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Abstract Reference (Pittau and Webber in Eur Phys J C
82(1):55, https://doi.org/10.1140/epjc/s10052-022-10008-6,
2022) introduces a method for computing numerically four-
dimensional multi-loop integrals without performing an
explicit analytic contour deformation around threshold sin-
gularities. In this paper, we extend such a technique to mass-
less scalar one-loop integrals regularized in the framework
of dimensional regularization. A two-loop example is also
discussed.

1 Introduction

In recent years a huge effort has been devoted to the problem
of the computation of loop integrals. The reason is the need
of accurate theoretical predictions able to cope with the ever-
increasing precision of the data collected in particle physics
experiments.

Two competing strategies have appeared. On the one hand,
analytic methods based on systems of differential equations
[2—4], whose solution are the wanted loop integrals, have
shown their ability to cope with calculations involving a mod-
erate number of physical scales [5-15]. On the other hand,
techniques have been developed to deal with the problem in
a fully numerical way [16-24].

The first obvious hurdle to overcome in both cases is the
presence of infrared (IR) or ultraviolet (UV) divergences, that
need to be properly regularized. This is usually done by using
dimensional regularization [25,26], even if four-dimensional
methods have started to be used as a viable alternative [27—
35].

Regardless of the approach employed for regularizing
infinities, the finite part of the calculation is plagued by the
presence of the so-called threshold singularities. These are
integrable singularities avoided by the +ie propagator pre-
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scription. Such structures are not a problem for analytic cal-
culations, but must be properly addressed when using numer-
ical techniques.

In a previous paper [1], a method has been introduced,
which permits an accurate fully numerical treatment of
threshold singularities that can be easily implemented in
Monte Carlo (MC) codes. The advantage of this technique is
that, even if a non-zero € must be kept, its influence on the
result can be lowered close to the machine precision level,
e.g. between 10712 and 10~° times the largest physical scale
appearing in the problem.

The performance of this procedure has been studied in [1]
in the case of finite multi-loop Feynman integrals, or diver-
gent ones regularized via four-dimensional methods. In this
paper we extend for the first time this approach to integrals
regularized within dimensional regularization, focusing our
attention on scalar integrals that provide a complete basis
for any one-loop calculation in massless theories [36,37].
Higher-loop integrals will be studied in detail elsewhere,
although we envisage that the experience gathered at the one-
loop level can be comfortably adapted to multi-loop environ-
ments.

The structure of the paper is as follows. In Sect. 2 we
briefly review the method. Section 3 fixes our kinematics and
conventions. Sections4, 5 and 6 are devoted to the study
of the massless 2-, 3- and 4-point scalar one-loop integrals,
respectively, and in Sect. 7 we present a simple two-loop
example.

Finally, it is important to mention that throughout the
paper we distinguish between the € and ¢ symbols. The lat-
ter parameterizes the n-dimensional loop integration, n =
4 — 2¢g, while the former denotes the contour deformation
around single-pole singularities. All results presented in this
paper are produced with e = 1077,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-13109-6&domain=pdf
https://doi.org/10.1140/epjc/s10052-022-10008-6
mailto:pittau@ugr.es

725 Page 2 of 10

Eur. Phys. J. C (2024) 84:725

2 The method

In this section we briefly recall the method of [1]. Our aim
is to flatten the singular behavior of a threshold singularity
parameterized as

1
I:/ dx
-1

where the numerator function F(x) is regular in x = O.
To achieve this we introduce a complex integration variable
7 = a+ifrelatedto x by x+ie = /7179 The requirement
that x remains real fixes the path in the complex z plane to
be

Fx)
x +ie’

ey

=In———, 2
mp 1 sin[7 (1 — «)] @
so that

€
- 3
T tanr( —a)] )
Using now
.dp X

dz—dot<1+t£)_d(x<l+zg> ()
gives

in [l-e/m X 2¢
[=-" da(1+i—) F(), g:=1-=. (5

8e Je/m € T

Two comments are in order. Firstly, the integrand of (5) is
now regular in x = 0 for arbitrarily small values of €. In fact,
the € dependence is moved to the boundaries of the integra-
tion region, x = =+1, which are reached exactly only when
€ — 0. However, x = +£1 are far away from the threshold
singularity of (1). That explains why the algorithm survives
tiny numerical values of €. Secondly, if F (x) contains branch
cuts in the x complex plane, the fact that x always lies on the
real axis ensures that the right Riemann sheet is automati-
cally taken when —1 < x < 1. Thus, compared to methods
based on contour deformation, one does not have to worry
about choosing a path that avoids the pole atx = —ie without
crossing any cut of F'(x).

