into differences in errors when focusing on specific research 26 

fields as well as on geographic regions. We conclude by reporting the implications our findings 27 

have for professional practice and the use of scientometric indicators for decision-making. 28 

Literature review 29 

Selection of field classifications of science 30 

The selection of an appropriate classification scheme is a matter of concern in the field of 31 

scientometrics that has been discussed extensively in the literature using both quantitative and 32 

qualitative data (Gómez et al. 1996; Janssens et al. 2009; Minguillo 2010; Perianes-Rodriguez 33 

and Ruiz-Castillo 2018; Shu et al. 2019; Sugimoto and Weingart 2015). It is problematic for 34 

various reasons. First, in relation to the level of analysis at which the field delineation is made. 35 

Here, Gómez et al. (1996) point at four potential levels: document level, journal level, affiliation 36 

level and author level. Determining the level at which field delineation is done is crucial in 37 

terms of interpretability (Robinson-Garcia and Calero-Medina 2014) and accuracy (Shu et al. 38 

2019) as there is a problem of attribution especially when embedded in evaluation practices 39 

(Hansson et al. 2017). This issue is elegantly illustrated by Shu et al. (2019), who applied the 40 

Chinese Library Classification system to a set of publications using two different levels of 41 

analysis: at the journal level and the article level. They reported differences when rankings both: 42 

institutions and authors in terms of productivity, although this influence was mitigated at the 43 

institutional level. 44 

 45 

Second, there are many classification systems available databases (Gusenbauer 2022), each data 46 

sources has its own delineation of fields with ad hoc proposals (Gómez-Núñez et al. 2014; 47 
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Muñoz-Écija et al. 2019). But these classifications are not standardized, dealing to contradicting 1 

and non-comparable results. This is an important point in bibliometric studies in order to allow 2 

comparisons. The evaluation of the same content illustrates the structural differences in the 3 

databases, which is informative for interpreting bibliometric analyses (Stahlschmidt and 4 

Stephen 2022). A comparative study between the subject categories classification system in 5 

Web of Science and the All Science Journal Classification (ASJC) in Scopus, indicated that 6 

both classification were “too lenient in assigning journals to categories” (Wang and Waltman 7 

2016, p. 359). That is, they tended to include journals in multiple categories regardless how 8 

well connected they were in terms of citations with such categories. Another example is the 9 

classification proposed by Thijs et al. (2015), which combined hierarchical clustering and 10 

bibliographic coupling to create a 24 field classification system. This classification seemed to 11 

deviate greatly from the 22 fields from Essential Science Indicators included in Web of Science. 12 

These irregularities and discrepancies can lead to inconsistent outcomes (Reuven and Rosenfeld 13 

2022) hindering the interpretation of bibliometric indicators. As a means to improve these 14 

classification systems, some authors have suggested the use of hybrid methods, that is, refine 15 

journal-level classifications with paper level citation clustering and text mining to improve 16 

these classifications (e.g., Janssens et al. 2009). 17 

 18 

Third, there is the issue of balancing between accuracy, granularity and interpretability (Börner 19 

et al. 2012). In this sense, there are many multi-level classification systems which try to offer 20 

combinations by which users can zoom in or panning out. For instance, the publication level 21 

classification implemented by the CWTS (Waltman and van Eck 2012) is a three-tier 22 

classification system which goes spans from broad areas to micro topics based on direct citation 23 

networks between papers. Another example is the Australian and New Zealand Standard 24 

Research Classification (Australian Bureau of Statistics 2008) used by Dimensions, which also 25 

includes a three-level hierarchical classification system. The level of granularity of a 26 

classification will depend on the purpose for which the classification system is used. While 27 

broad fields may be desirable when reporting findings, more accuracy can lead to more robust 28 

indicators when normalizing by field (Ruiz-Castillo and Waltman 2015). In this sense, it is 29 

important to note that different indicators will show different levels of variability when moving 30 

from one classification system to another (Perianes-Rodriguez and Ruiz-Castillo 2018). 31 

 32 

Definition of document types 33 

 34 

The definition and inclusion of document types will have a vital influence on the outcome of a 35 

bibliometric report. Furthermore, their definition and typology will vary depending on the 36 

database used as a data source. The underlying principle behind this distinction of documents 37 

is that different types of documents serve different functions in the scientific system and hence 38 

are read and cited differently, leading to differences in citation distributions (Lundberg 2007; 39 

Moed and Van Leeuwen 1995). Here we observe inconsistencies between databases, finding 40 

that a paper categorized as ‘Article’ in Web of Science (WoS) might be defined as a ‘Review’ 41 

in Scopus, while Dimensions makes no distinction whatsoever (Visser et al. 2021).  42 

 43 

Scientometric studies have historically distinguished between citable and non-citable items 44 

(Heneberg 2014). But databases often misclassify records, being letters and reviews the most 45 

affected by these inaccuracies (Donner 2017). Gorraiz and Schloegl (2008) reported that there 46 

was a difference of over 10% between the sum of articles and reviews reported in Web of 47 

