
Citation: Capel, M.I.;

Salguero-Hidalgo, A.;

Holgado-Terriza, J.A. Parallel PSO for

Efficient DLNN Training Using

GPGPU and Apache Spark. Algorithms

2024, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2024 by the authors.

Submitted to Algorithms for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Parallel PSO for the Efficient Training of Neural Networks Using
the GPGPU and Apache Spark in an Edge Computing
Environment
Manuel I. Capel 1,‡∗ , Alberto Salguero-Hidalgo 2,‡ and Juan A. Holgado-Terriza 1,‡

1 ETSIIT, Software Engineering Department, Universidad de Granada; {manuelcapel,jholgado}@ugr.es
2 ETSII, Department of Computer Science and Programming Languages, Universidad de Málaga;

alberto.salguero@uma.es
* Correspondence: manuelcapel@ugr.es; Tel.: +34-958-24-2816
‡ These authors contributed equally to this work.

Abstract: Deep learning neural networks require an immense amount of computation, especially 1

in the training phase of the network when networks with multiple layers of intermediate neurons 2

need to be built. In this paper, we will focus on the PSO algorithm with the aim of significantly 3

accelerating the DLNN training phase by taking advantage of the GPGPU architecture and the 4

Apache Spark analytics engine for large-scale data processing tasks. PSO is a bio-inspired stochastic 5

optimization method whose goal is to iteratively improve the solution to a (usually complex) problem 6

by attempting to approximate a given objective. However, parallelizing an efficient PSO is not a 7

straightforward process due to the complexity of the computations performed on the swarm of 8

particles and the iterative execution of the algorithm until a solution close to the objective with 9

minimal error is achieved. In the present work, two parallelizations of the PSO algorithm have been 10

implemented , both designed for a distributed execution environment. The synchronous parallel PSO 11

implementation ensures consistency at the cost of potential idle time due to global synchronization, 12

while the asynchronous parallel PSO approach improves execution time by reducing the need for 13

global synchronization, making it more suitable for large datasets and distributed environments such 14

as Apache Spark. Both variants of PSO have been implemented to distribute the computational load 15

supported by this algorithm –due to the costly fitness evaluation and updating of particle positions– 16

across the different Spark cluster executor nodes to effectively achieve coarse-grained parallelism, 17

resulting in a significant performance increase over current sequential variants of PSO. 18

Keywords: Apache Spark; Classification recall; Deep Neural Networks; GPU Parallelism; Optimiza- 19

tion research; Particle Swarm Optimization (PSO); Predictive Accuracy. 20

1. Introduction 21

The increasing use of applications with intelligence at the edge, not just in the cloud, 22

requires the optimization of load balancing, workload placement and resource provisioning, 23

especially when resource-intensive tasks need to be moved out of the cloud. This is because 24

in DLNN with many intermediate layers of neurons and a lot of input data, the amount of 25

computation to be performed is enormous and requires evaluating of the fitness of a very 26

large number of particles. In recent articles [1][2] [3] it has long been demonstrated that 27

the training phase of neural networks can be accelerated by using different approaches [4] 28

[5] [6] [7] [8] [9] [10]. 29

In our proposal we have used the Apache Spark analytics engine, which supports 30

RDD and the use of lambda functions and a functional programming style of Scala and 31

Java languages and on a Java JVM. The basic idea that motivates our work is to go beyond 32

existing studies on parallelizing the PSO algorithm to date [11] [12] [13] [14] [15] [16], 33

to create a new algorithm that achieves greater independence between the processes 34

Version July 15, 2024 submitted to Algorithms https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-00003-2449-4394
https://orcid.org/0000-0001-9221-7351
https://orcid.org/0000-0002-8031-1276
https://www.mdpi.com/journal/algorithms

Version July 15, 2024 submitted to Algorithms 2 of 22

themselves, so that they can specialize in the parallel computation of functions of the 35

algorithm, but without the need for synchronization points or collection of partial results 36

between such processes. 37

PSO is one of many other algorithms known as metaheuristics, a class of optimization 38

algorithms that are commonly used to find near-optimal solutions to complex optimization 39

problems. Using PSO in an edge computing environment can make it feasible to train 40

DLNN on edge devices rather than in centralized data centers or cloud environments. Edge 41

devices are typically situated closer to the data source, such as IoT devices, smartphones, 42

and embedded systems, and they often have limited computating resources compared to 43

traditional centralized hosts. However, achieving an efficient PSO implementation is not 44

straightforward due to the complexity of the computations that are inferred on the particle 45

swarm and their own iterative execution until convergence to a solution close to the target 46

with minimal error is achieved. 47

An example of multi-objective evolutionary multiheuristic approaches has been pro- 48

posed in [17] to optimize the energy performance of buildings by balancing energy con- 49

sumption and comfort levels. They implemented a PSO–based method with an improved 50

update strategy to overcome the problem of local convergence. Another PSO-based so- 51

lution was proposed in [11], which integrates an energy-efficient clustering approach to 52

address the problem of limited sensor battery life. A butterfly-inspired algorithm was 53

proposed in [18] to minimize the energy consumption of an office building in Seattle. And 54

an ant colony optimization approach in [19] to estimate energy demand of Turkey. There 55

are many other optimization algorithms commonly used in literature such as Artificial 56

Bee Colony [20], Harmony Search [21], Firefly Algorithm [22], Cuckoo Search [22] or 57

Gravitational Search Algorithm [23]. 58

Several studies have investigated the application of PSO for solving forecasting prob- 59

lems. For example, [16] proposed a DLNN model with efficient feature fusion for predicting 60

building power consumption. They integrated temperature data and applied an innovative 61

feature fusion technique to improve the learning ability of the model. The study conducted 62

extensive ablation studies to evaluate the performance of the proposed model. In [12], 63

it was proposed a hybrid PSO and NN algorithm for building energy prediction and in- 64

troduced two modifications to improve its performance. They compared their proposed 65

model with simple ANN and SVN and demonstrated the effectiveness of their approach. 66

PSO was used in combination with Adaptive Neuro Fuzzy Inference System (ANFIS) to 67

determine industrial energy demand in Turkey, in [14]. The PSO algorithm was used to 68

optimize the parameters of the ANFIS model. A common strategy for modifying PSO is to 69

adjust its control parameters, as discussed by [13]. Another approach is to hybridize PSO 70

with other metaheuristic algorithms such as Genetic Algorithms (GA) [24] and Differential 71

Evolution (DE) [25] In addition, parallelization and multi-swarm techniques have been 72

used to improve the performance of PSO, which has been applied to energy consumption 73

prediction in various domains. For example, [15] proposed a multi-swarm PSO algorithm 74

for static workflow scheduling in cloud fog environments. Their approach outperformed 75

the classical PSO [26] and other approaches in terms of execution time and stability. 76

Thus, the motivation arises to realize the parallelization of the PSO algorithm accord- 77

ing to two different parallelization schemes, which are discussed in section 3. The first 78

parallelization, DSPSO, follows a synchronous scheme, i.e., the best global position found 79

by the particles is globally updated before executing the next iteration of the algorithm. 80

DSPSO proved to be more efficient on medium sized datasets (<40000 data). The second 81

implementation, called DAPSO, is an asynchronous parallel variant of the PSO algorithm 82

that showed lower execution time for large datasets (> 170,000 data) that DSPSO and 83

also presents better scalability and elasticity with respect to increasing in dataset size. 84

Both variants, DSPSO and DAPSO, have been implemented for a distributed execution 85

environment to distribute the particle fitness computation and particle position update, 86

among the different execution nodes of an standalone Spark cluster, to effectively achieve 87

