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Abstract

This paper presents a novel experimental and theoretical methodology for the fragility assessment of masonry

infilled frame structures subjected to seismic loads. The method uses a Hamiltonian Monte Carlo Bayesian

Neural Network trained with laboratory tests, to obtain the constitutive parameters of a non-linear spring

model that represents the masonry shear behaviour. The resulting model accounts for several types of

masonry units, structural steel and reinforced concrete frames along with the effects of windows and/or

doors openings. The results show that the use of deterministic models lead to poor estimations about the

in-plane behaviour of the system, whereas the application of the proposed semi-empirical method results in

more robust predictions according to the measured data. Also, the proposed approach is tested against two

extra data-sets to evaluate its extrapolation capabilities, with satisfactory results. Moreover, the proposed

method has been applied to an engineering case study which demonstrates that it can be efficiently applied

to robustly assess the safety against collapse of MIF buildings. Finally, a discussion between the proposed

method and the current structural standards is provided within the context of the case study.

Keywords: masonry infilled frames, Bayesian Neural Networks, Hamiltonian Monte-Carlo, shear seismic

response, Safety assessment.

1. Introduction1

Structures made of masonry infilled frames (MIF) are one of the most widespread building structural2

systems around the world, because of their robust mechanical response, their insulation properties, water-3

proofing characteristics and low cost [41]. Figure 1 depicts a number of countries mentioned in damage4

reports from past seismic events, and where the MIF building system were used. However, there are no clear5

provisions on how to consider the actual contribution of the masonry infills within the structural safety of6

framed buildings.7
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Indeed, the recent experience reported after seismic events (like the Pedernales’ earthquake, Ecuador8

[19]), has demonstrated that the infilled frames can have both, positive and negative contribution to the9

seismic response, as shown in Figure 2. Such a disparity related with an aspect intrinsically connected with10

the risk of structural collapse, demonstrates the need for effective models to fairly consider the mechanical11

behaviour of these structural elements, and to understand its actual influence on the holistic seismic response12

of the buildings.13

Figure 1: World map of seismic-prone countries with published reports of damaged masonry infilled frames: Barbosa et al.
[4], Bennett et al. [8], Fierro et al. [22], Hak et al. [30], Irfanoglu [35], Kam et al. [39], Kaushik et al. [41], Maidiawati and
Sanada [45], Perrone et al. [57], Tarque et al. [67], Urich and Beauperthuy [69], Villalobos et al. [71].

Figure 2: Example of dissimilar behaviour of masonry infilled frame structures after the Pedernales earthquake in Ecuador
16-04-2016 (courtesy of Eng. Raúl Hernández). Note that the building shown at the back of the picture revealed good
performance, in contrast to the one at the front.

In the literature, a number of physics-based models have been proposed in the past years to replicate the14

behaviour of MIFs, and they can be typically classified as micro, meso, and macro-models [18, 50, 62, 67],15

according to their level of complexity. Micro and meso-modelling approaches are computationally expensive16

and require a big amount of input parameters about the infills and their disposition, which are typically17

not available and difficult to measure non-destructively. Therefore, they are not suitable for structural18

design nor for applications about evaluation of existing with MIF structures. Notwithstanding, these models19

can be used to enrich simpler models [60, 61], provided that enough information about the mechanical20

properties of the infills is available. On the other hand, macro-models rely on modelling the mechanical21
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contribution of the masonry wall through a number of equivalent struts in the direction of each diagonal22

of the wall. The simplicity of this method makes it the one adopted by some structural codes, like the23

Seismic Evaluation Standards ASCE/SEI 41 [3]. Similar approaches can also be found in the recent literature24

about this topic [11, 34, 44, 49, 50, 52, 55]. Irrespectively, most of the referred methods in the literature25

exhibit a high variability in their results due to numerous sources of uncertainties, and consequently a26

lack of proper agreement when compared to experimental data [43, 44]. These sources of uncertainties27

are typically attributable to the lack of information about masonry and mortar strength-strain behaviour,28

joint interlock behaviour between different materials, and mechanical interaction between the frame and29

the wall, to cite but the most important. A recent work [20] has proposed a framework to assess the30

seismic performance of non-engineered constructed masonry infilled RC frame buildings, which considers the31

materials’ uncertainties. Similar probabilistic approaches have been proposed recently [13, 42] for other types32

of structures and materials. Hence, the need and trend of the current research about this topic is heading33

towards the application of probabilistic approaches for the structural evaluation of existing MIF structures.34

In this work, a novel semi-empirical framework to estimate the seismic response of masonry infilled35

framed structures with quantified uncertainty, is provided. The method uses a non-linear spring macro-model36

analogous to the macro-modelling approaches referred above, however, here the shear-response constitutive37

parameters of the non-linear spring are described through experimental probability distribution functions38

(PDFs). These PDFs are reproduced from Bayesian neural networks (BNN) trained using a data set39

comprising eighty five measured responses of a number of existing MIFs taken from the literature, and40

reproduced here under unified notation. Once trained, the BNN provides a probabilistic prediction of the41

shear wall behaviour, whereby to model the building seismic response with quantified uncertainty and to42

obtain its probability of collapse.43

The BNNs has been chosen as data-driven method given the efficiency they have demonstrated in the44

quantification of the uncertainty [7, 10, 21]. Hamiltonian Monte Carlo [54] technique is adapted and used to45

train the BNN for its efficiency in dealing with high-dimensional models. The resulting neural network not46

only provides accurate mean predictions but also the range of plausible values, based on the amount of data47

available and their variability. In the literature, some approaches can be encountered which proposed the48

application of deterministic ANN to predict the behaviour of MIF [38]; however, using deterministic neural49

networks carries the disadvantage of ignoring about the quality of the prediction.50

