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ABSTRACT
In this paper, we revisit the power curves in ANOVA simultaneous component analysis (ASCA) based on permutation testing 
and introduce the population curves derived from population parameters describing the relative effect among factors and inter-
actions. The relative effect has important practical implications: The statistical power of a given factor depends on the design of 
other factors in the experiment and not only of the sample size. Thus, understanding the relative power in a specific experimental 
design can be extremely useful to maximize our capability of success when planning the experiment. In the paper, we derive 
relative and absolute population curves, where the former represent statistical power in terms of the normalized effect size be-
tween structure and noise, and the latter in terms of the sample size. Both types of population curves allow us to make decisions 
regarding the number and nature (fixed/random) of factors, their relationships (crossed/nested), and the number of levels and 
replicates, among others, in an multivariate experimental design (e.g., an omics study) during the planning phase of the experi-
ment. We illustrate both types of curves through simulation.

1   |   Introduction

Prof. Smilde's research group proposed the ANOVA simultane-
ous component analysis (ASCA) [1], a powerful framework for 
analyzing the individual influence of different experimental 
factors and their interactions in experimental designs with a 
high number of responses. ASCA represents a natural multivar-
iate extension of the analysis of variance (ANOVA). The theory 
associated to ANOVA is extensive [2], and several of its devel-
opments have been incrementally incorporated into the ASCA 
framework throughout the years [3–5]. Still, ASCA can be con-
sidered a developing technique, and many unresolved questions 
remain regarding best practices [6, 7].

One such questions is how to derive a power analysis in the con-
text of ASCA. Statistical power is a relevant concept in inferential 

statistics. The power of a test measures the probability that it 
correctly rejects the null hypothesis (H0) when the alternative 
hypothesis (H1) is true. The power can be defined as 1 − � for � 
the Type II error (false negative) probability. Power curves are a 
form of power analysis where power is represented in terms of 
the sample size, that is, the number of replicates or experimental 
runs under the same conditions. This is a recommended anal-
ysis prior to any multivariate experiment (e.g., a clinical study 
with omics responses) to determine the required number of sub-
jects and experimental levels for a desired statistical power.

In standard univariate ANOVA, or when relatively few responses 
are considered, it is possible to use analytical methods to derive 
power curves based on typical assumptions (such as normality) 
[8]. However, in the context of more than just a few responses, 
or to assess the violation of any possible statistical assumptions, 
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numerical methods [9] are a viable alternative. Arguably, the 
most popular approach for statistical inference in ASCA is per-
mutation testing [9, 10]: a resampling method that transforms 
ASCA into a distribution-free approach that is more flexible 
than parametric ANOVA, where inference is based on analytical 
distributions. The derivation of power curves based on ASCA's 
permutation testing necessarily requires numerical approaches.

In previous work [6], we introduced the simulated power curves 
in ASCA as a strategy to optimize an ASCA pipeline for a spe-
cific experimental design in terms of statistical power. Simulated 
power curves can be used to find the optimal ASCA model in 
terms of fixed/random factors, crossed/nested relationships, 
interactions, test statistic, transformations, and others. Our 
approach was defined to compare several models in terms of 
relative power, but it cannot be used to make sample size estima-
tions for an entirely new multivariate experiment. In this paper, 
we revisit the simulated power curve approach to generalize it. 
In particular, we make the following contributions:

•	 We generalize ASCA power curves so that any design can be 
simulated, including complex relationships among factors 
and their interactions.

•	 We define the population curves, derived from population 
parameters (standard deviations) describing the relative ef-
fect among factors and interactions.

•	 We propose two types of population curves:
–	 Relative population curves (RPCs) represent statistical 

power in terms of the relative effect size between struc-
ture and noise. They are useful to optimize the ASCA 
pipeline for an analysis at hand.

–	 Absolute population curves (APCs) represent statistical 
power in terms of the sample size. They are useful to plan 
ahead the number of replicates and/or levels to use in a 
designed study.

•	 We illustrate the behavior of the two types of population 
curves through simulation.

•	 We provide open software for the generation of population 
curves and for the replication of the results in this paper. 
RPCs and APCs can be computed with “powercurve” rou-
tine in the MEDA Toolbox stable release v1.4.†

The rest of the paper is organized as follows: Section  2 intro-
duces the ASCA framework. Section 3 discusses the concept of 
power curves from a theoretical perspective. Sections  4 and 5 
present the algorithms to compute RPCs and APCs, respectively. 
Section 6 discusses simulation results, and Section 7 draws the 
conclusions of the work.

2   |   ANOVA Simultaneous Component Analysis

ASCA, like ANOVA, is mostly concerned with the analysis of 
data coming from an experimental design. Following ANOVA, 
a common ASCA pipeline follows three steps: (1) factorization of 
the data according to the experimental design; (2) significance 
testing for factors and interactions; (3) visualization of signifi-
cant factors' and interactions' effects using principal component 
analysis (PCA) to understand separability among levels.

