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A B S T R A C T

In the field of eXplainable Artificial Intelligence (XAI), the generation of interpretable models that are able to
match the performance of state-of-the-art deep learning methods is one of the main challenges. In this work,
we present a novel interpretable model for image classification that combines the power of deep convolutional
networks and the transparency of decision trees. We explore different training techniques where convolutional
networks and decision trees can be trained together using gradient-based optimization methods as usually done
in deep learning environments. All of this results in a transparent model in which a soft decision tree makes
the final classification based on human-understandable concepts that are extracted by a convolutional neural
network. We tested the proposed solution on two challenge image classification datasets and compared them
with the state-of-the-art approaches, achieving competitive results.
1. Introduction

Nowadays, the potential of convolutional deep learning models for
the task of image classification has been proven. However, many of
these models are considered black-box models as they can be opaque to
the users due to the absence of any mechanism to explain the decision-
making process [1], such as Artificial Neural Networks (ANNs). To
achieve a higher degree of transparency and interpretability, new
techniques and models have been proposed in recent years with the
aim of developing more interpretable artificial intelligence [2]. Most
of the solutions and models proposed in recent years can be classified
into two categories: transparent models and post-hoc explainability
techniques [2,3]. Post-hoc explainability techniques are popular meth-
ods in the field of deep learning. Some of the most known techniques
belonging to this category are LIME [4], which perturbs the input and
demonstrates how the predictions change, or Grad-CAM [5], which
is used in neural networks and uses the gradients to produce a map,
highlighting the important regions in the image for predicting the class.
On the other hand, the creation of transparent models is one of the main
goals of XAI, but it is still a distant goal in the field of deep learning.

Classical decision trees are among the best-known machine learn-
ing algorithms and have been widely used to solve machine learning
tasks such as classification or regression problems. Moreover, they are
considered transparent and interpretable machine learning models, as
users can visualize and trace the decision-making process or extract if-
then rules that explain the decision process [6]. However, integrating

✩ Partial financial support was received from HAT.tec GmbH. The funders had no role in the study design, data collection, analysis, and preparation of the
manuscript.
∗ Corresponding author at: University of Granada, 18071 Granada, Spain.
E-mail addresses: dmorales@correo.ugr.es, david.morales@hattec.de (D.M. Rodríguez), manupc@ugr.es (M.P. Cuéllar), diegopm@ugr.es (D.P. Morales).

classical decision trees with deep learning methods is not straightfor-
ward as they are not differentiable. The employment of soft decision
trees is getting growing interest as a potential solution [6–9]. Soft
decision trees are models inspired by classical decision trees and that
conserve the structure formed by nodes, edges, and leaves. The key
difference relies on the fact that they perform probabilistic routing
(or soft routing) instead of deterministic routing, which makes them
differentiable.

In this research article, we explore the use of decision trees in a
deep learning environment. The goal of this article is to present a
novel image classification method where the power of convolutional
neural networks and the transparency of decision trees are combined,
resulting in an interpretable model in which image classification is
based on human-understandable concepts. Our proposed solution is a
concept-based model, developed as a fusion of soft decision trees and
a deep convolutional neural network. It is based on concept bottleneck
models and can be trained with classical gradient-based optimization
techniques as known from deep learning. The decision-making process
is transparent to the user and makes our models interpretable. Further-
more, we test the proposed approach on two challenging datasets and
achieve competitive results compared to the state-of-the-art.

The contributions of this research work are as follows:

1. We provide a comprehensive overview of the current state of
research in this area.
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2. We explore the combination of decision-trees with deep learning
models.

3. We proposed a new interpretable model, that results from the
fusion of a concept extractor and a soft-decision tree.

4. We analyze and compare different training approaches for the
proposed solution.

5. We explore related works and compare the proposed solution to
the state-of-the-art methods.

The manuscript is organized as follows. Section 2 includes an
verview of the state of the art. Section 3 presents the proposed meth-
ds and training approaches. Section 4 introduces the two datasets,
escribes the experiments carried out, and analyzes the obtained re-
ults. Finally, Section 5 closes with conclusions and future lines of
esearch.

. Related work

While the very first machine learning algorithms were easily in-
erpretable, in the last few years deep neural networks (DNNs) have
ecome the standard solution to many tasks [2,10]. DNNs are the state
f the art in many machine learning problems because of their great
eneralization. However, they are considered black-box machine learn-
ng models as the decision-making process is opaque to the user, who
annot get an explanation of the decisions made by the model [1]. In
his context, there has been a growing interest on explainable artificial
ntelligence (XAI). Post-hoc explanations, which refer to the use of
nterpretation methods after training a model and feature relevance
ethods are the most adopted approaches to explain DNNs [2]. Most

f these explanation techniques provide heat maps or saliency maps
o identify the regions of the input images that networks look at
hen making predictions. Some well-known visual explanation tech-
iques are Class Activation Mapping (CAM) [11] or Local Interpretable
odel-Agnostic Explanations (LIME) [4].