The proposed method has been compared against the models used by structural standards, including a51

variety of data-sets to evaluate its extrapolation capability, with satisfactory results. Finally, an engineering52

case study of a three-story building is presented to demonstrate its application to the level of an entire53

framed structure. This case study is based on the work by Morandi et al. [51], and more precisely, based on54

its laboratory test results, as a basis for comparatively evaluate structural behaviour and safety assessment55

capabilities of the proposed approach.56
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Figure 3: Shear behaviour of a masonry infilled frame. The pairs (∆, V ) indicate the coordinates of lateral deformation (∆) and
shear (V ) at key indicative points, namely yielding (∆y , Vy), capping (∆c, Vc), and residual point (∆85, V85).

The rest of the paper is structured as follows. Section 2 presents the foundations of the mechanical57

modelling of MIF under an unified notation. Section 3 describes the prediction of the masonry wall58

constitutive parameters through the HMC-BNN method, which has been made available for the readers59

trough a permanent link. A comparison of the HMC-BNN results with the estimations of the models currently60

found in the literature, is presented in Section 4. Section 5 describes and discusses the engineering case study,61

and finally section 6 gives concluding remarks.62

2. Empirical mechanical description of MIFs63

In this section, the strategy adopted to experimentally characterize the shear behaviour of the MIF64

structural system is presented. To this end, a database of eighty five laboratory test available in the literature65

are used as input data to train and test the BNN model. These tests consist of one-bay and one-story MIFs,66

subjected only to in-plane lateral cyclic deformation. Table 1 provides an overview of the data set considered67

with specification of the type of frame, masonry unit, amount of tests of each reference and presence of68

wall-openings. Additional information about the test can be found in Tables 7, 8 and 9 in the Appendix.69

Note that the results of shaking table tests available in the literature (such as [37, 58, 66]) provide very70

important information for better understand the MIF structural system; however, they have not been used71

in the present work due to the difficulty in defining the constitutive behaviour of the system given the72

degradation effects to which they are subjected during the typical testing protocols.73

Figure 4 shows distributions of the descriptive parameters of the MIF within the database. These74

parameters are the masonry unit type, failure type observed, height-to-thickness ratio, and a frame-infill75

stiffness relation, originally proposed by Stafford Smith and Carter [65], also referred to as λ, which is given76

as follows:77

λ = 4

√
Emtm sin 2γ

4EcIchm
(1)
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Table 1: Database of experimental tests.

Reference No. of
tests

Frame Masonry Tests with
openings

Flanagan and Bennett [23] 13 Steel Horizontal hollow clay brick 1
Markulak et al. [47] 5 Steel AAC and hollow clay bricks 0
Schneider et al. [63] 5 Steel Solid clay bricks 5
Tasnimi and Mohebkhah [68] 5 Steel Solid clay bricks 4
Morandi et al. [51] 4 RC Hollow clay bricks 1
Basha and Kaushik [5] 6 RC Fly ash bricks 0
Calvi et al. [12] 7 RC Hollow clay bricks 0
Gazić and Sigmund [25] 9 RC Solid and hollow clay bricks 0
Guerrero et al. [28] 3 RC Hollow concrete bricks 0
Haider [29] 4 RC Solid clay bricks 0
Jiang et al. [36] 6 RC AAC 0
Mansouri et al. [46] 4 RC Solid clay bricks 3
Mehrabi et al. [48] 6 RC Solid and hollow concrete bricks 0
Sigmund and Penava [64] 8 RC Hollow clay bricks 8

In the last equation Ic is the second moment of area of the frame’s columns cross section, whereas Em and78

Ec are the Young’s moduli of the infill and frame, respectively. The terms tm, hm and γ, are the thickness,79

height and the slope of the representative diagonal of the infill, respectively.80

3. Data-based modelling of infilled masonry walls constitutive parameters81

This section provides a data-based model to obtain the constitutive parameters of a MIF (depicted in82

Figure 3), using the data explained in Section 2 and given in the Appendix. As indicated before, the model83

consists of a one-dimensional non-linear shear spring with a tri-linear constitutive behaviour (see Figure 3),84

which represents the shear response of the frame and wall system as a whole. Here, the referred constitutive85

parameters of the model are established through a BNN, presented next.86

3.1. Hamiltonian Monte Carlo based-Bayesian Neural Networks87

As previously stated, identifying the degree of belief in the predictions made by any model is of great88

importance [26] and can be critical in the subsequent decision-making stage. Thus, BNN have been chosen89

as the data-driven method.90

Among the state-of-the-art training algorithms for BNN, the Hamiltonian Monte Carlo (HMC) method91

