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Abstract

In solar power tower plants, knowing the optical quality of heliostats makes
it possible to predict relevant information on the receiver surface, such as the
irradiance concentration factor and spillage. However, there are no standardized
routines for optical characterization in commercial facilities because the process
is challenging, multidisciplinary, and time-demanding. This article revises the
traditional optical characterization methodology followed at the Solar Platform
of Almeŕıa (PSA). The process starts with the acquisition of the image of the
studied optical system. After that, the picture must be fitted to an analytical
model, which requires finding the variables that best reproduce the reality. The
traditional method for accomplishing this task is iterative, semi-automatic, and
contains trial-and-error components. This work studies how to replace this
part with heuristic optimizers and considers using the state-of-the-art methods
TLBO, UEGO, and Multi-Start Interior-Point (MSIP). Their effectiveness has
been compared to the results manually achieved by an expert with three different
heliostat facets. According to the results obtained, the parameter sets found by
TLBO and UEGO outperform those obtained through the traditional method.

Keywords: Solar Power Tower Plants, Optical Characterization,
Computational Optimization, Numerical Methods

1. Introduction1

The increase in the world population and its demands require replacing the2

traditional and polluting energy sources with renewable and clean ones (Gallego3

and Camacho, 2018; Sah et al., 2020). Since solar energy the most abundant4

option (Gallego and Camacho, 2018), there is great interest in its exploitation5

(Kabir et al., 2018; Reddy et al., 2013). Among the existing technologies for6

1Corresponding author: rafael.monterreal@psa.es
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this purpose (Kabir et al., 2018; Reddy et al., 2013), concentrated solar power7

systems are promising because of their compatibility with hybridization, large-8

scale production, and storage capabilities (Reddy et al., 2013; Saghafifar et al.,9

2019). Solar Power Tower Plants (SPTP) stand out from this kind of system10

because of their higher efficiency and lower Levelized Cost of Electricity (LCOE)11

(de la Calle et al., 2020).12

A typical SPTP consists of multiple sun-tracking mirrors, known as he-13

liostats, which dynamically concentrate solar radiation on a receiver. The latter14

transfers the energy to a heat-transfer fluid used to generate electricity in a15

power cycle (Cruz et al., 2020; Reddy et al., 2013). Despite their conceptual16

simplicity, heliostats are not simple mirrors. They are complex systems con-17

sisting of multiple facets and have an impact on the performance of facilities18

(Fernández-Reche, 2006). For this reason, it is convenient to know the optical19

quality of heliostats, which is known as their Optical Characterization (OC in20

what follows). This information, coupled with image simulation models (Cruz21

et al., 2017), makes it possible to predict valuable data on the receiver. Some22

examples are the irradiance concentration factor, the image orientation and elon-23

gation, the image radius containing a certain percentage of the incoming power,24

and spillage (Garćıa et al., 2015). It is also valuable to detect malfunctions in25

heliostats that could reduce the throughput of the plant.26

The process of OC consists in determining the set of parameters that best27

describe the behavior of the system, e.g., a complete heliostat or one of its28

facets. Thus, it is necessary to compare the real image of the characterized29

system to different synthetic replicas generated with an optical model and the30

appropriate parameters, e.g., the focal length for concave facets. The parameters31

that produce the most realistic synthetic image will define the OC. However, this32

procedure is time-demanding and challenging because it requires knowledge of33

image acquisition and analysis methods. For these reasons, there are no periodic34

OC programs in commercial SPTP, and this kind of task is generally carried35

out in heliostat prototypes at applied research centers, such as the Plataforma36

Solar de Almeŕıa (Spanish for Solar Platform of Almeŕıa) (PSA) in Spain.37

For a commercial plant, it would be advisable to perform an OC campaign38

at several critical moments. The first one would be at the commissioning of the39

plant, i.e., before starting its regular operation, to confirm that it fulfills the40

specifications. Secondly, the solstices would be interesting because it is when41

the sun is at extreme positions. Thirdly, at the design point of the plant, which42

is likely to be one of the equinoxes. Fourthly, if the plant location has extreme43

temperatures, it would be advisable to test the optical quality with the highest44

and lowest temperatures to check their impact on the field. These tests would45

let us know the plant in detail. After that, the aging of the heliostats and their46

materials would determine further necessities, e.g., every two years, to ensure47

that the field is capable enough.48

Despite not being an actively studied subject, there are several techniques49

in the literature for assessing the optical quality. In the 1980s, the intensity50

distribution reflected by heliostats was estimated by convolving several distri-51

butions coming from independent error sources. The fundamental ones were the52
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sun shape, mirror waviness, and astigmatism. In this context, the error analysis53

was performed in the Fourier space (Kiera, 1985). In the 1990s, Sandia Na-54

tional Laboratories carried out different optical characterization campaigns of55

heliostats (Jones et al., 1995; Strachan and Houser, 1993). They used the BCS56

measurement system (Strachan, 1993) for real image acquisition and the HE-57

LIOS simulation software (Biggs and Vittitoe, 1979) for estimating the images58

produced under different parametric configurations, but the parameters to try59

were manually supervised by a human expert. Likewise, at the PSA, heliostat60

characterization has been performed since the 1990s to the present (Cordes,61

1994; Monterreal, 1997) with the ProHERMES measurement system and the62

Fiat Lux (Monterreal, 1999) heliostat image simulator. However, all these tech-63

niques share the handicap of heavily relying on specialized staff and considerable64

dedication to direct the parametric search and obtain reliable results.65

In general, optical quality assessment techniques can be divided into two66

main classes: Indirect and Direct methods. The former studies the image of67

the sun reflected by the surface of the heliostat with an image analysis target68

and a measurement system. The most relevant parameters concerning the op-69

tical properties of the concentrator are then computed from the experimental70

data with different strategies. For instance, after modeling the heliostat in a71

proper simulator (King, 1982; Strachan and Houser, 1993), the model can be72

used along with the data to unfold an error distribution characterizing the non-73

deterministic slope errors of the heliostat. It is done by iterating through the74

dispersion (standard deviation) of a circular normal distribution in the simulator75

until the shape of the measured and predicted beams match (King, 1982; Stra-76

chan and Houser, 1993). It is also possible to compute the radiation intercepted77

by the receiver of a real concentrator by the convolution of the angular accep-78

tance function, the optical error distribution, and the angular brightness of the79

radiation source. The parametrization of the theoretical distribution function80

makes it possible to iteratively seek the model parameters that best replicate81

the real image (Avellaner, 1980; Bendt and Rabl, 1981; Kiera and Schiel, 1989).82