Version July 15, 2024 submitted to Algorithms 3 of 22

coarse-grained parallelism, which has provided us with significant performance gains over 88

current sequential variants of PSO. 89

In addition, a library was built in Scala that implements the parallelization of the 90

learning process of multilayer feed-forward neural networks using both variants of the 91

PSO algorithm, allowing us to perform the training of a neural network in a distributed 92

manner using Spark. The neural networks were programmed as part of the case study to 93

solve a regression problem and a classification problem. In this way, we can verify that 94

the implemented networks work correctly. On the other hand, we compare the efficiency 95

of the implemented DSPSO and DAPSO variants with their sequential variants, since a 96

comparison with another learning algorithm is not reasonable. 97

In the current literature, it is common to see authors using machine learning models 98

such as Artificial Neural Networks (ANN) [27], Support Vector Machines (SVM) [28] or 99

Random Forests (RF) [29] to solve a variety of problems. However, these authors often 100

limit their efforts to specific parameters and do not consider other important aspects of the 101

modeling process, such as optimizing the model structure. This can lead to suboptimal 102

performance and a lack of robustness in their models. In order to achieve optimal results, it 103

is critical to consider not only the choice of model and its parameters but also to follow an 104

optimization strategy. In the case of ANN, this may include selecting the optimal number 105

of layers, nodes, activation functions as well as fine-tuning the connection weights. A 106

well-optimized model structure can improve the accuracy and robustness of the model, 107

and ultimately lead to better results [6]. While the time cost of developing optimization 108

strategies is a common challenge faced by researchers, the use of a GPU parallel strategy 109

can potentially help mitigate this problem. By implementing and using two variants of the 110

PSO distributed synchronously and asynchronously, we intend to leverage the strengths of 111

the PSO algorithm to train the DLNN to, for example, predict energy consumption more 112

efficiently and solve complex classification problems with good accuracy. 113

The rest of the paper is organized as follows: Section 2 gives an overview of PSO algo- 114

rithms, their common control structure, and the sources of complexity of their paralleliza- 115

tion on distributed computing platforms. Section 3 presents the two PSO parallelizations 116

proposed in this work and the pseudocodes of both variants, along with general details 117

about them, according to the conditions imposed by many-core GPU architectures, for use 118

in training DLNN and obtaining the measurements and plots shown to test their efficiency 119

and scalability. Section 4 explains the results of the experiments and discusses the two case 120

studies proposed to evaluate a Spark-based implementation of both PSO variants. Finally, 121

the last section summarizes the conclusions and future work. 122

2. Particle Swarm Optimization 123

Particle Swarm Optimization (PSO) is a bio-inspired stochastic optimization algorithm. 124

Invented by Eberthart and Kennedy in 1995 [26], PSO is an algorithm whose goal is to 125

improve a randomly generated solution iteratively with respect to a given objective. The 126

algorithm focuses on a population of entities called particles. A particle is represented 127

as a point in an N-dimensional Cartesian coordinate system. Particles are abstractions of 128

entities that are at a position and move with a velocity. Initially these particles are randomly 129

assigned a position and velocity. In addition each particle id keeps track of its personal best 130

position Pid and global best position Pbg, which is reached by other particles up to that time 131

and detected by the current particle. Thus, the positions and velocities of each particle are 132

updated at each time t as follows, 133

Xid(t) = Xid(t− 1) + Vid(t− 1) (1)

Vid(t) = ωVid(t− 1) + c1r1(Pid + Xid(t− 1)) + c2r2(Pbg + Xbg(t− 1)) (2)

c1 and c2 are non-negative constants called learning factors and r1 and r2 are two random 134

numbers with uniform distribution in the interval [0, 1]. Also note the inertia constant ω 135

Version July 15, 2024 submitted to Algorithms 4 of 22

which allows balancing the local and global search and which is a value in the interval [0, 1]. 136

In addition, the maximum velocity Vmax is restricted to the values of Vid ∈ [−Vmax, Vmax]. 137

In addition each particle keeps a record of the personal best position and global best 138

position achieved by other particles up to that time and detected by the current particle. 139

The best position is measured using the fitness function, which is what we seek to optimize, 140

therefore, the term best refers here to the minimum or maximum value found during the 141

evaluation of the particle position with the fitness function defined in the algorithm. The 142

fitness is a type of objective function used to calculate how close a given solution is to 143

achieving the objectives initially established in the algorithm. 144

Figure 1. Graphical representation of a PSO algorithm’s particle with its attributes.

PSO works through iterations, during which all particles are evaluated for their fitness 145

in terms of local Pid and global Pbg best position. The way to detect the best position 146

and the fitness reached by the other particles will depend on whether there is common 147

memory among them and then it will be done by reading a global variable. In case of 148

distributed systems, there is no such shared memory, and a message passing protocol 149

has to be implemented that, in a first approximation, ensures the coherency of the value 150

of the global best position for all the particles. At the end of each iteration, all particle 151

velocities and positions must be updated, which is a drawback for the asynchronous 152

parallel implementation of such updates. 153

The solution proposed here for the implementation of the distributed parallel PSO 154

algorithm consists of the design and implementation of two variants of the distributed PSO, 155

which we have called distributed synchronous (DSPSO) and distributed asynchronous 156

(DAPSO). 157

The DSPSO variant makes use of the most common form of implementation based 158

on serial iterations. First the fitness of each particle is evaluated with the position of the 159

particle as input, then the best local position of each particle is evaluated and then the best 160

global position among all particles is determined. Finally, the position and velocity of each 161

particle is updated based on the best global position. 162

The second variant, DAPSO, changes from the previous variant in the information 163

available when updating the particles, in such a way that they are updated as soon as 164

their fitness is evaluated and, therefore, the update of the position and velocity of the 165

individual particles does not have to wait for the evaluation of the fitness of all the others, as 166

occurs in the DSPSO variant, thus avoiding a synchronization of the type barrier or multiple 167

rendez-vous between processes and that the particles suffer undesired waits due to the fact 168

that each one of these has to know the data of the others before proceeding to its update. 169

In this way the desired asynchronicity of the calculations between particles is achieved, 170

which move to the next position with the information available at that moment, so that 171

several values of the global best position could coexist during the execution, which in a 172

later stage of the algorithm will have to converge in only 1 global value. The validity of 173

the final result of the global best position is not affected because the communications that 174

will be established between the processes in charge of updating the position and velocity of 175

each particle ensure the coherence of the global position and velocity that will be finally 176

communicated to each particle will be achieved. 177

Manuel IU. Capel tuñón
Resaltado

Version July 15, 2024 submitted to Algorithms 5 of 22

2.1. Complexity of the PSO and approaches for its parallelization in a cluster 178

The classical PSO algorithm works on the basis of iterations, during which particles 179

are evaluated in terms of their fitness and their personal and global best positions. At the 180

end of each iteration, the velocities and positions of all particles have to be updated, which 181

is a drawback for the asynchronous parallel implementation of such an update. 182

The use of PSO for solving prediction and classification problems has advantages and 183

disadvantages, 184

• As a metaheuristic algorithm, no specific knowledge of the problem to be solved is 185

required 186

• As an evolutionary algorithm, it is easy to adapt to parallel computing structures. 187

