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1   |   INTRODUCTION

The human brain is primarily designed to predict the fu-
ture and thus optimize behavior. This anticipatory brain 
activity is triggered by environmental cues or regularities 

that signal an upcoming event (Breska & Ivry,  2018; 
Coull,  2009). However, there are certain situations that 
are statistically unpredictable due to their very low fre-
quency or lack of regularity and can have severe con-
sequences if not avoided. One striking example of such 
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Abstract
Anticipatory brain activity makes it possible to predict the occurrence of expected 
situations. However, events such as traffic accidents are statistically unpredictable 
and can generate catastrophic consequences. This study investigates the brain ac-
tivity and effective connectivity associated with anticipating and processing such 
unexpected, unavoidable accidents. We asked 161 participants to ride a motorcy-
cle simulator while recording their electroencephalographic activity. Of these, 90 
participants experienced at least one accident while driving. We conducted both 
within-subjects and between-subjects comparisons. During the pre-accident pe-
riod, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and 
right insula showed higher activity in the accident condition. In the post-accident 
period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and 
superior frontal gyrus also showed increased activity in the accident condition. 
We observed greater effective connectivity within the nodes of the limbic network 
(LN) and between the nodes of the attentional networks in the pre-accident pe-
riod. In the post-accident period, we also observed greater effective connectivity 
between networks, from the ventral attention network (VAN) to the somatomotor 
network and from nodes in the visual network, VAN, and default mode network 
to nodes in the frontoparietal network, LN, and attentional networks. This sug-
gests that activating salience-related processes and emotional processing allows 
the anticipation of accidents. Once an accident has occurred, integration and val-
uation of the new information takes place, and control processes are initiated to 
adapt behavior to the new demands of the environment.
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situations is traffic accidents, which result in significant 
physical and psychological harm and account for more 
than 1.3 million deaths per year worldwide (World Health 
Organization,  2021). However, the study of the neural 
mechanisms underlying the anticipation and processing 
of unexpected events in dynamic ecological contexts, such 
as accidents, has received little attention in the scientific 
literature, despite its potential practical application in the 
field of human–machine integration to improve driver 
state monitoring and optimize driver assistance (Duma 
et al., 2017). Therefore, there remains a gap in our under-
standing of what occurs in the brain when we are con-
fronted with situations that we could not foresee.

Electroencephalography studies indicate that con-
tingent negative variation (CNV) and stimulus preced-
ing (SPN), two types of event-related potentials (ERPs), 
serve as reliable indicators of the anticipation of ex-
pected events, even in  situations of uncertainty (Catena 
et al., 2012; Guo et al., 2019; Mento, 2017). Furthermore, 
source analysis suggests that these ERPs are distributed 
across brain regions such as the supplementary motor 
area (SMA), insula, anterior cingulate cortex (ACC), and 
medial and lateral frontal cortices (Kotani et  al.,  2015; 
Mento et al., 2015). Some studies have raised the question 
of whether anticipatory brain activity can still be observed 
when events are statistically unpredictable. For example, 
Radin et  al.  (2011) observed significant differences in 
cortical activity between meditators and non-meditators 
before the random presentation of a light flash or tone, 
equating this with SPN. In fact, the concept of predictive 
anticipatory activity (Mossbridge et al., 2014) allows us to 
distinguish between stimuli with different characteristics 
that are randomly presented (Duggan & Tressoldi, 2018). 
However, it is important to note that most of these stud-
ies were conducted with stimuli presented in non-real-life 
settings with irrelevant consequences. Our study focuses 
on accidents, events that have catastrophic consequences 
when they occur in real life. Additionally, these accidents 
are highly uncommon and unexpected, but this does 
not necessarily preclude the possibility that they can be 
anticipated.

Driving is a complex task that relies on visual percep-
tion and multi-domain executive functioning (Calhoun 
et  al.,  2002; Ware et  al.,  2020). Studies on effective con-
nectivity, which examine how one brain node influences 
another (Friston, 2011), have revealed the involvement of 
various processes in driving, such as visual attention, ep-
isodic memory retrieval, goal direction, motor planning, 
and inhibitory control pathways (Almahasneh et al., 2018; 
Choi et al., 2020; Liu et al., 2017). Normal driving activates 
brain regions including the lateral occipital, superior and 
inferior parietal, and inferior temporal cortices, as well 
as the frontal gyrus, motor areas, and cerebellum (Kan 

et al., 2013; Ware et al., 2020; Yan et al., 2019). However, 
when driving presents distractions or becomes more chal-
lenging, areas associated with cognitive control networks, 
relevant stimulus processing, and error monitoring, such 
as the superior frontal cortex, ACC, and insula, are also 
activated (Oba et al., 2022; Yuen et al., 2021). In the con-
text of crashes, some studies have noted changes in the 
power of different EEG frequency bands in the moments 
before and after a simulated crash (Li et al., 2022; Zhang 
& Yan,  2023). Additionally, Sun et  al.  (2013) observed a 
rapid shift in ERPs occurring 500 ms after a collision in 
a simulated driving task compared to normal driving. 
Furthermore, Duma et al. (2017) observed increased neg-
ativity in frontocentral electrodes in both the “accident” 
(where an unpredictable simulated accident occurred) and 
“baseline” (where there was the certainty that an accident 
would not occur, inducing a strong expectancy about the 
end of the trial) conditions, in the interval between 1000 
and 0 ms pre-accident. In other words, the authors found 
anticipation markers in the accident condition, which 
arose before the occurrence of a statistically unpredictable 
and unavoidable stimulus. However, these studies have 
primarily focused on sensor-level analysis, leaving a gap in 
our understanding of which brain networks are involved 
in these effects, the point at which specific brain areas are 
recruited, and their connectivity during the peri-accident 
period.