Regarding Direct methods, they study either the heliostat surface or an image83

reflected on it, but from an artificial light source instead of the sun. It groups84

the most recent research lines in optical characterization (Kammel, 2003; Mon-85

terreal et al., 2017; Pottler et al., 2005).86

The methodology currently followed at the PSA falls into the group of In-87

direct methods. The source of light reflected on the target directly comes from88

the sun. It is taken with a high-resolution digital camera at the characterization89

instant. The theoretical parametric model of the optical quality of the heliostat90

combines both variables of statistical nature, such as the slope error, and de-91

terministic ones, such as the focal distance. King (1982); Strachan and Houser92

(1993) used the HELIOS software package, while Fiat Lux is the choice at the93

PSA (Cruz et al., 2017). For its simulations, HELIOS follows a cone optics94

approach in which the flux density results from combining the error cone of the95

reflected rays and the sun shape by convolving independent distributions with96

the Fourier transform (Garcia et al., 2008). For its part, Fiat Lux simulates97

the flux distributions produced by mirrors using normally-distributed random98
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values of slope error and computing the trajectories for the bundle of reflected99

rays coming from the solar disk according to geometric optics laws. The latter100

is done for each unitary normal vector to the reflective surface (Garcia et al.,101

2008; Monterreal, 1999). Fiat Lux also stands out due to its capability of taking102

as input a real image of the sun experimentally acquired, while other tools rely103

on synthetic images of the sun.104

Regardless, the OC methodology is still semi-automatic due to the required105

parametric search. It relies on an expert to guide the definition of parameter106

sets to compare to real images (Monterreal, 1997). Although this process has107

been successfully applied for years, it is significantly time-demanding, and the108

explored parameter sets are inherently biased by the expert’s vision. This work109

aims to update this method by approaching OC as an optimization problem110

(Nocedal and Wright, 2006; Törn and Žilinskas, 1989) focused on finding the set111

of parameters that results in the most realistic synthetic image. Therefore, this112

work continues the research line of modernization recently opened by Monterreal113

et al. (2022) and proposes applying computational optimization methods to114

replace the manual part of the OC strategy of the PSA.115

The use of global optimization algorithms is expected to improve the qual-116

ity of solutions and simplify their obtaining. Since the OC workflow involves117

applying non-linear models with different accuracy degrees and stochasticity,118

the optimizers considered are heuristics (Salhi, 2017). This sort of optimiza-119

tion algorithm relies on intuitive ideas and randomness rather than on rigorous120

certainty. They are known to provide a trade-off between computational effort121

and the quality of solutions. Namely, the optimizers studied in this work as a122

replacement of the manual work of experts are the following: i) TLBO (Rao123

et al., 2012), ii) UEGO (Jelasity et al., 2001), and iii) Multi-start Interior-Point124

(MSIP) (Griva et al., 2009; Salhi, 2017). Their results have been compared to125

those obtained through the traditional method of the PSA with three different126

heliostat facets.127

The remainder of the paper has the following structure: Section 2 describes128

the materials and methods considered in this work, including the experimental129

setup and the OC strategies. After that, Section 3 shows the results obtained130

with each end method and the three facets considered. Finally, Section 4 con-131

tains the conclusions and states the future work.132

2. Materials and methods133

As introduced, OC is a multidisciplinary process covering several fields, from134

image acquisition to optical simulation and parameter fitting. These tasks rely135

on the use of specific hardware and software. This section describes the envi-136

ronment and equipment for OC at the PSA, both for the traditional approach137

and the new one based on Computational Optimization.138

2.1. Image acquisition and simulation tools139

The traditional OC methodology followed at the PSA has been applied with140

heliostat prototypes and facets since the nineties. It obtains the information141
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about the studied optical system by comparing the sun image that it reflects142

on a target to the synthetic one generated by the appropriate models (Cruz143

et al., 2017). The revision of the method proposed in this work also inherits144

this background. Therefore, image acquisition is highly relevant for OC.145

Roughly speaking, the images are obtained by making the optical system146

reflect the sun image onto a target in the tower of the CESA-I heliostat field147

(Cruz et al., 2018; Gallego and Camacho, 2018). Figure 1 provides a general148

overview of the referred facility and the elements involved in this work, including149

the three types of facets to be characterized. More precisely, the whole system150

is known as ProHERMES 2A (Monterreal and Neumann, 1994), and it consists151

of the following hardware and software components:152

• FUJINON LENS. Model: H14X10.5A-R11. Zoom range: 10,5-147 mm.153

• CCD camera: Hamamatsu Photonics. Model: ORCA-II C-4742-98 series.154

• Filters: Omega Optical. Type: Neutral Density. Flat response range155

[400-700] nm.156

• Image acquisition and processing software: ImagePro Plus 4.1 by Media157

Cybernetics R©.158

• White Lambertian target coating: Amercoat 741. Area: 12 m × 12 m.159

• Meteorological station.160

The simulation of the optical system under study is carried out with the161

Fiat Lux software package (Cruz et al., 2017; Monterreal, 1999), which runs in162

the MATLAB environment (Higham and Higham, 2016). Once configured to163

use the parameterized model appropriate to the type of device, e.g., that of164

spherical facets when so is the studied system, Fiat Lux allows the creation of165

synthetic images to compare them with reality.166

As introduced, the chosen facets belong to heliostats in the CESA-I field of167

the PSA. The mirrors have a spherical surface and have been manufactured by168

the Guardian company using a second-surface glass of 4 mm width with low con-169

tents of iron. Their size is approximately 3000 mm x 1000 mm, as detailed in the170

next section, and they are stuck to a steel stretcher with moorings provided with171

silicone. The reason for choosing facets with different focal lengths as their main172

differentiating factor is to check if the curvature degree could affect the quality173

of the results. Thus, three ranges of focal length were selected, i.e., medium,174

long, and very long. Figure 2 shows the three facets mentioned. It includes175

their physical appearance, their real images acquired, their synthetic equiva-176

lents generated by Fiat Lux according to the technical specifications provided177

by their manufacturer, and their comparison. Notice the difference between the178

iso-intensity lines of the real and the synthetic images. It supports the fact that179

the analyzed facets significantly deviate from their specifications.180
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Figure 1: Image acquisition setup at the Plataforma Solar de Almeŕıa. From left to right:
Image analysis target (where the real projected shapes are measured), Medium-short and
Medium-long distance mirror (where the F62 and F42 facets are mounted, respectively), Image
measuring system (image acquisition equipment), and Long distance mirror (where the LDM
facet is mounted).

Table 1: Nominal specifications of the facets under characterization.