Science and Scopus. On a different study, Haunschild and Bornmann (2022) compared the 48 

scores that result from different normalization procedures, which have been performed based 49 
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on three different approaches of handling the document types. At least two of these approaches 1 

are in use in popular university rankings. They showed that field-normalized scores strongly 2 

depend on the choice of different document types and that the results on the aggregated level 3 

(country, institution) are not supported by results on the level of individual publications.  4 

 5 

Data and methods 6 

Data collection 7 

Data was retrieved using the bibliometric suite InCites, which includes the Web of Science 8 

Core Collection including the Emerging Sources Citation Index (ESCI), for the period 1980-9 

2022. In this study we worked at the institutional level, using their “Organizations” option, that 10 

is, their disambiguated list of institutions (more on issues for disambiguating institutional names 11 

in Waltman et al. 2012). We include a total of 8,434 institutions which have published at least 12 

1,000 documents (all document types) in the study period. InCites provides for each unit under 13 

analysis a battery of bibliometric indicators which can be computed according to some 14 

customizable parameters. One of them being the election of a given classification system. We 15 

select 23 of the classification schemes currently available in InCites, including in here multi-16 

level classification systems. Table 1 provides a description of each of them, indicating the 17 

number of categories per level and the assignment method Web of Science uses to create such 18 

tables. Except of the Citation Topics classification, which follow the methodology developed 19 

by Waltman and van Eck (2012), all schemes follow either a journal based method or aggregate 20 

Web of Science subject categories (which also are journal based). 21 

 22 

Table 1. Description of the 23 classification schemes employed for the analysis* 23 

Acronym Denomination Description 
Levels and 

categories 
Method 

ANVUR ANVUR Category Schema 
Official academic fields and disciplines list for Italian 

Universities Research and Teaching. 
(1) 17 broad categories 

Category-to-category mapping 

(WoS) 

FOR Australia ERA FOR 
Revised Australian and New Zealand Standard Research 

Classification (ANZSRC 2020) 

(1) 24 FoR2 (2) 212 

FoR4 
Journal mapping 

CAPES CAPES Brazil 
Classification created by the Foundation CAPES, linked 
to the Ministry of Education (Brazil) 

(1) Capes 9 (2) Capes 49 
(3) Capes 121 

Category-to-category mapping 
(WoS) 

CHINA 
China SCADC Subject 

Categories 

State Council Academic Degree Committee (SCADC) 
and Ministry of Education of China 

(1) Broader 13 (2) 
Granular 96 

Journal and other sources 
mapping 

SHANGHAI 
Shanghai Ranking Global 

Ranking of Subjects 

Rankings of universities in 54 subjects across, Natural, , 

Life, Medical, and Social Sciences… 
(1) 54 academic subjects 

Category-to-category mapping 

(WoS) 

TOPICS Citation Topics 
Algorithmically derived citation clusters (using an 

algorithm developed by CWTS, Leiden) 

(1) Macro 10 (2) Meso 

326 

algorithmically on citation 

relationships 

ESI 
Essential Science 

Indicators Research Areas 

All documents from Science Citation Index Expanded 

and Social Science Citation Index 
(1) 22 broad categories Journal mapping 

FAPESP FAPESP Brazil Created by the São Paulo Research Foundation 
(1) 9 High Level (2) 72 

Detailed categories 

Category-to-category mapping 

(WoS) 

GIPP 
Institutional Profiles 

Research Areas 

Clarivate Analytics has been profiling the world’s leading 
universities and research institutions 

(1) 6 broad academic 
fields 

Category-to-category mapping 
(WoS) 

KAKEN 
KAKEN Category Schema 

(10 and 66) 

From Japan called the Kakenhi Program (Grants-in-Aid 
for Scientific Research). 

(1) 10 L2 (2) 66 L3 
Category-to-category mapping 
(WoS) 

OECD OECD Category Schema 
Revised Field of Science and Technology (FOS) 

Classification of the Frascati Manual. 
(1) 42 fields 

Category-to-category mapping 

(WoS) 

PL19 PL19 Category Schema 
The Polish PL19 category schema is used for annual 

evaluation exercise 

(1) 44 underlying 

categories 
Journal mapping 

RIS 

Research and Innovation 

Strategies for 

Specialization 

The Research and Innovation Strategies for Smart 

Specialization (RIS3) for Latvia 

(1) 7 specialization 

fields 

Category-to-category mapping 

(WoS) 

UKREF14 
UK RAE Units of 

Assessment 2018 

UK 2014 Research Assessment Exercise (RAE) Units of 

Assessment (UoA) 
(1) 36 categories 

Category-to-category mapping 

(WoS) 
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UKREF21 
UK REF Units of 

Assessment 2021 

UK 2021 Research Assessment Exercise (RAE) Units of 

Assessment (UoA) 

(1) 36 units of 

assessment 

Category-to-category mapping 

(WoS) 

WOS 
Web of Science Research 

Areas 

The Web of Science schema comprises approximately 

250 subject areas 
(1) 250 --- 

* Information extracted from https://incites.help.clarivate.com/Content/Research-Areas/research-areas.htm The data presented reproduce higher levels of categorization. 