This study aimed to explore the markers of anticipa-
tory brain activity when individuals are confronted with 
unavoidable, catastrophic events (accidents in simulated 
driving contexts). Additionally, we aimed to investigate 
how the brain processes the occurrence of accidents and 
how connectivity between different brain networks evolves 
during the peri-accident periods. Based on previous ev-
idence, we hypothesized that brain regions associated 
with expectation and uncertainty would be activated in 
the pre-accident period, leading to increased connectivity 
within the limbic and attentional networks responsible for 
emotional processing and salience. Conversely, all brain 
networks (Yeo et al., 2011) will be involved during the post-
accident period, initiating the control and regulatory pro-
cesses inherent to driving (Ware et al., 2020).

2   |   METHOD

2.1  |  Participants

A total of 161 (54 women) healthy participants with no 
history of head injury or neurological disorders took part 
in this study, which was carried out as part of a larger 
study on the neural basis of risk behavior in driving. All 
participants had a valid driver's license. The mean age of 
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the participants was 32.6 years, ranging from 18 to 68 years 
(SD = 13.76), with a medium–high educational level. After 
being debriefed on the aims of the study and their rights, 
all participants signed an informed consent form. All par-
ticipants were paid for their participation in the study 
and were treated according to the Helsinki Declaration 
(World Medical Association,  2013). The study was ap-
proved by the Ethics Committee on Human Research 
of the University of Granada (n° 204/CEIH/2016). The 
sample size was calculated using G*Power 3.1.9.7 (Faul 
et al., 2009), with a moderate effect size (f = 0.25), an alpha 
error of 0.05, and a power of 0.90 (n = 130). A further 24% 
of participants were added to the sample to account for 
potential dropouts.

2.2  |  Procedure

The participants visited the research center and took part 
in the HRT motorcycle simulator, described elsewhere (Di 
Stasi et al., 2009; Megías et al., 2017). In brief, this simu-
lator is a realistic but static setup equipped with a seat, 
handlebar, pedals, accelerator, brakes, turn indicators, 
and horn. The simulation session consisted of two main 
parts: a practice and a driving task. Following the practice 
session, participants drove through a night circuit featur-
ing eight risky scenarios (e.g., doors opening suddenly and 
pedestrians crossing) while their electrical brain activity 
was being recorded. Accident occurrence (crash resulting 
in the fall of the motorcycle) depended on the driver's be-
havior during the circuit. The road scenario was projected 
on a screen measuring 110 × 180cm, positioned 185 cm in 
front of the driver. The screen had a refresh rate of 30 Hz 
and a resolution of 1024 × 768 pixels. The duration of the 
driving task, which depended on factors such as speed 
and the occurrence of accidents, averaged approximately 
5 minutes. Our analysis focused exclusively on the data 
obtained during the risky scenarios and accident events 
recorded by the HRT motorcycle simulator. On aver-
age, participants experienced 1.16 accidents (SD = 0.91, 
range = 1–4). Specifically, 56 participants had only one ac-
cident, 18 had two accidents, 11 had three, 5 had four, and 
the remaining 64 participants experienced no accidents. 
On average, participants had 6.42 no accident periods 
(min/max = 4/8).

2.3  |  EEG recordings

Electrical activity of the brain (EEG) was recorded during 
the motorcycle riding task using a 64-channel active sys-
tem (Brain Products, Inc.) mounted on an elastic cap and 
arranged according to the extended 10–20 system. The 

data were sampled at a rate of 1000 Hz, amplified with a 
0.016–1000 Hz band-pass filter, and referenced online to 
FCz. Electrode impedances were maintained below 25 kΩ, 
as recommended by the manufacturer.

2.4  |  Data processing

Seven participants did not fully complete the task and 
were excluded from the analysis. Of the 154 remaining 
participants, only 90 experienced at least one accident 
during the course (accident condition). Therefore, these 
90 participants were used to compare their brain activ-
ity before and after having an accident with their non-
accident periods (referred to as the baseline condition). 
The remaining 64 participants (no accident condition) 
were used for between-group comparisons with the acci-
dent and the baseline conditions.