• Being able to work with different solutions, it has a higher tolerance to local maxima 188

or minima. 189

• The main disadvantage is that the PSO algorithm needs a large amount of time to 190

reach a good solution in problems of high complexity, i.e., with a large number of 191

particles or with many dimensions, because many evaluations of the fitness function 192

are required. 193

The use of parallelization of the PSO algorithm to train neural networks represents a 194

cutting-edge strategy with multiple applications and outstanding benefits in the field of 195

machine learning and artificial intelligence. Among the benefits of parallelizing the PSO 196

algorithm [30], we can mention: efficiency improvement, faster scanning of solutions, 197

scalability, increased accuracy and reduction of development time. 198

The first variant considered here is the Distributed Synchronous PSO (DSPSO), which 199

uses the most common form of iteration. First, the fitness of each particle is evaluated 200

using the particle’s position as input. Then the best personal position of each particle is 201

evaluated to determine the best global position among all particles, and finally the position 202

and velocity of each particle are updated based on the best global position. 203

The second variant studied and fully implemented is the so-called distributed asyn- 204

chronous PSO (DAPSO), which differs from the previous one in the information available 205

when updating the position and velocity of the particles, so that they are updated as soon 206

as their fitness is evaluated and, therefore, the update of the position and velocity of each 207

particle is not necessarily consistent in all the nodes of the cluster during the computation of 208

this variant of the PSO. The distributed nature of this computation will make its execution 209

faster than that of the DSPSO, without affecting the validity of the final result, since the 210

communication that will be established between the processes in charge of updating the 211

position and velocity of each particle will ensure that, in the end, the consistency of the 212

global position and velocity that will be finally detected by each of the particles in the 213

algorithm will be achieved. 214

2.2. Background information based on recent research on the parallelization of the PSO 215

The use of parallelization of the PSO algorithm to train neural networks represents an 216

efficient and scalable approach with several practical applications and notable advantages, 217

such as the ability to process DLNN with many layers of intermediate neurons in a much 218

shorter time frame than with traditional implementations that do not take advantage of the 219

massive parallelism currently provided by multicomputers or, in our study, by GPGPU. 220

This makes it an extremely valuable tool in the field of machine learning and optimization. 221

There are currently many implementations of PSO using the CUDA/GPU environ- 222

ment. One of them, called PSO-GPU [1], presents a generic and customizable implementa- 223

tion of a PSO algorithm on top of the CUDA architecture, taking advantage of the thousands 224

of threads running on the GPU to reduce execution time and increase performance through 225

parallel processing. One strategy currently used to improve PSO algorithm implementa- 226

tions is to adjust its control parameters, thus gaining efficiency without losing precision in 227

determining the objective, as described in [13]. In [2], an asynchronous parallel PSO algo- 228

rithm is presented that significantly improves parallel efficiency. Parallel PSO algorithms 229

have mainly been implemented synchronously, where the fitness functions, positions and 230

Manuel IU. Capel tuñón
Resaltado

Version July 15, 2024 submitted to Algorithms 6 of 22

Table 1. Selected approaches for improvement in PSO algorithm implementation to date

Main strategy References Years

Accelerating PSO in CUDA/GPU [1][2] 2011, 2005
Adjustment of control parameters [13] 2002

Hybrid mechanisms with PSO [31][24][25] 2019, 2015, 2020
Big Data & PSO [32] 2020

velocities of all particles are evaluated in one iteration before the next iteration starts. The 231

latter approaches usually result in a small speedup of the parallel computation over the 232

sequential variant in cases where a heterogeneous parallel environment is used and/or 233

where the execution time depends on the element of the algorithm being computed. There- 234

fore [2] was the first work to explore an asynchronous parallel implementation of the PSO 235

algorithm and significantly improved the parallel efficiency of PSO implementations at 236

the time of its publication. This approach had similar goals to those of our study, which 237

focuses on the speedup of the asynchronous PSO algorithm over the synchronous one. 238

A hybrid mechanism of Spark-based particle swarm optimization (PSO) and differen- 239

tial evolution (DE) algorithms (SparkPSODE) is proposed in [31]. SparkPSODE is a parallel 240

algorithm that uses RDD and island models. The island model is used to divide the global 241

population into several subpopulations, which are used to reduce the computational time 242

corresponding to the RDD partitions. SparkPSODE is applied to a set of global large-scale 243

optimization benchmark problems and is shown to achieve better performance (speedup, 244

scalability, robustness) of the sought optimization according to the experimental results 245

obtained with respect to other algorithms. 246

There is currently work using Spark to parallelize the genetic algorithm and tackle 247

the problem with very good results; in [25], the GPU is used to parallelize an evolutionary 248

training algorithm. One of the ways to address the problem of climate change and its 249

consequences is to study the energy consumption of the buildings around us. Studying 250

energy consumption can provide us with relevant information to make better decisions and 251

thus reduce costs and pollution. However, ANN training models based on evolutionary 252

methods generally have a high computational cost in terms of time. This paper takes 253

advantage of the high-performance computing capabilities of GPUs to parallelize the PSO 254

evolutionary algorithm to train the ANN. 255

Another area of intense research is the parallel implementation of PSO for big data 256

datasets. Traditional methods cannot meet the requirements of Big Data environments for 257

prediction, so a hybrid distributed computing framework is applied in Apache Spark [32] 258

for wind speed prediction using a distributed computing strategy, the framework can 259

divide the speed data into RDD groups and operate them in parallel. 260

The main problem with many of these solutions lies in the fact that they are all limited 261

to parallelizing the repetitive process of the algorithm, based on a population size of the 262

dataset, necessary to be able to accurately compute the population fitness function, but 263

without generally considering further advances in terms of parallel structure of the subtasks 264

of the algorithm, which is one of the main objectives of our study. 265

3. PSO parallelization based on Apache Spark and RDD applied to training neural 266

networks 267

To carry out this study, we need to perform an efficient parallelization of the PSO 268

algorithm according to the conditions imposed by GPGPU architectures of many cores, to 269

use it in the training of a neural network and to obtain the measurements of the following 270

section. We use the MSE for continuous variables to compute fitness, which we will use 271

to solve regression problems; and the measures of binary cross-entropy and precision for 272

categorical variables in classification. Both variants of the distributed PSO implemented 273

in this study were applied to the training of neural networks to solve two problems: (a) a 274

regression problem to predict the consumption of the institution’s buildings in kilowatt 275

Version July 15, 2024 submitted to Algorithms 7 of 22

hours, (b) classification based on the use of a Kaggle dataset to predict whether a set of 276

people are smokers or not, using a binary objective. 277

3.1. Distributed Synchronous PSO 278

The distributed synchronous PSO adopts the master/worker paradigm, where the 279

master maintains the state of the entire swarm and sends particles to each worker node 280

for evaluation. The master also manages the synchronization required to control specific 281

iterations of the DSPSO, and updates global data relevant to the algorithm through variables 282

of type Broadcast, which are a type of read-only shared variable, e.g., from the Scala 283

programming language, that are cached and available on all nodes in a Spark cluster to be 284

accessed or used by tasks. The tasks performed by the master and worker nodes in this 285

variant are given by the algorithm 1 expressed in pseudocode. 286

Algorithm 1 DSPSO pseudocode

Parameters: I, P, N, M
Output: bg

context← InitSpark()
accum← context.NewBestGlobalAccumulator((null,∞)
broadVar← context.NewBroadcastVariable([N][M])
ps← InitParticles(P, N, M)
bg← (null, ∞)
for i← 0, . . . , I − 1 do //sync