Equation (5) is optimal for integrating over «. To flatten
the integral over B, the parameterization complementary to
(4) is needed, namely

doa
dz=dg|—+1i]). 6
z=dp ( B + l) (©)
However, (2) implies that « is a two-valued function of S.
Therefore, it is necessary to divide (5) into two parts

i 1/2
I = —g o da
<[(1-12) Fyo + (1+22) Fow)] . @)
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where y, := €/tan(am). Inserting (6) into (7) gives

i B
=7 " ap
8e JB_
€ . € .
« [<_ +l> Feyg) — (— +z> F()’ﬂ)], ®)
—)B B

with

B /1_<i)2 po=LmC g M€
Y= e) P T Vsine” "TT n

that is optimized for the integration over $. In practice, equa-
tions (7) and (8) can be merged together by means of a multi-
channel MC approach [38],! so that the complete 1/(x + i€)
behavior of (1) is flattened.

The described algorithm is implemented in the code
GLoop [39]. The present version is able to deal with integrals
of the type

oo M d(Tj
/_OOH<Gjii€>F(al,oz,...,am), 9)

j=1

with m up to 4. The numerical results presented in this paper
require m = 3 at most.

3 Kinematics and loop integration

For the purposes of this work it is sufficient to consider a
p1 + p2 = p3 + p4 massless kinematics given by

Vs Vs

¥=22(1,1,0,0), p5=-—(1,-1,0,0),
P 2( ), P> 2( )

o

s .
3= %—(l,cosels, sin 613, 0), p§ = p{ + p5 — p3.(10)

In(10)s = (p1+ p2)2 and 013 is the scattering angle defined
by the relation

s
t=(p1=p3)’ === cosbiz). (1)
The n-dimensional loop momentum is

q% = (qo, lqlce, lqlsacs, . . ), (12)

where cg = cosf, s9 =sinf, cy =cos¢, with0 <0 <nx
and 0 < ¢ < 2m.

Rescaling pj 2.3 and g by /s produces the following
dimensionless vectors

1 1
= 5(1,1,0,0), s = 5(1.-1,0.0),

D, (13)

1
77::(’,1 = _(17 C13, 513, O)’

5 wy, = (T, pca, pseCy, - -

1" Additional MC channels can be superimposed, if needed.
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Fig. 1 The scalar 2-point one-loop function of (20)

in which 7 = go/+/s and p = |q|/+/s. Note that 7{", 5 span
a three-dimensional space, so that in the one-loop integrands
one can trade o, for its four-dimensional projection defined
as

* = (1, pcy, pPsecy, PSeSy), With sy = sin¢. (14)

Infactwﬁ =o?andw, 7 =w- -m; Vi=1,2,3.
Finally, the integration over the rescaled loop momentum
can be parameterized as

/d”wnsz dr, (15)

where [ is the (n — 1)-dimensional integration volume. In
terms of p, 6 and ¢ it reads

n—3
27 /1 5 n=d
= ——— X dcg (1 —cj5) 2
ﬁ re3) o ’
1 nes 00
x/ deg (1-%)7/ dp p" 2. (16)
—1 0

If the integrand is independent of ¢, the integration over ¢y
can be carried out analytically by using

m+1

(”’2“)

/ (sing)" dp = f

that gives

/ 2 /1d (1 2)ﬂ/md =2 (1g)
= —7F co (L —cpy) 2 yoN) .
n T2 o R

Likewise, integrating over cy produces
2r T [
[ =t [ oo, (19
no () Jo

4 The UV divergent one-loop 2-point integral
As a first illustration of our procedure we compute by
MC the dimensionally regularized one-loop scalar integral

of Fig. 1,

B(s) =

1
| ar , 20
/ q DoD, (20)

where Dy = ¢> + i€ and Dy = (¢ + p1 + p2)> +ie. Given
that B(s) diverges in four dimensions, our strategy is to split
it into a finite part and a UV divergent piece,

B(s) = Bg(s) + Buyv, 2D

in a way that the former can be computed numerically using
the four-dimensional algorithm of Sect. 2, while the latter is
evaluated analytically.

