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Abstract

This paper presents a novel experimental and theoretical methodology for the fragility assessment of masonry
infilled frame structures subjected to seismic loads. The method uses a Hamiltonian Monte Carlo Bayesian
Neural Network trained with laboratory tests, to obtain the constitutive parameters of a non-linear spring
model that represents the masonry shear behaviour. The resulting model accounts for several types of
masonry units, structural steel and reinforced concrete frames along with the effects of windows and/or
doors openings. The results show that the use of deterministic models lead to poor estimations about the
in-plane behaviour of the system, whereas the application of the proposed semi-empirical method results in
more robust predictions according to the measured data. Also, the proposed approach is tested against two
extra data-sets to evaluate its extrapolation capabilities, with satisfactory results. Moreover, the proposed
method has been applied to an engineering case study which demonstrates that it can be efficiently applied
to robustly assess the safety against collapse of MIF buildings. Finally, a discussion between the proposed
method and the current structural standards is provided within the context of the case study.

Keywords: masonry infilled frames, Bayesian Neural Networks, Hamiltonian Monte-Carlo, shear seismic

response, Safety assessment.

1. Introduction

Structures made of masonry infilled frames (MIF) are one of the most widespread building structural
systems around the world, because of their robust mechanical response, their insulation properties, water-
proofing characteristics and low cost [4I]. Figure [1] depicts a number of countries mentioned in damage
reports from past seismic events, and where the MIF building system were used. However, there are no clear
provisions on how to consider the actual contribution of the masonry infills within the structural safety of

framed buildings.

*Corresponding author. E-mail: jose.barros@cu.ucsg.edu.ec

Preprint submitted to Structures January 25, 2024


jose.barros@cu.ucsg.edu.ec

8

20

21

Indeed, the recent experience reported after seismic events (like the Pedernales’ earthquake, Ecuador
[19]), has demonstrated that the infilled frames can have both, positive and negative contribution to the
seismic response, as shown in Figure 2] Such a disparity related with an aspect intrinsically connected with
the risk of structural collapse, demonstrates the need for effective models to fairly consider the mechanical
behaviour of these structural elements, and to understand its actual influence on the holistic seismic response

of the buildings.

Figure 1: World map of seismic-prone countries with published reports of damaged masonry infilled frames: Barbosa et al.
[4], Bennett et al. [§], Fierro et al. [22], Hak et al. [30], Irfanoglu [35], Kam et al. [39], Kaushik et al. [41], Maidiawati and
Sanada [45], Perrone et al. [57], Tarque et al. [67], Urich and Beauperthuy [69], Villalobos et al. [71].

Figure 2: Example of dissimilar behaviour of masonry infilled frame structures after the Pedernales earthquake in Ecuador
16-04-2016 (courtesy of Eng. Raul Herndndez). Note that the building shown at the back of the picture revealed good
performance, in contrast to the one at the front.

In the literature, a number of physics-based models have been proposed in the past years to replicate the
behaviour of MIFs, and they can be typically classified as micro, meso, and macro-models [18), 50, 62} [67],
according to their level of complexity. Micro and meso-modelling approaches are computationally expensive
and require a big amount of input parameters about the infills and their disposition, which are typically
not available and difficult to measure non-destructively. Therefore, they are not suitable for structural
design nor for applications about evaluation of existing with MIF structures. Notwithstanding, these models
can be used to enrich simpler models [60, 61], provided that enough information about the mechanical
properties of the infills is available. On the other hand, macro-models rely on modelling the mechanical
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contribution of the masonry wall through a number of equivalent struts in the direction of each diagonal
of the wall. The simplicity of this method makes it the one adopted by some structural codes, like the
Seismic Evaluation Standards ASCE/SEI 41 [3]. Similar approaches can also be found in the recent literature
about this topic [T}, B4] [44] [49] 50, 52, B5]. Irrespectively, most of the referred methods in the literature
exhibit a high variability in their results due to numerous sources of uncertainties, and consequently a
lack of proper agreement when compared to experimental data [43] [44]. These sources of uncertainties
are typically attributable to the lack of information about masonry and mortar strength-strain behaviour,
joint interlock behaviour between different materials, and mechanical interaction between the frame and
the wall, to cite but the most important. A recent work [20] has proposed a framework to assess the
seismic performance of non-engineered constructed masonry infilled RC frame buildings, which considers the
materials’ uncertainties. Similar probabilistic approaches have been proposed recently [13] [42] for other types
of structures and materials. Hence, the need and trend of the current research about this topic is heading
towards the application of probabilistic approaches for the structural evaluation of existing MIF structures.

In this work, a novel semi-empirical framework to estimate the seismic response of masonry infilled
framed structures with quantified uncertainty, is provided. The method uses a non-linear spring macro-model
analogous to the macro-modelling approaches referred above, however, here the shear-response constitutive
parameters of the non-linear spring are described through experimental probability distribution functions
(PDFs). These PDFs are reproduced from Bayesian neural networks (BNN) trained using a data set
comprising eighty five measured responses of a number of existing MIFs taken from the literature, and
reproduced here under unified notation. Once trained, the BNN provides a probabilistic prediction of the
shear wall behaviour, whereby to model the building seismic response with quantified uncertainty and to
obtain its probability of collapse.

The BNNs has been chosen as data-driven method given the efficiency they have demonstrated in the
quantification of the uncertainty [7, [0, 21]. Hamiltonian Monte Carlo [54] technique is adapted and used to
train the BNN for its efficiency in dealing with high-dimensional models. The resulting neural network not
only provides accurate mean predictions but also the range of plausible values, based on the amount of data
available and their variability. In the literature, some approaches can be encountered which proposed the
application of deterministic ANN to predict the behaviour of MIF [38]; however, using deterministic neural
networks carries the disadvantage of ignoring about the quality of the prediction.

The proposed method has been compared against the models used by structural standards, including a
variety of data-sets to evaluate its extrapolation capability, with satisfactory results. Finally, an engineering
case study of a three-story building is presented to demonstrate its application to the level of an entire
framed structure. This case study is based on the work by Morandi et al. [51], and more precisely, based on
its laboratory test results, as a basis for comparatively evaluate structural behaviour and safety assessment

capabilities of the proposed approach.
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Figure 3: Shear behaviour of a masonry infilled frame. The pairs (A, V') indicate the coordinates of lateral deformation (A) and
shear (V') at key indicative points, namely yielding (Ay, V), capping (Ac, Vc), and residual point (Ags, Vas).

The rest of the paper is structured as follows. Section [2] presents the foundations of the mechanical
modelling of MIF under an unified notation. Section [3] describes the prediction of the masonry wall
constitutive parameters through the HMC-BNN method, which has been made available for the readers
trough a permanent link. A comparison of the HMC-BNN results with the estimations of the models currently
found in the literature, is presented in Section [l Section [5] describes and discusses the engineering case study,

and finally section [6] gives concluding remarks.