[53], a variant of Markov Chain Monte Carlo (MCMC) [27, 54], is gaining importance and seems to be the92

gold standard nowadays [7]. As other Bayesian training algorithms, HMC aims to find an approximation93

of the posterior distribution p (θ|D,M) by sampling from a Markov Chain, where θ = {w, b} ∈ Θ ⊆ Rd94

represents the weights (w) and biases (b) of the BNN, D the data, andM the model class, which in this case95

is related to the BNN architecture.96

The Hamiltonian method, in a context of conservative dynamics, is built on the premise that volumes are97

preserved. Every particle is defined by its position and momentum, and as a consequence, any change in the98
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Figure 4: Distribution of the following parameters within the database: (a) Masonry unit type, (b) Masonry failure observed,
(c) Height to thickness ratio, (d) λ parameter. SC: Solid Concrete, HC: Hollow Concrete, FA: Fly Ash, SCl: Solid Clay, HCl:
Hollow Clay, AAC: Autoclaved Aerated Concrete; CC: Corner Crushing, DC: Diagonal Cracking, BJF: Bed-Joint Failure.

position space needs to be compensated with a change in the momentum space, so that the position-momentum99

phase space is maintained. In the Hamiltonian Monte Carlo context [9], the position space is replaced by100

the parameter space, and an auxiliary momentum variable p is adopted, hence any parameter value θ is101

associated with a momentum leading to the pair (θ, p). Once the momentum variable has been included and102

the parameter space converted to a phase space, namely θ → (θ, p), a joint probability distribution, namely103

the canonical distribution is defined as follows:104

π(θ, p) = π (θ|q)π(q) = e−H(θ,p) (2)

where H(θ, p) is the Hamiltonian function, also called as the energy at that point, and can be expressed as:105

H(θ, p) = − log π(θ, p) = − log π (θ|q)− log π(θ) (3)

with π (θ|q) often assumed a Gaussian distribution N (p|0,M) with covariance matrix (also known as mass106

matrix) M, and p ∼ N (0, I).107
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In this method, new samples θn are drawn using the leapfrog integrator [9], with a step size ε and a path108

length L, as depicted in Algorithm 1. These samples are then accepted with probability α, as per Equation 4.109

Algorithm 1 Leapfrog Integrator

1: Obtain initial samples θ0 ← θ and p0 ← p
2: for 0 ≤ n < L/ε do

3: pn+ 1
2
← pn −

ε

2

dV

dθ
(θn)

4: θn+1 ← θn + εpn+ 1
2

5: pn+1 ← pn+ 1
2
− ε

2

dV

dθ
(θn+1)

6: end for

α = min

(
1,
π(θn+1,−pn+1)

π(θn, pn)

)
= min

(
1,

exp(−H(θn+1,−pn+1))

exp(−H(θn, pn))

) (4)

The HMC algorithm is very sensitive to small variations in the step size and path length hyperparameters,110

thus finding the right values is a critical aspect of this method. The open source software hamiltorch1 has111

been used in this paper for the implementation of the HMC algorithm. The hyperparameters have been112

chosen as follows; step size ε = 0.001, leapfrog steps L = 10, the prior PDFs of θ, namely, p(θ), are chosen113

as Gaussian with prior precision for the parameters τ = 1, likelihood output precision τout = 100 and 500114

samples where 250 are burned. The chosen activation function for the hidden layers is the Rectified Linear115

Unit, ReLu, and the activation function for the output layer is the Sigmoid. The HMC-BNN model consists116

of one input layer with six neurons, two hidden layers with 40 neurons each, and one neuron output layer,117

making a total of 1961 parameters to be learned for each constitutive value. A ReLU activation function is118

assigned to the neurons of the hidden layers, whilst a Sigmoid function is applied to the neuron in the output119

layer, as indicated in the previous section120

3.2. Training of the HMC-BNN with experimental data121

Here the experimental database presented in Section 2 is employed to train the HMC-BNN which, as122

already stated above, will act as data-based model to estimate the constitutive parameters of MIFs in123

a probabilistic fashion. Note that, due to the limited amount of data, it was decided that the proposed124

data-based model consists of an uniaxial shear spring representing the overall behaviour of the in plane125

frame-wall system.126

To this end, the six-neurons input layer of the HMC-BNN is defined to account for the following input127

parameters (for clarity, some of those parameters have been represented in Figure 5):128

1https://github.com/AdamCobb/hamiltorch
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• Height to thickness ratio (hm/tm). According to [2], this parameter has a direct influence on the peak129

lateral strength in the plane of the wall.130

• Height to length ratio (hm/Lm). As this parameter is related to the dimensions of the infill, it has a131

direct impact on the stiffness, as others have observed [34, 59].132

• λ parameter (see Equation (1)). This parameter has been widely used for MIF characterization133

[18, 50, 67], as it relates the stiffness of the infill to the stiffness of the frame and, indirectly, to their134

respective strengths. It can be used to estimate whether the wall or the frame will govern the stiffness135

and strength of the system.136

• Axial load to strength ratio (P/Amfm). The behaviour of masonry can be predicted with shear-friction137

models [15] and, therefore, the influence of axial load has a fundamental influence in the estimation of138

the strength and deformation capacity of the system.139

• Ratio of net infill strut area (Ais/As). The net infill strut area Ais is considered as the masonry area140

within the equivalent strut width wm [33] accounting for the openings, whilst the gross infill strut area,141

As, is the area within the equivalent strut width, without considering the openings. wm is obtained142

as one third of the length of the wall diagonal (dm, as indicated in Figure 5). Several equations have143

been proposed in the literature to estimate the equivalent strut width; however, the authors chose to144

use the equation with the largest width to provide an adequate characterization of the wall openings.145

This parameter, which is normalized to the gross area of the masonry wall, allows us to consider the146

presence of openings in the wall, including a way to differentiate the asymmetric cases.147

• Masonry unit type. It is known that the different materials used to fabricate masonry units and whether148

they are made solid or hollow, result in important differences in their behaviour [2, 14].149

P/2

hm

Lm

wm

Ar
is

dm

Al
is

P/2

Figure 5: Illustration of the geometric parameters used in the MIF dataset.