λ1 ← FitnessEval(broadVar, accum)
ps← context.parallelize(ps).map(λ1).collect()
bg← accum.value()
bgBroad← context.NewBroadcastVariable(bg)
λ2 ← PosEval(bgBroad)
ps← context.parallelize(ps).map(λ2).collect()

end for
procedure FITNESSEVAL(broadVar, accum) return closure

function CALL(particle)
pos← particle.position()
var← broadVar.value()
err← Fitness(pos, var)
particle.UpdateBestPersonal(pos, err)
accum.add(pos, err)
return particle

end function
end procedure

The function fitnessEval (f) is executed on the worker nodes and is responsible for receiving 287

a particle, calculating the fitness of the current particle position using the variable broadVar 288

of the Scala Broadcast type mentioned above, and then updating the personal best position 289

of the particle and finally returning it. The pseudocode uses closure anonymous function 290

type, which includes its execution environment. 291

3.1.1. Each worker node should perform the following steps: 292

1. wait for a particle to be received from the master node, 293

2. compute the fitness function f and update the personal best position Pid, 294

3. return the evaluated particle to the master node, 295

4. return to step 1 if the master node has not finished yet. 296

3.1.2. The Master Node process includes the following steps: 297

1. initialize particle parameters, positions and velocities; 298

2. assign the current iteration and initialize the state of the swarm and the received 299

particles; 300

Version July 15, 2024 submitted to Algorithms 8 of 22

3. start the current iteration by distributing all particles to the free executors; 301

4. wait for the results of all evaluated particles (with calculated fitness function) and the 302

personal best position Pid for this iteration, which means for sync; 303

5. computing the global best position Pbg for each incoming particle until there are no 304

more particles left; 305

6. updating the velocity vector Vid and the position vector Xid of each particle based on 306

the personal best position Pid and the global best position Pbg found by all particles: 307

7. going back to step 3 if the last iteration has not been reached; 308

8. return the global best position Pbg. 309

3.2. Distributed Asynchronous PSO 310

DAPSO differs from DSPSO in synchronization becasuse there are no iterations linking 311

all particles. In DAPSO, each particle is evaluated and moves independently of the other 312

particles. This further increases its independence. 313

We will now discuss the implemented DAPSO variant, which is distributed and 314

asynchronous, and uses Spark RDDs to parallelize the updating of particle positions and 315

velocities. Using Spark and its low granularity transformations, the swarm is divided into 316

several sub-swarms that are evaluated in parallel. The particles are updated according to 317

the current state of the entire swarm, i.e., both the position and velocity of each particle are 318

modified as soon as the fitness function is evaluated, taking into account the best global 319

position found so far. This creates complete independence between the particles, which 320

move to their next position with the information available to them at the time of each 321

particle’s evaluation. 322

The DAPSO distributed algorithm follows the master-worker paradigm: a master 323

node is responsible for coordinating the rest, the worker nodes, which are responsible for 324

performing the computations sent by the master. Each particle in the swarm moves and 325

evaluates the fitness function autonomously. 326

For efficiency, the algorithm uses an abstraction called SuperRDD, which consists of a 327

set of particles that are interdependent and run in the cluster as a single subswarm. That 328

is, instead of sending each particle to the cluster independently, they are grouped into 329

subswarms of variable size between 1 and S, where S is the number of particles. The larger 330

the size of the subswarm, the lower the degree of asynchronicity of the algorithm, since 331

more particles are dependent on each other. However, this change improves the efficiency 332

of the algorithm by removing some of the computational overhead of communication 333

between the nodes, which partially sacrifices asynchronicity as the master node pauses the 334

global computation while waiting for the partial results of the subswarm. In the context 335

of Spark, the SuperRDD consists of the grouping of multiple individual RDD particles 336

that are then evaluated.In the context of Spark, the SuperRDD is the grouping of multiple 337

individual RDD particles that are then evaluated by the cluster. In this way, and as the 338

number of particles in the RDD increases, fewer Spark jobs need to be scheduled, reducing 339

the communication overhead, at the cost of the particles having to wait for the rest of the 340

RDD to be evaluated by the node. 341

As for the implementation in Scala and Spark, two concepts are key to proper operation: 342

an accumulator that receives the evaluated particle data (or SuperRDDs) from the worker 343

nodes and a way to distribute these particles to the worker nodes. The best global position 344

update is performed by the broadVar, as in the DSPSO algorithm. The accumulator imple- 345

mentation (see Appendix A) consists of a communication channel capable of storing lists of 346

numbers. We will call this the accumulator channel. The worker nodes, when evaluating 347

the particles, send to this channel a list containing the position of the particle, its velocity, 348

and the processed value of its fitness. The master node then reads the elements of this 349

channel to update the particle values. In the pseudocode 2, srch represents the channel to 350

send particles in one batch to the worker nodes and f uch is the fitness update channel to 351

receive the updated values of these particles. 352

Version July 15, 2024 submitted to Algorithms 9 of 22

Algorithm 2 DAPSO pseudocode

Parameters: I, P, N, M, S
Output: bg

context← InitSpark()
broadVar← context.NewBroadcastVariable([N][M])
ps← InitParticles(P,N,M)
bg← (null,∞)
srch← NewChannel()
fuch← NewChannel()
aggr← Aggregator(S, srch)
for particle ∈ ps do aggr.Aggregate(particle)
end for
for sr ∈ srch do //async

λ← FitnessEval(broadVar)
psfu← context.parallelize(ps).map(λ).CollectAsync()
fuch.Send(psfu)

end for

3.2.1. The Master Node process consists of the following steps: 353

1. initializing the particle parameters, positions and velocities, 354

2. initializing the state of the swarm, as well as that of a particle queue to send to the 355

worker nodes, 356

3. loading the initial particles into the queue, 357

4. distributing the particles from the queue to the available executors, 358

5. waiting for the results of all evaluated particles (with calculated fitness function) of 359

the subswarm and the personal best position Pid for this iteration, 360

6. updating the velocity vector Vid and position vector Xid of each particle based on the 361

personal best position Pid and the global best position Pbg found by all the particles, 362

7. placing the particle back in the queue and returning to step 4 if the stop condition is 363

not satisfied, 364

8. return the best global position Pbg. 365

3.2.2. The process of worker nodes 366

Same as in the synchronous variant. 367

3.3. Apache Spark implementation 368

This work was not programmed directly in CUDA, but used an open-source data 369

processing framework with a processor cluster architecture that allows for massively 370

parallel and distributed computations. This is the main feature of the analytics engine 371

known as Apache Spark [33], designed for efficient processing and analysis of large amounts 372

of data, with the ability to achieve scalability and quality of service when implementing 373

ML models. Spark is implemented in the Scala programming language, which is why it 374

has been chosen as the primary programming language in this study. 375

Based on RDDs, resilient distributed datasets, described by Matei Zaharia in [34], Spark 376

is the most widely used tool for performing scalable computational tasks and data science. 377

RDDs are fault-tolerant parallel structures that allow intermediate results to be persisted in 378

memory and manipulated by a set of operators. They are particularly useful for applica- 379

tions where intermediate computations are reused across multiple computations, such as 380

most iterative machine learning algorithms: logistic regression, K-means, . . . Formally, an 381

RDD is a partitioned collection of read-only data sets that can be created from deterministic 382

operations on data in stable storage or from other RDDs. We will call these operations trans- 383

formations to distinguish them from other operations. Examples of these transformations 384

include mapping, filtering and joining. The main goal of RDDs is to define a programmatic 385

Version July 15, 2024 submitted to Algorithms 10 of 22

interface that is able to provide fault tolerance in an efficient way. On the other hand, dis- 386

tributed shared memory architectures provided an interface based on fine-grained updates 387

of mutable states such as cells in a table. The only way to provide fault tolerance in the 388

latter is to replicate data to other machines or to log updates on nodes, which unlike Spark 389

RDDs, turns out to be quite inefficient. 390

There are three important features associated with an RDD: dependencies, partitions 391

(with some locality information) and transformations (computational functions). First, you 392

need a list of dependencies, which tell Spark how to construct an RDD from its inputs. 393

When results need to be replicated, Spark can rebuild an RDD from these dependencies 394

and replicate operations on it. This feature gives RDDs resiliency. Second, partitioning 395

gives Spark the ability to divide the work of parallelizing computations into partitions by 396

mapping them to Spark cluster executors. Third, transformations apply to data frames as 397

follows: Partition => Iterator[T]. All three are fundamental to the simple RDD program- 398

ming model on which all top-level application programming functionality is based, which 399

approximates a functional programming paradigm. 400

In the Spark environment, data are fragmented into partitions, which are the elemen- 401

tary unit of data that can be processed autonomously. RDDs are segmented into these 402

partitions and distributed across the cluster. The number of partitions is generally ad- 403

justable and depends on factors such as data volume and availability of resources in the 404

system. Associated with each RDD are partitions that provide Spark with the ability to 405

divide the work of parallelizing the computation among executors in the Spark cluster. 406

In some cases, for example, when reading from HDFS, Spark uses locality information to 407

send work to executors close to the data. In this way, less data are transmitted over the 408

network (Figure 2) and greater efficiency is achieved than using the map/reduce distributed 409

computing and Hadoop .