2. Empirical mechanical description of MIF's

In this section, the strategy adopted to experimentally characterize the shear behaviour of the MIF
structural system is presented. To this end, a database of eighty five laboratory test available in the literature
are used as input data to train and test the BNN model. These tests consist of one-bay and one-story MIFs,
subjected only to in-plane lateral cyclic deformation. Table [1| provides an overview of the data set considered
with specification of the type of frame, masonry unit, amount of tests of each reference and presence of
wall-openings. Additional information about the test can be found in Tables [7} [§] and [0 in the Appendix.
Note that the results of shaking table tests available in the literature (such as [37, 58] 66]) provide very
important information for better understand the MIF structural system; however, they have not been used
in the present work due to the difficulty in defining the constitutive behaviour of the system given the
degradation effects to which they are subjected during the typical testing protocols.

Figure 4] shows distributions of the descriptive parameters of the MIF within the database. These
parameters are the masonry unit type, failure type observed, height-to-thickness ratio, and a frame-infill

stiffness relation, originally proposed by Stafford Smith and Carter [65], also referred to as A, which is given

Byt sin 2
N 4 sin 2y (1)
\ “4E.1.h,,

as follows:
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Table 1: Database of experimental tests.

Reference No. of Frame  Masonry Tests with
tests openings

Steel Horizontal hollow clay brick 1

Steel AAC and hollow clay bricks

Steel Solid clay bricks

Steel Solid clay bricks

RC Hollow clay bricks

RC Fly ash bricks

RC Hollow clay bricks

RC Solid and hollow clay bricks

RC Hollow concrete bricks

RC Solid clay bricks

RC AAC

RC Solid clay bricks

RC Solid and hollow concrete bricks

RC Hollow clay bricks

Flanagan and Bennett [23]
Markulak et al. [47]
Schneider et al. [63]
Tasnimi and Mohebkhah [68]
Morandi et al. [51]

Basha and Kaushik [5]
Calvi et al. [12]

Gazi¢ and Sigmund [25]
Guerrero et al. [28]

Haider [29]

Jiang et al. [36]

Mansouri et al. [46]
Mehrabi et al. [48]
Sigmund and Penava [64]

0 DA DR WO O R U
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In the last equation I, is the second moment of area of the frame’s columns cross section, whereas F,,, and
E. are the Young’s moduli of the infill and frame, respectively. The terms t,,, h,, and 7, are the thickness,

height and the slope of the representative diagonal of the infill, respectively.

3. Data-based modelling of infilled masonry walls constitutive parameters

This section provides a data-based model to obtain the constitutive parameters of a MIF (depicted in
Figure , using the data explained in Section [2[and given in the Appendix. As indicated before, the model
consists of a one-dimensional non-linear shear spring with a tri-linear constitutive behaviour (see Figure |3)),
which represents the shear response of the frame and wall system as a whole. Here, the referred constitutive

parameters of the model are established through a BNN, presented next.

3.1. Hamiltonian Monte Carlo based-Bayesian Neural Networks

As previously stated, identifying the degree of belief in the predictions made by any model is of great
importance [26] and can be critical in the subsequent decision-making stage. Thus, BNN have been chosen
as the data-driven method.

Among the state-of-the-art training algorithms for BNN, the Hamiltonian Monte Carlo (HMC) method
[53], a variant of Markov Chain Monte Carlo (MCMC) [27, [54], is gaining importance and seems to be the
gold standard nowadays [7]. As other Bayesian training algorithms, HMC aims to find an approximation
of the posterior distribution p (8|D, M) by sampling from a Markov Chain, where 6 = {w,b} € © C R¢
represents the weights (w) and biases (b) of the BNN, D the data, and M the model class, which in this case
is related to the BNN architecture.

The Hamiltonian method, in a context of conservative dynamics, is built on the premise that volumes are

preserved. Every particle is defined by its position and momentum, and as a consequence, any change in the
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Figure 4: Distribution of the following parameters within the database: (a) Masonry unit type, (b) Masonry failure observed,

(c) Height to thickness ratio, (d) A parameter. SC: Solid Concrete, HC: Hollow Concrete, FA: Fly Ash, SCI: Solid Clay, HCI:
Hollow Clay, AAC: Autoclaved Aerated Concrete; CC: Corner Crushing, DC: Diagonal Cracking, BJF: Bed-Joint Failure.

position space needs to be compensated with a change in the momentum space, so that the position-momentum
phase space is maintained. In the Hamiltonian Monte Carlo context [9], the position space is replaced by
the parameter space, and an auxiliary momentum variable p is adopted, hence any parameter value 6 is
associated with a momentum leading to the pair (6,p). Once the momentum variable has been included and
the parameter space converted to a phase space, namely § — (6, p), a joint probability distribution, namely

the canonical distribution is defined as follows:

m(0,p) = 7 (0]q) w(q) = e~ 7P (2)

where H (0, p) is the Hamiltonian function, also called as the energy at that point, and can be expressed as:

H(0,p) = —logn(0,p) = —logm (Alq) — logm(0) (3)

with 7 (0]g) often assumed a Gaussian distribution A (p|0, M) with covariance matrix (also known as mass

matrix) M, and p ~ N(0,I).



108 In this method, new samples 6,, are drawn using the leapfrog integrator [9], with a step size € and a path

o length L, as depicted in Algorithm [I] These samples are then accepted with probability «, as per Equation [4]

Algorithm 1 Leapfrog Integrator

1: Obtain initial samples 6y <+ 0 and py < p
2: for 0 <n < I/e do
edV
3: Dpyl < Pn — 5@(071)
4 Opy1 < 0p + Pyl

edV
5 Pnt1 < Ppyl — 5@(97&1)
6: end for
o =min (17 TOn1, =pn+1) —pn+1))
7T(07L7 pn) (4)
. ( exp(—H (On+1, —Pn+1))>
=min |1,
eXp(_H(enapn))
110 The HMC algorithm is very sensitive to small variations in the step size and path length hyperparameters,

m  thus finding the right values is a critical aspect of this method. The open source software hamiltorchﬂ has
12 been used in this paper for the implementation of the HMC algorithm. The hyperparameters have been
us  chosen as follows; step size ¢ = 0.001, leapfrog steps L = 10, the prior PDFs of 8, namely, p(f), are chosen
e as Gaussian with prior precision for the parameters 7 = 1, likelihood output precision 7,,; = 100 and 500
us  samples where 250 are burned. The chosen activation function for the hidden layers is the Rectified Linear
us  Unit, ReLu, and the activation function for the output layer is the Sigmoid. The HMC-BNN model consists
w7 of one input layer with six neurons, two hidden layers with 40 neurons each, and one neuron output layer,
us  making a total of 1961 parameters to be learned for each constitutive value. A ReLU activation function is
e assigned to the neurons of the hidden layers, whilst a Sigmoid function is applied to the neuron in the output

10 layer, as indicated in the previous section

1w 8.2. Training of the HMC-BNN with experimental data

122 Here the experimental database presented in Section [2] is employed to train the HMC-BNN which, as
123 already stated above, will act as data-based model to estimate the constitutive parameters of MIFs in
12 a probabilistic fashion. Note that, due to the limited amount of data, it was decided that the proposed
125 data-based model consists of an uniaxial shear spring representing the overall behaviour of the in plane
s frame-wall system.