2.1   |   Factorization of the Data

Let X be an N ×M data matrix with N the number of experi-
mental runs and M the number of responses in a designed ex-
periment. Without loss of generality, we consider here the case 
of a design with two crossed factors A and B, their interaction, 
and an additional factor C(A) nested in A. This is a common 
configuration in multiple omics experiments [4, 5, 11], useful to 
correct for the (often large) individual variability (C(A)) and so 
increase the statistical power of the test. The data in X can be 
decomposed as 

where 1 is a vector of ones (N × 1), m (M × 1) denotes a vector 
containing the intercepts of the M measured variables, XA, XB 
and XC(A) represent the factor matrices, XAB is the interaction ma-
trix, and E is the residual matrix, all of similar dimensions of X.

To compute the factorization, we use the technique referred to 
as ASCA+ [3] to account for mild unbalancedness in the data. 
We intentionally avoid ASCA alternatives based on linear mixed 
models (LMM) [4, 5] due to the large increase of computational 
demand, prohibitive in the context of power curves. In ASCA+, 
the decomposition is derived as the least squares solution of a re-
gression problem, where X is regressed onto a coding matrix D as 

and D is constructed using sum coding [3] or another alternative 
coding schemes [5] and Θ and E are obtained from 

The encoding of experimental factors in the design matrix is an 
especially important consideration, as it affects what informa-
tion is passed through to variance explained by the model, ver-
sus residual variance—this in turn affects the apparent evidence 
for statistical significance.

2.2   |   Statistical Significance Testing

In this step, we test the statistical significance of factors and in-
teractions in a similar way as performed in multi-way ANOVA. 
A widely used approach for ASCA inference is permutation test-
ing [9, 10]. Permutation testing can be performed by randomly 
shuffling the rows of X in Equation  (3), yielding a new set of 
regression coefficients, and so a new factorization: 

Permutation tests are carried out by comparing a given sta-
tistic, computed after the ASCA factorization, with the 
corresponding statistic computed from hundreds or more 
permutations of the rows in the observational data, X. The p 
value is obtained as‡

(1)X = 1mT + XA + XB + XC(A) + XAB + E

(2)X = DΘ + E = 1� +DAΘA +DBΘB +DC(A)ΘC(A) +DABΘAB + E

(3)Θ = (DTD)−1DX

(4)E = X −DΘ

(5)Θ∗ = (DTD)−1DTX∗

(6)E∗ = X∗ −DΘ∗

(7)p =
#
{
S∗
k
≥ S; k = 1, … ,K

}
+ 1

K + 1
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where S refers to the statistic computed from the true factoriza-
tion, S∗

k
 is the statistic corresponding to the k-th random permu-

tation, #{cond} refers to the number of times condition cond is 
met, and K is the total number of permutations. See [6] for a 
recent review on the permutation approach and the relevance of 
the chosen statistic.

The permutation approach in the rows of X allows to test all the 
factors and interactions at the same time. Alternatively, one may 
be interested in testing an individual factor/interaction, which 
can be done by permuting the corresponding coding rather than 
the data [6] or by orthogonalizing the data prior to permutation. 
Additional considerations may be taken into account for imbal-
anced designs [12].

2.3   |   Post Hoc Visualization

Significance testing in ANOVA/ASCA reveals the statistical 
significance of factors' and interactions' effects, but not of the 
specific levels (or combination thereof). To identify significant 
differences across levels, post hoc tests are typically employed. 
The equivalent to a post-hoc visualization in ASCA is the use of 
PCA following Zwanenburg et al. [13], where the PCA loadings 
are computed from the factor/interaction matrix, and score plots 
are built from the sum of this matrix and the residuals. Following 
this approach, score plots provide a visual comparison between 
the main/interaction effects and the natural variability in the 
residuals. Other approaches besides PCA can also be used [14].

ASCA is a supervised method, and as such, it can suffer of 
“overfitting” like any other regression and/or classification ap-
proaches [15]. ASCA relies in permutation testing to avoid over-
fitting. Thus, only statistically significant factors/interactions 
should be visualized post hoc with PCA.

3   |   Power Curves

Figure 1 illustrates the concept of a power curve as a compari-
son between two distributions: the null distribution P(t|H0) and 

the alternative distribution P(t|H1). In the figure, both distribu-
tions are assumed to be normal, but in a real situation, this may 
not be the case. The shaded areas represent the probability of 
error, associated with an observation incorrectly rejecting the 
null hypothesis through random chance (type I error), with 
probability � (in blue), versus the probability of an observation 
incorrectly not rejecting the null hypothesis (type II error), with 
probability � (in red). Larger effect sizes �, manifesting as wider 
separations between both distributions, increase the statistical 
power 1 − � (reducing the type II error) for a fixed value of �. 
Alternatively, for both fixed � and the effect size �, increasing the 
sampling size reduces the variance of the distributions P(t|H0) 
and P(t|H1), which leads to a reduction of overlapping areas as 
1 − � increases.

4   |   RPCs for ASCA

RPCs are derived from population parameters describing the 
standard deviation in factors and interactions and represent sta-
tistical power in terms of the relative effect size between struc-
ture and noise.

To generate RPCs, we generalize the approach by Camacho 
et al. [6]. We simulate data that progressively increases the rel-
ative effect size � and therefore the power (Figure  1). In the 
following, we use model (1) to showcase the RPCs, since this 
model includes crossed relationships, interactions (between 
A and B) and nested relationships (between A and C(A)), so 
that almost any other model can be derived from it. We can 
also think of this model as an illustration of factors/interac-
tions organized in different orders (Figure  2), as discussed 
by Anderson and Ter Braak [9] and in the Hasse diagrams by 
Marini et al. [16].