The preprocessing of the continuous EEG signals 
was conducted using EEGlab software (Delorme & 
Makeig, 2004; https://​sccn.​ucsd.​edu/​eeglab) using the fol-
lowing protocol: (1) The continuous EEG recording was 
initially down-sampled to 250 Hz; (2) the data were then 
re-referenced offline to the average reference; (3) any prob-
lematic channels were identified and removed based on 
their spectral characteristics using EEGlab's default param-
eters (channels with a flatline duration of more than 50 s or 
with more line noise relative to its signal (4SD)); (4) band-
pass filtering was applied to the data (0.5–37 Hz); and (5) 
the data were segmented into epoch [−6000 to 1500 ms], 
which were time locked to the trigger corresponding to ei-
ther the occurrence of an accident (for participants with 
accidents) or the risky scenario trigger associated with safe 
segments without accidents (for these participants and 
those who did not experience an accident). These triggers 
were provided by the simulator software and integrated 
into the EEG recording. As accidents could occur at any 
time during the circuit, the triggers of the risky situations 
were used as a reference for comparisons. In cases where 
an accident occurred, the triggers for both the preceding 
and subsequent scenarios were deleted. This was done to 
ensure a minimum of 20 seconds between the accident 
and the next trigger, or between the risky scene and the 
next scene trigger. The average time distance between the 
accident and the previous risky scene trigger was 8688 ms 
(min/max = 1073/68,261 ms), but as triggers were deleted 
for those cases, the time distance between the accident and 
the previous risky scene was 28,536 ms. The average tempo-
ral distance between the accident and the subsequent risky 
scene trigger was 36,111 ms (min/max = 1147/146,495 ms). 
Therefore, when the immediately subsequent triggers were 
removed, the average distance was 41,407 ms. When no ac-
cident happened, the only triggers were the risky scenes. 
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Subsequently, independent component analysis (ICA) 
was computed using the second-order blind identification 
(SOBI) algorithm (Tang et al., 2005), and ocular and elec-
tromyographic artifacts were removed using the IClabel 
plugin implemented in EEGlab (https://​github.​com/​sccn/​
ICLabel). Removed channels were interpolated using the 
spherical spline method. The online FCz reference was re-
stored, and the averaged epochs data were then analyzed 
using standardized low-resolution brain electromagnetic 
tomography software (sLORETA; Pascual-Marqui,  2002; 
http://​www.​uzh.​ch/​keyin​st/​loreta.​htm). This software was 
employed to calculate the current source density (CSD) 
of brain sources underlying the recorded EEG signals. As 
we do not have the exact location of the channel, the exact 
Loreta (eLORETA) approach was used, with sLORETA 
computing the CSD using 6239 voxels and using the 
Montreal Neurological Institute (MNI) standard template 
as the solution space.

Next, following Baltruschat et  al.  (2020), we used the 
Brainnetome Atlas (BNA; Fan et al., 2016; http://​atlas.​brain​ne-
tome.​org) to compute the effective connectivity between and 
within the seven brain networks identified by Yeo et al. (2011). 
For this purpose, we used the multivariate Granger causality 
software developed by Seth (2010; https://​users.​sussex.​ac.​uk/​
~lione​lb/​MVGC/​html/​mvgch​elp.​html) (model order aver-
age = 4; maximum number of lags = 1000). The atlas provides 
210 cortical nodes, distributed for each network as follows: 34 
for visual network (VN), 33 for somatomotor network (SMN), 
30 for dorsal attention network (DAN), 22 for ventral attention 
network (VAN), 26 for limbic network (LN), 26 for frontopari-
etal network (FPN), and 36 for default mode network (DMN) 
(see Fan et al., 2016, for more detail). Coordinates were trans-
lated to the sLORETA template, centered at the Brainnetome 
atlas node coordinates. The time series for each network and 
each one of its nodes were spatially averaged using the first 
eigenvariate of the singular value decomposition of the cluster 
of voxels. So, the time series for each network, and the time 
series for each node of each network, were then submitted to 
Seth's Granger causality software.

2.5  |  Statistical analysis

Two separate analyses were conducted, one focusing on the 
estimated brain activities and the other on the estimated ef-
fective connectivity. We used the permutation-based statis-
tical software included in the sLoreta distribution to obtain 
the corrected p values for each network/node and each time 
frame (Blair & Karniski, 1993; Groppe et al., 2011). In both 
cases, we employed a non-parametric permutation t test 
using t-max statistics. This involved generating 5000 ran-
dom samples to account for multiple comparisons, while 
an adjusted significance level was set at 0.05. Two main 

comparisons were conducted. First, a within-subjects anal-
ysis involved comparing the accident condition against the 
baseline (accident–baseline). Second, a between-subjects 
analysis was conducted to compare the accident condition 
against the no accident condition (accident–no accident). 
Separate comparisons were also carried out for the pre- and 
post-accident periods. For the connectivity analysis, in each 
case, comparisons were made between the networks and 
between the nodes within the networks. Additionally, as a 
control test, the no accidents condition was compared with 
the baseline condition (Figure 1).

3   |   RESULTS

3.1  |  Brain activity

During the pre-accident period, significant differences 
were observed for the within-subjects comparison acci-
dent–baseline (Figure  2). At 896 ms before the accident, 
there was a difference favoring the accident condition 
in the right area 40 in the inferior parietal lobe (IPL). At 
144 ms before the accident, the difference was located in 
the left area 32 (ACC), and 60 ms before the accident, the 
difference was found in the right insula.