Specifically, certain categories (FOR, CAPES, CHINA, TOPICS, FAPESP, KAKEN) encompass multiple levels, which are not detailed in this table. The total of 16 listed 

categories, when including the sublevels of the mentioned categories, sums up to the 23 classification schemes analysed in this paper. 

 1 

For each institution we focused on seven different indicators: total number of publications, 2 

times cited, the Category Normalized Citation Indicator, top 1% most cited papers, top 10% 3 

most cited papers, average percentile, and H-Index. Each indicator is computed 46 times; 4 

according to the 23 different classification schemes and including all document types versus 5 

only citable items. 6 

Calculation of errors 7 

The calculation of the errors followed the standard definition used in the experimental sciences, 8 

where the absolute error of a measurement is the difference between the measured value and 9 

the true value. In cases where the true value is unknown, it is replaced with the mean value 10 

obtained after multiple iterations of the measurement. In our case, each indicator is calculated 11 

a total of 23 times for each classification scheme and twice when looking into document types.  12 

 13 

To accurately determine the absolute error for each institution, we first calculate the mean value 14 

of the repeated measurements of each indicator. The absolute error for a given institution, Δxi 15 

is then computed  as the difference between its measured value and the reference mean value. 16 

Mathematically, the absolute error of an institution can be defined as: 17 

 18 

Δxmean= (ABS(Δx1) + ABS(Δx2) + ….. + ABS(Δxn))/n 19 

 20 

Where xi corresponds to an institution and ABS(Δxi) is its absolute error.  21 

 22 

Let’s consider we want to compute the absolute error after retrieving the number of publications 23 

produced by three departments from three different bibliometric databases. The measurements 24 

obtained for from each database are shown in Table 2. 25 

 26 

Table 2. Mock up example of number of publications obtained for three institutions from three 27 
different databases 28 

 Database I Database II Database III 

Department A 250 260 240 

Department B 300 310 290 

Department C 280 270 290 

 29 

For each research department, we first calculate the mean number of publications across the 30 

three databases: 31 

 32 

• Department A: 250 33 

• Department B: 300 34 

• Department C: 280 35 

 36 

Next, we calculate the absolute error for each database by comparing the measured values with 37 

the mean value for each department and dividing by the number of measurements. Hence, the 38 

absolute error for Department A would be: 39 

https://incites.help.clarivate.com/Content/Research-Areas/research-areas.htm
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Δxmean =
|250 − 250| + |260 − 250| + |240 − 250|

3
= 6.67 1 

 2 

Following the calculation of absolute errors, we also compute relative and percentage errors, 3 

facilitating comparisons between indicators across different classification schemes. The relative 4 

error is obtained by dividing the absolute error by the mean value, while the percentage error is 5 

calculated by multiplying the relative error by 100. Following the example of Department A, 6 

we now show its relative and percentage errors: 7 

 8 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =  
6.67

250
≈ 0.0267 9 

 10 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =  0.0267 × 100 ≈ 2.67% 11 

 12 

 13 

To account for the variability observed in repeated measurements, we calculated the confidence 14 

intervals associated with each error measurement. These intervals were derived from the 15 

standard deviation of the repeated measurements and provide a range within which the true 16 

value is expected to lie with a specified level of confidence. 17 

Results 18 

General overview of error estimates by classification scheme and document types 19 

In table 3 we include an overview of our final dataset. For each classification scheme we include 20 

the total number of institutions covered when considering all document types and when 21 

considering only citable documents. As observed, only the WOS classification includes the 22 

8,434 institutions originally included in our dataset when considering all document types. 23 

Simply by filtering to citable documents, we lose up to 559 institutions in the best of cases 24 

(WOS). The classification scheme with the lowest coverage is FOR1 which includes 42% of 25 

the institutions and 18% of documents, a share that increases up to 20% when considering only 26 

citable documents. 27 

Table 3. Total institutions and publications per classification scheme and document types 28 

Classification scheme Institutions Records 
 

All docs. Citable only All docs. Citable only 

WOS 8,434 7,875 63,908,002 51,399,082 

KAKENL2 8,433 7,874 63,895,799 51,389,373 

KAKENL3 8,432 7,874 63,895,799 51,389,373 

UKREF21 8,432 7,874 63,895,799 51,389,373 

RIS 8,432 7,874 63,895,799 51,389,373 

OCDE 8,432 7,874 63,895,799 51,389,373 

GIPP 8,432 7,874 63,895,799 51,389,373 

FAPESP 8,432 7,874 63,895,799 51,389,373 

CAPES9 8,432 7,874 63,895,799 51,389,373 

CAPES49 8,432 7,874 63,895,799 51,389,373 

ANVUR 8,431 7,874 63,888,303 51,389,373 

UKREF14 8,414 7,865 63,671,768 51,241,279 

CAPES121 8,380 7,837 63,011,376 50,799,943 
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SHANGHAI 8,231 7,737 59,830,551 48,881,578 