Our approach to generate RPCs follows these steps: 

0.	 INPUT: 
–	 F the design matrix
–	 H a model hierarchical structure (as illustrated by 

a Hassel diagram) with information about factors, 
crossed/nested relationships and their interactions. In 
this model structure, a factor f  can have descendants 
(nested factors and associated interactions) and ances-
tors (factors in which f  is nested). An interaction i can 

FIGURE 1    |    Illustration of effect size ( f (�)) versus the probability of 
a type-I error, �, and the probability of a type II error, �. Statistical power 
is defined as 1 − the false negative (type-II) error rate.

FIGURE 2    |    Ordering structure among factors and interaction in 
model (1).
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also have descendants (other higher-order interactions) 
and ancestors (other lower-order interactions or the 
factors included in the interaction). In model  (1) and 
Figure 2, A is ancestor of C(A) and A and B are ances-
tors of AB.

–	 M the number of responses
–	 kf  for f ∈ {1. . .F}, ki for i ∈ {1. . . I}, and ke the coeffi-

cients with the standard deviation§ for factors and the 
interactions, and the residuals

–	 R the number of repetitions to generate a statistically 
representative RPC

–	 P the number of permutations (in each repetition)
–	 � incremental steps in the effect size
–	 � the imposed probability of falsely rejecting the null 

hypothesis (i.e., the significance level)

1.	 Set powerf (�) = 0 and poweri(�) = 0 for each factor f  and 
interaction i, respectively, and for � from 0 to 10� in � steps; 
and N is set to the number of rows of F.

2.	 For each repetition from 1 to R
2.1.	 Generate random matrices to represent level/cell 

averages 
2.1.1.	 For each factor f1 of order 1 in H, and so with 

no ancestors (e.g., A and B in model (1)), count the 
number of levels Lf1 in matrix F and simulate: 

where f1
 is a pseudo-random number generator 

(PRNG), potentially based on the normal distribu-
tion or other distribution that may deviate mod-
erately (e.g., uniform) or severely (e.g., exp3) from 
normality [9].

2.1.2.	 For each factor f  in H with ancestor fac-
tor(s) fa, for a = 1. . .Af  (e.g., C(A) nested on A in 
model (1)): 

with rf  the number of replicates in each unique 
combination of levels (cell), and f  the chosen 
PRNG.

2.1.3.	 For each interaction i in H with ancestor fac-
tor(s) fa for a = 1 … Ai (e.g., AB in model (1)): 

with i the chosen PRNG.
2.2.	 Generate background variability for a chosen PRNG: 

2.3.	 Normalize each matrix Xf  for each factor f , Xi for 
each interaction i, and XE so that the Frobenius norm 
equals the squared root of the number of rows.¶

2.4.	 For each observation n from 1 to N: 
2.4.1.	 For each factor f , we build Xf (N ,M) from 
Xf (Lf ,M) and the design matrix F: 

with xn
f
 the nth row of Xf (N ,M) and xlf  the lth row 

of Xf (Lf ,M), with l determined according to ma-
trix F.

2.4.2.	 For each interaction i, we build Xi(N ,M) 
from Xi(Li,M) and the design matrix F: 

with xn
i
 the nth row of Xi(N ,M) and xli the lth row 

of Xi(Li,M), with l determined according to ma-
trix F.

2.5.	 Compute the matrices with the structural and resid-
ual part with the standard deviation coefficients: 

2.6.	 For � from 0 to 10� in � steps: 
2.6.1.	 Yield the simulated data: 
2.6.2.	 Compute ASCA+ partition and the F-ratio 

for factors and interactions for both the simulated 
data and P permutations. For (high-order) factors 
and interactions in H with no descendants: 

where SS refers to the sum-of-squares (the 
Frobenius norm) of a factor/interaction/residual 
matrix in the factorization with ASCA+, and DoFs 
represents the corresponding degrees of freedom 
[2]. The DoFs of a factor is the number of levels 
minus one, the DoFs of an interaction is the prod-
uct of the DoFs of its factors, and the DoFs of the 
residuals is the total (number of observations 
minus 1 in the data) minus the DoFs of all factors 
and interactions in the model. The ratio between 
the SS and the DoF is often called the mean sum-
of-squares (MS). For any factors and interactions 
in H with descendants: 

(8)Xf1
(Lf1 ,M) ∼ f1

(9)Lf = rf ⋅

Af∏

a=1

Lfa

(10)Xf (Lf ,M) ∼ f

(11)Li =

Ai∏

a=1

Lia

(12)Xi(Li,M) ∼ i

(13)XE(N ,M) ∼ E

(14)xn
f
= xlf

(15)xni = xli

(16)XS =
∑

f

kfXf +
∑

i

kiXi

(17)XE = keXE

(18)X = �XS + XE

(19)Ff = (SSf ∕DoFf )∕(SSE∕DoFE)

(20)Fi = (SSi∕DoFi)∕(SSE∕DoFE)

(21)

Ff =
(SSf ∕DoFf )�∑Df

d=1
SSfd +

∑Di

d=1
SSid

�
∕
�∑Df

d=1
DoFfd +

∑Di

d=1
DoFid

�
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with descendant factor(s) fd for d = 1. . .Df  and de-
scendant interaction(s) fi for d = 1. . .Di.