On the other hand, the definition of transparent deep learning
odels is one of the main goals of XAI and an active research field. The

riginal problem lies in the fact that historically there has been a trade-
ff between power and interpretability or transparency of the proposed
odels [12]. Classical machine learning models and algorithms, such

s decision trees or k-NN, are interpretable and transparent, but they
re outperformed by opaque models, such as deep neural networks.
hat is why recent research has focused on addressing this well-known
erformance-explainability trade-off [13,14] and defining models that
re transparent by design and that do not need post-hoc explanations
echniques.

Decision Trees are a classical machine learning algorithm based
n if-then-rules. These decision rules are presented in a branch-based
raph that is followed in order of making the final prediction. These
odels are considered as transparent models as following those paths

r rules enables humans to understand why a prediction or a classi-
ication is made [15]. However, as already mentioned, decision trees
o not generalize as well as neural networks. Some research has been
one to explore how decision trees can be improved and adapted to
e used to solve deep learning problems. Kontschieder et al. [16]
resented Deep Neural Decision Forests where they aimed to com-
ine representation learning as known from deep architectures with
he divide-and-conquer principle of decision trees. They introduced a
tochastic and differentiable decision tree -neural decision tree- and
onstructed their proposed solution as an ensemble of those neural
ecision trees. In other words, a decision forest provides the final pre-
ictions. Wan et al. [17] presented a hierarchy-learning-based model
alled Neural-Backed Decision Trees where they proposed to replace
he network’s final linear layer with a decision tree, inducing hierar-
hies that shall be used to explain the decision of the model. Frosst and
inton [7] proposed distilling a neural network into a Soft-Decision-
2

ree. The authors described a method for using a trained neural net d
to train a soft decision tree by stochastic gradient descent using the
predictions of the neural net as targets. Given an input, their model
makes hierarchical decisions based of the learned filters and selects as
output a particular static probability distribution over classes.

In the search for more transparent models, another approach that
has been studied is concept-based explainability. The authors who
explore this approach aim to develop interpretable models designing
them to base their decisions on concepts, where concepts are con-
sidered high-level and semantically meaningful units of information
commonly used by humans to explain their decisions. This approach
enables us to interpret the reasoning process by generating explanations
based on those concepts [18]. Furthermore, this approach can allow
users to improve the performance of a model through concept inter-
ventions, in which mispredicted concepts are corrected using expert
knowledge [19,20]. A well-known article in this field was presented
by Alvarez Melis and Jaakkola [21], who proposed the self-explaining
neural networks (SENN). Their model consists of a concept encoder, a
relevance score generator, and an aggregation function. They proposed
to define concepts using an autoencoder and trained their model to
use these concepts for classification. The decisions of the model can be
explained by looking at the scored concepts, without the need of post-
hoc explanation techniques. However, the challenge of this approach is
finding understandable and appropriate concepts. The concepts could
be defined by an expert, but this would require data annotations and
human intervention. The use of human-provided concepts has been
studied. Some studies based on this approach trained supervised models
with annotated concepts predefined by human specialists such as the
colors and shapes of objects, which are precise and accurate for human
understanding [10]. Koh et al. [19] proposed concept bottleneck
models (CBMs). In these models, the classification task is performed
in two steps. A first CNN model works as a concept extractor and
maps raw inputs (𝑥) to concepts (𝑐), and a second model performs the
inal classification by mapping these concepts (𝑐) to targets (𝑦). Some
uthors propose to train object detection or segmentation models to
ocalize object parts and combine those models with a classifier to build
n interpretable model that bases its decision on the detected object
arts [10,22].

In this article, we investigate the use of decision trees in com-
ination with deep learning methods. We believe that concept-based
earning is one of the most promising approaches in the field of inter-
retable deep learning. However, we identify a lack of transparency in
ow the decision-making process once the concepts are defined. For
hat reason, we explore how to combine and train decision trees and
oncept-based models and define an interpretable model that performs
mage classification basing its decision on human-understandable con-
epts. The final decision-making process is conducted by a soft decision
ree that can be visualized and explored by the user. This last point
pens the door to human intervention, as an expert could explore the
ecision tree and improve it by using his knowledge to redefine the
ecision tree.

. Methodology

In this article, we study the fusion of Soft Decision Trees and
oncept Bottlenecks. We propose to use a CNN as a concept extractor to
ap the image to concepts as proposed in [19], following the approach
resented in Fig. 1. A Soft Decision Tree is used as a predictor, which
erforms the final classification based on the extracted concepts.

.1. Concept bottlenecks

The classification problem is divided into two subtasks: concept
xtraction and classification (see Fig. 1). The concept extraction task
s defined as a multilabel classification problem. The labels (concepts)

epend on the dataset, which should be annotated accordingly. After
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Fig. 1. Diagram showing a classification task resolved using concept learning. The task is divided into two subtasts: first, a concept extraction takes place producing a concept
vector as output. This extraction can be implemented as a multilabel classification problem, where the labels depend on the datasets. The concept vector contains the scores for
each label. Second, a classification process takes place based on the concept vector.
the extraction, the classification takes place based on the concept vector
obtained.