CHINA BROAD 8,141 7,610 58,977,093 47,077,808 

CHINA NARROW 8,141 7,610 58,977,087 47,077,802 

TOPICSMACRO 7,931 7,717 53,728,425 49,126,966 

TOPICSMESO 7,931 7,717 53,728,425 49,126,966 

TOPICSMICRO 7,931 7,717 53,728,425 49,126,966 

PL19 7,746 7,187 51,317,825 40,102,542 

ESI 7,497 6,943 49,844,239 39,158,270 

FOR2 6,560 5,959 36,711,808 27,927,846 

FOR1 3,549 3,348 11,671,816 10,107,716 

Next, we report the average estimated error for each classification resulting from considering 1 

either all document types or only citable documents (Table 4). As observed, the lowest relative 2 

error is reported for the H-Index and the total number of citations, in both case below 1% for 3 

all classification schemes. We observe error estimates ranging between 0.7 for the CNCI to 4 

5.3% for the average percentile indicators. On the other extreme we find that number of 5 

documents is the indicator with the largest estimated error (7.4% on average). Furthermore, we 6 

observe different levels of variability in the error by indicator. While in the cases of times cited 7 

and H-Index these are below 0.1%, in the case of top 1% highly cited papers, we observe a 8 

variability of 8.3 between the largest estimated error (11% for TOPICSMICRO) and the lowest 9 

value (2.7% for TOPICSMACRO). A similar case we observe again in the number of 10 

publications, where there is a variability of up to 6.1% between FOR2 (9.6%) and the three 11 

TOPICS schemes (3.5%). 12 

 13 

Table 4. Average relative error by classification scheme considering document type 14 

Classification 

scheme 
Docs +/-  

Times 

Cited 
+/-  CNCI +/-  Top 1% +/-  Top 10% +/-  

Avg. 

percentile 
+/-  H-Index +/-  

WOS 8.0 6.3 0.8 0.6 2.2 2.0 4.5 3.7 2.7 2.3 4.3 3.6 0.3 0.3 

KAKENL2 8.0 6.3 0.8 0.6 3.0 3.0 4.9 4.1 2.7 2.3 4.2 3.6 0.3 0.3 

KAKENL3 8.0 6. 3 0.8 0.6 2.8 2.7 4.5 3.8 2.7 2.3 4.2 3.6 0.3 0.3 

UKREF21 8.0 6. 3 0.8 0.6 2.7 2.6 4.7 3.9 2.9 2.4 4.3 3.6 0.3 0.3 

RIS 8.0 6. 3 0.8 0.6 3.3 3.2 5.0 4.3 2.7 2.2 4.2 3.6 0.3 0.3 

OCDE 8.0 6. 3 0.8 0.6 2.8 2.7 4.8 4.0 2.9 2.4 4.3 3.6 0.3 0.3 

GIPP 8.0 6. 3 0.8 0.6 3.0 2.9 5.0 4.2 2.9 2.3 4.4 3.7 0.3 0.3 

FAPESP 8.0 6.3 0.8 0.6 2.9 2.8 4.8 3.9 2.8 2.4 4.3 3.6 0.3 0.3 

CAPES9 8.0 6.3 0.8 0.6 3.0 2.9 5.1 4.3 2.9 2.4 4.3 3.6 0.3 0.3 

CAPES49 8.0 6.3 0.8 0.6 2.7 2.6 4.6 3.9 2.7 2.3 4.3 3.6 0.3 0.3 

ANWUR 8.0 6.3 0.8 0.6 3.0 2.9 4.8 4.0 2.9 2.5 4.3 3.6 0.3 0.3 

UKREF14 8.0 6.3 0.8 0.6 3.0 2.6 4.6 3.9 2.9 2.4 4.3 3.6 0.3 0.3 

CAPES121 7.9 6.3 0.8 0.6 3.0 2.1 4.5 3.7 2.7 2.3 4.3 3.6 0.3 0.3 

SHANGHAI 7.7 6.0 0.8 0.6 3.0 2.5 4.5 3.8 2.7 2.2 3.9 3.3 0.3 0.3 

CHINA BROAD 8.2 6.3 0.8 0.6 3.0 2.9 4.9 4.2 2.9 2.4 4.4 3.7 0.3 0.3 

CHINA 

NARROW 
8.2 6.3 0.8 0.6 2.7 2.6 4.6 3.7 3.1 2.6 4.5 3.7 0.3 0.3 

TOPICSMACRO 3.5 2.6 0.8 0.6 1.0 0.9 2.7 2.4 1.3 1.0 0.7 0.5 0.3 0.3 

TOPICSMESO 3.5 2.6 0.8 0.6 0.8 0.7 4.3 3.5 1.2 1.0 0.7 0.5 0.3 0.3 

TOPICSMICRO 3.5 2.6 0.8 0.6 0.7 0.6 11.0 6.2 1.6 1.1 0.6 0.5 0.3 0.3 

PL19 8.6 6.6 0.8 0.6 3.4 3.4 5.1 4.3 2.8 2.3 4.6 3.8 0.3 0.3 
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ESI 8.7 6.5 0.8 0.6 3.0 2.8 4.8 4.0 3.0 2.4 4.5 3.7 0.3 0.3 