127 To this end, the six-neurons input layer of the HMC-BNN is defined to account for the following input

s parameters (for clarity, some of those parameters have been represented in Figure |5)):

Thttps://github.com/AdamCobb/hamiltorch
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e Height to thickness ratio (A, /tm). According to [2], this parameter has a direct influence on the peak
lateral strength in the plane of the wall.

e Height to length ratio (h,,/Ly,). As this parameter is related to the dimensions of the infill, it has a

direct impact on the stiffness, as others have observed [34] [59].

e )\ parameter (see Equation ) This parameter has been widely used for MIF characterization
18, B0, [67], as it relates the stiffness of the infill to the stiffness of the frame and, indirectly, to their
respective strengths. It can be used to estimate whether the wall or the frame will govern the stiffness

and strength of the system.

e Axial load to strength ratio (P/A,, fin). The behaviour of masonry can be predicted with shear-friction
models [15] and, therefore, the influence of axial load has a fundamental influence in the estimation of

the strength and deformation capacity of the system.

e Ratio of net infill strut area (A;s/As). The net infill strut area A, is considered as the masonry area
within the equivalent strut width w,, [33] accounting for the openings, whilst the gross infill strut area,
A,, is the area within the equivalent strut width, without considering the openings. w,, is obtained
as one third of the length of the wall diagonal (d,,, as indicated in Figure . Several equations have
been proposed in the literature to estimate the equivalent strut width; however, the authors chose to
use the equation with the largest width to provide an adequate characterization of the wall openings.
This parameter, which is normalized to the gross area of the masonry wall, allows us to consider the

presence of openings in the wall, including a way to differentiate the asymmetric cases.

e Masonry unit type. It is known that the different materials used to fabricate masonry units and whether

they are made solid or hollow, result in important differences in their behaviour [2] [14].

P/2 1 P/2
Als Aris
L ( !
)
L m ad
\\\\\\\ — E J
| ——
Ll]l

Figure 5: Illustration of the geometric parameters used in the MIF dataset.

Correspondingly, the output layer accounts for the point of first stiffness drop (A, V,)), capping point

(A¢, Vi) and residual strength (Ags, Vgs) pairs of lateral deformations and shear forces (recall Figure|3). Here,
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the capping point is defined as the A,V pair of the maximum strength of the envelope line of the test. The
first stiffness drop corresponds to the intersection of the elastic part of a bi-linear approximation with the
envelope curve of the test (similar to a yield point for ductile structural systems), whereas, the residual is
the point within the envelope behaviour that is lower or equal to the 85" percent of the maximum strength.

Once trained, the HMC-BNN provides a probabilistic prediction of the three constitutive (A, V') pairs of
a MIF, where specific geometrical and mechanical parameters act as inputs to the BNN. Figure [6] shows
the prediction results of the trained HMC-BNN for a hollow concrete masonry infilled concrete frame with
300x300 [mm] columns. The results were obtained using the following inputs: h,, = L,, = 3000 [mm],
tm = 100 [mm], f,, = 10 [MPal], E,, = 9 [GPa], f. = 20M Pa, and E. = 21.0 [GPa]. Note that the
prediction denotes the high level of uncertainty that affects this structural system. Also, observe that
the quantified uncertainty provided by the proposed method enables us to perform a probability safety
assessment of the MIF structures with no extra difficulties. To ease the practical application of the method,
and for the sake of reproducibility, the reader can find the trained neural network for direct application at

https://github.com/josebarroscabezas/MIF-HMC-BNN.

HMC BNN
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(2) (c)
Figure 6: Prediction results of the shear-response constitutive parameters using the HMC-BNN method. Panel (a): Predicted

constitutive (V;A) pairs. Panels(b) and (c¢): distribution of the characteristic shear and lateral deformation values of the
tri-lineal approximation, respectively.

4. Comparative analysis using existing models

In this section, the prediction capabilities of the proposed method are analysed and also discussed with
respect to models available in the literature. The frame and masonry strut modelling approaches are briefly

9
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presented, followed by a comparison of their results against to the proposed method herein.

4.1. Frame models used for comparison

To physically model the shear behaviour of the MIF structural system, the framework OpenSeespy [72]
is used, where a macro-modelling approach with a single strut per diagonal is applied according to three
different models proposed by other researchers in Liberatore et al. [44], Huang et al. [34] and ASCE/SEI 41
[3]. For the concrete frame, where applicable, the beam and columns are modelled using the recommendations
by Haselton et al. [32]; otherwise, a fiber section within a non linear beam column element, with a force-based
formulation, is applied. Two different approaches are adopted to represent the behaviour of the reinforced
concrete frames, namely: (1) models with concentrated hinges at the ends of beam-column elastic elements,
following the recommendations by Haselton et al. [32]; and (2) models based on beam-column elements with
distributed plasticity. Table 2] shows the general formulation to obtain the constitutive parameters of the
nonlinear hinges, whereas Figure [Th depicts the general geometry and characteristics of the model. Notice
that the second approach is also used in Liberatore et al. [44], where the concrete and steel constitutive
uni-axial behaviour is discretized within the cross section, to be further integrated over the length of the
beam column element. This allows us to directly consider the distribution of plasticity along the element.
A similar approach was applied to model the steel frames. Additionally, Table [3] and Figure [(p show the
general geometry and characteristics of the model. The shear behaviour of the columns is not explicitly

modelled since the tests within the database do not include cases with that type of failure.

Table 2: Description of constitutive values for a structural model of reinforced concrete using non-linear concentrated hinges.