Rescaling loop and external momenta by /s gives

B(s):(%) B, where B = // drM (22)

withdy = 12 — p2 +icand d; = (t + 1)2 — p% +ie. The
integrand of (22) does not depend on 6 and ¢. Hence, fn can
be taken as in (19). We now integrate over T by using the
residue theorem. The result is

B im / 1 1 (23)
2 ) ppr—1/4—ie
To achieve the splitting of (21), we subtract and add back

an integrand with the same p — oo behavior of (23). Among

the various possibilities we choose m. This allows us
to recast B = Br + Byy, in which the finite piece reads

e 1 1
Bp = 2in? d — , (24
¥ ’”/o pp[p2—1/4—ie p2+1/4} @9

while Byy is easily computed analytically,

c_2—¢

i 1
Buyy = ———— | -
v F(1—8)<8+

2) + O(e). (25)

Introducing the variable o = p? — 1/4 allows one to rewrite
(24) in a form suitable to be integrated with GLoop,

_[® do 200 +1/4)
BF—/ —ieF(U)’ F(o) = —1+20 , (26)

—00

where © is the Heaviside step function.
Our MC estimate with 107 MC shots gives

Be/(im?) = 3(9) x 107 + i 3.1414(7), (27)
to be compared to the analytic value
B /(i) | analytic = i 7. (28)

The time to produce the result of (27) on a single 2.2 GHz
processor is of about 1.65.

Finally, the analytic continuation to s < 0 is achieved by
replacing s /1> — s/u” + i€ in (22) [40]. This produces

l-j.[2—8 1 B
B(s)=m|:g+2—L 1n+—]+(’)(8) (29)
with L = (—S//L —lE)

Lastly, it is noteworthy to mention that from a numerical
standpoint, the treatment of UV divergences is remarkably
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p1+p2
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Fig. 2 The scalar 3-point one-loop function of (30)

similar in terms of dimensional regularization and FDR [27-
31,33]. The sole distinction lies in their action towards the
subtracted UV divergent part, which is computed analyti-
cally and added back in the former approach, whereas it is
judiciously discarded in FDR [1].

5 The IR divergent one-loop 3-point integral

Here we study the dimensionally regularized triangle
function of Fig. 2 with two massless momenta P%,z = 0 and

massless denominators Dy = q2 +ie, D1 = (q+ pl)2 +ie
and Dy = (q — p2)* + ie,
1

C — 40 dg—— 30

©)=p / 1 DyD1D; <0

As in the previous section, we rescale all dimensionful quan-
tities by 4/s. This produces

1/s\°°¢
Co == C. 31
s\
The rescaled integral C reads
& 1
C= / / dt , 32
nJ—oo dodda G2

with [ given in (18) and

do=(t+p—ie)(t—p+ie),
=(t+1/2+R—-ie)(t+1/2—R+ie),
dy=—-1/24+R—ie)(t —1/2—R +ie),

=/1/44 p% + pcy. (33)

C is divergent in the soft and collinear limits, namely it
develops 1/¢ and 1/&2 poles under the n-dimensional integra-
tion. To be able to perform the loop integration numerically,
we first construct an approximation Cjr whose integrand sub-
tracts the infrared behavior in a local fashion. Then we rein-

@ Springer

sert the result of an analytic computation of Cig. Schemati-
cally, C = Cg + Cir, where

Cr = lim [C — Cr] (34)
n—4

is computed by MC.