Facet Surface
Dimensions

(W x H) (mm)
Focal

length (m)
X (m) Y (m) Z (m)

H0803 F62 Spherical 2995 x 1102 175 -15.144 135.200 0.893
H1100 F42 Spherical 2995 x 1102 220 -0.158 192.200 1.570
PSA LDM Spherical 2800 x 1605 420 -19.000 440.000 5.000

2.2. Optical model of the facets181

As previously mentioned, the optical simulation tool needs to be configured182

to use the geometric and optical error model that correspond to the facets183

under characterization. The geometric model is fixed by the manufacturer based184

on the following factors: i) type of surface, ii) curvature or focal length (F),185

and iii) dimensions (wide (W) and height (H)). Table 1 contains the nominal186

specifications of the three facets considered in the present study. It also includes187

the East (X), North (Y) and Zenith (Z) coordinates of the heliostat in which188

they are mounted, measured from the tower base of the CESA-I field.189

Regarding the optical error, ε, it is modeled as the standard deviation, σ,190

of the Gaussian probability distribution describing the divergence of the real191

normal vector of the reflecting surface from the expected one. Figure 3 depicts192

the facet geometry and the slope error model. While the focal length is a193

geometric and deterministic variable, the slope error is an angular and statistical194

one. It is hence necessary to take into account their different nature throughout195

the process of OC.196
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Figure 2: Real facets (left column), acquired images from measurement (central-left column),
predicted images according to the manufacturers specifications (central-right column), and
comparison of their iso-flux lines (right column).

2.3. Image processing and comparison197

Both the traditional OC methodology and the proposed alternatives rely on198

comparing the real and synthetic parameter-based images. Thus, the images199

must be processed to make meaningful comparisons. It is also necessary to200

define metrics that allow assessing the similitude between real samples and201

synthetic proposals. All the characterization strategies share the framework202

defined for this purpose. It consists of the following steps described below:203

image normalization, segmentation and comparison.204

2.3.1. Image normalization205

The real and synthetic images come from different sources, i.e., ProHermes206

2A and Fiat Lux, respectively. For this reason, their gray levels (gl) have arbi-207

trary references and cannot be directly compared. To allow their comparison,208

the real image and the synthetic one, which are required to be defined by ma-209

trices of the same dimension, must be modified as follows:210

glNorm
i,j =

gli,j∑
i,j gli,j

(1)
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Figure 3: Facet model for characterization: a) Definition of the nominal geometry of the
facet and the focal length including mirror imperfections. The latter are represented by the
deviation of the normal vector from its surface at any point, also called mirror slope error.
b) Population of mirror slope errors statistically described by a Gaussian distribution. Its
standard deviation represents the so-called facet optical error.

where gli,j refers to the gray level at pixel i, j of the image being processed,211

and glNorm
i,j is the corresponding pixel after normalization. Thus, the resulting212

image meets the following condition:213 ∑
i,j

glNorm
i,j = 1 (2)

In what follows, GL will designate the gray levels of the pixels of the real214

image (also known as the benchmark). Analogously, gl will represent those215

of any synthetic image, i.e., predicted by the model. This notation allows for216

distinguishing both types of images.217
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Figure 4: Understanding the comparison of sun-reflected images on target. Top-left: Occa-
sional undesirable effects on the real image due to local distortions of the mirror and resid-
ual background noise on target. Top-central: 3D view of both real and synthetic images.
Top-right: Deviation of the real image from the synthetic one by residual calculation. Down-
left: removing undesirable effects on the real image. Down-central: 3D view of the real and
synthetic images, free of undesirable effects. Down-right: Deviation between the real and
synthetic images by means of residual calculation after removing undesirable effects.

2.3.2. Image segmentation218

Real images can contain undesirable effects. For the scope of this work, the219

most relevant ones are the haloes caused by local mirror dislocations (or dis-220

tortions) and the perimeter noise on the surface of the image analysis target.221

Mirror dislocations do not necessarily occur. They are very localized effects222

caused by the mechanical tension at the glass clamping devices that fix it to223

the steel frame of the facet. Their spurious nature makes them unsupported by224

Fiat Lux and probably by all current simulators. The involved reflective surface225

is small, and so are their effects on the reflected image. These deformations are226

of the same order of magnitude as the noise produced by the target. They will227

generally appear near the image borders and feature low intensity. Regarding228

the perimeter noise, it is caused by the instrumentation (readout noise) and229

aspects such as the irregular surface of the Lambertian target. It consumes cal-230

culation time on irrelevant pixels and could misguide comparisons. Fortunately,231

the image segmentation process eliminates both. It considers only the part of232

the image that is relevant in the comparison for the OC process. Figure 4 shows233

the mentioned effects and how segmentation affects the image.234

In terms of implementation, segmentation modifies the pixels of an input235
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image GLNorm indexed by subscripts l,m as follows:236

Segmented GL =

{
GLNorm

l,m = GLNorm
l,m if GLNorm

l,m ≥ GLIsoline

GLNorm
l,m = 0 Otherwise

(3)

where GLIsoline is the threshold gray level required so that
∑

l,mGLNorm
l,m = P ,237

i.e., the gray level from what the summation of pixels with values equal or238

above is equal to the given P. Accordingly, only the pixels whose value is equal239

or greater than GLIsoline remain unaltered, while the others are set to 0. The240

isoline is generally chosen so that P = 0.6827 (68.27%). Thus, the summation241

of the pixels selected (taken or kept) will represent 68.27% of the intensity242

(accumulated gray level). The complete summation (no segmentation) would243

be 1, i.e., 100%. The value of P has been empirically adjusted in relation244

to the probability of pixels being selected according to their gray level. It245

results in an adequate segmentation and avoids undesirable effects (local mirror246

distortion and background noise) without relevant information loss for the latter247

comparison.248

2.3.3. Image comparison249

As introduced, provided that the surface type and size are known, the spheri-250

cal facets under study are characterized by their slope error, ε, and focal length,251

F . Therefore, every set of parameters ε, F allows generating a synthetic im-252

age with the optical model to compare to reality and becomes a possible result253

of OC. The characterization quality increases as the difference between reality254

(benchmark) and the synthetic prediction decreases. This value is computed255

as the Root Mean Square Error (RMSE) between the benchmark and the syn-256

thetic image that results from the parameter set considered. It is formulated as257

follows:258

RMSEsegm =

√∑
l,m (gll,m −GLl,m)

2

N
(4)

where N is the number of pixels selected at segmentation. It is also possible259

to normalize the RMSE (nRMSE) by multiplying it by 100/M , where M is the260

average value of the reference or benchmark image, i.e., GL. This transforma-261

tion allows working with values bigger than those of the plain RMSE, which are262

easier to remember and plot (e.g., 45.7 in nRMSE in contrast to 0.0002597 in263

RMSE), without altering the meaning of the results.264

2.4. Optical characterization methods265

Based on the previous sections, it is possible to define OC as the search for266

the optical parameters that minimize the difference between their corresponding267

synthetic image and the real or benchmark one. Hence, in practical terms, it268

can be addressed as an optimization problem in which the objective function269

to minimize is Eq. (4), and the variables are the optical parameters defining270
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different synthetic images to compare. This section explains the alternatives271

considered for this process, starting from the traditional method of the PSA to272

the optimization algorithms studied to replace it, i.e., TLBO, UEGO, and MSIP.273

All of them share the operational context previously described and depicted274

in Figure 5. The only change is how they generate the candidate parametric275

combinations. The section ends with an overview of the most relevant properties276

of each method for their use. Thus, the reader not interested in their internals277

can directly go to that part.278

Real facet Facet model

Image acquisition
(ProHERMES, PSA)

Real image Synthetic image

Simulation code
(Fiat_Lux, PSA)

Normalization

Segmentation

Comparison

Minimum 
RMSE

Characteristic
Parameters

YesNoParametrization
{𝜖, 𝐹}

Define 
for testing

Normalized irradiance distribution on the target
Image residuals

TLBO UEGO MSIPPSA-ISOC

Compared strategies

Figure 5: Common context for optical characterization. Top-left: real facet to register its
image. It is next to the equivalent model to generate the synthetic image to compare after
processing (bottom-left). Top-right: The OC strategies generate and study different parameter
sets for the model to produce a synthetic image with the aim of finding the parameter set
resulting in the minimum RMSE after comparison (bottom- right).