FOR2 9.6 7.0 0.8 0.6 2.8 2.7 4.8 3.9 2.8 2.2 5.3 4.0 0.3 0.3 

FOR1 4.7 3.4 0.8 0.6 1.6 1.4 3.5 2.8 1.7 1.3 2.0 1.7 0.3 0.3 

 1 

Given differences on the institutional coverage observed in Table 3, we present error estimates 2 

only considering institutions which are present in all schemes. To show how the exclusion of 3 

schemes with lower coverage affect error estimates, we present the world average relative error 4 

when considering the 23 classification schemes and considering only the top 13 with the largest 5 

institutional coverage (Table 5). Here we observe relatively small differences between focusing 6 

on all document types or citable documents. When considering the 23 classification schemes, 7 

we observe that the largest estimated errors are found for number of documents (12.2-12.8%) 8 

and top 1% most   highly cited papers (10.0-11.2%). When reducing the number of 9 

classifications, we find how the error estimates are reduced drastically for size dependent 10 

indicators (docs, times cited and H-Index) while they are very similar for non-size dependent 11 

indicators (CNCI, Top 1%, Top 10% and avg. percentile). However, while in the case of the 12 

CNCI and the average percentile, the error is reduced for 13 classification schemes, it increases 13 

for the Top 1% and Top 10% indicators. 14 

Table 5. World Percentage errors considering 23 and 13 classification schemes by document 15 
type selection 16 

 17 
  23 schemes 13 schemes 

Indicators All docs Citable only All docs Citable only 

Docs 12.8 12.2 0.2 0.2 

+/-  1.9 1.9 0.2 0.2 

Times Cited 9.2 9.2 0.2 0.2 

+/-  0.4 0.4 0.2 0.2 

CNCI 4.8 4.6 3.6 3.4 

+/-  1.7 1.4 1.8 1.5 

Top 1% 11.2 10.0 10.0 11.8 

+/-  4.1 3.9 4.8 6.6 

Top 10% 5.8 5.8 5.3 6.0 

+/-  1.8 1.7 1.8 2.2 

Avg. Percentile 3.1 2.4 2.2 2.3 

+/-  1.1 0.7 0.7 0.7 

H-Index 4.1 4.1 0.1 0.1 

+/-  0.4 0.4 0.1 0.1 

Field differences in error estimates for document types: Macro Topic and ESI fields 18 

As a means to deepen on how the choice of including all document types or only those defined 19 

as citable, in tables 6 and 7 we look into differences in error estimates by field. To do so, we 20 

use TOPICSMACRO scheme formed by 10 major fields and the 22 ESI fields respectively.  21 

 22 

In the case of the macro topics, we observe that the largest errors can be found in the fields of 23 

Arts & Humanities (between 0.6% for H-Index and 8.1% for number of documents), followed 24 

by Clinical & Life Sciences (between 0.4% for the H-Index and 6.0% for number of 25 

documents). Interestingly, the greatest variability in percentage error is found in the number of 26 

documents, for which Arts & Humanities is the field with the largest average error estimate, 27 



10 

 

while Electrical Engineering, Electronics & Computer Science has an average percentage error 1 

of 1%. The rest of the patterns between indicators hold to what we observed in Table 4. 2 

 3 

By using the citation topics, we considered that their calculation is only possible for 4 

publications with cited references. Therefore, all the document types usually non-including 5 

cited references (like e.g., meeting abstracts) are automatically excluded. That is the reason why 6 

the differences between using all document types and only citable items will be lower than 7 

expected when considering other classifications elaborated on journal level. 8 

 9 

Table 6. Percentage errors from document type selection by Macro Topics 10 

TOPICSMACRO Docs +/- 
Times 

Cited 
+/- CNCI +/- 

Top 

1% 
+/- 

Top 

10% 
+/- 

Avg. 

percentile 
+/- H-Index +/- 

Agriculture, Environment & 

Ecology 
2.3 1.1 1.0 0.5 0.7 0.5 2.1 1.7 0.9 0.7 0.4 0.3 0.297 0.3 

Arts & Humanities 8.1 2.2 3.0 0.8 1.7 1.0 5.2 3.8 2.5 1.2 2.8 1.0 0.6 0.7 

Chemistry 1.9 1.1 1.0 0.6 0.5 0.4 1.8 1.7 0.7 0.6 0.3 0.2 0.2 0.3 

Clinical & Life Sciences 6.0 2.8 1.4 0.6 1.6 1.3 3.5 2.7 1.7 1.2 1.0 0.6 0.4 0.3 

Earth Sciences  2.3 1.0 0.7 0.3 0.6 0.4 1.8 1.4 0.7 0.4 0.4 0.2 0.2 0.2 

Electrical Engineering, 

Electronics & Computer 

Science 

1.0 0.5 0.6 0.4 0.4 0.3 1.2 1.2 0.4 0.3 0.1 0.1 0.2 0.3 

Engineering & Materials 

Science 
1.0 0.6 0.4 0.3 0.4 0.3 1.6 1.5 0.6 0.5 0.2 0.1 0.1 0.2 

Mathematics  1.3 0.7 0.7 0.5 0.5 0.4 1.6 1.4 0.5 0.4 0.2 0.2 0.3 0.4 

Physics 1.4 0.6 0.5 0.3 0.5 0.3 1.3 1.1 0.5 0.4 0.2 0.2 0.2 0.2 

Social Sciences 3.4 1.6 1.3 0.6 1.0 0.8 2.4 1.9 0.9 0.6 0.7 0.4 0.4 0.4 

 11 

In the case of the ESI fields (Table 7) a different pattern is observed. Here it is the 12 