For the between-groups comparison accident–no acci-
dent, we observed significant differences favoring the acci-
dent condition at area 40 (880 ms), at right area 5 (232 ms), 
and at left area 32 and right area 40 (approximately 112 ms 
before the accident).

At post-accident (Figure 3, upper panel), we observed a 
substantial number of significant differences between the 
accident and baseline conditions, which can be summa-
rized into three distinct time intervals: early (104–192 ms), 
middle (788–880 ms), and late (1260–1404 ms). These dif-
ferences were associated with specific brain regions. The 
difference during the early period was identified in bilat-
eral area 11, in the medial orbitofrontal gyrus, and in the 
right area 40. During the middle period, the difference was 
located in bilateral (but mostly left hemisphere) area 24 in 
the cingulate gyrus, in the right area 6 of the middle fron-
tal gyrus, and in bilateral areas 9 and 11 in the medial fron-
tal gyrus. During the late period, the difference was located 
in bilateral areas 10/11 in the medial frontal gyrus, and 
bilateral area 32 (predominantly the right hemisphere). 
Similar differences emerged when comparing the accident 
with the no accidents condition (Figure  3, lower panel). 
The difference during the early period was observed at 
around 104 ms post-trigger and located in bilateral area 11, 
whereas differences during the middle period appeared 
at 772 ms and were located in the right area 11 and bilat-
eral area 32. Differences during the late period emerged 
at 1264 ms and were located in the right area 32, bilateral 
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area 11/10 in the medial frontal gyrus, and bilateral area 24 
in the anterior cingulate. Interestingly, no significant dif-
ferences were observed in this period when we compared 
the baseline and no accident conditions.

3.2  |  Effective connectivity

3.2.1  |  Pre-accident period

In the pre-accident period, no significant differences 
were found between networks for the within- or between-
subjects comparisons. However, we found significant dif-
ferences within networks when comparing the accident 
and baseline conditions (Table 1; Figure 4).

3.2.2  |  Post-accident

The accident versus baseline comparison revealed two sig-
nificant differences in the efficiency of between-network 
connections. The first difference was directed from the 
ventral attention network (VAN) to the somatomotor 
network (SMN) (p = .05). Although marginally signifi-
cant, the second was directed from the default mode net-
work (DMN) to the ventral attention network (p = .07). 
Additionally, within the same comparison, we observed 
a substantial number of significant connections at the 
within-network level (Table  2; Figure  4). Comparison 
between the accident and no accident conditions yielded 
fewer significant differences (Table 3).

F I G U R E  1   Timeline and segmentation of the driving task in the accident (upper part) and no accident (lower part) conditions along 
with comparisons made in the pre-accident (left) and post-accident (right) periods, and control test.

F I G U R E  2   Differences between the accident and baseline conditions at 896 ms (a; area 40), 144 ms (b; area 32), and 60 ms (c; insula) 
before the accident. Colors indicate a corrected p value of .05 (red) and .01 (yellow).
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4   |   DISCUSSION

This study aimed to determine the brain activity and 
effective connectivity associated with the anticipation 
and processing of catastrophic events that are both un-
expected and impossible to avoid. For this purpose, we 
measured brain activation patterns before and after 
a traffic accident in a simulated driving context. In the 

pre-accident period, we observed increased activity in the 
right IPL, the left ACC, and the right insula in the acci-
dent condition. In the post-accident period, we detected 
heightened activity in the bilateral orbitofrontal cortex/
ventromedial prefrontal cortex (OFC/vmPFC), right IPL, 
bilateral ACC, and middle and superior frontal gyrus in 
the accident condition. Regarding effective connectivity, 
our analysis revealed a causal activation flow within the 

F I G U R E  3   Profiles of statistical significance and significant brain areas in the post-trigger differences between the accident and baseline 
conditions (upper panel), and between the accident and no accident conditions (lower panel). The Loreta global field power (LorGFP) curve 
is marked at the three most significant points, and differential activations favoring the accident conditions are displayed in the brain maps. 
Colors indicate a corrected p value of .05 (red) and  .01 (yellow).
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various nodes of the LN and between the nodes of the 
attentional networks during the pre-accident period. In 
the post-accident period, we also observed greater effec-
tive connectivity between networks, from the VAN to the 
SMN and from nodes in the VN, VAN, and DMN to nodes 
in the FPN, LN, and attentional networks.