Using the residue theorem to integrate over T gives
c_ in / 1 1 1

2 J, P2 R\R—1/2—ie R—1/2+p—ie

S — (35)
R+1/2 R+1/2+p)"

Only the first two terms of (35) are divergent when p < 1/2.
An approximation sharing their IR behavior is constructed
by expanding R around p(1 + ¢p) = 0, that produces

e =2p) ( 1 1 )
Cr=im — , (36
IR A 03 l4+cog co+2p—ic (36)

which can be easily evaluated analytically

in? e 1 i 2m?
— (= += - +izrlh@ ) +O).
F(l—e)(82+s 3 + im In( ))—i— (&)

The integrand of (36) can now be subtracted to (35) and
the resulting integral produces the finite contribution of (34).
In four dimensions (18) gives

o] Ry
/:471/ d,op/ dR R, 37
4 0 IR_|

with R = 1/2 % p, thus

S R N T

Cr =

O(R-) ®(—R-) 1
—VR{R_—ie R—-R_- R+1)2
1 O(R-) O(R-)
+ - , (38)
R+Ry R+.RiR- R+R_
where the —ie is kept only in denominators with threshold

singularities.

Now we put (38) in a form suitable to be integrated with
GLoop. The terms between curly brackets have denomina-
tors of the form R + r;, where the rj-7 are independent of
R. We then introduce two integration variables defined as
follows
op=p,00=R+r, Vi=1=+7, 39

and rewrite

o 2
doj

= [T
_00]1:[1 oj — i€

The numerator F¢ (o1, 02) of (40)is fully expressible in terms
of Heaviside functions and is given in Appendix A.

) Fe(oy, on). (40)
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Fig. 3 The scalar 4-point one-loop function of (44)

With 4 x 108 MC points our estimate is
Cp/(in?) = 1.644(4) — i 4.356(1), 41
to be compared to the analytic result

Cr/(im?) | Analytic = 72/6 — i In(4)
— 1.6449 — | 4.3552. (42)

The time to produce 10® MC shots on a single 2.2 GHz pro-
cessor is of about 0.325s.

In our computation we have assumed s > 0. The analytic
continuation to s < 0 is again obtained by replacing s —
s + i€ in (31). Expanding in € gives

CGs) = in? e 11 L+L2 n2+, n(4)
VS Ti—gs|le2 2 6 MM
c
+—F2] + 0, 43)
LT
where L = (—s/p, —ze)

6 The IR divergent one-loop 4-point integral

In this section we consider the massless box diagram of
Fig. 3,

1
D(s.t) = 4—n 4" S—
(5. 0) = p / 4 DoD1 D Ds
Do =q> +ie, Di=(q+ p1)?+ie,
Dy = (q — p2)* +ie, =(q+p1—p3)?+ie, (44)

where p% 2 3.4 = 0. By rescaling all dimensionful quantities
by +/s one arrives at

1 —&
DGs.1) = = (%) D(x), (45)

where we have defined x = —t/s, so that in the physical
region one has 0 < x < 1. The rescaled 4-point integral
reads

D) = / / dodldzdg (30

with fn given in (16). The denominators dy, 1 2 are as in (33).
Furthermore, d3 = (t + S —ie)(tr — S 4+ ie) with § =

Vp?+U —Vcyand
U=x(142pcg), V =2py/x(1—x),/1— cé. 47

Asbefore, to compute (46) by MC, we first have to subtract
a simpler function Dir (x) with the same local IR behavior
of D(x). We choose

1 1 1
D -
Ik (x) = // [dod1d3 * dodrds  x dodidy
1 in? 5 2
(22 , 48
x dldsz x (” " (x)) (48)

that can be integrated analytically by means of (42) and (43),

_ir?t 1 4 N
T T(l—g)x \ &2

The rationale behind (48) is as follows. On the one hand, it is
well known that the four 3-point integrals produce the same
1/¢ and 1/&2 poles of D(x) [41]. On the other hand, the last

term is chosen in such a way that it compensates their finite
contribution. In this way

Dir (%) % (Inx — in)) + O(e).