Correspondingly, the output layer accounts for the point of first stiffness drop (∆y, Vy), capping point150

(∆c, Vc) and residual strength (∆85, V85) pairs of lateral deformations and shear forces (recall Figure 3). Here,151
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the capping point is defined as the ∆, V pair of the maximum strength of the envelope line of the test. The152

first stiffness drop corresponds to the intersection of the elastic part of a bi-linear approximation with the153

envelope curve of the test (similar to a yield point for ductile structural systems), whereas, the residual is154

the point within the envelope behaviour that is lower or equal to the 85th percent of the maximum strength.155

Once trained, the HMC-BNN provides a probabilistic prediction of the three constitutive (∆, V ) pairs of156

a MIF, where specific geometrical and mechanical parameters act as inputs to the BNN. Figure 6 shows157

the prediction results of the trained HMC-BNN for a hollow concrete masonry infilled concrete frame with158

300x300 [mm] columns. The results were obtained using the following inputs: hm = Lm = 3000 [mm],159

tm = 100 [mm], fm = 10 [MPa], Em = 9 [GPa], fc = 20MPa, and Ec = 21.0 [GPa]. Note that the160

prediction denotes the high level of uncertainty that affects this structural system. Also, observe that161

the quantified uncertainty provided by the proposed method enables us to perform a probability safety162

assessment of the MIF structures with no extra difficulties. To ease the practical application of the method,163

and for the sake of reproducibility, the reader can find the trained neural network for direct application at164

https://github.com/josebarroscabezas/MIF-HMC-BNN.165
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Figure 6: Prediction results of the shear-response constitutive parameters using the HMC-BNN method. Panel (a): Predicted
constitutive (V,∆) pairs. Panels(b) and (c): distribution of the characteristic shear and lateral deformation values of the
tri-lineal approximation, respectively.

4. Comparative analysis using existing models166

In this section, the prediction capabilities of the proposed method are analysed and also discussed with167

respect to models available in the literature. The frame and masonry strut modelling approaches are briefly168
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presented, followed by a comparison of their results against to the proposed method herein.169

4.1. Frame models used for comparison170

To physically model the shear behaviour of the MIF structural system, the framework OpenSeespy [72]171

is used, where a macro-modelling approach with a single strut per diagonal is applied according to three172

different models proposed by other researchers in Liberatore et al. [44], Huang et al. [34] and ASCE/SEI 41173

[3]. For the concrete frame, where applicable, the beam and columns are modelled using the recommendations174

by Haselton et al. [32]; otherwise, a fiber section within a non linear beam column element, with a force-based175

formulation, is applied. Two different approaches are adopted to represent the behaviour of the reinforced176

concrete frames, namely: (1) models with concentrated hinges at the ends of beam-column elastic elements,177

following the recommendations by Haselton et al. [32]; and (2) models based on beam-column elements with178

distributed plasticity. Table 2 shows the general formulation to obtain the constitutive parameters of the179

nonlinear hinges, whereas Figure 7a depicts the general geometry and characteristics of the model. Notice180

that the second approach is also used in Liberatore et al. [44], where the concrete and steel constitutive181

uni-axial behaviour is discretized within the cross section, to be further integrated over the length of the182

beam column element. This allows us to directly consider the distribution of plasticity along the element.183

A similar approach was applied to model the steel frames. Additionally, Table 3 and Figure 7b show the184

general geometry and characteristics of the model. The shear behaviour of the columns is not explicitly185

modelled since the tests within the database do not include cases with that type of failure.186

Table 2: Description of constitutive values for a structural model of reinforced concrete using non-linear concentrated hinges.

Description of constitutive parameters

ko = 1.1
11EI40
Lv

EI40 =

[
−0.02 +

0.98P

Agfc
+ 0.09

Lv
H

]
EcIg

My (according to Panagiotakos and Fardis [56])

Mc = 1.25 (0.89)
P

Agfc (0.91)
0.01fc My

φc = φy + 0.12 (1.55) (0.16)
P

Agfc (0.02 + 40ρsh)
0.43

(0.54)
0.01fc (0.66)

0.1sn (2.27)
10ρ

FSYM

φr = φc + 0.76 (0.031)
P

Agfc (0.02 + 40ρsh)
1.02

Formulation of non-linear hinges according to Haselton et al. [32], in units of N, mm and MPa. Lv : shear length, P : axial load,
Ag : gross area of the cross section, fc: concrete characteristic compressive strength, H: height of the cross section, ρsh:
transverse steel ratio, sn: rebar buckling coefficient according to Dhakal and Maekawa [17], ρ: ratio of tension reinforcement,
FSY M : factor to consider asymmetric arrangement of flexural reinforcement. Greek letter φ is used here to denote a rotation.

4.2. Masonry strut models used for comparison187

Three different models were adopted to estimate the constitutive behaviour of the masonry’s equivalent188

strut. Pinching4 constitutive behaviour is used herein to construct the model. For the ease of the reader,189

the formulation of these models are summarized in Table 4 under a unified notation. The shapes of their190
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Table 3: Description of constitutive values for a structural model of reinforced concrete using uniaxial distributed plasticity.