4.1  |  Brain activity

4.1.1  |  Pre-accident period

Our findings revealed notable activation in the right 
IPL, left ACC, and right insula when comparing acci-
dent and baseline conditions. We observed similar ac-
tivation patterns when comparing the accident and no 
accident groups. These findings align with previous re-
search indicating the involvement of these brain regions 

during driving and the anticipation of unexpected and 
potentially dangerous situations. Specifically, IPL activa-
tion has been linked to anticipating outcomes following 
decision-making processes as well as reinforcing or aver-
sive stimuli (Gaudio & Quattrocchi, 2012; Liu et al., 2011; 
Seidel et  al.,  2015). In this regard, the IPL is associated 
with monitoring attentional shifts in space, and with 
visuospatial perception and memory functions (Chen 
et al., 2012; Chung et al., 2014). The ACC has been associ-
ated with uncertainty processing, conflict detection, and 
error monitoring from the time an action is performed to 
the results of this action (Ernst & Paulus, 2005; Grupe & 
Nitschke,  2013). In addition, Calhoun et  al.  (2002) also 
identified the activation of an attentional modulation 
network during driving, which includes the ACC and 
the IPL. On the other hand, the insular cortex responds 
to painful stimuli and the anticipation of harm (Centanni 
et  al.,  2021; Drabant et  al.,  2011; Seidel et  al.,  2015). 

Node net 1 Net 1 Node net 2 Net 2 p

RH medial area 38 LN > LH area 13 LN .05

RH rostral area 20 LN > LH area 13 LN .02

RH rostral area 35/36 LN > LH area 13 LN .04

RH TI (T agr insular 
cortex)

LN > LH area 13 LN .00

RH TI (T agr insular 
cortex)

LN > LH area 4 VAN .05

LH area 1/2/3 (lower 
limb region)

VAN < LH ventrolateral area 
37

DAN .05

Abbreviations: <, causal link from Node 2 to Node 1; >, causal link from Node 1 to Node 2; DAN, dorsal 
attention network; FPN, fronto-parietal network; LN, limbic network; RH/LH, right/left hemisphere; 
VAN, ventral attention network.

T A B L E  1   Within-network differences 
in the pre-accident period for the within-
subjects comparison (accident–baseline).

F I G U R E  4   Within-network effective connectivity in the pre-accident (a) and post-accident periods (b) for the within-subjects 
comparison. Node color represents the network they are forming part of: purple (visual) blue (somatomotor), green (dorsal attention), violet 
(ventral attention), cream (limbic) orange (frontoparietal), and red (default mode). Arrow direction represents the causal activation flow 
from one node to another. Adapted from Baltruschat et al. (2020).
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Specifically, it represents conscious feelings and body 
states related to interoceptive awareness (Craig,  2009; 
Uddin et al., 2017). Together with the ACC, this structure 
forms the “salience network” (SN; Seeley et al., 2007) that 
is activated in response to behaviorally relevant and novel 
stimuli rather than expected events (Corbetta et al., 2008). 
Furthermore, in a functional magnetic resonance study 
where a group of taxi drivers played a driving video game, 
Spiers and Maguire (2007) found increased activation in 
the medial occipital, posterior middle temporal, posterior 
parietal and lateral prefrontal cortices, ACC, precuneus, 
and insula when responding to road hazards. Effective 
connectivity studies have also demonstrated that infor-
mation enters the salience network via the insula, which 
acts as an “out-flow hub” regulating the interaction be-
tween large-scale networks (Ham et al., 2013; Sridharan 
et al., 2008). In other words, the insula serves as a final 
step in hierarchical information processing, integrating 
relevant sensory, interoceptive, emotional, and cognitive 
information (Kurth et al., 2010).

In summary, the evidence indicates that the IPL, ACC, 
and insula are activated during driving and these struc-
tures are also linked to attentional shifts based on stored 

information. These processes enable the interpretation of 
the environment, detection of errors, and monitoring of 
potential conflicts. Moreover, these brain regions are es-
sential for integrating emotional and interoceptive infor-
mation, allowing individuals to identify certain features 
of the environment that are relevant for anticipating un-
expected or potentially threatening situations. In line with 
previous research (Duma et al., 2017), our findings sup-
port the existence of anticipatory brain activity in response 
to catastrophic events. Specifically, we observed that the 
IPL, ACC, and insula become active in the milliseconds 
(ms) preceding a simulated driving accident. Therefore, it 
seems that the activation of internal processes, including 
emotional, cognitive, and interoceptive awareness, forms 
the basis for anticipating unpredictable situations that 
cannot be avoided.

4.1.2  |  Post-accident period

The accident–baseline comparison revealed activation in 
several key brain regions, including the bilateral OFC/
vmPFC, right IPL and bilateral ACC, and middle and 

T A B L E  2   Significant within-network connections during the post-accident period in the within-subjects comparison 
(accidents–baseline).