2.6.3.	 For each factor f , if the associated p value 
computed using Equation (7) is below � do: 

2.6.4.	 For each factor i, if the associated p value 
computed using Equation (7) is below � do: 

3.	 Normalize powerf (�) = powerf (�)∕R and poweri(�) =

poweri(�)∕R for each factor f /interaction i

The algorithm works as follows. In step 0, we set the general char-
acteristics of the data simulation. In step 1, the algorithm initial-
izes the values in the RPC. In step 2, we iterate through a number 
of repetitions to compute the RPC. Each repetition consists on 
the simulation of a structural part (in XS) and a residual part (in 
XE). The inner loop builds the data for intermediate cases between 
the absence of effect (X = XE) and absence of residuals (X = XS), 
factorizes it with ASCA+ and performs the statistical inference 
through permutation testing. If the computed significance is below 
the imposed significance level, the power is increased by one. In 
step 3, the power is normalized by the number of repetitions.

Some alternative configurations for a RPC that are relevant in 
practice can be straightforwardly implemented by modifying 
specific parameters or small parts of the algorithm: 

•	 Non-balanced designs can be easily integrated in the design 
matrix F, see [6].

•	 By properly choosing E, we can emulate different distribu-
tions in the residuals to assess robustness to deviations from 
normality in the manner of Anderson and Ter Braak [9] but 
for multivariate responses. We can also generate the level 
averages using different distributions.

•	 Both fixed and random factors can be simulated in the same 
manner.

•	 We can integrate complex designs by adding multiple 
crossed and nested relationships as well as interactions.

•	 We can generate RPCs for a specific factor or interaction in 
an experimental design, or for all of them. The algorithm 
provides the solution for a RPC that considers a simultane-
ous incremental effect in all factors and interactions of the 
model, but some factors may be deactivated by setting the 
corresponding standard deviation coefficient to 0. We can 
also maintain the effect of a significant factor/interaction 
fixed along the curve by adding its contribution directly in 
Equation (18), for example: 

•	 In a similar way, we can add a covariate Xcv(N ,M) ∼ cv di-
rectly in Equation (18), for example: 

•	 We can generate RPCs for alternative statistics to the F-ratio 
in Equations (19)–(22), see [6].

5   |   APCs for ASCA

APCs differ to RPCs in that the power is shown in terms of the 
sampling size, rather than the relative effect size. APCs have 
the same applications as the RPCs, but with the additional ad-
vantage that they provide information about the number of rep-
licates and/or factor levels that one may use in a multivariate 
experiment in order to attain a given probability of success, that 
is, the probability of rejecting the null hypothesis when the alter-
native hypothesis is true: the power 1 − �.

An APC is built by simulating data that progressively enlarges 
the number of levels in a specific factor or the whole experimen-
tal design. The consequence of this enlargement is a reduction 
of the variance of both the null and the alternative distributions 
(Figure 1), with a subsequent increase of statistical power. For 
instance, if we take model (1), we can apply APCs to investigate 
how the statistical power of the factors and the interaction is af-
fected when:

•	 We iteratively enlarge the number of levels in A. Often A is 
a factor that controls the number of groups of individuals in 
a clinical study, for example, with a number of disease sub-
types. This APC gives useful information about whether 
incorporating more or less subtypes can impact our proba-
bility of success.

•	 We iteratively enlarge the number of levels in B. Often B is a 
factor with several repeated measures over the same individ-
ual, for example, in time or in biological samples. Then, the 
APC will allow us to investigate the effect of adding more 
time points/biological samples in our probability of success.

•	 We iteratively enlarge the number of levels in C(A). Often 
C(A) models the individual variability. The APC will give us 
an idea about the number of individuals per group we should 
choose for a certain probability of success.

•	 We iterative enlarge the whole experiment. The APC will give 
us an idea about the general number of replicates we should 
choose for a certain probability of success. This is often a good 
alternative choice when a factor like C(A) is not in the design.

Our approach to generate APCs follows these steps (the algo-
rithm is summarized not to replicate detailed explanations of 
the RPC algorithm)

0.	 INPUT:
–	 INPUTs in the RPC algorithm
–	 � the fixed effect size
–	 frep the index of the factor that is replicated, or 0 if all the 

whole experiment is replicated
–	 � incremental steps in the sampling size �

(22)Fi =
(SSi∕DoFi)�∑Di

d=1
SSid

�
∕
�∑Di

d=1
DoFid

��

(23)powerf (�) = powerf (�) + 1

(24)poweri(�) = poweri(�) + 1

(25)X = �XS + XE + kfXf

(26)X = �XS + XE + kcvXcv
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1.	 Set powerf (�) = 0 and poweri(�) = 0 for each factor f  and 
interaction i, respectively, and for � from 1 to 10� in � steps.