2.4.1. PSA Iterative Search for Optical Characterization (PSA-ISOC)279

The methodology traditionally followed at the PSA, known as PSA Iterative280

Search for Optical Characterization (PSA-ISOC), has been improved through-281

out the years. Currently, the approach combines the experience of operators282

with the toolboxes and scripting capabilities provided by the MATLAB envi-283

ronment.284

The characterization process starts by regularly sampling the dimensions285

involved, i.e., variables F and ε for the studied facet, to form a grid. The nominal286

value of F remains in the center of its range. The limits are generally defined287

in terms of percentages below and above the nominal value. For instance, 50%288

below and above 220 m results in a search space from 110 to 330 m. The step289

size is also a user-defined user parameter. It is defined considering that slight290
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variations might not be measurable. Thus, the initial step size might be 10 or291

20 m. Regarding ε, if it is known to be near a particular value, the dimension292

is defined the same. Otherwise, the range covers from 0 (no slope error) to293

a user-defined upper bound. The step size is another variable to set, and the294

value has to be of few milliradians in this case. The sampling technique can be295

generalized to all the variables involved.296

After the previous definitions, the characterization process fixes the slope297

error to zero and explores all the sampled values for F. The method keeps a298

record with the best choice. According to Figure 5, assessing every combina-299

tion implies generating the corresponding synthetic image, pre-processing, and300

comparing it to the real one to compute the RMSE. After that, F is fixed, and301

the exploration is repeated while focusing on the slope error this time. Finding302

the most appropriate slope error after having set the focal length ends the first303

iteration.304

Once the first iteration ends, the user might decide to execute a second one.305

For this purpose, the ranges are centered around the previous result. The step306

sizes must be reduced to provide the search with more resolution. It is also307

possible to reduce the percentages that define the upper and lower bounds to308

reduce the search space. The user can execute as many iterations as desired309

according to the evolution of the results. However, it is not usual to perform310

more than three or four complete iterations. It is also relevant to highlight that311

the user might decide to fix the focal length variables before those linked to312

the slope errors, i.e., to invert the order of some iterations. It depends on the313

consideration of the results achieved, and it is one of the main reasons for this314

process to be demanding and uncertain.315

2.4.2. Teaching-Learning-based Optimization (TLBO)316

Teaching-Learning-based Optimization (TLBO) is a numerical optimization317

algorithm proposed by Rao et al. (2012). It belongs to the group of meta-318

heuristics (Boussäıd et al., 2013; Lindfield and Penny, 2017; Salhi, 2017), which319

are problem-independent optimizers. They cannot guarantee optimal solutions320

yet are known to achieve acceptable ones by relying on general principles. More321

accurately, TLBO is a population-based meta-heuristic into the Swarm Intelli-322

gence subgroup because it works with a population of candidate solutions and323

simulates their social interaction. Namely, it treats each solution as a student324

that learns from the rest and becomes a better option. This algorithm has be-325

come very popular due to its simplicity of implementation and configuration326

(Rao, 2016).327

The configuration of TLBO consists of two parameters: the population size328

and the number of iterations. The optimizer starts by randomly generating329

as many candidate solutions as defined by the population size. Each one is a330

vector that contains a valid value for every variable under optimization. It is331

also necessary to compute the RMSE for all of them according to the procedure332

depicted in Figure 5. This is the value of the cost function in optimization terms.333

The range of each variable and the evaluation function must be provided by the334

user as part of the context information, but this occurs with all the options335
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taken into account. In general, the range of variables should be the same as the336

widest ones considered with the traditional PSA-ISOC.337

After the previous initialization stage, TLBO executes as many iterations338

as required. Each one consists of two consecutive steps: the teacher and the339

learner stages. The former simulates how students learn from their teachers and340

improve their skills. It tries to shift all the solutions in the population towards341

the best one, i.e., that with the lowest RMSE, which becomes the teacher, T .342

Namely, after identifying the best solution, TLBO computes a vector M in343

which the i component is the average of variable i in the population. Next, the344

optimizer applies Eq. (5) to create a modified version, S′, from every candidate345

solution, S. This equation aims at vectors, so i refers to the i component of346

candidate solutions. ri is a random real number in the range [0, 1] for each347

component. TF , known as ‘teaching factor’, is a random integer affecting the348

potential amplitude of movement. Rao et al. (2012) empirically defined it to be349

either 1 or 2 when designing the method. Notice that every candidate solution350

at a particular stage and iteration shares the same random factors computed351

at run time. The modified solutions that outperform their original ones will352

replace them, while the rest are discarded.353

S′i = Si + ri (Ti − TFMi) (5)

Regarding the learner step, it models the interaction between students. For354

this purpose, TLBO pairs every candidate solution with another one. Then,355

it applies Eq. (6) to create a modified version, S′, of every existing candidate356

solution, S, considering the effect of its pair, WS . The equation aims at vectors357

like Eq. (5). Thus, ri refers to a real random number in the range [0, 1]358

and linked to the i component. The set of random factors is recomputed and359

remains the same for all the interactions at the present stage and iteration.360

For every pair, the learning stage tries to shift the worst solution towards the361

best. This step concludes with the replacement of the current solutions that are362

outperformed by their modified versions. The rest do not change.363

S′i =

{
Si + ri (Si −Wi) if error(S) < error(W )

Si + ri (Wi − Si) otherwise
(6)

After the method has run the requested number of cycles, it returns the best364

candidate solution in the population as the final result. The interested reader365

can find in (Rao et al., 2012) a numerical example of this optimizer in action366

for a better understanding.367

2.4.3. Universal Evolutionary Global Optimizer (UEGO)368

The Universal Evolutionary Global Optimizer, known by its acronym UEGO,369

is a meta-heuristic global optimizer proposed by Jelasity et al. (2001); Ortigosa370

et al. (2001). Like TLBO, UEGO is a population-based algorithm, but it belongs371

to the branch of Evolutionary Computation (Boussäıd et al., 2013). Accordingly,372

the algorithm manages different solutions concurrently and treats them as indi-373

viduals subject to Darwinian evolution. The solutions improve their quality as374
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Figure 6: Depiction of species for UEGO and the target problem. In implementation terms
(left), each species is an array consisting of the decision variables (ε, F), the value or aptitude
of that parameter set as a solution (RMSE, i.e., the lower, the better), and the radius of that
point as a species (Euclidean distance from the decision variables to consider nearby points
equivalent). Conceptually (right), a species is a window in the search space defined by its
center (the duple of (ε, F) for the species), and the referred distance. There are two decision
variables, so the search space is bi-dimensional, and species are represented by circumferences.