Node net 1 Net 1 Node net 2 Net 2 p

LH area 4ul, (upper limb region) SMN > RH dorsal area 44 DAN .02

LH caudal cuneus gyrus VN > RH opercular area 44 VAN .05

RH lateral area 10 FPN < RH lateral area 11 FPN .02

LH caudal cuneus gyrus VN > RH lateral area 11 FPN .01

LH occipital polar cortex VN > RH lateral area 11 FPN .03

RH area 13 LN > LH medial area 11 LN .02

LH lateral superior occipital gyrus VN > RH medial area 38 LN .03

LH caudal area 39 VN > RH intermediate ventral area 20 LN .04

LH rostrodorsal area 39 FPN > RH rostral area 20 LN .02

LH dorsomedial parietooccipital sulcus VN > RH rostral area 20 LN .04

LH lateral superior occipital gyrus VN > RH rostral area 20 LN .01

LH caudal area 39 VN > RH intermediate lateral area 20 LN .02

LH lateral superior occipital gyrus VN > RH caudoventral of area 20 LN .01

RH dorsolateral area 37 DAN < RH area TI (T agr insular cortex) LN .03

RH caudoposterior sup temporal sulcus VAN > RH TI (T agr insular cortex) LN .01

LH dorsomedial parietooccipital S VN > RH area TI (T agr insular cortex) LN .03

RH lateral area 10 FPN < RH rostroventral area 24 – .03

RH orbital area 12/47 DMN < RH rostroventral area 24 – .02

RH lateral area 11 FPN < RH rostroventral area 24 – .01

RH orbital area 12/47 DMN < RH subgenual area 32 DMN .05

RH area 13 LN < RH subgenual area 32 DMN .03

Abbreviations: <, causal link from Node 2 to Node 1; >, causal link from Node 1 to Node2; DAN, dorsal attention network; DMN, default mode network; FPN, 
fronto-parietal network; LN, limbic network; RH/LH, right/left hemisphere; SMN, somatomotor network; VAN, ventral attention network; VN, visual network.
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superior frontal gyrus. Very similar activation patterns 
were found in the accident–no accident comparison. 
Previous studies have demonstrated the role of several 
frontal and parietal regions in the planning phases that 
predict good driving performance (Oba et al., 2022; Ware 
et al., 2020). Furthermore, in a computerized driving task 
where the outcome could be a crash or successful pass, 
greater activation of the OFC, IPL, insula, and ACC was ob-
served during the crash condition (Vorobyev et al., 2015). 
One of the main functions of the OFC/vmPFC is to inte-
grate past and current information to effectively evaluate 
stimuli and guide the decision-making process (Knudsen 
& Wallis, 2022; Peters & Büchel, 2010). This region is in-
volved in comparing real and expected outcomes, showing 
greater activation in response to highly unexpected out-
comes (Ernst & Paulus, 2005). Activation of the premotor 
area (a6) could reflect unconscious voluntary motor plan-
ning (Drabant et al., 2011), while the ACC and premotor 
areas are jointly implicated in driving action in response to 
negative feedback (Klein et al., 2007). The ACC plays a piv-
otal role in task performance across all phases (Dosenbach 
et al.,  2006) and serves as a part of the SN, contributing 
to error monitoring and the hierarchical initiation of con-
trol signals for activating prefrontal regions (Sridharan 
et al., 2008; Srinivasan et al., 2013). The superior frontal 
gyrus is a component of the cognitive control network 
responsible for inhibitory and attentional control, flex-
ibility, and decision-making for behavioral self-regulation 
(Miller & Cohen, 2001; Niendam et al., 2012; Passingham 
& Lau,  2023). Moreover, some authors have reported 
changes in brain activity in the milliseconds following a 

simulated crash (Li et al.,  2022; Sun et al.,  2013). Taken 
together, these findings suggest that the activation of areas 
responsible for detecting relevant stimuli is sustained after 
an accident. Additionally, frontal regions responsible for 
the valuation of the present experience and initiating the 
control processes necessary for behavioral self-regulation 
are activated.

4.2  |  Effective connectivity

4.2.1  |  Pre-accident period

The accident–baseline comparison revealed a causal ac-
tivation flow within LN nodes and between VAN and 
DAN nodes. Specifically, somatosensory regions of the 
VAN (left areas 4 and 1/2/3) received information from 
the limbic region of the right insula and the temporal 
area of the DAN (left area 37). On the other hand, limbic 
regions of the right insula, parahippocampal (right area 
35/36), and superior and inferior temporal (right areas 
38 and 20) gyrus showed effective connectivity to the 
orbital region of the LN (left area 13). The VAN is typi-
cally activated during attentional orientation and plays 
a role in identifying salient or novel stimuli (Corbetta 
& Shulman,  2002; Petersen & Posner,  2012). Previous 
studies have shown the collaborative interaction be-
tween DAN and VAN in redirecting attention to unex-
pected stimuli (Vossel et  al.,  2014). The insula serves 
as the central node of the SN, which overlaps with the 
VAN (Menon & D'Esposito, 2022), playing a role in event 

Node net 1
Net 
1 Node net 2 Net 2 p

RH area TI (T agr insular 
cortex)

LN > RH medial area 11 LN .05

RH area TI (T agr insular 
cortex)

LN > RH area 13 LN .01

RH dorsal agranular insula VAN > RH area 13 LN .05

LH medial superior 
occipital gyrus

VN > RH medial area 38 LN .01

LH lateral superior occipital 
gyrus

VN > RH intermediate ventral 
area 20

LN .02

LH medial superior 
occipital gyrus

VN > RH area TI (T agr insular 
cortex)

LN .02

LH occipital polar cortex VN > RH dorsal agranular 
insula

VAN .04

RH lateral area 11 FPN < RH rostroventral area 24 – .04

RH lateral area 11 FPN < LH subgenual area 32 DMN .04

Abbreviations: <: causal link from Node 2 to Node 1; >: Causal link from Node 1 to Node 2; DMN: 
Default mode network; FPN: Frontoparietal network; LN: Limbic network; RH/LH: Right/left 
hemisphere; VAN: Ventral Attention network; VN: Visual network.