2.	 For each repetition from 1 to R
2.1.	 For � from 1 to 10� in � steps:

2.1.1	 Create F� from F and frep; and N is set to the 
number of rows of F.

2.1.2	 Generate random matrices to represent level 
averages in factors and interactions.

2.2.3	 Generate background variability for a chosen 
PRNG.

2.2.4	 Normalize each matrix Xf  for each factor 
f , Xi for each interaction i, and XE so that the 
Frobenius norm equals the squared root of the 
number of rows.

2.2.5	 Compute final factor and interaction matri-
ces of N rows.

2.2.6	 Compute the matrices with the structural 
and residual part with the standard deviation 
coefficients.

2.2.7	 Yield the simulated data.
2.2.8	 Compute ASCA+ partition and the F-ratio 

for factors and interactions for both the simulated 
data and P permutations.

2.2.9	 Update the power of factors and interactions.

3.	 Normalize powerf (�) = powerf (�)∕R and poweri(�) =

poweri(�)∕R for each factor f /interaction i

The algorithm works as follows: In step 0, we set the general 
characteristics of the data simulation, and in step 1, the algo-
rithm initializes the values in the APC. In step 2, we iterate 
through a number of repetitions to compute the APC. Each rep-
etition consists of an inner loop that progressively increases the 
sampling size by either increasing in one the number of levels of 
a given factor (for frep > 0) or by adding one complete set of ex-
perimental runs. Subsequently, the same simulation approach 
as in an RPC is followed to generate the simulated matrix with 
both structural and residuals parts. This matrix is then factor-
ized using ASCA+ and the statistical inference is performed 
through permutation testing. If the computed significance is 
below the imposed significance level, the power is increased 
in one. In step 3, the power is normalized by the number of 
repetitions.

6   |   Simulation Examples

6.1   |   RPCs

Figure 3 presents an example of the RPCs for model (1) and for 
a full factorial design with four levels in A, three levels in B and 
four individuals in each cell of C(A). The RPCs are shown with 
95% confidence intervals computed by bootstrapping. In the ex-
ample, all standard deviation coefficients are fixed to 1/5 of the 
standard deviation in the residuals (kA = kB = kC(A) = kAB = 0. 2 
and kE = 1). The behavior of the RPCs is the one expected for a 
correct power curve [6]: (a) in the absence of effect (i.e., at � = 0), 
all curves adjust to the significance level of � = 0. 05, and (b) at 
some given effect size, the curves start gaining power until they 
reach 1.

FIGURE 3    |    Example of relative population curve for model  (1). 
The design matrix F contains a full factorial design with four levels 
in A, three levels in B, and four individuals in each cell of C(A). Other 
inputs are M = 400, kA = kB = kC(A) = kAB = 0. 2, and kE = 1, R = 1000, 
P = 200, � = 0. 1, and � = 0. 05. We marked � = 0. 5 as a reference for the 
following figures.

FIGURE 4    |    Theoretical expected F-ratio (A) and mean simulated F-ratio (B) in terms of the effect size for the RPC in Figure 3.

(A) (B)
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Interestingly, the order in which the curves in Figure  3 start 
rising and finally reach 1, that is, the relative power of the 
curves for the different factors and the interaction, is not in-
tuitive given the same standard deviation of 0.2 was used for 
all of them: A is the most statistically powerful factor, followed 
by B, and C(A) and AB are the least powerful. We found that 
the relative power is a complex function of the ordering struc-
ture among factors/interactions (as depicted in Figure  2) and 
the number of levels thereof. The relative power has import-
ant practical implications, which are well-known in the area 
of design of experiments but not so widely understood by some 
experimenters: the statistical power of a given factor depends 
on the design of other factors in the experiment. To give an ex-
ample, our ability to determine biological differences between a 
disease and a control group (factor A) depends on the number of 
individuals we include in the experiment (factor C(A)), but also 
on the number of repeated measures we take for each of them 
(factor B and interaction AB). Thus, understanding the relative 
power in a specific experimental design can be extremely use-
ful to maximize our capability of success. Generally speaking, 
the relative power is complicated to derive mathematically, 
especially in the presence of complex and varying null dis-
tributions across multiple responses, missing data, and other 

practicalities. Thus, RPCs are an interesting computational al-
ternative for such derivation which can be made as specific to 
the problem at hand as desired.

While the mathematical derivation of multivariate power 
curves is often hopeless, we can still derive expected values 
for the variance in factors, interactions and residuals [2], and 
so of the F-ratios. Appendix A provides such derivation for the 
example considered in Figure 3. Using Equations (A10)–(A13), 
we can plot the expected F-ratios for the set of values of 
�, as illustrated in Figure 4A and compare them to the aver-
aged F-ratios obtained from the 1000 datasets simulated to 
compute the RPCs in Figure  3. These averaged F-ratios are 
in Figure 4B. We can see that the theoretical and numerical 
results match perfectly, which shows that our simulation ap-
proach accurately follows the ANOVA theory. We can also 
see that the F-ratios alone cannot explain the relative power 
observed in the RPCs of Figure  3: For instance, the F-ratio 
profiles of A and B are similar, while the relative power in the 
RPCs are not.