To formalize the proposed solution, we define the classification
problem as follows: Consider an input 𝑥 ∈ R𝑑 , a target output 𝑦 ∈ Y
and a vector of concepts c ∈ [0, 1]𝑘, such that the training samples
compose a set of the form [(𝑥𝑛, 𝑦𝑛, c𝑛); 𝑛 = 1...𝑁]. The proposed model
is of the form 𝑡(𝑔(𝑥)), where 𝑔 ∶ R𝑑 → [0, 1]𝑘 maps from input space
to concept space and 𝑡 ∶ [0, 1]𝑘 → Y is a decision tree that maps from
concept space to target space. To train the model, two loss functions
are defined: a first loss function 𝐿𝑌 ∶ Y × Y ∶→ R+ that given a
training sample (𝑥𝑖, c𝑖, 𝑦𝑖) measures the discrepancy between the output
of the model 𝑦′ = 𝑡(𝑔(𝑥𝑖)) and the target output 𝑦𝑖. This is a multi-class
classification task so we use the multi-class cross-entropy loss as it is the
standard solution for these tasks. The second loss function is of the form
𝐿𝑐 ∶ [0, 1]𝑘 ×[0, 1]𝑘 → R+ measures the discrepancy between the output
of the concept extractor 𝑔(𝑥𝑖) and the true vector of concepts 𝐜𝑖. This
is the multi-label classification task so we use the binary cross-entropy
loss in this case.

3.2. Soft decision trees

In classical decision trees, every sample is routed to exactly one
direction at every node (deterministic routing or hard routing), which
introduces discontinuities in the loss function and makes classical
decision trees not continuously optimizable [23]. For this reason, clas-
sical decision trees cannot be trained using gradient descent-based
algorithms. That is the reason why we decided to explore the use of
binary soft decision trees, more specifically, our model is based on the
model proposed in [7]. These soft decision trees can be trained with
mini-batch gradient descent as they perform probabilistic routing (or
soft routing) instead of deterministic routing, avoiding the introduction
of discontinuities in the loss function and making them continuously
optimizable [7,23].

Soft decision trees are composed of nodes and leaves, just as classi-
cal trees. Each inner node 𝑖 has a learned filter 𝑤𝑖 and a bias 𝑏𝑖. Given
an input feature 𝑥 the probability of passing to the right branch at the
inner node 𝑖 is:

𝑝𝑖(𝑥) = 𝜎(𝑥𝑤𝑖 + 𝑏𝑖) (1)

where 𝜎 is the logistic sigmoid function. Since this model is a binary
tree, 1 − 𝑝𝑖(𝑥) is the probability of routing to the left branch. In Fig. 2
we illustrate the structure of an inner node of a binary soft decision
tree and the routing process that would take place in the inner node
𝑖 for an input 𝑥. In the figure on the right we assume some values for
the input and for the weights and biases and calculate the output of the
routing process.
3

The probability 𝑃 𝑙(𝑥) of arriving at leaf node 𝑙 given the input 𝑥 is

𝑃 𝑙(𝑥) =
∏

𝑁
𝑝𝑖(𝑥)𝟏[𝑙↙𝑖](1 − 𝑝𝑖(𝑥))𝟏[𝑖↘𝑙] (2)

The notation 𝟏 represents an indicator function that produces one if the
condition holds and zero otherwise. The notation [𝑙 ↙ 𝑖] (and [𝑖 ↘ 𝑙])
indicates leaf 𝑙 belongs to the left (resp. right) subtree of node 𝑖. Each
leaf node 𝑙 produces a probability distribution over the possible output
classes

𝑄𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙𝑙) (3)

where 𝜙𝑙 is a learned parameter. The output of the model is the
distribution at the leaf with the maximum path probability. In Fig. 3
we illustrate all these equations by providing an example of how to
calculate the probabilities and outputs. We show a soft decision tree
with one hidden layer for a binary classification problem. We assume
some values for the input 𝑥 = 1 and for the weights 𝑤𝑖 and biases 𝑏𝑖
and demonstrate the decision process that would take place. We assume
that for the second leaf the learned distribution is 𝑄1 = [0, 2; 0.8],
so for that leaf, the second class would be selected. We compute the
probabilities 𝑝𝑖 = 𝑝𝑖(𝑥) = 𝜎(𝑥𝑤𝑖 + 𝑏𝑖) as shown in Fig. 2. Computing
the probabilities 𝑃 𝑙(𝑥) of arriving at each of the leaves, it can be seen
that the highest probability is given for the first leaf: 𝑚𝑎𝑥𝑖𝑃 𝑖(𝑥) =
𝑃 1(𝑥) =

∏

2 𝑝𝑖(𝑥)𝟏[𝑙↙1](1 − 𝑝𝑖(𝑥))𝟏[1↘𝑙] = (0.751 ∗ 0.250) ∗ (0.210 ∗
0.791) = 0.59. This implies that for the input 𝑥, the output of the tree is
𝑄1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙1), where 𝜙1 is a learned probability distribution over
the output classes (two in our case) for the given leaf.