Concrete Steel

Peak/Yield stress fc fy

Peak/Yield strain εo =
105 + fc

70000
εy =

fy
Es

Ultimate stress 12
Ultimate strain 5εo
Strain hardening ratio β = 0.001
OpenSeespy model Concrete01 Steel02

Parameter formulation according to Karthik and Mander [40], in units of N, mm and MPa. Recommended values of R0 = 18,
CR1 = 0.912 and CR2 = 0.15, of Steel02 model, were adopted.

Non-linear Rotational Hinge

Integration Point (fiber section)

Beam-Column element

Equivalent strut (compression only)

( c, fc)

( u, fu)

( y, fy) 

Es 

Es 

L

Force-Based Beam-Column element

Fiber Section:

Concrete01

Steel02

Zero-Length Section Element

Fiber Section:

Concrete01

Bond SP01

Integration points

θ11εc0θ13εcu

θ10f
′
c

θ12fcu

Strain

S
tr
es
s

Concrete01

θ2εy θ4εsh

θ1Fy

θ3Fsh

Strain

S
tr
es
s

Hysteretic

Sy Su

Fy

Fu

Strain

S
tr
es
s

Bond SP01

1

( y, My)

( c, Mc)

( r, Mr)

ko
Liberatore et al. (2018)
Huang et al. (2020)
ASCE/SEI 41-17

(c) Rotational hinge constitutive (d) Equivalent strut constitutive

(a) (b)

(e)

(f)

(g)

1

Figure 7: Models used for comparison in Section 4. (a) Frame model with concentrated hinges at the ends of beam-column
elements, with a (c) tri-lineal constitutive behaviour. (b) Frame model with distributed plasticity beam-column elements,
with a (e) fiber section discretized with uniaxial stress-strain behaviour of (f) concrete and (g) steel. (d) Equivalent strut
shear-deformation behaviour.

constitutive behaviour are given in Figure 7d. The first model, proposed in Liberatore et al. [44], consists of191

a 4-lines backbone curve where the strength is estimated according to four possible failure modes, namely:192

bed-joint sliding, diagonal tension, diagonal compression, and corner compression. The formulation of the193

failure modes are adapted from Decanini and Fantin [16], and corrected by a regression study using the194

laboratory test data of this work.195

The second strut model, proposed in Huang et al. [34], also consists of a 4-lines backbone curve; however,196

the characteristic strength and deformation values were obtained by a multivariate regression analysis. Finally,197

the third strut model, proposed in ASCE/SEI 41 [3], consists of a 2-line backbone curve, as shown in Figure198

7d.199
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Table 4: Description of the constitutive parameters for the three masonry strut models used for comparison.

Liberatore et al. [44] Huang et al. [34] ASCE/SEI 41 [3]

Strength at 1st stiffness drop 0.40Vp 0.72Fc -
Strength at 2nd stiffness drop 0.85Vp - -

Maximum strength V
(1)
p Fc V

(2)
P

Residual strength 0 0.40Fc 0

Deformation at 1st stiffness drop 0.00025Hm
0.72Fc
Ke

Deformation at 2nd stiffness drop 0.0013Hm -

Deformation at maximum strength 0.00294Hm δc min

(
VP
Km

, δr

)
Maximum deformation 0.0344Hm

0.60Fc
Kpc

+ δc

Em, fm: elastic modulus and masonry characteristic compressive strength, respectively. tm: thickness of the wall, ld, φ: length
and direction of the diagonal of the wall, respectively. Hm, Lm: wall height and length, respectively.
Vs = [(1.2 sinφ+ 0.45 cosφ) τ0 + 0.3σy ] tmLm: bed-joint sliding failure mode; Vdt = (0.6τm0 + 0.3σy) tmLm: diagonal tension

failure mode; Vdc = 1.16 tanφ (λh)−1 fmtmLm: diagonal compression failure mode; Vcc = 1.12 sinφ cosφλ−0.88
h fmtmLm:

corner compression failure mode. τ0: bed joints basic shear strength, τm0: shear strength from diagonal compression test, σy :

vertical stress, λh: Stafford-Smith coefficient (see Equation (1)). Ke = 0.0143E0.618
m t0.694m H−1.096

m L1.096
m : initial stiffness of the

compressive strut, according to strut model 2. Kpc = −1.278f−0.357
m t−0.517

m Ke: post-capping stiffness, according to strut model

2. Km = 1/
(
k−1
f + k−1

s

)
: stiffness of the MIF system as a serial combination of frame stiffness (kf ) and shear wall stiffness

(ks). δr: residual deformation as a function of columns shear strength and stiffness and wall shear strength and stiffness,

according to ASCE/SEI 41 [3]. V
(1)
p = 0.98 min (Vs, Vdt, Vdc, Vcc), Fc = 0.003766f0.196m t0.867m l0.792d , V

(2)
P = 0.33fmHmtm.