Dr(x) = lim [D(x) — Dr(x)] (49)

gives the finite part of D(x) directly.
Integrating over t the IR finite combination of integrals
appearing in (49) gives

1 1
//  dodids  dodads
+ +1 !
X d0d1d2 X d1d2d3
- /1 1 o[ ! 1
T R R—12—ie\ | S2—p2] &
1 1
- (-2 5]
R—1/24p —ie X
1 1
_ P _ -
(=) x)
! (50)
2 p2 AR

L (42
+R+1/2+p<( +20)P [S

where P denotes the Cauchy principal value,

1 1 1 1
Pl ——|=- . (51
[82—,02} 2(S2—p2+i6+S2—p2—ie> D

To derive (50) we have systematically identified terms related
by the interchange p <> S. This is possible because | 4 18
invariant under shifts and rotations of the spatial components
of the vectors 7{', ; and w”. The ¢ dependence is entirely

<dod1 dords

contained in §> — p? and can be integrated out by using
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Table 1 Numerical estimates of Dgr(x)/(10i 72) in (53) for several values of x = —t /s. The analytic result is reported in (54). Numbers obtained

with 4 x 10° MC shots. MC errors between parentheses

X MC result Analytic result

1 9.88(2) —i 1.447(1) x 10" 9.870 —i 1.447x 10!
2 4.92(1) —i 5.055(2) 4.935 —i 5.056

3 3.296(7) —i 2.521(1) 3.290 —i 2.522

4 2.476(6) —i 1.440(1) 2467 —i 1.439

5 1.976(4) —i 8.714(8) x10~! 1.974 —i 8.710x 10!
6 1.643(4) —i 5.350(7) x10~! 1.645 —i 5.349x 10!
7 1.408(4) —i 3.202(6) x10~! 1.410 —i 3.202x107!
8 1.238(4) —i 1.74(1) x 107! 1.234 —i 1.753x10~!
9 1.097(4) —i 7.5(1) x 1072 1.097 —i 7.356x 1072

1 —-1/2 1
des(1- 2 p[_]
/—1 ¢( ¢) 52— p?

eWU?-Vv?)
Finally, inserting (52) and (50) into (49) gives
oo 2 doj
D)= | ] ( L ) Fp(o1, 02, %), (53)
—00 i 0j — 1€

with Fp(o1, 02, x) provided in Appendix B.
Our MC estimates are presented in Table 1 and compared
to the analytic result [40]

P2
i )
Dr ) amiytc = —— (77 + 207 In(x)) (54)

The time to generate 10° MC shots on a single 2.2 GHz
processor is of about 0.4 s.

7 A two-loop example

In this section we compute the two-loop bubble-box diagram
of Fig. 4, which has collinear and soft IR divergences in
addition to a UV-divergent sub-diagram,

in2im2 DoD1D2D3Dy
Do =q* +ie, Di=(q—p1— p2)’+ie,
D> = (g —p1)2 +ie, D3 =k>+ie,
Dy=(k+q—p3) +ie, plyss=0. (55)

More precisely, we evaluate its IR and UV subtracted coun-
terpart obtained as described and reported in [42],

- _/d4qd4k 1 1 [ 1 ]
F= in2in? | DyD1Dy \ D3D4 D3Dylg=p;

1 1 1
_(DoDz (Do —m?)(Dy — m2)> s(1—xp)
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P, _1, RN
k
D2 P4

Fig. 4 The two-loop bubble-box of (55)

1 1
X<[D3D4]q=x1p1 B [D3D4]q=m>
_( 1 _ 1 ) 1
DD, (Dy—m?)(Dy—m?))s(1—x2)

1 1
X([D3D4:|q=p1+P2(IX2) B [D3D4L=P1> } 0

The first term of (56) is the original integral, while x; = 122

P1D2
and x, = PIEP2=DPL ape the fractions of the momenta D1

and py carried by the internal lines with momenta ¢ and
p1 + p2 — g, respectively. Finally, m is an arbitrary mass
used to subtract the UV behavior.