The decision tree is trained using the loss function

𝐿𝑇 (𝑥) = −
∑

𝑙∈𝐿
𝑃 𝑙(𝑥)

∑

𝑘∈𝑌
𝑦𝑘 log𝑄𝑙

𝑘 (4)

where 𝑌 is the set of possible labels, 𝑘 is the index of the label, and 𝑦𝑘
is the observed probability of 𝑥 being categorized as 𝑘, which is either
0 or 1. Observe that this is just the classical cross-entropy function for
each leaf, weighted by its path probability. Using again the example
in Fig. 3, we illustrate how the loss would be calculated: we assumed
the learned distribution 𝑄1 = [0, 2; 0.8], so for that leaf, the second
class would be selected and we assume now that the classification is
correct (x belongs to the second class), the partial loss for leaf 1 would
be 𝐿𝑙1 (𝑥) = 𝑃 1(𝑥)

∑

𝑘∈𝑌 𝑦𝑘 log𝑄1
𝑘 = 0.59 (0 log 0.2 + 1 log 0.8) = −0.057.

To calculate the total loss 𝐿𝑇 = −
∑

𝑙∈𝐿 𝐿𝑙 we would have to do the
same calculations for each leaf and sum them, as shown in Eq. (4).

3.3. Overall structure

In Fig. 4 we show the overall structure of the proposed model.
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Fig. 2. On the left side we present an inner node 𝑖 of a binary soft decision tree. Each inner node has two learned parameters associated: the weight 𝑤𝑖 and a bias 𝑏𝑖. On the
right side we illustrate the routing process according to Eq. (1) with an example. To this aim the variables are given the following values: 𝑥 = 1, 𝑤𝑖 = 1, 𝑏𝑖 = 0.1.
Fig. 3. On the left figure we show a soft decision tree with one hidden layer for a binary classification problem. In the figure on the right, we assume some values for the input
𝑥 and for the weights 𝑤𝑖, biases 𝑏𝑖, and learning variables like 𝑄1 = [0, 2; 0.8]. The probabilities of routing to the left or to the right are shown for each level.
Fig. 4. Overall structure of the proposed model. The concept extractor 𝑔 is implemented by a Resnet-50. Its final layer is implemented by a fully connected layer with a sigmoid
activation function. The concept extractor gets an image as input and outputs the concept vector. The binary soft decision tree 𝑡 takes the concept vector as input and outputs the
final prediction. We draw a tree with just four levels since adding more levels would result in an excessively large figure. FC is the abbreviation for fully connected.
3.4. Training environment

In this section, we describe different methods for training the pro-
posed method. We analyze and study the three different ways of
training a concept bottleneck model that were proposed by Koh et al.
[19]:

– Independent bottleneck: 𝑡 and 𝑔 are trained independently. That
is, 𝑔 is trained on the training set [(𝑥𝑛, 𝑦𝑛, 𝑐𝑛); 𝑛 = 1...𝑁] mini-
mizing ∑𝑁

𝑛=1 𝐿𝑐 (𝑔(𝑥𝑛); c𝑛) while 𝑡 is trained on the same set by
minimizing ∑𝑁

𝑛=1 𝐿𝑌 (𝑡(c𝑛); 𝑦𝑛)
– Sequential bottleneck: 𝑔 is trained as before, but 𝑡 is trained on

the output of 𝑔. That is, 𝑡 minimizes ∑𝑁
𝑛=1 𝐿𝑌 (𝑡(𝑔(𝑥𝑛)); 𝑦𝑛).

– Joint bottleneck: 𝑔 and 𝑡 are trained jointly by minimizing the
combined loss function ∑𝑁

𝑛=1 𝐿𝑌 (𝑡(𝑔(𝑥𝑛)); 𝑦𝑛) + 𝛿
∑𝑁

𝑛=1 𝐿𝑐 (𝑔(𝑥𝑛); c𝑛)
where 𝛿 > 0 is a hyperparameter that controls the trade-off
between the two losses.

In our case, 𝐿𝑐 is the concept loss function described in Section 3.1
while 𝐿𝑌 correspond to the loss function described in Eq. (4). Compared
to the independent model the idea of the sequential model is to allow
the final classifier 𝑡 to adapt itself to a given extractor. On the other
4

hand, the idea of the joint model is to allow the refinement of the
concept extractor in order of improving the performance of the main
task.

4. Experimental setup, evaluation and results

In this section, we present two datasets used to evaluate the pro-
posed method. Next, we describe the implementation details as well as
the experiments carried out, including the evaluation metrics consid-
ered. Finally, we report and analyze the results obtained.

4.1. Datasets

We evaluated the proposed methods on the MonuMAI dataset [24]
and on the Semantic PASCAL-Part dataset [25].