Multidisciplinary category the one accounting for the largest errors in all indicators with notable 13 

differences with respect to the rest of the categories. The exception is found in the average 14 

percentile with other fields exhibit greater percentage errors (e.g., Clinical Medicine, Social 15 

Sciences, general). The other exhibiting a large, estimated error is Clinical Medicine, where the 16 

error in terms of number of documents is just above 20%. 17 

Table 7. Percentage errors from document type selection by ESI fields 18 

ESI 
Docs +/-  

Times 

Cited 
+/-  CNCI +/-  

Top 

1% 
+/-  

Top 

10% 
+/-  

Avg. 

percentile 
+/-  H-Index +/-  

Agricultural Sciences  3.5 2.7 0.4 0.3 1.8 1.5 3.0 2.3 1.3 1.0 1.8 1.7 0.1 0.2 

Biology & Biochemistry 11.5 5.5 1.3 0.610 3.0 2.2 6.5 4.7 3.9 2.9 6.9 3.8 0.4 0.3 

Chemistry  5.4 4.6 0.7 0.6 3.2 3.1 5.5 5.4 3.3 3.6 3.8 4.0 0.2 0.3 

Clinical Medicine 20.5 5.5 1.8 0.6 6.5 4.6 8.0 4.7 6.5 3.5 10.6 3.2 0.4 0.3 

Computer Science 3.1 1.2 0.8 0.5 1.4 1.1 3.0 2.2 1.1 0.8 0.8 0.4 0.3 0.3 

Economics & Business  6.6 2.9 1.2 0.5 3.0 2.3 4.8 3.7 1.8 1.1 3.5 2.0 0.4 0.3 

Engineering 1.9 1.1 0.5 0.3 1.7 1.5 2.9 2.6 1.3 1.0 0.5 0.4 0.1 0.2 

Environment/Ecology  2.2 0.9 1.1 0.5 1.1 0.7 2.1 1.5 1.0 0.7 0.3 0.2 0.5 0.4 

Geosciences  3.5 1.4 0.7 0.3 1.2 0.9 3.2 2.8 1.1 0.9 1.1 0.7 0.2 0.3 

Immunology 13.7 3.1 1.8 0.5 3.1 2.1 5.5 3.4 4.6 2.3 6.9 2.2 0.5 0.3 

Materials Science 1.1 0.6 0.3 0.2 1.1 1.0 2.3 2.4 0.8 0.6 0.3 0.2 0.1 0.1 

Mathematics 1.3 0.6 0.3 0.2 0.6 0.5 1.9 1.6 0.6 0.4 0.5 0.3 0.1 0.2 

Microbiology 4.1 1.3 1.5 0.7 1.1 0.8 3.1 2.3 1.3 0.8 1.2 0.7 0.4 0.3 
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Molecular Biology & 

Genetics 
9.1 2.8 0.9 0.3 2.8 1.7 5.0 2.4 3.9 1.8 5.3 1.9 0.3 0.2 

Multidisciplinary 23.0 22.6 3.1 1.9 12.6 7.0 19.9 15.1 13.1 9.4 8.8 9.8 1.1 0.8 

Neuroscience & Behavior 14.6 3.8 1.2 0.4 3.4 2.5 5.4 3.3 3.6 3.0 8.4 2.4 0.2 0.2 

Pharmacology & Toxicology 11.8 4.5 1.6 0.7 2.8 2.0 5.2 3.5 4.1 2.4 6.4 2.8 0.4 0.4 

Physics 1.6 0.7 0.7 0.4 0.6 0.4 1.5 1.1 0.6 0.4 0.3 0.2 0.2 0.2 

Plant & Animal Sciences 5.2 2.8 1.0 0.4 2.0 1.4 4.2 3.4 2.0 1.6 2.2 1.8 0.2 0.3 

Psychiatry/Psychology 12.5 2.8 1.3 0.5 3.3 2.4 4.8 3.2 3.4 1.7 7.5 1.9 0.3 0.3 

Social Sciences, general 15.1 5.6 1.5 0.5 4.1 3.0 5.8 3.9 4.1 2.4 9.8 4.6 0.4 0.3 

Space Science 1.3 0.4 0.4 0.2 0.5 0.4 1.2 1.0 0.5 0.4 0.3 0.1 0.1 0.1 

 1 

Regional differences in error estimates for classification schemes: United States vs. South 2 

America 3 

Finally, we delve into regional differences in order to understand how homogeneous or 4 

heterogeneous is the effect of using different classification schemes in institutions located in 5 

different parts of the world. As an illustrative example, in Table 8 we report the average 6 

percentage errors of institutions located in the United States and in South America. Again, we 7 

report errors considering all document types or citable documents, as well as including the 23 8 

classification schemes or only the 13 classifications with the largest institutional coverage. 9 