Description of constitutive parameters

11EIL

ko= 1.1

0.98P L,
092 BT
i +009H} I,

M, (according to Panagiotakos and Fardis [50])

M, = 1.25(0.89) %7 (0.91)*°Me A,

e = by + 0.12 (1.55) (0.16) To7= (0.02 + 40p51) " (0.54)°°1 (0.66)""*" (2.27)'% Fgy s
br = b +0.76 (0.031) 307 (0.02 + 40p,;,)""2

Elyp=1|-0.02+

Formulation of non-linear hinges according to Haselton et al. [32], in units of N, mm and MPa. L,: shear length, P: axial load,
Ag: gross area of the cross section, f.: concrete characteristic compressive strength, H: height of the cross section, pgp:
transverse steel ratio, sp: rebar buckling coefficient according to Dhakal and Maekawa [I7], p: ratio of tension reinforcement,
Fsy pp: factor to consider asymmetric arrangement of flexural reinforcement. Greek letter ¢ is used here to denote a rotation.

4.2. Masonry strut models used for comparison

Three different models were adopted to estimate the constitutive behaviour of the masonry’s equivalent
strut. Pinching4 constitutive behaviour is used herein to construct the model. For the ease of the reader,
the formulation of these models are summarized in Table @ under a unified notation. The shapes of their

10



Table 3: Description of constitutive values for a structural model of reinforced concrete using uniaxial distributed plasticity.

Concrete Steel

Peak/Yield stress fe fy

. . 105 + f. fy
Peak/Yield strain €0 = 0000 €y = R
Ultimate stress 12
Ultimate strain 5eo
Strain hardening ratio B =0.001
OpenSeespy model Concrete01 Steel02

Parameter formulation according to Karthik and Mander [40], in units of N, mm and MPa. Recommended values of Ry = 18,
CR1 =0.912 and CR2 = 0.15, of Steel02 model, were adopted.

-
. --- Equivalent strut (compression only)
oL =— Beam-Column element
JRAEREN @ Integration Point (fiber section)
Rl (a) N © Non-linear Rotational Hinge
T2, 777
. . I : - ()
(c¢) Rotational hinge constitutive (d) Equivalent strut constitutive
T 3 (€u, Tu)
(Be, Mo) : : ,
Force-Based Beam-Column element
Fiber Section: £c, )
[] Concrete01
L]
Steel02 (.1, EB"ES
© .
1 —e— Liberatore et al. (2018)
-#- Huang et al. (2020)
.M, 1 ¥ ASCE/SEI 41-17

Figure 7: Models used for comparison in Section (a) Frame model with concentrated hinges at the ends of beam-column
elements, with a (c) tri-lineal constitutive behaviour. (b) Frame model with distributed plasticity beam-column elements,
with a (e) fiber section discretized with uniaxial stress-strain behaviour of (f) concrete and (g) steel. (d) Equivalent strut
shear-deformation behaviour.

11 constitutive behaviour are given in Figure . The first model, proposed in Liberatore et al. [44], consists of

©

12 a 4-lines backbone curve where the strength is estimated according to four possible failure modes, namely:
13 bed-joint sliding, diagonal tension, diagonal compression, and corner compression. The formulation of the
e failure modes are adapted from Decanini and Fantin [I6], and corrected by a regression study using the

1

©

s laboratory test data of this work.
19 The second strut model, proposed in Huang et al. [34], also consists of a 4-lines backbone curve; however,
17 the characteristic strength and deformation values were obtained by a multivariate regression analysis. Finally,

s the third strut model, proposed in ASCE/SEI 41 [3], consists of a 2-line backbone curve, as shown in Figure
199 m.

11
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Table 4: Description of the constitutive parameters for the three masonry strut models used for comparison.

Liberatore et al. [44] Huang et al. [34] ASCE/SEI 41 [3]
Strength at 15¢ stiffness drop 0.40Vp 0.72F, -
Strength at 24 stiffness drop 0.85Vp - -
Maximum strength Vp(l) F, VPQ)
Residual strength 0 0.40F, 0
0.72F,
Deformation at 15t stiffness drop 0.00025H,,, ?L
e
Deformation at 279 stiffness drop 0.0013H,, -
) Vi
Deformation at maximum strength 0.00294H,,, Oc min <;, O
m
0.60F,
Maximum deformation 0.0344H,, ‘ + de
pc

Enm, fm: elastic modulus and masonry characteristic compressive strength, respectively. t,,: thickness of the wall, l4, ¢: length
and direction of the diagonal of the wall, respectively. Hy,, Ly,: wall height and length, respectively.

Vs =[(1.2sin ¢ + 0.45 cos ¢) 70 + 0.30y] tm Lim: bed-joint sliding failure mode; Vg = (0.67m0 + 0.30y) tm Lm: diagonal tension
failure mode; V. = 1.16 tan ¢ ()\h)_l fmtmLm: diagonal compression failure mode; V.. = 1.12sin ¢ cos d))\;o‘sgfmtmLm:
corner compression failure mode. 7g: bed joints basic shear strength, 7,0: shear strength from diagonal compression test, oy:
vertical stress, A\p: Stafford-Smith coefficient (see Equation ) K, = 0.0143E0;61840.694 py —1.096 1 1.096. ;pitia] stiffness of the
compressive strut, according to strut model 2. Kp. = 71.278f7;0'357t7_no'517K5: post-capping stiffness, according to strut model

2. Km =1/ (k;;l + ks_l): stiffness of the MIF system as a serial combination of frame stiffness (k) and shear wall stiffness
(ks). 6r: residual deformation as a function of columns shear strength and stiffness and wall shear strength and stiffness,
according to ASCE/SEI 41 [3]. Vi{") = 0.98 min (Vs, Vi, Vie, Veee), Fe = 0.003766 £0;1960,86770-792 - /() — 0,331 H,1 .
e = 0.0154E,,0-197 09,978 [, 0978

4.8. Comparative results using data within the training database

Using the modelling approaches presented in Sections and four MIF models are constructed and
further compared to the proposed approach presented in Section [3} The aforementioned models are briefly

identified as follows:

m Model 1: Concentrated hinges frame model with a quadri-linear constitutive equivalent strut [44];
m Model 2 :Concentrated hinges frame model with a tri-linear equivalent strut [34];
m Model 3: Fiber section based frame model with the same equivalent strut of the first model;

m Model 4: Fiber section based frame model with a bi-linear constitutive equivalent strut [3].

In this comparative analysis, the results of the proposed BNN model are represented by its mean response
and also by the scatter plots of the predicted values of (V, A) points. Recall that the proposed model is only
a one-dimensional shear spring and does not consider the separate behaviour of the frame and the infill as
usual in macro-models.