The MonuMAI dataset [24] is an image dataset that contains more
than 1500 images of monuments belonging to four architectural styles:
Gothic, Hispanic-Muslim, Renaissance and Baroque. This dataset was
labeled by human experts who generated annotations for monument
style classification and key architectural element detection. The ex-
perts also generated labels for fifteen key architectural element types
(i.e. lobed arch, trefoil arch, solomonic column...). The classification
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and analysis of those key elements can be seen as a necessary subtask
when classifying monuments by their architectonic style and should
be an argument when explaining the decision of a classifier as done
in [22,24].

The PASCAL VOC 2010 dataset [26] is a well-known image dataset
organized into 20 object classes. The PASCAL-Part dataset [27] pro-
vided additional annotations for the PASCAL VOC 2010 dataset. In this
research work, we use a curated version of the PASCAL-Part dataset
provided by Díaz-Rodríguez et al. [10] and based on the Semantic
PASCAL VOC dataset [25]. In this version of the dataset, the number of
object part categories is reduced by aggrouping some similar categories
into a main one (i.e ‘‘right leg’’ and ‘‘left leg’’ could be reduced into a
single category ‘‘leg’’). Furthermore, the authors selected the images so
that only one main object class per image was present(classical image
classification problem). This dataset contains more than 1400 color
images including 20 categories (i.e Person, TV, Train, etc.) and more
than 40 different parts (i.e Leg, Body, Wheel, . . . ), where each image
has only one associated category. This dataset has also been used to
test concept-based or part-based models [10,22].

4.2. Implementation details

The proposed method was implemented on Pytorch, and the code is
available for download.1 We use a Resnet-50 [28] as the backbone for
he concept extractor for all methods. Its final layer is implemented
y a fully connected layer with a sigmoid activation function. To
mplement the three different ways of training a concept bottleneck,
e adapt the code provided by the authors of the original article [19].

n order to make a first comparison with baseline methods, we trained
he three different concept bottleneck approaches based on the prior
odels using a multilayer perceptron with one hidden layer for the

lassification net. We kept the Resnet-50 as concept extractor for the
aseline models. To make a fair comparison, we used the same ex-
racted concepts for the independent and the sequential approaches
here the classifier is trained offline. Our soft decision tree is based on

he implementation provided in2 for the model described in [7]. After a
preliminary analysis, we decided to set the depth parameter of the soft
decision trees to 5. We used the Adam optimization algorithm [29] for
all networks.

4.3. Experiments

This section describes the experiments designed to evaluate the
proposed methods (see Section 3). We individually tested the proposed
approach on both datasets and compared them to the baseline methods.
In order to compare our results with the state-of-the-art models, we
kept the splits in training and test sets that were proposed in [10,22]
for the two considered datasets (see Section 4.1). Then, we trained
the model using the training set. To evaluate the performance of the
proposed models and make a fair comparison with other approaches,
we evaluated the proposed solution on the isolated test and computed
some popular metrics for classification.

4.4. Results

In this section, we report and analyze the results obtained in the
experiments described in Section 4.3. In this section we present the
results obtained for the different methods on the proposed datasets
and compare them to the baseline methods. As proposed in [19], we
evaluate how each proposed approach performs for two different tasks:
concept extraction and final classification (the main task), using the
metrics proposed by the authors. Using the annotation presented in

1 https://github.com/DavidMrd/SoftConceptTree
2 github-decisiontree.
5
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Table 1
Results of the proposed experiments on the MonuMAI dataset. Best results for the final
classification task are in bold.

MonuMAI

Ind-Tree Seq-Tree Joint-Tree

Y-Acc 92.38 ± 0.41 92.74 ± 0.21 𝟗𝟕.𝟖𝟐 ± 𝟎.𝟒𝟔
C-Error 0.025 ± 0.001 0.025 ± 0.001 0.029 ± 0.002

Ind-Baseline Seq-Baseline Joint-Baseline

Y-Acc 92.49 ± 0.47 92.51 ± 0.22 95.51 ± 0.55
C-Error 0.025 ± 0.001 0.025 ± 0.001 0.076 ± 0.004

Table 2
Results of the proposed experiments on the PASCAL dataset. Best results for the final
classification task are in bold.

PASCAL

Ind-Tree Seq-Tree Joint-Tree

Y-Acc 84.29 ± 0.39 84.36 ± 0.34 𝟖𝟓.𝟏𝟒 ± 𝟎.𝟓𝟑
C-Error 0.028 ± 0.001 0.028 ± 0.001 0.029 ± 0.001

Ind-Baseline Seq-Baseline Joint-Baseline

Y-Acc 84.26 ± 0.5 84.26 ± 0.39 83.06 ± 0.92
C-Error 0.028 ± 0.001 0.028 ± 0.001 0.035 ± 0.01

Section 3, given a trained concept extractor 𝑔 and a trained tree 𝑡, we
evaluate the classification task by computing the accuracy (Y-ACC) of
the proposed bottleneck 𝑡 ◦ 𝑔, that is

-Acc = 𝐴𝑐𝑐(𝑦, 𝑦′) (5)

where 𝑦 is the target, this is the given annotation label for the sample
𝑥 and 𝑦′ = 𝑡(𝑔(𝑥)) is the final prediction of the proposed model. To
valuate how the concept extractor 𝑔 performs, we compute the average
oncept error (C-Error), that is