they evolve. This method can be further classified as memetic (Molina et al.,375

2011). Thus, it adds a local search component to the simulated biological con-376

text so that solutions can improve autonomously. At the same time, UEGO is a377

multi-modal optimizer, which means that it seeks different optima in the search378

space. This algorithm has been successfully applied to many problems, such as379

protein folding (Garćıa-Mart́ınez et al., 2015) and heliostat field design (Cruz380

et al., 2018).381

The fundamental working unit of this algorithm is the species, which com-382

bines a candidate solution with an attraction radius around it. Provided a383

distance metric, such as the Euclidean distance for continuous variables, species384

are like ‘windows’ in the search space that focus the optimization process on385

different regions. These species can be created, eliminated, moved, and merged386

throughout the operation of UEGO. In fact, in practical terms, the optimizer387

can be thought of as a method for managing a list, i.e., a species population.388

Figure 6 shows the structure and meaning of a species considering the slope389

error (ε) and the focal distance (F ) of a hypothetical facet under OC as the op-390

timization variables. The slope error and the focal distance defining the central391

point of the species also form a solution to the problem. Hence, its value as a392

solution, known as aptitude in Evolutionary Computation, is also registered. As393

it refers to the RMSE obtained after simulating the corresponding parameter394

set, the lower this value is, the better solution this configuration represents.395

Aside from the problem context, i.e., the variable bounds and the objective396

function, UEGO takes the following parameters: i) the maximum number of397

species, ii) the maximum number of evaluations of the objective function, iii)398

the minimum radius between species, and iv) the number of iterations (search399

levels in UEGO). Nevertheless, take into account that the selected local search400
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algorithm might require extra parameters.401

The algorithm starts by creating an initial species. Its center is a random402

feasible point, and its radius is set to the diameter of the search space to cover it403

completely. Then, UEGO launches the selected local optimizer from the center404

of this species. This point will be updated as the method finds better ones,405

which is equivalent to moving the species. These steps define the first level of406

search.407

After the initialization, UEGO executes a loop with the remaining levels of408

search. Each one consists of the following steps. Firstly, UEGO computes the409

radius to be assigned to any new species created at that level. Radii decrease410

with the search level according to a geometrical progression, and the last one411

is the user-given input. This strategy corresponds to a cooling component that412

progressively reduces mobility to promote convergence. UEGO also computes413

the budget of objective function calls to create and locally optimize species. The414

former is three times the maximum number of species, and the latter increases415

with the level, as radii decrease. However, UEGO has mechanisms to save func-416

tion evaluations, such as removing redundant species, so it might not consume417

all of them.418

Secondly, UEGO creates as many random species in the regions of the exist-419

ing ones as allowed by the budget. Then, the algorithm fuses any species whose420

centers are nearer than the radius assigned to the current level. When fusing421

two species, the resulting one keeps the longest radius, which tries to avoid pre-422

mature convergence, and takes the better candidate solution as its new center.423

Next, if the population is larger than allowed, the excess is removed, starting424

with the species having the shortest radius. After that, UEGO launches the425

local optimization component from each species and considering the function426

evaluation budget. To conclude every search level, as the local optimizer moves427

the species centers to better candidate solutions independently, UEGO repeats428

the fusing process.429

With respect to the local search component, the Solis and Wet’s algorithm430

has been selected (Molina et al., 2011; Solis and Wets, 1981). This method is a431

stochastic hill-climber that starts at a given point, i.e., the center of a species432

when coupled to UEGO, and takes improving steps in random directions. The433

amplitude of jumps is scaled with the number of consecutive successful (improv-434

ing) and discarded (non-improving) movements. This local search algorithm has435

been selected because it has no specific requirements from the objective func-436

tion, and it has already been successfully coupled with UEGO (Cruz et al., 2018;437

Jelasity et al., 2001).438

After having executed as many search levels as requested, the output of439

UEGO is the final list of species. According to the multi-modal approach of the440

algorithm and provided that it has converged, the surviving species are expected441

to be different optimal solutions.442

2.4.4. Multi-Start Interior-Point (MSIP)443

The optimizer referred to as Multi-Start Interior-Point, abbreviated as MSIP,444

results from coupling an Interior-Point algorithm (Griva et al., 2009) with a445
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stochastic Multi-Start technique (Redondo et al., 2013; Salhi, 2017).446

Interior-Point methods form a group of algorithms for addressing linear and447

non-linear optimization problems (Griva et al., 2009). They are characterized448

by keeping the exploration in the feasible region of the search space employing449

different methods. The Interior-Point algorithm considered in this work belongs450

to the FMinCon (FMC) solver included in the Optimization Toolbox of MAT-451

LAB (Branch and Grace, 2020; López, 2014). The method addresses the target452

problem by solving a sequence of approximations that result from adding slack453

variables and a barrier function (Byrd et al., 2000). The resulting instances are454

simpler to solve than the original one.455

FMC takes as input an initial point to start the search, and it might impact456

the final result depending on the problem type. At each iteration, it can choose457

one of two alternatives to solve the approximate problem. The first option,458

which is also the preferred one, is to take a direct or Newton step that applies459

a linear approximation. The second one is to take a conjugate gradient step460

with a trust region. This latter option is only selected when it is not possible to461

apply the previous one, for example, because the approximate problem is not462

locally convex near the current position.463

The referred Interior-Point algorithm will only find the optimal solution464

for convex problems. Otherwise, the result might be a local optimum. The465

convexity of the target problem has not been certified. Moreover, according to466

preliminary experimentation, the solutions found by FMC vary with the starting467

points. Thus, the multi-start component is in charge of randomly generating468

different initial points and launching FMC independently from each one. It469

controls the total number of function evaluations and records the best result470

achieved so far, which ultimately becomes the problem solution. This approach471

serves to escape from local optima by focusing the seek on different regions of472

the search space.473

2.4.5. Overview of the OC methods474

After explaining the four options considered for finding the optical param-475

eters of the studied facets, Table 2 provides the reader with a summary of the476

main properties of each. The first column contains the most relevant aspects477

to take into consideration. After that, there is a column per method with the478

corresponding details. PSA-ISOC stands out as the only deterministic method,479

i.e., it always returns the same result (as long as the same expert decisions are480

taken). However, it is also the most tedious and difficult to apply due to its481

inherent link to an expert. The others are solvers that only need to be appropri-482

ately configured and launched. Nevertheless, their stochastic nature can make483

their output vary among executions, so several runs might be needed. Among484

them, UEGO seems the hardest to configure after a first glance, but configuring485

the FMC part of MSIP can be challenging, as it has more than ten parameters486

according to the official documentation. Hence, TLBO is the best balanced in487

this concern as it only takes two parameters. Finally, notice that PSA-ISOC488

cannot be independently applied without an expert and time, which is one of the489

problems that this work aims to correct, and MSIP requires a software license490

16



Table 2: Main properties of the different methods considered for OC.