The discrepancy between F-ratio and RPC profiles is caused 
by the different null distributions of factors and interactions. 
Actually, it is the complexity to mathematically derive these 
null distributions which makes our computational approach a 
suitable tool to compute power curves. We illustrate the null 
distributions of our example in Figure 5, generated with per-
mutation testing for the first of the 1000 simulated datasets 
in the RPC and for � = 0. 5. The null distribution of B is sig-
nificantly wider than the others. Since the p value is obtained 
by comparing the F-ratio to the null distribution, and A and B 
show similar F-ratios at � = 0. 5 (Figure 4), the wider null dis-
tribution in B makes the power curve to rise slower than that in 
A in Figure 3. This is because statistical power is associated to 
lower p values. The ASCA table for the same simulated dataset 
in Figure 5 is shown in Table 1. The F-ratios and the p values 
in the table are consistent with what we see in Figures 4 and 
3, respectively, for � = 0. 5: A and B present larger F-ratios that 
the others but still close to 1, A is statistically significant while 
the rest are not. Note that this selected dataset in Figure 5 and 
Table 1 is a single instance of the distribution that is averaged 
in Figures 3 and 4, which is the reason why some discrepancy 
is expected (e.g., B is expected to be statistically significant 80% 
of times at � = 0. 5, according to Figure 3, but it is not in this 
example).

FIGURE 5    |    Null distributions for the first simulated dataset in the 
RPC in Figure 3 and for � = 0. 5.

TABLE 1    |    ASCA table for the first simulated dataset in the RPC of Figure 3 and for � = 0. 5.

SumSq PercSumSq df MeanSq F p value

Mean 1.3861 2.7832 1 1.3861

A 3.4739 6.9757 3 1.158 1.1096 0.00999

B 2.184 4.3855 2 1.092 1.0613 0.14585

C(A) 12.6117 25.3243 12 1.051 1.0522 0.023976

AB 6.1738 12.397 6 1.029 1.0302 0.17582

Residuals 23.9712 48.1342 24 0.9988

Total 49.8006 100 48 1.0375
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8 of 14 Journal of Chemometrics, 2024

Figure 6 presents several RPC examples similar to the first one, 
but where some of the factors or the interaction are deactivated 
with a null standard deviation. The figure shows that for any 

case where kB = 0, kC(A) = 0 and/or kAB = 0, the corresponding 
RPC stays at expected type I error of 0.05. This behavior is not 
found for factor A (so that the RPC does not go to 0.05 even for 

FIGURE 6    |    Examples of relative population curve for model (1). The design matrix F contains a full factorial design with four levels in A, three 
levels in B and four individuals in each cell of C(A). Other inputs are M = 400, kE = 1, R = 1000, P = 200, � = 0. 1 and � = 0. 05.
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null effect in the factor) because its F-ratio is an approximate 
test rather than an exact one [2, 9].# These profiles in the RPCs 
can be explained from the theoretical derivation in Appendix A. 
Using this derivation, we included in Figure 4 the evolution of 
the expectation for the F-ratio of A and B for a null effect of the 
corresponding factor, marked with the labels A = 0 and B = 0, 
respectively. We can see that the approximate F-ratio in A does 
not cancel out for a null variance of the factor, which leads to 
the misleading RPC of A that shows an unrealistic power. This 
undesirable behavior in the test of factor A, and so in the corre-
sponding power curve, remains even when the variance of C(A) 
or AB is also cancelled out (Figure 6F,G, respectively), and the 
power curves only works as expected when both are cancelled 
or when either C(A) or AB is not considered in the model, so 
that the F-ratio of A corresponds to an exact test (Figure 6H). 
The RPC is a very useful tool to identify these situations, that is, 
when an approximate test provides unrealistic statistical power 
or lack of thereof, allowing us to avoid false negatives in prac-
tice: See [6, 17] for an example.

6.2   |   APCs

Figure 7 shows four examples of APCs computed from the same 
parameters as the RPC in Figure  3 and for � = 0. 5. The first 
example of APCs iteratively replicates the whole experiment 
(Figure 7A) and the remaining examples iteratively increase the 
number of levels of each of the factors (Figure 7B–D for factors 
A, B and C(A), respectively). For reference, we marked with a 
red dashed line the same baseline situations in all APCs and 

the original RPC in Figure 3. Thus, the dashed line at � = 0. 5 
in Figure  3 identifies the same simulation point as at � = 1 in 
Figure  7A, � = 4 (for four levels in A) in Figure  7B, � = 3 (for 
three levels in B) in Figure 7C, and � = 4 (for four replicates in 
C(A), rCA = 4) in Figure 7D.

In general, we can see that increasing the replicates enhances 
the power in all factors and the interaction for all APCs. As 
discussed in Figure  1, this enhancement is motivated by a 
reduction in the variance of the null and the alternative dis-
tributions of the test. Let us discuss this for each of the four 
examples.

In Figure 7A, we duplicate the whole experiment, but all levels 
of the factors remain the same. This makes all variance coeffi-
cients in Equations  (A2)–(A5), with the exception of the vari-
ance of the error, to be multiplied by a factor of 2 (and in general 
of � if the experiment is duplicated �-wise). This makes the ex-
pected MSs, and in turn the expected F-ratios, larger. The null 
distribution of a single instance simulated with this duplication 
(Figure 8A) remains similar to the original one with no duplica-
tion in Figure 5. However, if we compare the ASCA tables of the 
case with and without duplication, Tables B1 and 1, respectively, 
we can see that after duplication all the factors and the interac-
tion are statistically significant as a result of the larger F-ratios. 
This is correctly depicted by the APC in Figure 7A, where power 
for � = 2 is above 0.8 for all factors and the interaction (which 
means that in more than 80% of the simulated experiments we 
get statistically significant differences in the factors and the 
interaction).