-Error = 1 −
𝑎𝑣𝑔(𝐵𝑖𝑛𝑎𝑟𝑦𝐴𝑐𝑐(𝑐𝑖, 𝑐𝑖′))𝑖∈1..𝑁

100
(6)

where 𝑐𝑖 and 𝑐′𝑖 are the components of the vectors 𝑐, the vector repre-
senting the annotated concepts for a given sample 𝑥, and 𝑐′ = 𝑔(𝑥) the
ector representing the prediction of 𝑔 for the sample 𝑥. We repeated
very experiment 30 times and present the mean results with standard
eviation in Table 1 for the MonuMAI dataset and in Table 2 for the
ASCAL dataset.

It can be observed that the Independent (Ind) models and the
equential (Seq) models performed very similarly on both datasets.
lease note that the C-Error for those two approaches is the same
or the proposed approach and for the baseline models as the same
oncept extractor 𝑔 is used for both models and only t is different.
lease see 3. For the MonuMAI dataset, the Joint-Tree model gets the
est results on the main task, achieving over 2 points accuracy more
han the second-best model. The sequential tree model performs slightly
etter than the corresponding baseline model while the independent
odels perform very similar. Performed t-tests showed that the im-
rovement is statistically significant for the Joint-Tree models with
espect to the baseline model and to the second best model (Seq-Tree).
ll tests were performed for a significance level 𝛼 = 0.05. Regarding

he concept prediction tasks, the Joint-Tree model and the concept
xtractor trained for the independent and the sequential models get
imilar results and outperformed the Joint-Baseline model. Regarding
he PASCAL dataset, the best results for the main task are obtained for
he approach Joint-Tree. The improvements with respect to the Joint-
aseline model and with respect to the second best model (Seq-Tree)
re statistically significant. All tests were performed for a significance
evel 𝛼 = 0.05. Regarding the secondary task, the Joint-Tree model
erforms very similar to the concept extract trained for the Independent
nd for the Sequential approaches, outperforming the Joint-Baseline
odel also for this task. On resume, on the main task the Joint-Tree

odel performs statistically significantly better than any of the other

https://github.com/DavidMrd/SoftConceptTree
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Table 3
Results compared to the state of the art. Best results for each evaluation measurement
are in bold. MonuNet was designed and proposed specifically for monument style
classification.

Model MonuMAI (Y-Acc) PASCAL (Y-Acc)

Independent (Ours) 92.38 84.29
Sequential (Ours) 92.74 84.36
Joint (Ours) 97.82 85.14
Greybox [22] 94.04 88.30
EXPLANet [10] 90.40 82.4

DeiT-B [22,30] 96.48 90.85
MonuNet [24] 83.11 –

models on both datasets. For the secondary task, the Joint-Tree model
outperforms the Joint-Baseline model and gets very similar results to
the concept extractors although these seconds were trained exclusively
for that task. For all these reasons we choose this model as our proposed
approach over the other models.

All performed t-tests that were referenced in this section can be
found in Appendix.

4.5. Compare to the state-of-the-art

In this section, we compare our models and results to the state of
the art. We compare the proposed models with four recently proposed
approaches that were presented by different authors and introduced
above in Section 2. Two of the models are transparent models (Grey-
box [22] and EXPLANet [10]) and the other two models are opaque
models (DeiT-B [22,30] and MonuNet [24]). MonuNet is an ad-hoc
solution for monument-style classification, which is why results are
not available for the PASCAL dataset. The results are presented in
Table 3. On the MonuMai dataset, the Joint approach achieves higher
accuracy than the second-best approach (DeiT-B [22,30]). On the PAS-
CAL dataset, we achieve competitive results, and the Joint model is
under the transparent approaches the one with the highest accuracy,
performing slightly worse than the best model (DeiT-B). The Indepent
and the Sequential models get competitive results on both datasets,
performing better than MonuNet and EXPLANet. Compared to the
transparent models, we achieved state-of-the-art competitive results
although the complexity of our model is lower as we do not use
object detection or semantic segmentation. Note that training an object
detector or a segmentation model requires complex annotations such
as bounding boxes or semantic mask annotations that experts should
draw. Furthermore, a classifier based on an object detector such as
EXPLANet [10] requires a complex architecture such as Faster R-
CNN [31] or RetinaNet [32], which also increases the complexity of
the training. The same issue occurs when a segmentation model such
as DeepLab-V3+ [33] is needed, as for Greybox [22]. In fact, note that
a model based on DeepLab-V3 has necessary more than 101 layers, as
ResNet-101 [28] is used as backbone, while our model has less than 60
layers.