Spark application

Spark driver

Spark session

Cluster node

Task per core

T

T

T TT

T

executors
Master node

T

TT

executors

Spark-job={particles}

particles evaluated

Spark-job={particles}

particles evaluated

Cluster node

Figure 2. Spark components communicating through the Spark driver
410

In the main loop of a neural network implemented for solving prediction problems, we can 411

find three distinct parts, the computation of the fitness function, the update of local and 412

global data values, and finally the output of results that can change over time and have 413

time constraints. To achieve the required efficiency of the ANN training implementation, 414

Spark RDDs have been used for both DSPSO and DAPSO implementations, where each 415

row contains a particle with the information of its position, velocity, personal best position 416

and personal best fitness. With this information the particle’s fitness can be computed and 417

its personal best position and fitness can be updated, computations that are performed in 418

parallel for each particle in the RDD using Spark. Instead of setting this data along with 419

each task on the cluster executors, Spark distributes the broadcast variables to the machines 420

using efficient broadcast algorithms to achieve lower communication costs in massively 421

parallel applications. 422

Version July 15, 2024 submitted to Algorithms 11 of 22

4. Case Study and Applications 423

We propose two cases for evaluating a Spark-based implementation that can run on 424

both CPUs and GPUs to take full advantage of the performance capabilities that the DSPSO 425

and DAPSO variants of the PSO algorithm implementation can offer us, as follows 426

• efficiency improvement: parallelization leverages the computing power of multiple 427

resources, such as graphics processing units (CPUs or GPUs) or central processing 428

units (CPUs), thus speeding up the training process, 429

• faster scanning: parallelization techniques for the PSO algorithm allow multiple solu- 430

tions to be evaluated simultaneously, speeding up the search for optimal solutions in 431

a large parameter space, 432

• scalability: It can handle problems of varying size and complexity, from small tasks to 433

large challenges with massive data sets, 434

• increased accuracy: by enabling faster and more efficient training, parallelization of 435

the PSO algorithm can improve the quality of the neural network models that are 436

designed, resulting in better performance in prediction and classification tasks, 437

• reduction of development time:parallelization reduces development time by speeding up 438

the training process, leading to faster development of machine learning models. 439

Predicting energy consumption (EC) across a range of buildings is a formidable challenge. 440

This explains why companies and governments around the world are focusing their efforts 441

in this area. One of the most critical areas to address this problem is the prediction of 442

energy consumption (EC) at the local level, for example, in buildings associated with an 443

organization or institution. This allows us to anticipate future events and, as a result, make 444

more informed decisions about energy savings. In this context, the analysis of energy 445

consumption recorded by sensors at the individual level, in specific areas or buildings, has 446

the potential to reduce energy costs and mitigate the environmental impact derived from 447

energy production. 448

In addition to its application to regression problems, the PSO algorithm can also be 449

used to train neural networks focused on solving classification problems. To this end, we 450

propose here a second case study, to develop which we have taken a dataset from the 451

Kaggle platform corresponding to the challenge Binary Prediction of Smoker Status using 452

Bio-Signals challenge. The Kaggle website can be found here: https://www.kaggle.com/ 453

competitions/playground-series-s3e24. 454

4.1. A regression problem: prediction of the electrical consumption of Institution buildings 455

In order to achieve the performance required for the application to make useful predic- 456

tions about energy consumption, we propose here two Spark-based model implementations 457

for useful EC predictions for a given time horizon, such as the hourly power consumption 458

during the month and presented here, can be run on both CPUs and GPUs to take full 459

advantage of the performance capabilities that such an implementation can offer us. Several 460

studies have provided solutions to the problem of predicting EC in buildings using EAs 461

and ANN. However, the main drawback of these methods is that they have an unreliable 462

response time. So far, some approaches have been proposed to solve this problem [35]. As 463

a result, there is still a lot of work to be done in this line of research, while interesting imple- 464

mentations of GPU-based EAs have been proposed in [1], where different data structures, 465

configurations, data sizes and complexities have been studied to solve the problem. 466

The two variants DSPSO and DAPSO implemented in Scala/Spark in this study 467

have been used here to solve a 24-hour EC prediction problem in buildings as one of 468

the fundamental objectives of this work. To test the performance we have used the PSO 469

algorithm as baseline and the Spark tool to train a perceptron–type neural network to make 470

predictions about the EC of a set of buildings (Figure 3, 4) at the University of Granada, UGr 471

(Spain). The performance of both algorithm implementations has been tested by measuring 472

the execution time required to execute each of them. For this, we have used an abstraction 473

related to each benchmark performed, according to which we always use a monotonic clock 474

https://www.kaggle.com/competitions/playground-series-s3e24
https://www.kaggle.com/competitions/playground-series-s3e24
https://www.kaggle.com/competitions/playground-series-s3e24

Version July 15, 2024 submitted to Algorithms 12 of 22

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Po
w

er
 c

on
su

m
pt

io
n

(K
w

h)

Month days

EC per day between 09:00 to 18:00, January 2024

EC at 09:00 Predicted at 09:00 EC at 12:00 Predicted at 12:00 EC at 15:00 Predicted at 15:00 EC at 18:00 Predicted at 18:00

Figure 3. Prediction with DSPSO implementation of the hourly power consumed during the month
of January 2024 by a group of UGr buildings

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Po
w

er
 c

on
su

m
pt

io
n

(K
w

h)

Month days

EC per day between 09:00 to 18:00, January 2024

EC at 09:00 Predicted at 09:00 EC at 12:00 Predicted at 12:00 EC at 15:00 Predicted at15:00 EC at 18:00 Predicted at 18:00

Figure 4. Prediction with DAPSO implementation of the hourly power consumed during the month
of January 2024 by a group of UGr buildings

in our measurements, i.e., the time always goes forward and is not affected by hardware 475

issues, such as time skew. 476

4.2. Performance evaluation of a regression problem implementation 477

To test the performance, we have used the implemented variants of the PSO algorithm 478

and Spark primitives to train a perceptron neural network with the parameters given in 479

Table 2, which correspond to the attributes in the rows of the dataset provided by the 480

institution, such as the day, hour, and minute of the measurement, as well as the power 481

scheduled for that day. We have evaluated the realized implementation of the DSPSO 482

algorithm with synchronous individual update of particle velocity/position and that of 483

the DAPSO algorithm with asynchronous distributed update of the same parameters. 484

Moreover, to check the performance of each algorithm, only one of the first two constant 485

Version July 15, 2024 submitted to Algorithms 13 of 22

Table 2. Parameter configuration for the EC prediction of a set of buildings for the DSPSO and
DAPSO variants.