PSA-ISOC TLBO UEGO MSIP

Type
Semi-automatic

grid search

Meta-heuristic
(Swarm

Intelligence)

Meta-heuristic
(Evolutionary
Computation)

Interior-Point
in Multi-Start

component

Output
stability

Deterministic
(Taking the

same decisions)
Stohastic Stochastic Stochastic

Human
interaction

High
(Interactive

stages)

Minimal
(Setup)

Minimal
(Setup)

Minimal
(Setup)

Setup
complexity

High
(Under

continuous
adaption)

Low
(2 parameters)

Medium
(4 parameters)

Minimal
(1 parameter,

using the
defaults

of FMinCon)

Availability
Not applicable

(Expert-dependent)

Open-source
implementation
at Cruz (2021a)

Open-source
implementation
at Cruz (2021b)

Optimization
Toolbox
required

for FMC. On the contrary, we have open-source implementations of TLBO and491

UEGO, simplifying their use (or even modification).492

3. Experimentation and results493

3.1. Environment and configuration494

The present study has considered three spherical heliostat facets to charac-495

terize: F62, F42, and LDM. After recording the benchmark image of each facet496

as described in Section 1 and Section 2, the different characterization processes497

have been carried out in a computational environment. At that point, the tools498

used are MATLAB 2018b, the auxiliary routines for image management, the499

Fiat Lux optical model from the PSA, and the optimizers involved.500

There are four alternative OC strategies, the traditional and semi-automatic501

PSA-ISOC method, and the optimizers TLBO, UEGO, and MSIP, which explore502

the parameter search space autonomously after being configured. The first503

one has been executed, as usual, by one of the experts in charge of OC at504

the PSA. The others have been launched independently at the University of505

Almeŕıa (UAL). The MATLAB implementations of TLBO and UEGO have506

been developed at the UAL. The same occurs with the multi-start component507

that manages the FMinCon software package by MathWorks used to define508

MSIP. The computer used at the PSA features an Intel Core i5-8265U 4-core509

processor and 16 GB of RAM. The one used at the UAL has an Intel i7-4790510

4-core processor and 32 GB of RAM.511

The PSA-ISOC procedure was applied at the PSA, as usual, to minimize512

the same objective or cost function as the optimizers. It covered the following513

aspects:514

1. Facet geometry: Spherical515
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(a) Variable linked to the search: Focal distance (m).516

(b) Nature of the variable: Deterministic.517

(c) Starting Value (SV) (manufacturer’s data):518

i. 220.0 m (F42)519

ii. 175.0 m (F62)520

iii. 420.0 (LDM)521

(d) Search range:522

i. [Fmin = 90.0, Fmax = 330.0] (F42, F62)523

ii. [Fmin = 150.0, Fmax = 650.0] (LDM)524

2. Mirror surface state.525

(a) Variable linked to the search: slope error (mrad)526

(b) Nature of the variable: Statistical.527

(c) SV: 0.0 mrad (no manufacturer’s data).528

(d) Search range:529

i. [εmin = 0.0, εmax = 3.0] (F42, F62)530

ii. [εmin = 0.0, εmax = 2.5] (LDM)531

Two variants of PSA-ISOC were tested for each facet:532

Direct: It starts at the initial configuration. It assumes that the SV of the533

slope error is correct, so the search starts by testing the focal length of534

the facet, which is the variable of deterministic nature.535

Inverse: It starts at the initial configuration. It assumes that the focal F of the536

facet is correct and its SV is the nominal one given by the manufacturer,537

so the search starts by testing the slope error, which is the variable of538

statistical nature.539

In both, the best value found for the variable considered is recorded and540

used when switching to the other dimension, and the process is repeated until541

finding the lowest error. Each variant generates its own final result, and the one542

ultimately selected is that producing the smallest error.543

The optimizers inherit the initial ranges of each variable and facet described544

above. TLBO has been configured to work with a population of 12 candidate545

solutions for 30 cycles in all the cases. This configuration approximately results546

in 730 objective function evaluations. It implies the same number of simula-547

tions with Fiat Lux generating a synthetic image to compare to the benchmark.548

This value is based on the number of evaluations that the simplest PSA-ISOC549

would execute, according to the expert. MSIP and UEGO have been config-550

ured to approximately make the same number of function evaluations. More551

specifically, UEGO has been configured to consume up to 1400 function eval-552

uations, maintain up to 12 individuals, run 16 levels of search, and consider a553

minimum radius of 4.0 in the search space. Since it includes strategies to save554

function evaluations after convergence, the number stays in the desired range.555

Finally, MSIP has been directly provided with the reference number of function556

evaluations.557

18



Regarding the computational effort, the methods considered can be divided558

into two groups. Let the traditional expert-based PSA-ISOC be on one side and559

the standard optimization algorithms UEGO, TLBO, and MSIP on the other.560

This division is equivalent to the degree of human interaction detailed in Table561

2. It can be reformulated as the methods of high human interaction (PSA-562

ISOC) compared to those mainly automatic (only requiring to be configured563

once), i.e., UEGO, TLBO, and MSIP. In general, the time required by the564

traditional expert-based PSA-ISOC will be significantly higher than the rest due565

to the necessity of supervising its progress and making decisions. Hence, PSA-566

ISOC could only compete with the standard optimization algorithms in terms567

of quality. More specifically, the expert invested 2 days of work applying the568

PSA-ISCO to every facet, i.e., 16 hours for each case. On the contrary, the time569

of any optimizer mainly depends on the number of function evaluations, which570

makes them equivalent in terms of computational effort. The reason is that571

the objective function is computationally demanding (e.g., its evaluation takes572

approximately 45 seconds for F42), which makes the cost of the internal steps of573

any optimizer negligible. As all the standard optimizers have been configured to574

launch approximately 730 evaluations, their running time is virtually the same.575

Namely, all the optimizers took approximately 9.5 hours for F42, 8.5 hours for576