δc = 0.0154E−0.197
m H0.978

m L−0.978
m

4.3. Comparative results using data within the training database200

Using the modelling approaches presented in Sections 4.1 and 4.2, four MIF models are constructed and201

further compared to the proposed approach presented in Section 3. The aforementioned models are briefly202

identified as follows:203

n Model 1: Concentrated hinges frame model with a quadri-linear constitutive equivalent strut [44];204

n Model 2 :Concentrated hinges frame model with a tri-linear equivalent strut [34];205

n Model 3: Fiber section based frame model with the same equivalent strut of the first model;206

n Model 4: Fiber section based frame model with a bi-linear constitutive equivalent strut [3].207

In this comparative analysis, the results of the proposed BNN model are represented by its mean response208

and also by the scatter plots of the predicted values of (V,∆) points. Recall that the proposed model is only209

a one-dimensional shear spring and does not consider the separate behaviour of the frame and the infill as210

usual in macro-models.211

Figures 8 to 11 show the comparative results between the proposed model and the four models used212

for comparison, along with representation of the laboratory data used as reference. All tests correspond213

to reinforced concrete fully infilled frames, where solid clay, hollow clay, solid cement and hollow cement214

masonry units were used, respectively. From these results, the following remarks can be highlighted:215
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n Model 1 correctly estimates the initial stiffness and maximum strength of the system in the case of216

solid clay MIF. However, note that the model is not capable to capture the mechanical response after217

the degradation of the structure. For the cases of solid cement, hollow clay and hollow cement units218

MIF, the model under-predicts the initial stiffness and is not capable to capture the degradation of the219

system.220

n Model 2 correctly captures the initial stiffness of the MIF with solid clay, solid cement and hollow221

cement units. However, the model over-predicts the strength of the system for solid and hollow clay222

units MIF, and under-predicts the strength of solid and hollow cement units MIF. In all cases, the223

model does not capture the mechanical response after the degradation.224

n Model 3 correctly estimates the initial stiffness and maximum strength of the system with solid clay225

units; although, it is not capable of capturing the degradation of the structure. In the case of hollow clay226

units, the initial stiffness is under-predicted, whilst the maximum strength and deformation capacity is227

over-predicted. Finally, for the cases of solid and hollow cement units, the model under-predicts the228

initial stiffness and maximum strength, and does not capture the degradation of the system.229

n Model 4, under-predicts in all cases the initial stiffness and maximum strength, over-predicts the230

deformation capacity, and does not capture the mechanical response after degradation.231

n Observe that the proposed HMC-BNN model correctly predicts the initial stiffness of the system232

in average, for the cases of the usage of solid clay, solid cement and hollow cement units, and only233

under-predicts the initial stiffness of the system when hollow clay units are used. For all cases, the234

maximum strength result of each test is enclosed by the set of values that conform the prediction of the235

proposed model. In general, the HMC-BNN mean model does not properly capture the deformation236

capacity of the system.237

In general, the previous observations indicate that the level and sources of uncertainties of the MIF238

structural system should be considered when performing a structural evaluation of a building, since none of239

the available deterministic models can capture all of the properties of the lateral response of the system for240

all of the masonry unit types. On the other hand, the scatter points obtained after simulating our proposed241

BNN model, presented in Figures 8 to 11, clearly capture all of the characteristics of the lateral response of242

the system within the prediction range. As also mentioned in Liberatore et al. [44], this uncertainty should243

be accounted for to properly evaluate an existing structure.244

Figure 12 shows the measured results from a laboratory test for a case with steel frame with hollow clay245

masonry units. The results of the proposed BNN model are drawn along with the prediction of models 3 and246

4. Model 2 was adapted by using the fiber section approach to model the behaviour of the frame. As can be247

seen, models 2 and 3 over predict the maximum strength and the initial stiffness of the system and do not248
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Figure 8: Comparative results obtained for solid clay masonry
infilled reinforced concrete frames.
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Figure 9: Comparative results obtained for hollow clay ma-
sonry infilled reinforced concrete frames.
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Figure 10: Comparative results obtained for solid cement
masonry infilled reinforced concrete frames.
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Figure 11: Comparative results obtained for hollow cement
masonry infilled reinforced concrete frames.

properly capture the degradation of the structure. Model 4, on the other hand, fairly predicts the initial249

stiffness and maximum strength of the system, however it also fails to reproduce the degradation. The BNN250

mean model properly captures the maximum strength and degradation of the mechanical system, although it251

over-predicts the initial stiffness.252

Besides, Figure 13 shows the measured results from a laboratory test of a steel frame with hollow clay253

units with a non-symmetric window opening located at the upper corner of the wall. Only the model 4254

can account for the reduced strength of the system due to the presence of the opening. Accordingly, only255

the prediction of that model is compared to the proposed BNN model. Clearly, model 4 does not properly256

captures the behaviour of the system. Observe that the BNN mean model also over-predicts the initial257

stiffness and strength of the wall and does not properly captures the degradation. Notwithstanding, the258
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Figure 12: Comparative results obtained for hollow clay ma-
sonry infilled steel frames.
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Figure 13: Comparative results obtained for hollow clay ma-
sonry infilled steel frames with a window opening.

result is better than the available model of the literature.259

Notice that the experimental tests shown in Figures 9 to 13 were part of the training set of the BNN,260

whilst the one in Figure 8 was part of the test set of the BNN. Figure 14 compares the prediction of the261

proposed BNN model with the force results of the first steel and concrete MIF tests from the database,262

showing that the probabilistic prediction of the model provides a valid envelope (represented using grey lines)263

of the expected real result. These results demonstrate the capabilities of the proposed BNN model to be264

applied on the structural probabilistic evaluation of the lateral strength of MIF existing buildings.265

Figure 14: Results of the proposed model predictions in comparison to real tests used as reference. Panel (a): a masonry infilled
steel frame tested by Flanagan and Bennett (1999); panel (b): masonry infilled concrete frame tested by Morandi et al. (2018a).