Figures [§] to [IT] show the comparative results between the proposed model and the four models used
for comparison, along with representation of the laboratory data used as reference. All tests correspond
to reinforced concrete fully infilled frames, where solid clay, hollow clay, solid cement and hollow cement

masonry units were used, respectively. From these results, the following remarks can be highlighted:
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m Model 1 correctly estimates the initial stiffness and maximum strength of the system in the case of
solid clay MIF. However, note that the model is not capable to capture the mechanical response after
the degradation of the structure. For the cases of solid cement, hollow clay and hollow cement units
MIF, the model under-predicts the initial stiffness and is not capable to capture the degradation of the

system.

m Model 2 correctly captures the initial stiffness of the MIF with solid clay, solid cement and hollow
cement units. However, the model over-predicts the strength of the system for solid and hollow clay
units MIF, and under-predicts the strength of solid and hollow cement units MIF. In all cases, the

model does not capture the mechanical response after the degradation.

m Model 3 correctly estimates the initial stiffness and maximum strength of the system with solid clay
units; although, it is not capable of capturing the degradation of the structure. In the case of hollow clay
units, the initial stiffness is under-predicted, whilst the maximum strength and deformation capacity is
over-predicted. Finally, for the cases of solid and hollow cement units, the model under-predicts the

initial stiffness and maximum strength, and does not capture the degradation of the system.

m Model 4, under-predicts in all cases the initial stiffness and maximum strength, over-predicts the

deformation capacity, and does not capture the mechanical response after degradation.

m Observe that the proposed HMC-BNN model correctly predicts the initial stiffness of the system
in average, for the cases of the usage of solid clay, solid cement and hollow cement units, and only
under-predicts the initial stiffness of the system when hollow clay units are used. For all cases, the
maximum strength result of each test is enclosed by the set of values that conform the prediction of the
proposed model. In general, the HMC-BNN mean model does not properly capture the deformation
capacity of the system.

In general, the previous observations indicate that the level and sources of uncertainties of the MIF
structural system should be considered when performing a structural evaluation of a building, since none of
the available deterministic models can capture all of the properties of the lateral response of the system for
all of the masonry unit types. On the other hand, the scatter points obtained after simulating our proposed
BNN model, presented in Figures [§] to clearly capture all of the characteristics of the lateral response of
the system within the prediction range. As also mentioned in Liberatore et al. [44], this uncertainty should
be accounted for to properly evaluate an existing structure.

Figure [12] shows the measured results from a laboratory test for a case with steel frame with hollow clay
masonry units. The results of the proposed BNN model are drawn along with the prediction of models 3 and
4. Model 2 was adapted by using the fiber section approach to model the behaviour of the frame. As can be
seen, models 2 and 3 over predict the maximum strength and the initial stiffness of the system and do not
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Figure 8: Comparative results obtained for solid clay masonry Figure 9: Comparative results obtained for hollow clay ma-
infilled reinforced concrete frames. sonry infilled reinforced concrete frames.
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Figure 10: Comparative results obtained for solid cement Figure 11: Comparative results obtained for hollow cement
masonry infilled reinforced concrete frames. masonry infilled reinforced concrete frames.

properly capture the degradation of the structure. Model 4, on the other hand, fairly predicts the initial
stiffness and maximum strength of the system, however it also fails to reproduce the degradation. The BNN
mean model properly captures the maximum strength and degradation of the mechanical system, although it
over-predicts the initial stiffness.

Besides, Figure [I3] shows the measured results from a laboratory test of a steel frame with hollow clay
units with a non-symmetric window opening located at the upper corner of the wall. Only the model 4
can account for the reduced strength of the system due to the presence of the opening. Accordingly, only
the prediction of that model is compared to the proposed BNN model. Clearly, model 4 does not properly
captures the behaviour of the system. Observe that the BNN mean model also over-predicts the initial

stiffness and strength of the wall and does not properly captures the degradation. Notwithstanding, the
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Figure 12: Comparative results obtained for hollow clay ma- Figure 13: Comparative results obtained for hollow clay ma-
sonry infilled steel frames. sonry infilled steel frames with a window opening.

result is better than the available model of the literature.

Notice that the experimental tests shown in Figures [0 to [I3] were part of the training set of the BNN,
whilst the one in Figure |8 was part of the test set of the BNN. Figure [14] compares the prediction of the
proposed BNN model with the force results of the first steel and concrete MIF tests from the database,
showing that the probabilistic prediction of the model provides a valid envelope (represented using grey lines)
of the expected real result. These results demonstrate the capabilities of the proposed BNN model to be
applied on the structural probabilistic evaluation of the lateral strength of MIF existing buildings.

1000

= (a) Steel frame Test 1 Maodel
=500 4 — [
B Fndoder
§ ol A —— Test
g y N
§ —500 A
=
)

—1000 T T T T T T

1000
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Figure 14: Results of the proposed model predictions in comparison to real tests used as reference. Panel (a): a masonry infilled
steel frame tested by Flanagan and Bennett (1999); panel (b): masonry infilled concrete frame tested by Morandi et al. (2018a).

In the following section, the extrapolation capabilities of the model is further discussed.
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4.4. Analysis of extrapolation capability

In this section, experimental test out from the database presented in Section [3| were selected to evaluate
the prediction capabilities of the proposed method. Table [5| summarises information from four experimental
tests available in the literature: one full-scale static test and three shaking table tests at different scales.

The experimental test performed by Furtado et al. [24], corresponds to a full-scale cyclic in-plane loading
test of a double-leaf MIF with hollow clay units. The wall was composed by a 150 mm thick external leaf,
and a 110 mm thick internal leaf, with a gap of 40 mm between the leafs. Notice that the database does
not consider any case of double-leaf MIF, however, the prediction was made assuming an input thickness of
the masonry wall equal to the sum of the leafs of the tested system. Figure [15| shows the BNN mean model
prediction against the laboratory test results. As can be seen, the proposed model prediction of the strength
of the system is appropriate. Unfortunately, the test was stopped until the specimen reached 0.5% drift, so it
can not be compared for higher deformations.

The results of the experimental test performed by Benavent-Climent et al. [6], are compared to those
predicted by the proposed BNN model. According to the authors, the reinforced concrete frame was part of
eleven previous seismic simulations before the masonry wall was built and, therefore, some level of degradation
of the columns was expected (the authors report 1.5% maximum inter-story drift and 0.12% of residual
inter-story drift). Therefore, instead of using the gross inertia as an input to the BNN model, a cracked
section was used assuming 30% of the gross section as effective. The masonry infill was tested as a retrofit
system. As shown in Figure the proposed model over-predicts in average the maximum strength, however
the scatter points capture the overall behaviour of the test.

The third and fourth tests presented in Table [5| (i.e. Kallioras et al. [37] and Stavridis et al. [66]), were
also compared to the proposed BNN model prediction. As can be seen in Figures [I7] and [I8] an acceptable
prediction is observed in terms of strength; however, the proposed model overestimates the deformation
capacity of the system. Irrespectively, note that the proposed model presents a sufficiently wide range to

contain the measured value within the predicted result, both in terms of deformation as well as strength.