The best way to apply the algorithm of Sect. 2 to the case
at hand is to use the gluing procedure described in [1], which
allows one to express (56) in terms of a tree-level part con-
voluted with the one-loop sub-diagram. To achieve this, we
perform analytically the k integration and rescale all dimen-
sionful quantities by +/s, which produces

Tr(x)
ds
—x +ie

=sTp = —— | d* In
SIF in? w{dodldz

X1x —ie€

1 1 1
- - In
(dodz (do—uo)(dz—uo)) l—x;  x—ie
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Table 2 Numerical estimates of 7r(x) in (63) for several values of x = —¢/s and po = 1. The analytic result is reported in (64). Numbers obtained

with 8 x 100 MC shots. MC errors between parentheses

X MC result Analytic result

1 — 6.19(3) +i 7.26(2) — 6.226 +i 7.244

2 —4.64(3) +i 2.29(2) — 4.669 +i 2.278

3 —4.11(3) =i 8(2) x1072 —4.136 —i 9.670x 1072
4 —3.86(3) —i 1.55(2) — 3.887 —i 1.563

5 —3.73(3) —i 2.58(2) — 3.756 —i 2.584

.6 —3.66(3) —i 3.34(2) — 3.683 —i 3.346

7 —3.62(3) —i 3.93(2) — 3.642 —i 3.943

8 —3.603) —i 4.41(2) — 3.620 —i 4.427

9 —3.59(3) —i 4.81(2) —3.609 —i 4.828

(1 1 ) 1 xzx—ie}

— - n

didy  (dy —po)(d2 —po) )1 —x2 x—ie
(57)

where 19 = m?/s and

d0=r2—p2+iezao+i6

d1=(t—1)2—p2+iesal+ie

dzzrz—r—p2+pc,9+iezaz+ie

ds = A+ Bcgy + ie. (58)

In (58) do,12 = Do,1,2/s are rescaled denominators, ds =
[(q — p3)* +i€l/s and

AZ‘L’Z—T—pZ—}-pCQ(l—ZX),

B =2psg/x(1 — x).

Next, we trade the integrations over t, p and ¢y for integra-
tions over oy, 1 2 defined in (58). This gives

(59)

1 2
/ d*w = i [ dogdoidor K (09, o1, 02) / d¢,  (60)
0
with

K (09, 01, 00) = O[A(1, 00, 01)]
xO[og + a1 — 1 — 209 + 1Y2(1, 69, 01)]
xO[207 — 09 — o1 + 1 + A12(1, 00, 1)1,

(61)

where A(x, y, z) is the Kéllén function. The integration over
the azimuthal angle ¢ can be performed by using

2
/ d¢ In(A+ Bey +ie) =2m G(A, B)
0

B2
B (A+ie)2) - (62)

Ati
=27 |In tie

+ln<l+ 1

After that, 7r(x) can be written in terms of a triple integral
suitable to be evaluated numerically with GLoop,

o0 2 dO’j
Tr(x) = | | — | Fr (00, 01, 02, X),
N oj+ 1€

with F7 (09, 01, 02, x) given in Appendix C. Note that the
numerator F7- contains branch cuts controlled by the i€ pre-
scription (see (62)), but because our algorithm maintains
00.1,2 in the real axis, the correct Riemann sheet is auto-
matically taken.

The analytic result in the physical region 0 < x < I reads
[42]

(63)

2

1
Tr(x) = —S1p(1 — x) — 383 — ’% Injag + < In’ x

72 I,
+im |:Li2(1 —x)——+=1In x:| , (64)

6 2
where Si; is the Nielsen polylogarithm. Table 2 shows a
comparison between our MC estimate based on (63) and
(64). The time to produce 10° MC shots on a single 2.2 GHz
processor is of about 0.42s.

8 Conclusion and outlook

Any attempts towards a numerical loop integration requires
controlling threshold singularities. A possible approach is
contour deformation [43,44], that calls for analytic knowl-
edge of the cut structure of the integrand [45] or numer-
ical checks establishing whether the deformation stays on
the correct side of the singularity. In [1] an alternative has
been proposed and shown to be effective in the MC esti-
mate of four-dimensa‘ional multi-loop integrals directly in
Minkowski space.