F62, and 4.5 hours for LDM in the non-dedicated UAL computer. Thus, the577

execution time is not relevant for choosing one of the optimizers.578

3.2. Problem considerations579

In contrast to a classic optimization problem analytically addressed, e.g.,580

finding the minimum of the parabola f(x) = x2, we face two levels of stochas-581

ticity. The first one is linked to the objective function evaluation, which involves582

the simulation an generation of synthetic images to compare. More specifically,583

if one thinks of evaluating the referred parabola, the values computed are deter-584

ministic and do not vary. For instance, f(5) = 52 = 25, and the result does not585

change. On the contrary, the results of generating and comparing synthetic im-586

ages to the real one vary. The reason is the slope error, modeled by a Gaussian587

distribution. This aspect affects the creation of synthetic images by Fiat Lux588

with random yet normally distributed values. In this context, given two similar589

parameter sets, it is possible that one evaluation using Fiat Lux returns than590

the first one is slightly better, while the next one results in the opposite inter-591

pretation. It is like looking for the minimum point of a function that moves592

slightly. We face this problem by making the objective function (its internal593

simulations) deterministic artificially. Namely, we fix the same seed at evalua-594

tion, i.e., the one used by Fiat Lux, for a complete execution of any optimizer.595

Roughly speaking, the seed in Computer Science is the input of random number596

generation algorithms defining an infinite sequence of pseudo-random numbers597

(Matsumoto and Nishimura, 1998). For the same seed, they produce the same598

numbers. Hence, this is like taking a snapshot of the moving surface of the599

objective function or freezing it.600

The second level of stochasticity is linked to the optimization methods con-601

sidered. Even with a fixed surface to explore, they also use random numbers,602
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i.e., they are stochastic. This property means that a certain optimizer might re-603

turn a different result for the same problem and configuration. In other words,604

its results are not deterministic either (also in contrast to the analytical ap-605

proach of the example above). This behavior is coupled with the variation of606

the seed defining the objective function. Regardless, the stochastic component607

of the Fiat Lux simulations is enough to impact the whole OC process. Thus,608

it is necessary to handle this situation.609

For this purpose, every optimizer has been independently executed with five610

different fixed seeds for the objective function (Fiat Lux simulation). Accord-611

ingly, for each facet and method, we ultimately have 5 equivalent parameter612

sets. We cannot say that one is better than the rest because they were obtained613

from a different snapshot of the objective function. Thus, the final parameter614

set from the particular optimizer an facet is the average of their independent615

results. For example, assuming a particular facet and two simulation seeds vary-616

ing the shape of the objective function, we could have registered from one of617

the optimizers the following results: (0.52 mrad, 175 m) and (0.58 mrad, 185618

m). Then, its result for the studied facet would be (0.55 mrad, 180 m), i.e., the619

average of the variables.620

However, that parameter set might perform bad in reality, especially if the621

optimizer mis-converged. They cannot even be certainly ranked: each parame-622

ter set has its own value for its frozen function, but the quality of the average623

point cannot be computed in that way. Thus, each parameter set is ultimately624

evaluated an compared by studying it under 100 different seeds for the sim-625

ulation, i.e., by evaluating with 100 different snapshots of the same moving626

objective function (which cannot be fixed due to its statistical definition). If627

the parameter sets adapt well to the different variations of the function, they are628

robust enough. In other words, the robustness of every result must be assessed629

by considering multiple evaluations (synthetic image generation and compari-630

son) with different random numbers. For this reason, it is always advisable to631

vary them during the seek, even if the OC methods are deterministic.632

It is interesting to end this subsection with a more detailed explanation of633

how Fiat Lux works in practical terms. It receives as input a picture of the sun,634

and it is taken with the same digital camera used for the images of the facets635

over the target. It is an angularly-calibrated image, which means that we know636

the mrad subtended for any pixel in the picture of the sun from the camera.637

This can be applied to any element in the concentrator too, given the proximity638

between both. In this regard, Fiat Lux differs from standard Monte-Carlo Ray-639

Tracing (MCRT), which associates the uncertainty of the optical system to the640

direction of the incident ray. For it, the uncertainty at simulation is caused by641

the deviation in the orientation of the vector perpendicular to every element of642

the surface, dS, on the mirror (slope error). This orientation differs from the643

nominal one and is modeled by a normal distribution statistically describing644

the deviation of the corresponding perpendicular vector, and ultimately affects645

the direction of every ray reflected at every dS. Therefore, the unavoidable646

uncertainty is handled by considering multiple seeds, as detailed above. Each647

Fiat Lux simulation has processed approximately 930 000 000 rays.648
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3.3. Optical characterization results649

Figure 7 depicts intermediate results of the PSA-ISOC process for F42. It650

allows visualizing the impact on the successive approximations of the horizon-651

tal and vertical normalized intensity profiles of the real and synthetic images.652

Figure 8 displays the slope error and focal length through the stages of the Di-653

rect and Inverse variants of PSA-ISOC for the same F42 facet. The asymptotic654

evolution of the variables shows the proximity of the minimum error. The be-655

havior is similar for F62 and LDM, so they are omitted due to space limitations.656

Regardless, the PSA-ISOC method has been outperformed by optimization for657

every facet.658

N
or

m
al

ize
d 

in
te

ns
ity

7

6

5

4

3

2

1

0 3210-3 -2 -1

x10-5 Horizontal cuts along peaks

Synthetic
Real

Synthetic
Real

Vertical cuts along peaksx10-5

7

6

5

4

3

2

1

0

N
or

m
al

ize
d 

in
te

ns
ity

3210-3 -2 -1
m m

Figure 7: Horizontal (left) and vertical (right) slices across the centroid of the normalized
intensity of the real image (black) acquired from the F42 facet. The red and blue slices
correspond to synthetic images generated with different model parameters considered by the
PSA-ISOC method.
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Figure 8: Partial results of PSA-ISOC for F42. Left (Direct PSA-ISOC): The blue line
represents the evolution of the searched focal length of the F42 facet from its initial (nominal)
value to the best value minimizing the cost function. The brown line shows this evolution for
the slope error. Right: It contains the same information for the Inverse PSA-ISOC variant.

Regarding the results of advanced optimization, Table 3 contains the nominal659

values of the parameters defining each facet, i.e., slope error and focal distance,660

alongside the corresponding values achieved through characterization. It also661

21



Nominal optical
parameters

Best optical
parameters

Facet Geometry
Slope error

(mrad)

Focal
length
(m)

Slope error
(mrad)

Focal
length
(m)

Method nRMSE
Confidence
Interval
(90%)

F62 Spherical Unknown 175 0.76 171 UEGO 89.46 18.1%

F42 Spherical Unknown 220 1.18 211 TLBO 34.20 10.7%

LDM Spherical Unknown 420 0.81 185 TLBO 17.98 6.7%

Table 3: Final results of the optical characterization process.

includes the method that found the best solution, represented by its nRMSE and662

90% confidence interval. Unknown values refer to the fact that manufacturers663

did not provide information about this parameter for the facets built.664

Figure 9 shows the robustness analysis of the final result of each method665

and facet. Each solution is represented by its average nRMSE registered after666

100 independent evaluations with different seeds. The figure also displays the667

corresponding 90% confidence interval of each sample. As previously explained,668

any of the 100 nRMSE instances could be the most realistic one. Thus, they are669

replaced with two representative statistics, i.e., the average and the standard670

deviation, as the most probable value and the observed scattering, respectively.671