While the general pattern of errors is similar to that observed in table 5, we do observe 10 

differences between institutions of these two regions. Overall, we observe that differences of 11 

error are always lower than 1% with some exceptions. The largest difference is that observed 12 

for the Top 1% most highly cited publications, where differences of error are above 4% 13 

(favoring US institutions) when considering the 23 classification schemes. These differences 14 

are below 1% when considering only 13 schemes. The other exception is for all document types 15 

and Top 10%, where the difference of error is just above 1%, being larger for South American 16 

institutions. 17 

 18 

Table 8. Percentage errors from classification schemes for institutions located in the United 19 
States vs. institutions located in South America 20 

UNITED STATES SOUTH AMERICA 

  23 schemes 13 schemes 23 schemes 13 schemes 

Indicators All docs 
Citable 

only 
All docs 

Citable 

only 
All docs 

Citable 

only 
All docs 

Citable 

only 

Docs 13.8 11.8 0.2 0.3 12.4 12.6 0.1 0.1 

+/-  1.6 1.5 0.2 0.2 1.0 1.3 0.1 0.1 

Times Cited 9.3 9.3 0.3 0.3 9.3 9.2 0.2 0.2 

+/-  0.3 0.3 0.2 0.2 0.3 0.3 0.1 0.1 

CNCI 5.4 4.9 4.5 3.6 5.1 5.0 2.0 2.0 

+/-  1.9 1.4 2.3 1.6 1.2 1.4 0.8 0.6 

Top 1% 8.6 7.6 9.2 8.8 13.2 12.2 9.3 9.7 

+/-  2.7 2.4 4.3 4.1 3.6 3.4 3.8 4.1 

Top 10% 5.0 5.2 5.1 5.2 6.0 6.0 5.0 5.3 

+/-  1.2 1.3 1.9 1.8 1.2 1.3 1.4 1.5 

Avg. Percentile 4.1 2.0 1.9 2.0 3.2 2.9 2.4 2.5 

+/-  1.1 0.5 0.5 0.5 0.8 0.6 0.5 0.5 
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H-Index 4.3 4.3 0.1 0.1 4.0 4.0 0.1 0.1 

+/-  0.3 0.3 0.1 0.1 0.3 0.3 0.1 0.1 

 1 

Conclusions & Discussion 2 

In bibliometric practices as well as in many bibliometric studies, several choices always have 3 

to be made which naturally can seriously affect the results obtained and their interpretations.  4 

In this article, we have assessed the magnitude of these errors occurring in two recurring 5 

situations: 1) considering the document type and 2) considering different classification 6 

schemes.  Moreover, we think that a science that is mainly based on statistics should indicate 7 

the validity of the retrieved values, both of its numbers and of its decimals, in order to reveal 8 

their significance. The purpose of this paper is to reveal bibliometricians which errors will be 9 

derived from their document type and classification schemes decisions. 10 

 11 

In the first case, we have seen how the choice of what type of documents should be included in 12 

the analysis, can influence not only the indicators of publication activity, where they are 13 

manifest, but also those of impact and especially those of normalized impact, such as the CNCI, 14 

and the Top 1% and Top 10%, which are the most commonly used in bibliometric practices 15 

(Moed 2017). 16 

 17 

Generally, in this case, the decision falls between choosing the “citable publications” or all 18 

types of documents that are available. This difference was already introduced by Garfield, when 19 

he introduced his measure of the Journal Impact Factor by considering only the citable items 20 

(articles, reviews and proceedings) in the denominator, while in the numerator including the 21 

citations to all document types.  22 

 23 

Our study shows that this decision can severely distort the results in the Essential Science 24 

Indicators (ESI) Category “Multidisciplinary”. As it is well known, this category appears as 25 

well in the ESI classification scheme as in the Journal Citation Reports, while in InCites all 26 

these publications are reallocated to categories that are more precise. Anyhow, our results show 27 

the big differences bibliometricians may confront with dealing with journals and journal impact 28 

measures assigned to this category.  29 

 30 

Other categories are also affected by the document type decision, especially Clinical Medicine, 31 

Immunology and Pharmacology & Toxicology, where percentage errors higher than 4% are 32 

reported for the calculation of the top 10% most cited, that is commonly used as a measure for 33 

academic excellence. These are mainly due to the effect of the Meeting Abstracts, as it has 34 

already been often reported (Gorraiz et al. 2016).  This also corroborated by the results obtained 35 

when using the Citation Topics – Macrotopics.  In this case, the percentage errors are 36 

considerably diminished, because Meeting Abstracts lack of references and cannot be 37 

considered in this scheme. Editorial Materials and Book Chapters are the other document types 38 

responsible for the differences in the impact measures, also in other categories like Social 39 

Sciences, general, Biology & Biochemistry and Psychiatry/Psychology. Interestingly. Physics, 40 