Table 5: Relevant information of experimental tests available in the literature (Units in MPa, mm and kN)

Reference X [%]  fl, Em tm hm L,, Unit type P Ajs/As

[24] 0.192 13.4 9420 260 2300 4200 Hollow Clay 270 1.00

[6] 0.305 10.0 6600 40 1400 2000 Hollow Clay 60 1.00

317 0.101 4.7 2300 75 3000 4000 Hollow Clay 25 1.00 / 0.80
0.114 4.7 2300 120 3000 4000 Hollow Clay 25 1.00 / 0.80

[66] 0.170 19.8 5410 120 2240 3660 Solid Clay - 1.00 / 0.85
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Figure 15: Results obtained for static test on hollow clay Figure 16: Results obtained for hollow clay masonry infilled
double-leaf masonry infilled concrete frame. concrete frame previously subjected to lateral deformation.
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Figure 17: Results obtained for a two bay hollow clay and
a two bay double-leaf hollow clay masonry infilled concrete
frame previously subjected to several seismic records. One
bay of each kind of wall had a door opening.

Figure 18: Results obtained for a two bay solid clay double-
leaf masonry infilled concrete frame previously subjected to
several seismic records. One bay had a window opening.

5. Engineering case study

In this section, the proposed model is used to evaluate the seismic collapse probability of a three story
MIF building. Results are compared to a code-based evaluation with the ASCE/SEI 41 [1], and also using
the model proposed by Huang et al. [34]. The aforementioned building has been selected to match the
properties of a one-bay and one-story laboratory test by Morandi et al. [51], whose geometrical and mechanical
characteristics are given in Table[6] The building is considered as 14x14 [m] plan with two MIF as lateral
resisting structure, with 3.30 [m] floor height. The total mass of each floor is estimated as 62000 [kg].

In this study, the seismic collapse probability is estimated by means of non-linear time history analyses

Table 6: Geometrical and mechanical parameters of the MIF used for the case study.

Value Unit Value Unit
Lo, 4220 mm]| Peol 2.48 %
H,, 2950 mm| | Pream 0.47 %
tm 350 mm] I 34.0 [MPa

[
[
[ ]
beot 350 [mm)] fy 521.0 [MPa]
bbeam 350 [mm)] i 4.60  [MPa]
hbeam 350 [mm] E. 5299  [MPa]
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using far-field records data set of the FEMA P-695 document [31]. Normalization and scaling of the seismic
records are taken from Table A-3 of the aforementioned document. The proposed 2D data-based model
consists of three sets of three in-parallel springs connected in series to three equal masses. The model
was constructed in Openseespy platform [72], using the hysteretic material as constitutive behaviour. For
comparison purposes, the model proposed by Huang et al. [34] (see Section [4)) is applied both with a blind
prediction and after a calibration with the test results. In the next section, a discussion about the estimation

of the natural period of the structure is presented.

5.1. Pundamental period estimation

According to ASCE/SEI 41 [I] provisions, and particularly to its equation 12.8-9 (reproduced here for

ease of the reader), a lower bound estimation of the MIF fundamental period can be obtained as:

0.0058%,,
VO "1 & A;

T2 ;
A S [1+0.83 (%n) }

2

where Ap is the area of the base of the structure in m?, x is the number of shear walls in the direction under
consideration, A; and D; are the web area (in m?) and the length of shear wall i (in m), respectively, and
hy, is the structural height of the building in m, resulting T, = 0.32 [s].

Considering that most these factors are subjected to much uncertainties (i.e. epistemic uncertainties
in the the mass and stiffness of the structure, those related to soil stiffness, soil-structure interaction and
relative deformations in wall-frame joints, among others), the fundamental period predictions obtained from
the deterministic models hardly match with the period measured in a real case structure. Thus, our proposed
method is used here to obtain that measure with quantified uncertainty and the results are given in Figure
These results show that the most likely period for our case study structure is around 0.30 to 0.40 seconds.
Note that the blind and calibrated predictions of the fundamental period using [34], are also given, and
resulted in Ty = 0.091 [s] and Ty,, = 0.11 [s], respectively. Note also that the result of Equation lays
within the range of most probable fundamental period estimated from our proposed model. Our results
also are in agreement with those obtained for a three story building, which was evaluated by Varum et al.
[70] after Ghorka 2015 earthquake. In such study, ambient vibration test were performed to identify the
natural period of the structure. One of the buildings reported values equal to 0.27s and 0.38s for a moderate
damaged MIF structure.

Here, we remark that a proper estimation of the fundamental period is important to perform an adequate
seismic evaluation of the structure, as it directly affects the estimation of expected deformation and, therefore,
influences the damage forecast. In this particular case, considering the possibility that the fundamental

period estimation of the blind-prediction model is low, results could lead to an underestimation of the seismic
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Figure 19: Predicted MIF fundamental period

effects. This study reflects that care must be taken when using deterministic models for prediction and it is
strongly suggested that those models account for lower and upper bounds of the constitutive parameters or
to complement the prediction with data measures taken from the real structure to be evaluated (for instance,

ambient vibration of the structure).

5.2. Collapse evaluation by non-linear time history analysis

Non-linear time history analyses are performed using the blind-prediction, the calibrated and the data-
based models presented in the previous section, along with FEMA-P695 far-field records.

According to ASCE 41 provisions, the deformation limit for collapse prevention performance criterion can
be set from the point of maximum strength of the constitutive behaviour of a structural element, based on
laboratory test results. Notice that current structural evaluation provisions define deformation capacities of
the structural elements in a deterministic fashion, in terms of parameters that are subjected to uncertainties.
These results makes evident that this approach can lead to biased results. Moreover, as shown in Figure |20}
the blind-prediction model over-predicts the seismic capacity of the building, in comparison to the results
obtained from the calibrated model (here assumed as the “true” result). This example shows the importance
of obtaining reliable constitutive parameters for seismic evaluation of structures and demonstrates that a
probabilistic data-based model, even with a high dispersion, can provide information more consistent with
the expected behavior of an existing structure.