T A B L E  3   Significant within-
network connections during the post-
accident period in the between-subjects 
comparison (accidents–no accidents).
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anticipation, among other functions (see above). Area 13, 
part of the OFC, is responsible for the emotional valua-
tion of stimuli by integrating information received from 
other brain areas (Knudsen & Wallis,  2022; Peters & 
Büchel, 2010; Rolls et al., 2023). This area is also respon-
sible for the integration of past and current information 
and shows anticipatory activity before the presentation 
of stimuli (Seidel et  al.,  2015; Zhou et  al.,  2021). Other 
studies have demonstrated activation of the OFC when 
cognitive maps or sets of associations underlying a task 
are identified, which, in turn, facilitates behavioral learn-
ing (Schuck et  al.,  2016) and the prediction of rewards 
or punishments (Zhou et al., 2019). Therefore, the OFC 
appears to play a pivotal role in forming a representation 
of the structure of the environment to anticipate future 
outcomes. Additionally, anterior, inferior, and medial 
temporal regions are known to be involved in emotional 
processing, semantic representations, and episodic mem-
ory (Herlin et  al.,  2021; Wong & Gallate,  2012; Zhang 
et al., 2022). Previous research has also shown evidence 
of effective and structural connectivity between the in-
sula and parahippocampal and temporal areas with the 
OFC (Fan et al., 2014; Lin et al., 2020; Rolls et al., 2022a). 
Our results on effective connectivity are consistent with 
those obtained on pre-accident brain activity. Moreover, 
they are consistent with previous evidence and suggest 
that relevant environmental cues are integrated with 
information retrieved from memory, conceptual knowl-
edge, and interoceptive information related to potential 
hazards. This integration process enables the brain to 
form a comprehensive representation of the structure 
and emotional value of the situation. Therefore, it seems 
that the anticipation of uncertain or unexpected situa-
tions, such as accidents, is strongly associated with the 
activation of affective mechanisms (Seidel et al., 2015).

4.2.2  |  Post-accident period

The increased effective connectivity between networks 
from the VAN to the SMN in the accident–baseline com-
parison is consistent with the findings reported by Duann 
et al. (2009) using an inhibitory control task. Their study 
revealed effective connectivity from the VAN to the SMN, 
where the VAN was involved in the attentional processing 
of novel information, and the SMN played a role in the 
inhibitory control of movement. These results parallel our 
findings and suggest that during driving, especially in the 
milliseconds following an accident, there is a shift in at-
tention and activation of control and inhibitory processes 
that facilitate behavioral adaptation to new environmen-
tal demands.

At the within-network level, the accident–baseline 
comparison revealed the involvement of all brain net-
works. Sensory nodes within the VN, SMN, and VAN 
transmitted information to frontal and orbitofrontal 
nodes belonging to the VAN, DAN, and FPN and to tem-
poral and insular areas of the LN. Additionally, the cin-
gulate regions of the DMN showed effective connectivity 
with orbitofrontal regions belonging to the FPN, DMN, 
and LN, while effective connectivity was observed be-
tween nodes belonging to the same networks. The ac-
cident–no accident comparison showed similar results, 
although with fewer significant differences. Vorobyev 
et al. (2015) also found increased activation in the lateral 
and medial occipital areas, the junction between tem-
poral polar, orbitofrontal, and insular cortices, and the 
posterior middle temporal cortex during accidents in a 
simulated driving task.