Space Physics and Mathematics are almost not affected, and the only consideration of citable 41 

items is a sound decision.  42 

 43 

Therefore, in our analyses we are considering errors due to three different decision-making 44 

processes: 1) to select a classification scheme, 2) to select a classification schema based on 45 

journal level versus one based on document level; and 3) to use a classification schema on 46 

different aggregation levels. And for the bibliometrician community it is crucial to be able to 47 
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estimate the effect that these decisions are expected to have on the values calculated for their 1 

impact measures. 2 

 3 

In this our first error analysis study, we have considered all the classification schemes available 4 

nowadays in InCites and calculated the errors due to their selection. In a first instance, we 5 

wanted to extend our work to the classifications available in SciVal and compare our results. 6 

But to our great surprise, we discovered that the selection of the classification did not change 7 

the impact results at the working aggregation level (meso-level) in that analytical tool, so they 8 

could not be incorporated into our study. 9 

 10 

Our results show the alterations that the impact measures would undergo in the case of using 11 

another classification scheme. Of the four normalized impact indicators, the top 1% shows the 12 

largest margin of error ranging from 3 to 17%. This is mainly due to the short number of 13 

publications contributing to this percentile. The measure of excellence (Top 10% most cited) 14 

fluctuates between 5 and 8%, and the average percentile varying between approximately 1.5 15 

and 3%.  The value of the CNCI can vary from 1.5 to 5%. 16 

 17 

Differences in the values of the H-index are only reported when including classification 18 

schemes reducing considerably the number of publications considered (10 from 23 Schemes). 19 

Furthermore, topological factors, would only increase slightly these errors or deviations due to 20 

the selection of a classification scheme. In a study case, the differences between North-21 

American and South-American institutions, the discrepancies between the percentage errors 22 

were only slightly higher for the percentile indicators for the South-American organizations 23 

when considering only the citable items. Finally, our results show that the decision made by for 24 

using all types of documents or only the citable ones hardly alter the divergences resulting from 25 

the use of one or the other classification system (see table 5) at the meso level. 26 

 27 

Limitations and further research 28 

 29 

All the analyses in this study have been carried out at the meso-level, which is the most 30 

significant for this purpose. All analyses have been performed for the period 1980-2022 to 31 

increase the significance of the results. For shorter periods, the errors, especially for indicators 32 

that are not standardized, such as the number of publications and the number of citations, would 33 

naturally be much higher and should therefore be recalculated for each specific situation in 34 

further studies 35 

 36 

At the macro level very similar results are expected, while at the micro level, i.e., in the 37 

evaluation of individuals, the analysis is much more problematic due to the small number of 38 

publications available, and the great diversity of the cases and criteria to be considered (such as 39 

gender, age of career, etc.). For example, Åström, Hammarfelt and Hansson (2017) discuss how 40 

scientific publications can be categorized in different fields depending on the unit of assessment 41 

being evaluated: the publication, the individual or the institution. They found variations in terms 42 

of purpose of categorization as well as purpose of evaluation, i.e., the definition and function 43 

of the publications depending on whether it is situated in a context of scholarly communication 44 

or a context of research evaluation. The raising questions such as on what levels the distinctions 45 

are made, and in terms of on what principles the categories are being defined. The varying 46 

functions of the boundary object becomes critical when contextualized within the concept of 47 

infrastructures (publication databases, citation indices, evaluation systems and classification 48 

systems). Therefore, it is always advisable to perform the measurements on a case-by-case basis 49 

and with different data sources and purpose of use.  50 
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 1 

One of the most subtle and critical problems of bibliometrics is classifications. As is well 2 

known, there is no standard, and each database and even each nation or continent uses its own 3 

schema for their evaluation systems. That is why Clarivate, in a big effort, tried to collect the 4 

most used ones on different aggregation levels (macro, meso and micro) in its flagship product 5 

“InCites” and to use them for the calculation of the most common bibliometric indicators (see 6 

Table 1). Besides, classification systems are usually created at the level of journals (Pudovkin 7 

& Garfield, 2002) but also at the paper level (Waltman & van Eck 2012; Rivest et al 2021). 8 

Comparisons of these two levels of aggregations, journal classification versus paper 9 

classification using the same classification scheme and the same dataset revealed that almost 10 

half of the papers could be misclassified in journal classification systems (Shu et al 2019). When 11 

comparing rankings of the most productive institutions and authors, classification of papers has 12 

less influence on rankings at the institutional level than at the individual level (Shu et al 2020), 13 

which has implications for bibliometric evaluation. At this point, it is important to emphasize 14 

that InCites also includes other classifications based not only on journal level (e.g. ESI and 15 

WoS subject categorization) but also most recent ones based on document level like the 16 

classification system builds on “Citation Topics”, algorithmically derived citation clusters using 17 

an algorithm developed by CWTS, Leiden1. Further studies can bring light on differences using 18 

journal or article level when calculating errors.  19 

 20 

Another limitation of this study is that we have performed all the analyses on a single data 21 

source, the Web of Science Core Collection.  Therefore, it will be necessary to perform future 22 

analyses comparing the results in different sources, such as WoS CC, Scopus, Dimensions and 23 

even other Open sources, such as OpenAlex, Crossref or Lens. We are fully convinced that 24 

these studies will be of great help to all those involved in providing bibliometric services to be 25 

able to argue, justify and foresee the effects of the decisions they have had to make in carrying 26 

out their analyses. 27 

 28 
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