4.6. Discussion

4.6.1. Visualization
In Fig. 5 we visualize the decision-making process of the proposed

soft-decision tree for a given image 𝑥. For the nodes that are visited
during the inference process, we visualize the filter as a vector of 15
elements, where every element corresponds to one of the 15 concepts.3
The symbol ‘‘−’’ represents that the presence of that concept would

3 The concept vector represents the following elements: pointed arch,
gee arch, horseshoe arch, lobed arch, round arch, trefoil arch, solomonic
olumn, flat arch, triangular pediment, segmental pediment, broken pediment,
orthole, gothic pinnacle, serliana, lintelled doorway.
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decrease the probability of taking the left path (increasing the prob-
ability of taking the right path), while the symbol ‘‘+’’ represents that
the presence of that concept would increase the probability of taking
the left path. Note that for a better understanding, we use a gray scale
where the dark colors represent negative values and the light colors
represent positive values. Given an image 𝑥, the concept extractor
outputs the concept vector with which the soft decision tree is fed.
In the case of the given sample 𝑥, the concept extractor has detected
two concepts: broken pediment (position 11) and lintelled doorway
(position 15). We can observe that for the first node, the presence of
those elements increases the probability of taking the left path. The
green arrows guide us throw the decision path to the first leaf node,
which corresponds to class 3: Baroque.

In this way, the decision-making process is transparent to the user.
Furthermore, a user or an expert could inspect the model and even
would be able to edit the filter associated with any node. In this
way, he could fix or improve the model by changing the weight of
any concept on the decision of taking the left or the right path in
a certain node. Also, the class associated to any leaf node could be
modified if the expert considers that it is necessary. Furthermore, the
decision of the concept extractor could be analyzed by using post-hoc
explanation methods such as Grad-CAM [5] or LIME [4]. In Fig. 5,
we demonstrate this option generating a saliency map for the concept
‘‘Broken pediment’’ which is present in the concept vector.

4.6.2. The model as explainable AI model
In order to discuss our proposed approach as explainable AI model,

we refer to Miller [35] who introduced some considerations that
should be taken into account when creating an explainable AI Mode.

– Contrastive explanations: explanations are more effective when
presented in a contrastive manner. This involves explaining not
only why making decision X, but also why choosing decision
X instead of decision Y. We believe that our model fulfills this
requirement as the visualization of the making-decision process
allows the user to understand not only which concepts con-
tributed in a positive way to the decision, but also which other
concepts contributed in a negative way. Furthermore, by ex-
ploring the decision tree, the user can explore what should be
different for the decision tree to make a different decision.

– Probabilities: relying on probabilities in explanations is less effec-
tive than referring to causes. Using probabilities to explain why
choosing decision X is unsatisfying unless accompanied by causal
links. We believe that the decision paths and the concepts are
powerful causal links that are intuitive for the user and helpful
to understand the made decision.

– ‘‘Explanations are social’’: the author remarks on the character
of explanations as a transfer of knowledge as the result of an
interaction. We believe that no interaction is possible with a
model if it is not interpretable and transparent to the user. De-
cision trees are easy to understand through visualizations. This
fact opens the door to interact with the model and to understand
what would be the decision of it in different situations and in
the presence or absence of different concepts. Additionally, our
model is compatible with the user concept intervention as shown
in [19]. Furthermore, modifying the weights of a given tree node
allows the user to change the routing process, this is, the making-
decision process. In other models where the user is not able
to understand the decision-making process or the role of the
different parameters and weights (i.e. in a neural network), this
interaction is not possible.

The author added a fourth consideration about how humans rarely
expect explanations to cover all causes of an event. In the field of
concept learning, we believe that consideration should be addressed

when selecting and annotating the concepts for a dataset.
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Fig. 5. Visualization of the prediction process. The green arrows indicate the path through the decision tree during the prediction process for the input x. Sample 𝑥 is an image
taken from the MonuMAI dataset [24]. We visualize the filters only for the nodes that are involved in the decision-making process for the given sample 𝑥. By following the decision
path, we can observe that it leads to the first leaf node, which corresponds to class 3: Baroque. In the image, a Baroque lintelled doorway (position 15th in the concept vector)
can be observed. This Baroque doorway was designed by Luis de Arévalo in the 18th century for the school ‘‘Colegio de San Fernando’’. The broken pediment (position 11th in
concept vector) contains the shield of the Catholic Monarchs of Spain. In this example, we show how the output of the concept extractor can also be analyzed by using post-hoc
techniques such as Grad-CAM [5]. In this example, a saliency map is generated for the concept ‘‘Broken pediment’’. Today, this doorway can be visited at the ‘‘Capilla Real’’ in
Granada, Spain. [34].
Fig. 6. User interface prototype: the user interface should offer functionality for three main tasks: global explanations, local explanations and user intervention.
4.7. User interface

In this subsection we discuss how a user interface should look like in
order to implement and integrate all the ideas and methods introduced
in this article so that a final user could benefit from our approach. In
Fig. 6 we present a prototype of a user interface inspired by [36]. As
it can be observed in the figure, we believe that the user interface
should offer functionality for three main tasks: global explanations,
local explanations and user intervention. For local explanations, given
an input, the concept vector could be presented to the user who could
understand in which concepts the decision was based. Furthermore,
post-hoc explanation techniques could be applied to understand what
the relevant features for each concept are, as was already explained
before. The decision path could be presented to the user together with
the filters, what would allow him to understand how the making-
decision process was. In the context of global explanations, the user
would be able to visualize and inspect the tree and observe the rules
that could be extracted. Furthermore, the interface should also allow
7

the intervention of the model at least in two ways: concept intervention
as presented in [19] and tree intervention, where the user by visualizing
the tree could update the weights to modify the decision paths.