Figure |20 also shows the results obtained using the probabilistic approach with the model proposed in this
work. Notice that the results from the calibrated model lay within the confidence interval of the proposed
model prediction. Since the results obtained require minimal and easily available information, it can be
considered that the proposed method constitutes a straightforward way of estimating the vulnerability of

MIF buildings, being particularly suitable for macro-scale seismic vulnerability studies.
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6. Conclusions

This manuscript presented a new methodology for the probabilistic modelling and safety assessment
of MIF buildings against lateral seismic loads. A simplified shear spring model to represent the in-plane
behaviour of the MIF was proposed, where the parameters of the constitutive behaviour have been predicted
by a HMC-BNN. The HMC-BNN model was trained with a number of available laboratory test results. The

following conclusions arise from this investigation:

m Available data about the MIF structural system are scarce and, typically based on macro-scale
structural, mechanical or geometrical features. Therefore, they are insufficient to properly develop
precise micro-scale or meso-scale models. However, the model proposed herein helps to properly capture
the expected in-plane lateral response of the MIF structures with quantified uncertainty, and without

the need of numerous, yet typically unavailable, inputs.

m Considering all the sources of uncertainty that affect the seismic behavior of the MIFs, and after
the results obtained in this work, the proposed methodology is recommended to enrich the existing
deterministic models by accounting for the uncertainty in the estimates of the initial lateral stiffness, the
maximum resistance, and the degradation of the structure, since these parameters have an important

influence in the evaluation of the structural seismic safety.

m The proposed HMC-BNN model can be used at a macro-level approach to characterize the expected
arquetype performance of groups of MIF buildings for risk evaluation. However, it also may be used as
a first and rapid approach to estimate the expected behaviour of an existing structure, previous to a

more in-depth structural evaluation.

Future research steps will aim to explore the application of physics-enriched neural networks to further

exploit the predictive capabilities of micro or meso-models within the framework of artificial neural networks.
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Appendix 1

This section specifies the data of the cyclic lateral in-plane tests used in this work. Figure [5| depicts the

meaning of the parameters of the tables.
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Table 7: Data of masonry infilled steel frame tests (Units: mm, MPa).
A ?37 T P cgr l + - + - + — + — + — + —
uthor el oy oAl Ay sy A A A Ay R L R T v
1 HCl 11.49 1.00 9.74 0.00% 2.79 2.79 7.92 896 19.73 27.94 19.98 29.58 59.30 87.09 160.28 124.41 133.86 91.98
2  HCl 11.49 1.00 5.86 0.00% 2.79 2.79 13.38 13.44 2591 27.24 26.15 30.40 115.34 105.80 181.64 167.94 149.37 108.27
3 HCl 11.49 1.00 4.38 0.00% 2.79 2.79 7.03 10.10 1291 14.59 15.00 17.34 111.57 93.13 17298 151.69 134.16 106.04
4 HCl 6.79 1.00 810 0.00% 2.79 2.79 7.55 11.99 14.11 13.31 20.02 25.74 92.15 158.58 147.68 229.49 55.19 76.36
5 HCl 6.79 1.00 6.15 0.00% 2.79 2.79 5.22 6.35 14.11 13.31 17.19 18.94 11454 137.20 167.46 196.01 116.49 165.63
Flanagan 6 HCl 18.82 1.00 5.18 0.00% 2.79 2.79 5.22 6.35 14.11 13.31 17.19 1894 114.54 137.20 167.46 196.01 116.49 165.63
1994 7 HCl 11.49 1.00 3.28 0.00% 2.79 2.79 5.03 6.61 10.85 11.05 15.19 14.60 121.17 156.78 211.83 223.97 157.45 170.66
8 HCl 11.49 0.79 5.82 0.00% 3.61 3.61 34.94 32.09 46.78 50.11 46.78 51.70 94.84 141.74 141.76 205.42 141.76 174.59
9 HClI 11.49 0.79 5.82 0.00% 3.61 3.61 10.82 13.03 22.79 27.03 23.11 29.24 108.10 85.88 155.99 148.58 116.79 83.80
10 HCl 11.49 0.65 5.73 0.00% 4.61 4.61 30.16 10.84 63.98 28.34 63.98 46.24 142.04 111.41 205.26 198.95 205.26 48.48
11 HCl 1149 0.79 5.82 0.00% 3.61 3.61 15.99 19.79 32.90 38.09 37.94 40.72 130.99 124.12 202.14 177.32 69.32 150.23
12 HCl 11.49 0.79 582 0.00% 3.61 3.61 10.13 22.08 31.43 36.37 36.89 36.89 55.94 103.56 146.44 171.45 124.38 126.46
13 HCl 11.49 0.79 582 0.00% 3.61 3.25 10.62 12.90 16.00 18.79 16.41 18.97 90.57 42.33 134.18 66.98 79.36 23.15
Markulak. 14 AAC 1245 0.76 4.89 0.00% 1.84 1.84 10.58 548 29.98 13.72 30.54 13.72 90.64 69.93 138.59 99.90 108.92  99.90
Radic. ’ 15 HCl 1245 0.76 3.20 0.00% 1.84 1.84 536 4.20 1559 16.86 1559 1819 95.17 95.20 135.95 136.00 105.83 128.81
<§&?: 16 AAC 1245 0.76 4.96 0.00% 1.84 1.84 3.66 3.39 15.22 13.22 1543 13.22 76.39 62.10 109.13 88.72  105.66  88.72
2013 17 AAC 1245 0.76 4.96 0.00% 1.84 1.84 354 3.01 1636 7.94 17.00 8.18  63.42 58.63 90.60 83.76 86.32 79.49
18 AAC 1245 0.76 4.96 0.00% 1.84 1.84 547 4.08 16.99 13.17 17.08 13.26 66.46 56.41 94.94 80.59 91.56 76.37
Schneider. 19 SCl 22.16 0.73 2.88 0.21% 1.40 1.40 5.19 10.80 16.53 24.05 26.00 25.66 29.77 51.74 65.86 82.79 55.48 70.34
Zagers ’ 20 SCl 11.08 0.73 3.66 1.00% 1.40 1.40 11.57 4.68 23.76 22.03 39.07 34.07 122.76 79.11 180.26 177.78 141.80 149.55
>Uam5“m 21 SCl 22.16 0.73 3.12 1.63% 1.65 1.65 6.59 857 13.62 20.29 26.39 25.88 79.91 87.80 125.06 125.42 103.26 105.84
1998 22 SCl 11.08 0.73 3.68 1.80% 1.65 1.65 8.62 12.34 20.64 32.69 29.12 41.14 133.09 133.97 196.89 194.72 167.10 128.69
23 SClI 22.16 0.73 3.03 2.03% 1.96 1.96 8.62 12.34 13.57 20.19 29.12 41.14 133.09 133.97 196.89 194.72 167.10 128.69
Tasmini. 24 SCl 16.36 0.80 5.23 0.00% 2.31 2.31 814 6.27 20.00 20.00 50.20 45.39 141.76 151.03 202.51 215.75 166.98 183.36
Mohe- ’ 25 SCl 16.36 0.80 5.23 0.00% 2.06 2.06 4.11 346  15.25 14.59 39.12 2491 122.05 123.49 17436 176.41 147.56 149.55
bkhah 26 SCl 16.36 0.80 5.16 0.00% 1.78 1.78 3.89 2.83 13.80 13.53 33.91 30.05 106.76 96.28 152.52 137.54 118.83 103.86
2011 27 SClI 16.36 0.80 5.16 0.00% 1.63 1.63 4.56 4.12 14.93 25.00 34.74 4558 96.34 86.32  137.63 123.32 116.23 104.77
28 SClI 16.36 0.80 5.41 0.00% 1.51 1.51 3.91 5.88 13.95 29.75 44.79 41.18 82.17 87.88  117.39 125.54  98.23 97.83