Parameter Value

Number of PSO iterations 100, 200, 500, 1000
Number of neurons in the input layer 15

Number of neurons in the hidden layer 30
Number of particles 100, 200, 500, 1000

SuperRDDs 4
Batch size 10

Interval of particle positions [-1,1]
Particle velocity ranges [-0.6,0.6] (0.6×pos max)

w 1
c1 0.8
c2 0.2

parameters in Table 2 was increased at a time, while the other remained unchanged in 486

each test. In this way were able to analyze how each algorithm reacts to an increase in the

0

2000

4000

6000

8000

10000

100 200 500 1000

El
ap

se
d

tim
e(

s)

Particles

Time for 30240 samples/100 iterations

DSPSO DAPSO PSO-Seq

0
1000
2000
3000
4000
5000
6000
7000
8000

100 200 500 1000

El
ap

se
d

tim
e

(s
)

Iterations

Time(s) for 30240 samples/100 particles

DSPSO DAPSO PSO-Seq

Figure 5. Performance evaluation with change in the number of (a)particles, (b) iterations.
487

complexity of one parameter: particles, iterations , under certain conditions, individually. 488

Figure 5(a) shows that, for a small number of particles (100,200), the distributed algorithms 489

(DSPSO and DAPSO) perform slightly better than the traditional sequential PSO algorithm, 490

as the overhead introduced by Spark affects the overall measured performance. However, 491

when the number of particles increases to (500, 100), the distributed algorithms DAPSO 492

Version July 15, 2024 submitted to Algorithms 14 of 22

and DSPSO are significantly faster, achieving on average 4 times and 2 times more speedup, 493

respectively, than the traditional PSO. Figure 5(b) shows a similar behavior to the previous 494

graph as the number of iterations is increased. The performance of DAPSO is observed to 495

be similar to DSPSO for (500, 1000) iterations. This is because the number of Spark-jobs 496

generated increases mainly with the number of iterations. Therefore, for a high number of 497

iterations, the number of jobs created is similar for both algorithms. This differs from the 498

observation in Figure 5(a) when the number of iterations is kept constant and the number 499

of particles is increased. Therefore, both algorithms perform well regardless of the number 500

of iterations or particles.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

100 200 500 1000

M
SE

Particles

MSE for 100 iterations

DSPSO-1200 DAPSO-12000 DSPSO-30240 DAPSO-30240

0

0,1

0,2

0,3

0,4

0,5

0,6

100 200 500 1000

M
SE

Iterations

MSE for 100 particles

DSPSO-12000 DAPSO-12000 DSPSO-30240 DAPSO-30240

Figure 6. Mean square error obtained with: (a)100 iterations, (b) 100 particles.
501

The performance of the distributed PSO algorithms is enhanced by using multiple 502

executors for parallel fitness evaluation of particles on the Spark cluster. Of course, this 503

performance is more visible on complex optimization problems where the overhead caused 504

by Spark is negligible compared to the traditional PSO implementations. Figures 6 show 505

the results relative to the error (MSE) of the measures of both the DSPSO and DAPSO 506

implementations. The network was trained on 80% of the data (training set) and the 507

remaining 20% was used to measure the errors (test set). In Figure 6, the errors obtained by 508

both algorithms with 100 iterations (a) are much larger when using 12000 samples. This is 509

due to the excessive task creation when there are not enough samples, resulting in a less 510

representative search space. As a result, the particles may have difficulty converging to an 511

optimal solution. 512

Version July 15, 2024 submitted to Algorithms 15 of 22

On the other hand, we observe that the error variability increases with the number 513

of particles in the scan when using 12000 data. This is due to the updating made to the 514

best position and fitness computed by the particles. However, as the number of particles 515

increases, the errors converge to the same values as the asynchronous algorithm (DAPSO). 516

This suggests that the reliability of both implemented variants depends mainly on the 517

quality of the training data set. The DAPSO variant is generally more accurate, even with 518

fewer samples. Finally, both graphs in the figure Figure 6(b) show that for more than 30240 519

samples, DAPSO produces the lowest error for higher values of the number of particles 520

and iterations. 521

4.3. A Classification problem: Binary Prediction of Smoker Status using Bio-Signals 522

The PSO algorithm can be used to train neural networks focused on solving classifica- 523

tion problems. Therefore, a dataset was selected from the Kaggle platform, corresponding 524

to a competition where the objective is to predict the binary variable smoking using a set 525

of biological characteristics such as the presence of caries or the levels of haemoglobin or 526

triglycerides. The metrics to be used were accuracy, precision, recall and f1-score.

Table 3. Chi-squared tests for each variable

Variable Chi-square value P-value
height 35178.19 0.0
weight 20419.24 0.0
waist 10849.84 0.0
eyesight(left) 2819.29 0.0
eyesight(right) 3432.92 0.0
hearing(left) 232.12 2.06e-52
hearing(right) 215.86 7.25e-49
systolic 1090.97 3.31e-236
relaxation 1875.90 0.0
fasting blood sugar 2089.03 0.0
Cholesterol 1215.51 3.16e-263
triglyceride 18319.41 0.0
HDL 10973.96 0.0
LDL 1067.00 5.24e-231
hemoglobin 34114.14 0.0
Urine protein 165.31 7.82e-38
serum creatinine 13429.07 0.0
AST 725.64 5.77e-157
ALT 7484.18 0.0
Gtp 26874.75 0.0
dental caries 1810.41 0.0

527

4.3.1. Statistical study of covariates 528

A statistical study of the covariates on the dataset was carried out using Python 529

libraries, specifically the function chi2_contingency from the scipy library to perform the 530

chi-squared test (Table 3) and the statsmodels library to calculate the odds ratio and the 531

relative risk. As most of the characteristics we have in the dataset are continuous, we 532

have converted them to categorical variables, creating four categories for each continuous 533

variable, 534

• Low: Those between the 0th percentile and the 25th percentile are classified here 535

• Medium low: Those between the 25th percentile and the 50th percentile are classified 536

here 537

• Medium high: Those between the 50th percentile and the 75th percentile are classified 538

here 539

• High: Those between the 75th percentile and the 100th percentile are classified here 540

Version July 15, 2024 submitted to Algorithms 16 of 22

In this case we will set a standard confidence level of 95%, i.e. a significance level of 541

alpha = 0.05. Since the p-value is very close to 0 and much smaller than alpha = 0.05, we 542

reject the null hypothesis that the variables are independent in all cases. 543

4.3.2. Odds ratio calculation 544

The odds ratio (OR) is used to quantify the association between two events. It compares 545

the odds of the event occurring in one group with the odds of the event occurring in the 546

other group. It is given by the equation 547

OR =
Odds in f avor o f event in Group 2
Odds in f avor o f event in Group 1

(3)

The odds ratio should be interpreted according to three ranges of values: OR ==1, there is 548

no association between exposure and outcome; OR > 1, indicates a positive association 549

between exposure and outcome; OR < 1, indicates a negative association between exposure 550

and outcome.

Table 4. Odds Ratio for Categorical Variables

Variable Odds ratio

weight(kg)_Low 0.20961654947072159
weight(kg)_Medium_Low 1.218644191656455
weight(kg)_Medium_High 2.097852237464934
weight(kg)_High 2.8299577733161576
. . .
fasting blood sugar_Low 0.6308223587839904
fasting blood sugar_Medium_Low 0.9541383540661215
fasting blood sugar_Medium_High 1.173636730372843
fasting blood sugar_High 1.4547915548094907
. . .
triglyceride_Low 0.23407715488962197
triglyceride_Medium_Low 0.7200827234227996
triglyceride_Medium_High 1.6370622749650663
triglyceride_High 3.1767870705800836
HDL_Low 2.365531709348869
HDL_Medium_Low 1.4317551296401139
HDL_Medium_High 0.7715794823329627
HDL_High 0.3282304510981655
LDL_Low 1.1629428483574764
LDL_Medium_Low 1.1890457266489936
LDL_Medium_High 1.0438026307432897
LDL_High 0.6844025582281992
. . .