FIGURE 7    |    Examples of absolute population curve for model (1). The original design matrix F contains a full factorial design with four levels in 
A, three levels in B, and four individuals in each cell of C(A). Other inputs are M = 400, kA = kB = kC(A) = kAB = 0. 2� for � = 0. 5 and kE = 1, R = 1000, 
P = 200, and � = 0. 05.

(A) (B)

(C) (D)
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In Figure  7B, the APCs show the behavior of the power in 
terms of the number of levels of A, LA. From all of the expected 
MS values, only E(MSB) in Equation  (A7) is affected by LA. 
Consequently, the APC with larger slope in terms of LA is actu-
ally B. All the other factors and the interaction are increase their 
power with LA, but rather than because of a change in expected 
MS and/or F-ratio, they do because of a change in their null dis-
tribution. This can be seen by comparing Figure 5, for LA = 4, 
with Figure 8B, for LA = 8. The latter shows a clear reduction in 
the variance of the null distributions of A, C(A) and AB. This re-
duction of variance leads to an increase of power. Finally, com-
paring Tables 1 and B2, we can see that the duplication of the 
levels of A clearly reduces the p value in A and B, in agreement 
to what we see in Figure 7B, where the power of these factors 
for � = 8 is close to 1 (that is, in almost 100% of the simulated 
experiments we get statistically significant differences in these 
factors, but only 50% for C(A) and AB).

Figure 7C,D illustrates that the power in factor C(A) is mostly 
affected by the increase of levels of B, LB, and the power of the 
interaction AB is mostly affected by the replicates in C(A), rC(A). 
All the other factors and interactions also increase their power. 
Again, this increase of power is a complex mixture of a modifi-
cation of the expected MS's and F-ratios, and a reduction of the 
variance in the null distribution. It is hopeless to predict this 
behavior without computational means, but easily observed in 
Figure 8C,D and Tables B3 and B4.

As a general conclusion, we can see that sampling size in the 
form of replicates and varying number of levels in the factors can 
have a complex influence on the relative power of factors and 

their interactions. In complex practical cases, an easy way to un-
derstanding how any form of duplication affect the power of each 
given factor and/or interaction is through the APC algorithm.

7   |   Conclusion

In this paper, we introduce the population power curves for 
ASCA and demonstrate them in simulation, discussing their 
relation to the theory of ANOVA and derive two useful forms 
of curve: RPCs and APCs. RPCs are useful to find the optimal 
ASCA pipeline for the analysis of an experimental design at 
hand. APCs are useful to determine the sample size and the op-
timal number of levels for each factor during the planning phase 
on an experiment. We believe that both tools should be adopted 
by ASCA practitioners to plan their experimental design (APCs) 
and analysis pipeline (RPCs) during the planning phase of a 
multivariate experimental design.

In a sequel of this paper, we will introduce the sample power 
curves for ASCA, which is an optimized version of a power 
curve when a small sample of the experiment at hand is avail-
able, for instance, obtained by running a reduced number of tri-
als before a larger experiment.
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Endnotes

	1	Stable release of MEDA Toolbox v1.4 (https://​github.​com/​CoDaS​Lab/​
MEDA-​Toolb​ox/​relea​ses/​tag/​v1.​4).

	2	Throughout the paper, we assume that the higher the statistic the more 
significant the effect of the factor/interaction.

	3	Given the multivariate nature of the response, and to simplify nota-
tion, we generally refer to the standard deviation � of each response 
vector, so that the expected standard deviation of each individual re-
sponse would be �∕

√
M .

	4	This normalization is instrumental for the correspondence of theoreti-
cal and numerical results, as shown later on.

	5	Please note an exact test for A in the experimental design of model (1) 
does not exist.
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Appendix A: Theoretical Derivation of Expected F-Ratios

Given that all factors are derived from a (pseudo-)random distribution, 
and following Montgomery [2], we can derive the relationships between 
population variances and expected MSs in model (1): 

where �2
A
, �2

B
, �2

C(A)
, �2

AB
, and �2

E
 are the population variance of the 

factors, the interaction and the residuals, respectively, and in 
our example, we have rC(A) = 4 replicates, and number of levels 
LA = 4 and LB = 3.