In the following section, the extrapolation capabilities of the model is further discussed.266
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4.4. Analysis of extrapolation capability267

In this section, experimental test out from the database presented in Section 3 were selected to evaluate268

the prediction capabilities of the proposed method. Table 5 summarises information from four experimental269

tests available in the literature: one full-scale static test and three shaking table tests at different scales.270

The experimental test performed by Furtado et al. [24], corresponds to a full-scale cyclic in-plane loading271

test of a double-leaf MIF with hollow clay units. The wall was composed by a 150 mm thick external leaf,272

and a 110 mm thick internal leaf, with a gap of 40 mm between the leafs. Notice that the database does273

not consider any case of double-leaf MIF, however, the prediction was made assuming an input thickness of274

the masonry wall equal to the sum of the leafs of the tested system. Figure 15 shows the BNN mean model275

prediction against the laboratory test results. As can be seen, the proposed model prediction of the strength276

of the system is appropriate. Unfortunately, the test was stopped until the specimen reached 0.5% drift, so it277

can not be compared for higher deformations.278

The results of the experimental test performed by Benavent-Climent et al. [6], are compared to those279

predicted by the proposed BNN model. According to the authors, the reinforced concrete frame was part of280

eleven previous seismic simulations before the masonry wall was built and, therefore, some level of degradation281

of the columns was expected (the authors report 1.5% maximum inter-story drift and 0.12% of residual282

inter-story drift). Therefore, instead of using the gross inertia as an input to the BNN model, a cracked283

section was used assuming 30% of the gross section as effective. The masonry infill was tested as a retrofit284

system. As shown in Figure 16, the proposed model over-predicts in average the maximum strength, however285

the scatter points capture the overall behaviour of the test.286

The third and fourth tests presented in Table 5 (i.e. Kallioras et al. [37] and Stavridis et al. [66]), were287

also compared to the proposed BNN model prediction. As can be seen in Figures 17 and 18, an acceptable288

prediction is observed in terms of strength; however, the proposed model overestimates the deformation289

capacity of the system. Irrespectively, note that the proposed model presents a sufficiently wide range to290

contain the measured value within the predicted result, both in terms of deformation as well as strength.291

Table 5: Relevant information of experimental tests available in the literature (Units in MPa, mm and kN)

Reference λ [%] f ′m Em tm hm Lm Unit type P Ais/As
[24] 0.192 13.4 9420 260 2300 4200 Hollow Clay 270 1.00
[6] 0.305 10.0 6600 40 1400 2000 Hollow Clay 60 1.00
[37] 0.101 4.7 2300 75 3000 4000 Hollow Clay 25 1.00 / 0.80

0.114 4.7 2300 120 3000 4000 Hollow Clay 25 1.00 / 0.80
[66] 0.170 19.8 5410 120 2240 3660 Solid Clay - 1.00 / 0.85
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Figure 15: Results obtained for static test on hollow clay
double-leaf masonry infilled concrete frame.
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Figure 16: Results obtained for hollow clay masonry infilled
concrete frame previously subjected to lateral deformation.
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Figure 17: Results obtained for a two bay hollow clay and
a two bay double-leaf hollow clay masonry infilled concrete
frame previously subjected to several seismic records. One
bay of each kind of wall had a door opening.
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Figure 18: Results obtained for a two bay solid clay double-
leaf masonry infilled concrete frame previously subjected to
several seismic records. One bay had a window opening.

5. Engineering case study292

In this section, the proposed model is used to evaluate the seismic collapse probability of a three story293

MIF building. Results are compared to a code-based evaluation with the ASCE/SEI 41 [1], and also using294

the model proposed by Huang et al. [34]. The aforementioned building has been selected to match the295

properties of a one-bay and one-story laboratory test by Morandi et al. [51], whose geometrical and mechanical296

characteristics are given in Table 6. The building is considered as 14x14 [m] plan with two MIF as lateral297

resisting structure, with 3.30 [m] floor height. The total mass of each floor is estimated as 62000 [kg].298

In this study, the seismic collapse probability is estimated by means of non-linear time history analyses299

Table 6: Geometrical and mechanical parameters of the MIF used for the case study.

Value Unit Value Unit

Lm 4220 [mm] ρcol 2.48 %
Hm 2950 [mm] ρbeam 0.47 %
tm 350 [mm] f ′c 34.0 [MPa]
bcol 350 [mm] fy 521.0 [MPa]
bbeam 350 [mm] f ′m 4.60 [MPa]
hbeam 350 [mm] Em 5299 [MPa]
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using far-field records data set of the FEMA P-695 document [31]. Normalization and scaling of the seismic300

records are taken from Table A-3 of the aforementioned document. The proposed 2D data-based model301

consists of three sets of three in-parallel springs connected in series to three equal masses. The model302

was constructed in Openseespy platform [72], using the hysteretic material as constitutive behaviour. For303

comparison purposes, the model proposed by Huang et al. [34] (see Section 4) is applied both with a blind304

prediction and after a calibration with the test results. In the next section, a discussion about the estimation305

of the natural period of the structure is presented.306

5.1. Fundamental period estimation307

According to ASCE/SEI 41 [1] provisions, and particularly to its equation 12.8-9 (reproduced here for308

ease of the reader), a lower bound estimation of the MIF fundamental period can be obtained as:309