551

The main results of Table 4 with odds ratio values are as follows: (1) Those with higher 552

sugar and relaxation indices are more likely to smoke than those with low indices. (2) 553

There is an association between smoking and higher body weight.(3) We see a significant 554

increase in triglycerides (a type of blood fat) and haemoglobin and a large decrease in HDL. 555

(4) We also see, although to a much lesser extent a decrease in LDL and an increase in 556

serum creatinine which is a waste product present in the blood.(5) There is also a significant 557

increase in alanine aminotransferase (ALT) which is an enzyme found mainly in the liver, 558

the excess of which in the bloodstream can indicate damage to liver cells. 559

Version July 15, 2024 submitted to Algorithms 17 of 22

4.3.3. Relative Risk calculation 560

The risk ratio (RR) is a statistical measure used to assess the relationship between the 561

probability of a particular outcome in a group exposed to an event compared with a group 562

not exposed. It is given by the equation 563

RR =
Incidence in the o f exposed Group
Incidence in the unexposed Group

(4)

The results of the RR calculation are interpreted in the same way as the OR calculation. 564

RR==1, there is no association between exposure and outcome. RR > 1, suggests a positive 565

association, i.e., exposure is associated with an increased risk of the outcome. RR < 1, 566

suggests a negative association between exposure and outcome. 567

The main results of Table 5 with RR values confirm those of Table 4 and are as follows: 568

(1) There is again an association between smoking and higher body weight. (2) There is also 569

an increase in blood glucose, although less steep than that seen in the odds ratio calculation. 570

(3) As in the previous table, there is a significant increase in triglycerides (a type of blood 571

fat) and haemoglobin and a large decrease in HDL. (4) There is also an increase in serum 572

creatinine. (5) There is also a significant increase in alanine aminotransferase (ALT) and a 573

large increase in guanosine triphosphate (GTP). 574

4.4. Evaluation of classification accuracy based on neural networks trained with the PSO 575

We carried out a validation process. We compared all the accuracy assessment points 576

with the ground truth values. The calculated parameters are the next ones, 577

- Precision: The precision is the probability value that a detected class element is valid. 578

It is given by the equation 579

Precision =
Number o f correctly detected

Number o f all detected
=

TP
TP + FP

(5)

Table 5. Relative Risk for Categorical Variables

Variable Relative Risk

weight(kg)_Low 0.38230844375970974
weight(kg)_Medium_Low 1.1138572402084614
weight(kg)_Medium_High 1.4722921983586552
weight(kg)_High 1.657394753125524
. . .
fasting blood sugar_Low 0.7625790496264635
fasting blood sugar_Medium_Low 0.9737980190980333
fasting blood sugar_Medium_High 1.0923983061205762
fasting blood sugar_High 1.2241433259236203
. . .
triglyceride_Low 0.38822905484291464
triglyceride_Medium_Low 0.8257440932973402
triglyceride_Medium_High 1.2999795981567317
triglyceride_High 1.7644652462095984
HDL_Low 1.552294793364521
HDL_Medium_Low 1.21516619862005
HDL_Medium_High 0.8603055475766019
HDL_High 0.49401247683404703
LDL_Low 1.0871634378867505
LDL_Medium_Low 1.1002852299103176
LDL_Medium_High 1.0242964148293716
LDL_High 0.80065254077625
. . .

Version July 15, 2024 submitted to Algorithms 18 of 22

Figure 7. Classification performance with (a) ROC curve, (b) precision/recall curve.

- Recall: The recall is the probability value that a detected class element is detected in 580

the ground truth. It is given by the equation 581

Recall =
Number o f correctly detected

Number o f detected in ground truth
=

TP
TP + FN

(6)

- F1 score: This is a metric usually calculated to evaluate the performance of a binary 582

classification model. It is given by the equation 583

F1− score =
2× Precision× Recall

Precision + Recall
(7)

The results obtained when contrasted with the interpretation of the ROC and Precision/Re- 584

call plots (Figure 7), indicate that the binary classification model we have obtained has 585

a balanced performance. The obtained precision of 77% on average indicates that this 586

percentage of positive predictions is correct and that the obtained classification has been 587

performed reliably by the implemented PSO variants. The obtained recall implies that 588

the model also correctly identifies 77% of all positive cases in the ground truth. F1–score 589

calculated for 100 particles and 100 iterations: 0.7697050147492625, confirms that both 590

measures of precision and recall are consistent with the results obtained, showing a balance 591

between them and that the results have also been obtained with performance. 592

Table 6. Accuracy assessment of smoking Status using bio-Signals, with 10 and 100 particles and the
2 PSO variants.

Classifier Precision Recall F1-score
10 100 10 100 10 100

DSPSO 0.62 0.74 0.73 0.74 0.67 0.74
DAPSO 0.68 0.77 0.74 0.77 0.71 0.77

4.5. Assessment of implementation performance 593

The model appears to be robust and thus quite acceptable, as shown in the summary of 594

one selected run of Table 7, with similar performance measured for the DSPSO and DAPSO 595

variants, along with the near 0.77 accuracy (Table 6) discussed above, again indicating good 596

predictive performance of both algorithms. 597

Table 7 contains information extracted from the Apache Spark Web UI (Web UI), which 598

is a web-based graphical interface that provides detailed information about the status and 599

performance of running Spark applications. In particular, it shows information about the 600

executors in the cluster, including resource usage, especially memory blocks used by the 601

Version July 15, 2024 submitted to Algorithms 19 of 22

Table 7. Performance of DSPSO and DAPSO on a Spark cluster with information on the number of
executors and the number of blocks.

DSPSO DAPSO

cores 16 16
Storage memory 25 MiB 135 KiB
Max. active tasks 15 5

Total number of created tasks 2960 992
Task execution (CPU) accumul. time 28800 s. 660 s.
Task execution (GPU) accumul. time 384 s. 7 s.

Average time of 1 parallel run 1554 s. 1060 s.

entire computation, and the activity of Spark jobs or tasks. From the point of view of the 602

distributed PSO algorithms implemented in this study, each job contains a set of particles 603

whose fitness function is evaluated by the executor nodes. So, as the Table 7 shows, we 604

have achieved concurrent execution of multiple jobs in the Spark cluster, where each job 605

means parallel execution of multiple tasks. With the DAPSO implementation the master 606

node collects asynchronously from the cluster the results of the execution of each task, 607

updates the global variables, and returns the particle to the task, thus reusing the tasks and 608

trying to achieve a better load balancing between them. In this way, DAPSO manages to 609

significantly reduce the number of tasks for the fitness evaluation of each particle in the 610

cluster. It can be observed in the table that only up to 5 simultaneously active tasks are 611

necessary. We can say that DAPSO is much more a Spark-jobs “recycler” than DSPSO and 612

therefore the memory usage is only 135 KiB versus the 25MiB needed by DSPSO to do the 613

same job. We can therefore conclude that the DAPSO variant is more suitable for execution 614

on resource constrained nodes in an edge architecture. 615

5. Conclusions 616

The two distributed implementations of the PSO algorithm presented serve to demon- 617

strate the feasibility of their use in deep neural network training in a distributed-edge 618

setting. The asynchronous DAPSO implementation improves the synchronous DSPSO 619

one in terms of performance and accuracy, performing the tasks of fitness evaluation and 620

particle update in a fully parallel and independent way by the workers of an Apache Spark 621

cluster and yields really satisfactory results in terms of performance and scalability. While 622

it has been noted that in problems with few samples, the problem size may be insufficient 623

for DAPSO to achieve optimal performance, however, the MSE obtained with both variants 624

are similar with a considerable amount of data and DAPSO is notoriously superior in terms 625

of performance versus the synchronous DSPSO implementation, improving times in both 626

the regression problem with 175104 samples and the classification problem presented here. 627