The occurrence of a crash (resulting in the fall of the 
motorcycle) leads to a complete alteration of the envi-
ronmental characteristics of the driving simulator. This 
is reflected in the activation of occipital and parietal 
nodes of the VN (left occipital polar, left cuneus, left 
lateral occipital, left area 39, and left parietooccipital 
sulcus), all of which are involved in visual attention, 
object and motion processing, memory, and naviga-
tion (Grill-Spector et  al.,  2001; Malikovic et  al.,  2016; 
Rolls et  al.,  2022c). Previous studies have identified 
fixed and reciprocal connections between the VN and 
VAN, which facilitate spatial orientation to relevant 
stimuli (Vossel et al., 2012, 2014). The inferior frontal 
gyrus (IFG; area 44), which belongs to the VAN and the 
DAN (Corbetta et al., 2008), is responsible for the rep-
resentation of the hierarchical sequential structure of 
ongoing events, using information received from pre-
central motor areas (Fiebach & Schubotz, 2006). These 
findings indicate that the connectivity from the VN 
and SMN to the VAN and DAN enables the formation 
of a representation of a sequence of events to facilitate 
an attentional shift from stimulus detection to goal-
directed attention (Fox et al.,  2006). The superior and 
inferior temporal regions of the LN (right areas 38 and 
20) are involved in affective visual processing, semantic 
representations, and episodic memory (see above), and 
the anterior temporal cortex is part of the “meaning” 
network that facilitates the understanding of events for 
executive control (Jouen et al., 2018). Several investiga-
tions have found structural and effective connections 
between the occipitoparietal regions and the superior 
and inferior temporal cortices (Baker et  al.,  2018; Lin 
et al., 2020; Rolls et al., 2022c; Wu et al., 2016). These 
connections suggest the occurrence of an abstract rep-
resentation of the current affective experience, which 
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promotes adaptive behavior. These findings are con-
sistent with the results of Choi et al.  (2020), who also 
identified effective connectivity from the VN to the in-
ferior frontal, superior temporal, and inferior temporal 
gyrus during driving. Additionally, the insular region of 
the LN receives information from the superior temporal 
region of the VAN, which is involved in the auditory 
processing and perception of threatening information 
(Connolly et al., 2016; Rolls et al., 2022b), sending infor-
mation to the temporal region of the DAN (area 37) for 
processing information from different sensory modali-
ties (Hodgson et al., 2022). These patterns of effective 
connectivity are consistent with the idea that the insula 
plays a fundamental role in switching between different 
networks and shifting the focus from external to inter-
nal processes to facilitate the decision-making process 
(Lamichhane & Dhamala, 2015; Sridharan et al., 2008). 
In support of the above, our results suggest that, in the 
milliseconds following a crash, and following the no-
tion of posterior-to-anterior patterns of information 
flow proposed by Mesulam (1998), the sensory associa-
tion areas detect changes in the environment and relay 
this information to higher-order structures to initiate 
the information integration and cognitive control pro-
cesses necessary to adapt behavior to the demands of 
the situation.

It is important to note that the areas of the LN that are 
influenced by the VN in the post-accident period (right 
areas 38 and 20 and temporal insular) are the same areas 
that influence the activation of the OFC in the pre-accident 
period. Before the accident, the visual scenes were identi-
cal for individuals who would later have an accident and 
those who would not. When the accident occurs, the limbic 
regions receive information from the sensory regions asso-
ciated with an environment where negative consequences 
have occurred. This influx of new information could assist 
the OFC in making decisions related to the aversive conse-
quences of the accident. In fact, in the post-accident period, 
the fronto-orbital areas (right areas 10, 11, 13, and 12/47) 
were influenced by different brain networks responsible for 
general task performance (Dosenbach et al., 2006), includ-
ing the visual network. Previous studies have identified ef-
fective connectivity from visual regions to the OFC/VPFC 
when presented with aversive stimuli (Dima et  al.,  2016; 
Rolls et al., 2023). Furthermore, the effective connectivity 
we observed from the cingulate regions of the DMN (right 
areas 32 and 24) to the orbitofrontal regions belonging to the 
FPN, DMN, and LN support the idea that the DMN and task-
positive systems are not antagonistic (Cocchi et al., 2013). 
The DMN is responsible for self-referential processing and 
internal mental state monitoring (Greicius et  al.,  2003), 
whereas the FPN is involved in planning, inhibition, and 
cognitive flexibility, allowing for goal modification based 

on the environment and the changing demands of a task 
(Menon & D'Esposito, 2022; Woolgar et al., 2015). Studies 
of effective connectivity have revealed the cooperative in-
teractions between the DMN and task-positive networks, 
with the DMN exerting an excitatory influence on the ex-
ecutive networks (De Pisapia et  al.,  2012; Pu et  al.,  2016; 
Uddin et al., 2009). In this context, the activation of orbital 
regions linked to cognitive control, through the influence of 
the cingulate cortex, can facilitate the decision-making pro-
cess based on the valuation of the environment following 
an accident.

4.3  |  Conclusions

The primary objective of this study was to explore brain 
activity indicators related to the processing of unexpected 
and unavoidable catastrophic events (accidents that oc-
curred while driving in a simulator). In summary, our 
results demonstrated changes in brain activation and ef-
fective connectivity patterns during different phases of this 
process. During the pre-accident period, we observed acti-
vation of LN regions and attentional networks, while in the 
post-accident period, involvement of all brain networks 
was evident, ranging from sensory association regions to 
higher-order processing areas. These findings suggest that 
the activation of salience-related processes and emotional 
processing allows anticipating the occurrence of accidents. 
However, once an accident has already occurred, there is 
an integration and valuation of the new information, and 
control processes are initiated to adapt behavior to the 
new demands of the environment. Considering the poten-
tial development of smart systems for vehicles, this deeper 
understanding of the anticipation and brain processing of 
accidents could provide guidance to improve driver state 
monitoring and warning systems. This could be achieved 
by using EEG activity patterns and software with online 
analysis to optimize driver assistance. It should be noted 
as a limitation of the study that other behavioral indices, 
such as speed or handlebar control, were not taken into 
account. Therefore, future studies could explore the rela-
tionship between brain activity and driving performance 
in unpredictable risky situations.
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