Figure 9 confirms the viability of replacing the traditional characterization672

approach with optimization algorithms, which was a fundamental goal in the673

present study. More specifically:674

• The nRMSE of PSA-ISOC is similar to those of the best-performing nu-675

merical optimizers, i.e., TLBO and UEGO. More specifically, one can676

compare the nRMSE obtained in the test of 100 independent evaluations677

for each result found by PSA-ISOC to that of the best-performing opti-678

mizer, i.e., lowest average nRMSE. For F62, the result of UEGO deviates679

0.55% up from that of PSA-ISOC. For F42, the result of TLBO deviates680

up 5.32%. Finally, for LDM, TLBO deviates up 1.87%.681

• The solutions of PSA-ISOC fall into the confidence interval defined by the682

best-performing numerical optimizers.683

• For all the facets, the lowest average nRMSE comes from a numerical684

optimizer. Hence, they could replace the traditional PSA-ISOC while685

providing similar quality and requiring less supervision by the experts.686

Figure 10 extends Figure 2 by comparing the iso-intensity lines of the real687

images of the facets to their synthetic equivalents according to the best param-688

eters found after characterization. As can be seen, the iso-intensity lines of the689

real images are more similar to those of the synthetic ones generated with the690

characterized configuration than to those using the nominal values.691

The similarity between the actual images of the facets and their synthetic692

equivalent can be further studied with statistical tools. In this context, the693

pixel-to-pixel deviation (px2px ) between the real image and the one simulated694

with the parameters obtained after characterization has been analyzed. Figure695

11 shows this study (left side) and the corresponding histograms of occurrences696

(right side) for the three facets considered.697
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Figure 9: Quality of the results. The optical parameters found by each method for every facet
have been used to compare the resulting synthetic image to its reference under 100 different
random seeds to confirm their generality. The numbers correspond to the average nRMSE
obtained with each parameter set after the 100 independent comparisons. The associated bars
indicate the 90% confidence interval of these results.

Table 4 shows three different metrics of pixel-to-pixel deviation between698

the actual images and their synthetic equivalents found after characterization699

and their occurrence percentages. Namely, Type A refers to the most frequent700

deviation of the synthetic image from the actual one. Type B is the name of the701

highest deviation above the real image. Type C is how the highest deviations702

below reality are tagged.703

The first group shows if the characterized image has either overestimated or704

underestimated the intensity in the benchmark, as well as the magnitude of the705

most frequent deviation. For instance, the optical parameters found for the facet706

F62 cause 96.75% of the pixels in the synthetic image to be 0.33% above the707

actual values. Accordingly, the characterization predominantly overestimates708

the intensity. However, the opposite situation occurs with F42 and LDM.709

This analysis would be biased without considering the magnitude and fre-710
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Figure 10: Iso-intensity lines of the real images of each facet (left) compared to the synthetic
equivalent using: the nominal parameters (center) and those obtained through characteriza-
tion (right).

Facet
Type A

px2px deviation
Occurrence

Type B
px2px

deviation
Occurrence

Type C
px2px

deviation
Occurrence Others

F62 0.33% 96.75% 13.9% 0.007% -13.2% 0.006% 3.24%

F42 -0.32% 93.39% 20.0% 0.009% -20.7% 0.017% 6.58%

LDM -0.62% 88.16% 15.9% 0.001% -14.1% 0.001% 11.86%

Table 4: Statistical analysis of the best synthetic images obtained through characterization.
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Figure 11: Pixel-to-pixel deviation between the real image and the best characterization result
(left) and corresponding histogram of occurrences (right) for each facet. The best parameter
set found through optimization for every facet has been used to generate the corresponding
synthetic image with Fiat Lux. These images have been compared pixel by pixel to their cor-
responding reference. The comparison computes the percentage deviation of each pixel in the
synthetic image with respect to its equivalent in the one experimentally obtained (reference)
generating a histogram of percentage deviations.
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quency of the highest deviations between both sorts of images, which can be711

determinant to assess characterization. For example, the result of F42 shows712

deviations up to 20.0% above its benchmark, with an occurrence of 0.009%. For713

LDM, 15.9% are above its benchmark and the occurrence is 0.001%, i.e., 9 times714

less. Regarding the highest deviations below the benchmark, the percentages715

are similar (-20.7% and -14.1%, respectively). However, their occurrences are716

0.017% and 0.001%, respectively, i.e., 17 times less for the facet LDM. There-717

fore, it can be concluded that LDM is the facet that has been characterized the718

best. This idea is supported by Figure 11 and the position of its results in the719

nRMSE ranking, in which its most pronounced deviations from the benchmark720

are also rare.721

4. Conclusions and future work722

This work has two main goals. The first one is to warn about the neces-723

sity of both an initial and a routine assessment of the optical quality of the724

heliostats in commercial solar power tower plants throughout their useful life.725

The second one is to demonstrate that this process can be carried out as long as726

effective alternatives to traditional indirect optical characterization, such as the727

method followed at the Plataforma Solar de Almeŕıa (PSA), are developed. The728

viability of this approach depends on minimizing two fundamental aspects of729

current strategies: i) the requirement of constant participation of highly qual-730

ified staff, and ii) the time linked to traditional methods, which are mainly731

iterative searches with notable heuristic or expert-specific components.732

A common experimentation framework has been defined with the experts733

of the PSA. In this context, the traditional iterative optical characterization734

method of the PSA (PSA-ISOC) has been compared to using three existing735

numerical optimizers, UEGO, TLBO, and MSIP. The study has not been lim-736

ited to obtaining an independent result to optical characterization instances.737

It has also covered how to find the optimal solution among the proposals of738

each method. The experimentation has considered three heliostat facets. Two739

of them belong to standard heliostats of the CESA-I field of the PSA, while740

the third one is a facet prototype featuring a long focal distance. The results741

obtained confirm that for simple optical systems, such as heliostat facets, the742

numerical optimizers TLBO and UEGO achieve the optimal solution for the743

optical characterization problem. More precisely, for the three facets consid-744

ered, the traditional semi-automatic process of the PSA, PSA-ISOC, deviates745

0.55%, 1.87%, and 5.32% in nRMSE, respectively, from the results obtained by746

the automated execution of the optimizers. Besides, the PSA-ISOC results fall747

into the confidence interval linked to those achieved by the optimizers. There-748

fore, these methods seem valid to approach optical characterization processes749

without requiring constant human interaction. The decision between them is750

up to the user, but TLBO is simpler to tune and implement.751

For future work, the aim is to generalize the optical characterization method752

to cover complete facet-based heliostats. Upon success, it will be possible to in-753

clude the technique as part of the routine revision and maintenance tasks of754
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heliostats in solar power tower plants. This update allows monitoring their op-755

tical performance throughout their useful life and, thus, controlling the economic756

expectations linked to their real production capacity.757
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