Combining previous equations and Equations (19)–(21), the inference 
statistics follow: 

Adjusting the population variances to the square of the standard 
deviation coefficients used in the RPCs of Figure  3, that is, 
�2
A
= �2

B
= �2

C(A)
= �2

AB
= 0. 04�2 and �2

E
= 1, it holds: 

From Equations (A7), (A8), and (A9), we can see that if we set �2
B
= 0, 

�2
C(A)

= 0 and/or �2
AB

= 0, the corresponding expected F-ratio equals 1 
regardless the variance of the error. This makes the RPC to adjust to the 
expected type I error regardless of �. This behavior is not found for fac-
tor A. The reason can also be found in the corresponding equation of the 
F-ratio; see Equation (A6). This equation represents an approximate test 
rather than an exact one [2, 9]. If we set �2

A
= 0 and adjust the remain-

ing population variances to the square of the standard deviation coeffi-
cients in terms of �, it now holds: 

(A1)E(MSE) = �2E

(A2)E(MSAB) = �2E + rC(A) ⋅ �
2
AB

(A3)E(MSC(A)) = �2E + LB ⋅ �
2
C(A)

(A4)E(MSB) = �2E + rC(A) ⋅ �
2
AB + LA ⋅ rC(A) ⋅ �

2
B

(A5)E(MSA) = �2E + rC(A) ⋅ �
2
AB + LB ⋅ �

2
C(A)

+ LB ⋅ rC(A) ⋅ �
2
A

(A6)

E(FA) =
E(MSA)

(DoFC(A)E(MSC(A))+DoFABE(MSAB))∕(DoFC(A)+DoFAB)

=
(�2

E
+rC(A) ⋅�

2
AB

+LB ⋅�
2
C(A)

+LB ⋅rC(A) ⋅�
2
A
)(rC(A)+LB−1)

rC(A)

(
�2
E
+LB ⋅�

2
C(A)

)
+ (LB−1)

(
�2
E
+rC(A) ⋅�

2
AB

)

(A7)E(FB) =
E(MSB)

E(MSAB)
= 1 +

LA ⋅ rC(A) ⋅ �
2
B

�2
E
+ rC(A) ⋅ �

2
AB

(A8)E(FC(A)) =
E(MSC(A))

E(MSE)
= 1 +

LB ⋅ �
2
C(A)

�2
E

(A9)E(FAB) =
E(MSAB)

E(MSE)
= 1 +

rC(A) ⋅ �
2
AB

�2
E

(A10)E(FA) =
6(1 + 0. 76�2)

4(1 + 0. 12�2) + 2(1 + 0. 16�2)

(A11)E(FB) = 1 +
0. 64�2

1 + 0. 16�2

(A12)E(FC(A)) = 1 + 0. 12�2

(A13)E(FAB) = 1 + 0. 16�2

(A14)E(FA) =
6(1 + 0. 24�2)

4(a + 0. 12�2) + 2(1 + 0. 16�2)
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Appendix B: Tables

ASCA tables for a single instance (dataset) simulate with the same pa-
rameters of the RPC in Figure 3 and for � = 0. 5, but (i) when the whole 
experiment is duplicated (Table B1); (ii) when the number of levels of 

A, LA, is duplicated (Table B2); (iii) when the number of levels of AB, 
LB, is duplicated (Table B3); and (iv) when the number of replicates in 
C(A), rC(A), is duplicated (Table B4).

TABLE B3    |    ASCA table for the first simulated dataset in the RPC of Figure 3 and for � = 0. 5, when the number of levels of B is duplicated.

SumSq PercSumSq df MeanSq F p value

Mean 1.537 1.5426 1 1.537

A 3.9359 3.9501 3 1.312 1.2495 0.000999

B 5.8933 5.9146 5 1.1787 1.1578 0.000999

C(A) 13.0792 13.1262 12 1.0899 1.0913 0.000999

AB 15.2703 15.3253 15 1.018 1.0193 0.17283

Residuals 59.9256 60.1413 60 0.99876

Total 99.6414 100 96 1.0379

TABLE B2    |    ASCA table for the first simulated dataset in the RPC of Figure 3 and for � = 0. 5, when the number of levels of A is duplicated.

SumSq PercSumSq df MeanSq F p value

Mean 1.6805 1.6809 1 1.6805

A 8.1368 8.1388 7 1.1624 1.1314 0.000999

B 2.6052 2.6058 2 1.3026 1.2794 0.000999

C(A) 24.7872 24.7931 24 1.0328 1.0219 0.1049

AB 14.2541 14.2575 14 1.0182 1.0074 0.37363

Residuals 48.5123 48.5239 48 1.0107

Total 99.9762 100 96 1.0414

TABLE B1    |    ASCA table for the first simulated dataset in the RPC of Figure 3 and for � = 0. 5, when the whole experiment is duplicated.

SumSq PercSumSq df MeanSq F p value

Mean 1.7243 1.7257 1 1.7243

A 3.8883 3.8914 3 1.2961 1.1885 0.000999

B 2.7994 2.8017 2 1.3997 1.2888 0.000999

C(A) 13.1133 13.1239 12 1.0928 1.0946 0.000999

AB 6.5162 6.5215 6 1.086 1.0879 0.001998

Residuals 71.8774 71.9358 72 0.9983

Total 99.9188 100 96 1.0408
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TABLE B4    |    ASCA table for the first simulated dataset in the RPC of Figure 3 and for � = 0. 5, when the number of replicates in C(A) is duplicated.

SumSq PercSumSq df MeanSq F p value

Mean 1.6665 1.6705 1 1.6665

A 4.0614 4.0712 3 1.3538 1.3083 0.000999

B 2.6655 2.672 2 1.3328 1.2989 0.000999

C(A) 29.0265 29.0969 28 1.0367 1.0333 0.021978

AB 6.1566 6.1716 6 1.0261 1.0228 0.24276

Residuals 56.1816 56.3178 56 1.0032

Total 99.758 100 96 1.0391
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