Ta =
Cq√
Cw

hn =
0.0058hn

1

AB

x∑
i=1

Ai[
1 + 0.83

(
hn

Di

)2]
(5)

where AB is the area of the base of the structure in m2, x is the number of shear walls in the direction under310

consideration, Ai and Di are the web area (in m2) and the length of shear wall i (in m), respectively, and311

hn is the structural height of the building in m, resulting Ta = 0.32 [s].312

Considering that most these factors are subjected to much uncertainties (i.e. epistemic uncertainties313

in the the mass and stiffness of the structure, those related to soil stiffness, soil-structure interaction and314

relative deformations in wall-frame joints, among others), the fundamental period predictions obtained from315

the deterministic models hardly match with the period measured in a real case structure. Thus, our proposed316

method is used here to obtain that measure with quantified uncertainty and the results are given in Figure317

19. These results show that the most likely period for our case study structure is around 0.30 to 0.40 seconds.318

Note that the blind and calibrated predictions of the fundamental period using [34], are also given, and319

resulted in Td = 0.091 [s] and Tdm = 0.11 [s], respectively. Note also that the result of Equation (5) lays320

within the range of most probable fundamental period estimated from our proposed model. Our results321

also are in agreement with those obtained for a three story building, which was evaluated by Varum et al.322

[70] after Ghorka 2015 earthquake. In such study, ambient vibration test were performed to identify the323

natural period of the structure. One of the buildings reported values equal to 0.27s and 0.38s for a moderate324

damaged MIF structure.325

Here, we remark that a proper estimation of the fundamental period is important to perform an adequate326

seismic evaluation of the structure, as it directly affects the estimation of expected deformation and, therefore,327

influences the damage forecast. In this particular case, considering the possibility that the fundamental328

period estimation of the blind-prediction model is low, results could lead to an underestimation of the seismic329
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Figure 19: Predicted MIF fundamental period

effects. This study reflects that care must be taken when using deterministic models for prediction and it is330

strongly suggested that those models account for lower and upper bounds of the constitutive parameters or331

to complement the prediction with data measures taken from the real structure to be evaluated (for instance,332

ambient vibration of the structure).333

5.2. Collapse evaluation by non-linear time history analysis334

Non-linear time history analyses are performed using the blind-prediction, the calibrated and the data-335

based models presented in the previous section, along with FEMA-P695 far-field records.336

According to ASCE 41 provisions, the deformation limit for collapse prevention performance criterion can337

be set from the point of maximum strength of the constitutive behaviour of a structural element, based on338

laboratory test results. Notice that current structural evaluation provisions define deformation capacities of339

the structural elements in a deterministic fashion, in terms of parameters that are subjected to uncertainties.340

These results makes evident that this approach can lead to biased results. Moreover, as shown in Figure 20,341

the blind-prediction model over-predicts the seismic capacity of the building, in comparison to the results342

obtained from the calibrated model (here assumed as the “true” result). This example shows the importance343

of obtaining reliable constitutive parameters for seismic evaluation of structures and demonstrates that a344

probabilistic data-based model, even with a high dispersion, can provide information more consistent with345

the expected behavior of an existing structure.346

Figure 20 also shows the results obtained using the probabilistic approach with the model proposed in this347

work. Notice that the results from the calibrated model lay within the confidence interval of the proposed348

model prediction. Since the results obtained require minimal and easily available information, it can be349

considered that the proposed method constitutes a straightforward way of estimating the vulnerability of350

MIF buildings, being particularly suitable for macro-scale seismic vulnerability studies.351
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Figure 20: Comparison of fragility functions from the performed analyses.

6. Conclusions352

This manuscript presented a new methodology for the probabilistic modelling and safety assessment353

of MIF buildings against lateral seismic loads. A simplified shear spring model to represent the in-plane354

behaviour of the MIF was proposed, where the parameters of the constitutive behaviour have been predicted355

by a HMC-BNN. The HMC-BNN model was trained with a number of available laboratory test results. The356

following conclusions arise from this investigation:357

n Available data about the MIF structural system are scarce and, typically based on macro-scale358

structural, mechanical or geometrical features. Therefore, they are insufficient to properly develop359

precise micro-scale or meso-scale models. However, the model proposed herein helps to properly capture360

the expected in-plane lateral response of the MIF structures with quantified uncertainty, and without361

the need of numerous, yet typically unavailable, inputs.362

n Considering all the sources of uncertainty that affect the seismic behavior of the MIFs, and after363

the results obtained in this work, the proposed methodology is recommended to enrich the existing364

deterministic models by accounting for the uncertainty in the estimates of the initial lateral stiffness, the365

maximum resistance, and the degradation of the structure, since these parameters have an important366

influence in the evaluation of the structural seismic safety.367

n The proposed HMC-BNN model can be used at a macro-level approach to characterize the expected368

arquetype performance of groups of MIF buildings for risk evaluation. However, it also may be used as369

a first and rapid approach to estimate the expected behaviour of an existing structure, previous to a370

more in-depth structural evaluation.371

Future research steps will aim to explore the application of physics-enriched neural networks to further372

exploit the predictive capabilities of micro or meso-models within the framework of artificial neural networks.373
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This section specifies the data of the cyclic lateral in-plane tests used in this work. Figure 5 depicts the531
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