5. Conclusion

In this research work, we explore the fusion of decision trees and
deep learning models. We define an interpretable classification model
using a decision tree that is able to perform classification basing its de-
cision on human-understandable concepts. This is achieved by defining
an architecture based on Concept Bottlenecks and Soft-Decision-Trees.
The use of soft-decision trees allows us to train the models by using
gradient-based optimization methods, as done when training classical
deep-learning models. We explore different ways of training the model
in a multitasking environment, forcing the model to use human-labeled
concepts to perform the final classification. This all results in an inter-
pretable concept-based architecture where the decisions are transparent
to the user. We compare the proposed solution to the state-of-the-art
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methods and achieve competitive results without the need of object
detectors or object-part annotations.

In future work, we will continue exploring the potential of com-
bining transparent models with deep learning models. We believe
that other concept-based models and symbolic learning methods could
profit from the lessons learned during this research work.

Our model, as most of the models based on concept learning,
requires prior annotation of concepts. Although the datasets used in this
article have required expert annotation for the use of concept learning,
some authors have explored the automatic extraction of concepts [37–
39]. We believe that the combination of some of these methods with our
proposed solution in order for concepts to be extracted automatically
is an interesting future task.

The use of soft-decision trees could make them more interpretable
and self-explanatory, and the exploration of different training ap-
proaches could serve as inspiration for combining other interpretable
and opaque approaches to explore more transparent architectures and
models. Furthermore, we believe that by combining our work with
other techniques such as pruning techniques or rule extraction tech-
niques we could improve the transparency of our model and optimize it.
Furthermore, our model opens the door to human intervention, where
an expert is able to explore the model and even improve the decision-
making process by modifying the decision tree. We believe that further
research must be conducted in that direction in order to improve the
user experience and the model-user interaction.
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Appendix. Statistical tests

See Tables 4–8.

Table 4
Paired t-test Joint-Tree compared to Joint-Baseline (MonuMAI).

Measure Variable 1 Variable 2

Mean 97.821788 95.511552
Variance 0.207327031051035 0.29746714623724
Observations 30 30
Pearson correlation 0.108890922265716
Observed mean difference 2.310236
Variance of differences 0.450710135507586
Degrees of freedom 29
t Statistic 18.8481318943247
𝑃 (𝑇 ≤ 𝑡) 8.14210513605171E−18
𝑡 Critical 2.0452296421327
8

Table 5
Paired t-test Joint-Tree compared to Sequential-Tree (MonuMAI).

Measure Variable 1 Variable 2

Mean 97.821788 92.739164
Variance 0.207327031051035 0.0450716466455179
Observations 30 30
Pearson correlation −0.000136329516699961
Observed mean difference 5.082624
Variance of differences 0.252425034914484
Degrees of freedom 29
t Statistic 55.4092660719562
𝑃 (𝑇 ≤ 𝑡) 5.63100270443672E−31
𝑡 Critical 2.0452296421327

Table 6
Paired t-test Joint-Tree compared to Joint-Baseline (PASCAL).

Measure Variable 1 Variable 2

Mean 85.1391316666667 83.0565193333333
Variance 0.277062102855746 0.854492516192644
Observations 30 30
Pearson correlation −0.197720047131229
Observed mean difference 2.08261233333334
Variance of differences 1.32396273886678
Degrees of freedom 29
t Statistic 9.91359521249522
𝑃 (𝑇 ≤ 𝑡) 8.03302690253164E−11
𝑡 Critical 2.0452296421327

Table 7
Paired t-test Joint-Tree compared to Ind-Tree (PASCAL).

Measure Variable 1 Variable 2

Mean 85.1391316666667 84.290657417301
Variance 0.277062102855746 0.153585186067178
Observations 30 30
Pearson correlation −0.338992771103512
Observed mean difference 0.848474249365627
Variance of differences 0.570504112377189
Degrees of freedom 29
t Statistic 6.15275899509722
𝑃 (𝑇 ≤ 𝑡) 1.0483797811279E−06
𝑡 Critical 2.0452296421327

Table 8
Paired t-test Joint-Tree compared to Sequential-Tree (PASCAL).

Measure Variable 1 Variable 2

Mean 85.1391316666667 84.3598615916955
Variance 0.277062102855746 0.118904640542591
Observations 30 30
Pearson correlation 0.104730424055795
Observed mean difference 0.779270074971167
Variance of differences 0.357948607137761
Degrees of freedom 29
t Statistic 7.13408513998445
𝑃 (𝑇 ≤ 𝑡) 7.50717148868144E−08
𝑡 Critical 2.0452296421327
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