In this paper we have extended this technique to massless
scalar one-loop integrals with no more that four external legs,
regularized within dimensional regularization. Our strategy
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is based on a separation of the 1/¢ and 1/ poles before
integration. The finite part, containing the threshold singu-
larities, can then be integrated numerically in four dimen-
sions. A fully numerical evaluation of one-loop amplitudes
with more than four legs is in principle possible if the coef-
ficients of the contributing one-, two-, three- and four-point
integrals are also determined in a numerical fashion by using,
for instance, the method of [37].

We have presented numerical results obtained with the
help of the code GLoop. A MC error of the order of a few
per mil can usually be obtained for a modest CPU cost.
As with any other numerical method, this level of precision
is expected to be sufficient for phenomenological purposes
when the gauge cancellations are moderate. If this is not
the case, cancellations among diagrams must be enforced
to occur before integration. This should be feasible because
they are usually controlled by Ward identities operating at
the integrand level.

Enlarging the range of applicability of our method beyond
one loop requires removing UV and IR divergences by adding
appropriate counterterms at the level of the integrand. Ultra-
violet counterterms can be constructed by using, for instance,
the same procedure that defines FDR integrals [27-31,33].
As for the infrared behavior, a systematic approach has been
developed for two-loop integrals by Anastasiou and Sterman
in [42]. In Sect. 7 we have presented a simple two-loop exam-
ple showing how the subtraction method of [42] can be com-
bined with our algorithm. For all these reasons, we believe
that the strategy described in this paper can be extended up
to two loops. A deeper exploration of this issue is planned
for a future publication.
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Appendix A: F¢ (o1, 02)

The numerator of the subtracted 3-point function of (40)
reads

Fe(o1, 02)
= —2in2®(61)[®(03)[®(1 —6.)®(0_)
—0(1 +0_)0(~0_) — O(1 — 64)O(0u)
+O0 + 04)9(—04)] + @(—03)[9(0_)®(U+)
—0@-+ O — f) =01 +0-)O(0r — 1)
+0(1+04)®(02 — 1) —O(0- + g)O(04 — g)

+6(0s — DO — )]}, (A1)
where we have defined
14 /1 —40} o2 1
ng’ =, 03=01—§,
o4 =201 — 02, 05=201+02, o0+r=o01F0r. (A2

Appendix B: Fp (o1, 02, Xx)

The numerator of the subtracted 4-point function of (53) is

Fp(o1, 02, x) = 4in’O(oy)
x{© ()0 U — o3[ N1 — 1/x]
—0©(04)O U — |o3D[(1 —201)N2 — 1/x]
—O(1 +0.)0(Us — |o3])[N3 — 1/x]
+O(1 + 04)O(Us — |o3))[(1 + 201) N4 — 1/x]}
72 —1n(x)

—17@)(1 —lo1DOd — |o2]), (B.3)
where we have used the definitions in (A.2) and
Uy=o0y—03 Uy=o02—03,
Us=03—0_, Usy=o03—04.
Furthermore
N; = sgn[(1 +201)(1 — 207) +4U,-2]®(Wi) (B.4)

VWi ’
with
X
W,~=Z{16fo+ I1 [1+2(k101+A2Ui)]}. (B.5)
A A==

Note that the last term of (B.3) generates the unintegrated
contribution of (48).
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Appendix C: Fy (09, 01, 02, X)

The numerator of the subtracted two-loop bubble-box of (63)
reads

Fr (00, 01,02, %)
1
= .—{K(ao, o1, O'2)|:1H(—x +ie)— G(A, B)
2imw
o] x(14+0p —o01) —ie
n

+ 1 -
o1 — 07 X — i€
00 x(1 40y —o0p) —ie
In - (C.6)
gy — 02 X — 1€
l+6) — .
S B MG Sk Vil L SR S
g]p — 02 X — 1€
146, — .
N Ee o) i K(oo,al,c‘n)},
gy — 02 X — 1€

(C7

where 6; = o; + uo. The functions K (op, o1, 07) and
G (A, B) are defined in (61) and (62), respectively. Note that
in terms of 0,1 2 one has

I —x1 =01 —o02,

1 —x) =09—02 (C.8)
and

A=x(opg+0o;—1)4+02(1 —2x),

B =2/x(1 — x)y/(02 — 01)(00 — 02) — 0. (€.9)
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