#Masonry Unit types: SC: Solid Concrete, HC: Hollow Concrete, FA: Fly Ash, SCI: Solid Clay, HCI:

Py tm and Ly, are the height, thickness and length of the masonry infill in [mm)], respectively

©P is the axial load acting on the wall, A,, = L
dArea of the equivalent strut according to Holmes [33] considering windows and doors openings, in m

Hollow Clay, AAC: Autoclaved Aerated Concrete

2

mtm and fn, is the characteristic axial strength of the masonry wall.
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Table 9: Data of masonry infilled reinforced concrete frame tests (Units: mm, MPa).

h h P ) _ _ _ _ _ —

Author %c hm A Y rl Al AF Ay A A7 AL P T v, v v, Vib Vs
58 SCI 23.26 1.09 2.80 0.00% 220 220 9.82 981 20.11 20.09 40.96 3596 138.08 151.16 21643 221.64 177.70 188.04

Haider, 59 SCl 23.26 1.09 2.31 0.00% 220 2.20 12.77 17.37 30.01 34.97 71.21 6223 169.76 193.22 242.52 289.68 172.57 246.15
1995 60 SCl 23.26 1.09 3.00 0.00% 2.20 2.20 13.86 6.45 29.78 25.75 29.78 2576 9511  69.14 136.06 188.39 130.83 177.93
61 SCl 23.26 1.09 2.49 0.00% 2.20 2.20 12.19 14.65 30.30 30.74 40.67 61.70 149.43 188.09 213.47 268.69 149.82 224.49

62 AAC 13.63 0.49 4.00 31.39% 10.0310.03 3.70  6.14 40.71 4393 6429 65.55 409.69 466.33 535.28 666.26 496.93 566.09

Jiang, Lin 03 AAC 13.63 0.49 400 31.39% 100310.0321.49 2436 5416 73.27 7646 9982 34317 31188 49024 46829 40244 43171
v Mao 64 AAC 13.63 0.49 4.00 31.39% 10.0310.0321.49 24.36 54.16 73.27 76.46 99.82 343.17 311.88 490.24 46829 40244 431.71
015 65 AAC 13.63 0.49 4.00 31.39% 10.0310.0318.71 14.53 4897 53.27 51.12 58.65 35420 288.44 511.11 488.89 414.82 385.19
66 AAC 13.63 0.49 4.00 31.39% 10.0310.0315.00 17.14 63.21 45.00 101.79 79.29 299.54 248.40 490.24 504.88 40244 428.05

67 AAC 13.63 0.49 4.00 31.39% 10.0310.0320.35 16.53 80.54 74.13 100.80 107.20 312.44 292.50 446.34 475.61 343.90 402.44

Mansourj 08 SCI 1226 0.62 177 30.47% 1.65 1.65 16.11 1718 4353 5172 4515 57.97 7923 S8LI4 11318 11501 69.33  79.00
ot al. 69 SCl 12.26 0.62 1.77 30.47% 1.39 1.26 14.46 12.43 58.01 27.21 5801 4553 53.30 57.77 7615 8349 7615  65.14
o014 70 SCl 12.26 0.62 1.7 30.47% 1.25 1.25 11.99 10.82 28.70 27.91 4549 44.72 6294 6229 89.91 8899 57.06  46.90
71 SCl 12.26 0.62 1.77 30.47% 1.21 141 10.86 842 3421 17.19 3531 33.01 5857 63.81 83.67 9248 63.34 7855

Melrabi 72 HC 15437067 3.95 0.01% 179 L79 161 250 1176 10.32 20.04 1690 11173 10472 15061 14950 13520 12517
Shing, 13 SC 1543 048 450 0.01% 281 281 148 127 538 $12 1726 945 17613 19457 28780 277.06 23860 23095
Sehuller y 74 HC 1543 067 326 001% 179 179 304 169 985 433 1019 1294 14422 127.23 20603 18176 14009 132,05
Noland. 73 SC 1543 067 4.61 001% 179 179 170 084 875 1551 20.05 1918 184.72 156.76 263.80 223.04 223.66 18418
1996 76 SC 1543 048 4.10 0.00% 281 281 0.95 206 6.78 818 715 17.53 252.83 24235 36126 34621 306.36 203.99
77 SC 1543 0.67 4.44 0.01% 1.79 1.79 234 394 838 972 1223 976 304.97 310.14 443.27 487.64 375.72 367.11

78 HCI 10.83 0.72 2.87 62.59% 1.1l 1.11 1.10 1.25 6.06 455 6.06 502 160.69 172.51 257.93 24645 257.93 183.88

79 HCl 10.83 0.72 3.01 62.59% 1.06 1.06 1.65 1.29 6.45 462 720 4.68 209.44 18345 299.19 290.73 24557 224.75

Sigmund y S0 HCL 1083 072 2,93 6250% 108 1.22 149 164 826 10.08 1327 1054 19460 18273 27800 26105 18444 25539
Ponava 81 HCl 10.83 0.72 2.89 62.59% 1.14 1.10 1.89 1.01 14.38 13.02 17.99 13.17 208.97 153.37 298.53 219.11 242.09 202.11
(2014) 82 HCl 10.83 0.72 2.95 62.59% 1.11 1.11 1.89 1.52 472 487 1058 570 216.89 194.80 309.84 27828 261.07 195.30
83 HCl 10.83 0.72 2.95 62.59% 1.06 1.06 1.19 248 7.99 629 1352 14.89 180.74 214.88 258.20 306.97 220.90 261.07

84 HCl 10.83 0.72 2.93 62.59% 1.08 1.22 1.27 148 1381 9.07 1411 1273 197.00 193.00 281.43 275.71 281.43 261.43

85 HCl 10.83 0.72 3.05 62.59% 1.35 1.35 1.40 090 420 3.07 4.64 3.0 19584 123.24 279.77 275.08 138.13 158.91

aMasonry Unit types: SC: Solid Concrete, HC: Hollow Concrete, FA: Fly Ash, SCIL: Solid Clay, HCI:

Phn, tm and Ly, are the height, thickness and length of the masonry infill in [mm], respectively
¢P is the axial load acting on the wall, A,;, = Lty and [y, is the characteristic axial strength of the masonry wall.

dArea of the equivalent strut according to Holmes [33] considering windows and doors openings, in m

Hollow Clay, AAC: Autoclaved Aerated Concrete
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