In the latter one, due to the volume of the dataset with 127405 samples in the training set 628

and 69 features used for classification, a huge improvement in execution times is achieved. 629

Regarding the implementation performed with an Apache Spark cluster, a higher 630

performance has been observed with the DAPSO variant than with the implementation 631

of the DSPSO variant. Although the programs developed with Spark can be executed on 632

different distributed platforms, in this work the results shown refer only to the execution 633

on a departmental GPU cluster. Therefore, as future work we want to design the presented 634

algorithms for different platforms, such as Kubernetes or Databricks. 635

Funding: This research was funded by the Spanish Science Ministry (Ministerio de Ciencia e Inno- 636

vación) grant PID2020-112495RB-C21. 637

Data Availability Statement: The code with the implementation of the trained neural network has 638

been used to predict the energy consumption of a set of buildings in the University of Granada 639

Version July 15, 2024 submitted to Algorithms 20 of 22

(Spain). The Scala/Spark code and the dataset used in this study are available at https://github.com/ 640

mcapeltu/PSO_Spark_Scala.git. 641

Abbreviations 642

The following abbreviations are used in this manuscript: 643

644

ANN Artificial Neural Network
DAPSO Distributed Asynchronous PSO
DLNN Deep Learning Neural Networks
DSPSO Distributed Synchronous PSO
EA Evolutionary Algorithms
EC Energy consumption
GPGPU General-purpose computing on Graphics Processing Units
MSE Mean Squared Error
NN Neural Network
PSO Particle Swarm Optimization
RDD Resilient Distributed Datasets

645

Appendix A. DAPSO Implementation 646

Code 1. Channels Implementation

import s c a l a . c o l l e c t i o n . mutable . L i s t B u f f e r

c l a s s BatchPSO (private val s i z e : I n t) {
private val batches : L i s t B u f f e r [Array [Double]] = L i s t B u f f e r . empty [Array [Double]]
private var index : I n t = 0
def add (elem : Array [Double]) : Unit = {

i f (index < s i z e) {
batches += elem
index += 1

} e lse {
throw new I l l e g a l S t a t e E x c e p t i o n (" Batch f u l l ")

}
}
def i s F u l l : Boolean = index == s i z e
def getBatch : L i s t B u f f e r [Array [Double]] = batches
def getIndex : I n t = index
def copy () : BatchPSO = {

val copiedBatch = new BatchPSO (s i z e)
copiedBatch . index = index
for (i <− 0 u n t i l index) {

copiedBatch . batches += batches (i) . c lone ()
}
copiedBatch

}
def c lean () : Unit = {

batches . c l e a r ()
index = 0

}
}

Code 2. Channels declaration

val srch = new Channel [BatchPSO] ()
val fuch = new Channel [L i s t B u f f e r [Array [Double]]] ()

 https://github.com/mcapeltu/PSO_Spark_Scala.git
 https://github.com/mcapeltu/PSO_Spark_Scala.git
 https://github.com/mcapeltu/PSO_Spark_Scala.git

Version July 15, 2024 submitted to Algorithms 21 of 22

Code 3. Obtaining accumulator particles and updating values

val i t e r s = n I t e r s * n P a r t i c l e s / batchSize
for (i <− 0 u n t i l i t e r s) {
/ / Read from t h e F i t n e s s w r i t i n g c h a n n e l
var data = fuch . read
var pos : Array [Double] = new Array [Double] (0)
var v e l o c i t y : Array [Double] = new Array [Double] (0)
var bestGlobalPos : Array [Double] = new Array [Double] (0)
var f i t : Double = 0
/ / PSO
for (posVel <− data) {

pos = posVel . s l i c e (0 , nWeights)
v e l o c i t y = posVel . s l i c e (nWeights , 2 * nWeights)
bestGlobalPos = posVel . s l i c e (2 * nWeights , 3 * nWeights)
f i t = posVel (3 * nWeights)
i f (f i t < b e s t F i t n e s s) {

b e s t F i t n e s s = f i t
bestPos = bestGlobalPos

}
}

Code 4. Distribution of particles to the worker nodes

/ / Get b a t c h
val batch = srch . read
val batchData = batch . getBatch . toArray
/ / S e t p a r a l l e l i z a t i o n
val RDD = spContext . p a r a l l e l i z e (batchData , nTasks)
val psfu _ array = RDD. map(part => c a l c u l a t e F i t n e s s (x , y , part ,
nInput , nHidden , i s C l a s)) . c o l l e c t ()

References 647

1. Daniel Leal Souza, Tiago Carvalho Martins, V.A.D. PSO-GPU: Accelerating Particle Swarm Optimization in CUDA-Based 648

Graphics Processing Units. In Proceedings of the GECCO11, 07 2011. 649

2. Gerhard Venter, J.S.S. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations. In 650

Proceedings of the 6-th World Congresses of Structural and Multidisciplinary Optimization, 03 2005. 651

3. Iruela, J.; Ruiz, L.; Pegalajar, M.; Capel, M. A parallel solution with GPU technology to predict energy consumption in spatially 652

distributed buildings using evolutionary optimization and artificial neural networks. Energy Conversion and Management 2020, 653

207, 112535. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112535. 654

4. Iruela, J.R.S.; Ruiz, L.G.B.; Capel, M.I.; Pegalajar, M.C. A TensorFlow Approach to Data Analysis for Time Series Forecasting in 655

the Energy-Efficiency Realm. Energies 2021, 14. https://doi.org/10.3390/en14134038. 656

5. Busetti, R.; El Ioini, N.; Barzegar, H.R.; Pahl, C. A Comparison of Synchronous and Asynchronous Distributed Particle Swarm 657

Optimization for Edge Computing. In Proceedings of the Proceedings of the 13th International Conference on Cloud Computing 658

and Services Science–CLOSER. INSTICC.SciTePress, 2023, Vol. I, pp. 194–203. 659

6. Ruiz, L.; Capel, M.; Pegalajar, M. Parallel memetic algorithm for training recurrent neural networks for the energy efficiency 660

problem. Applied Soft Computing 2019, 76, 356–368. https://doi.org/https://doi.org/10.1016/j.asoc.2018.12.028. 661

7. Ruiz, L.; Rueda, R.; Cuéllar, M.; Pegalajar, M. Energy consumption forecasting based on Elman neural networks with evolutive 662

optimization. Expert Systems with Applications 2018, 92, 380–389. https://doi.org/https://doi.org/10.1016/j.eswa.2017.09.059. 663

8. Ruiz, L.G.B.; Cuéllar, M.P.; Calvo-Flores, M.D.; Jiménez, M.D.C.P. An Application of Non-Linear Autoregressive Neural Networks 664

to Predict Energy Consumption in Public Buildings. Energies 2016, 9. https://doi.org/10.3390/en9090684. 665

9. Pegalajar, M.; Ruiz, L.; Cuéllar, M.; Rueda, R. Analysis and enhanced prediction of the Spanish Electricity Network through Big 666

Data and Machine Learning techniques. International Journal of Approximate Reasoning 2021, 133, 48–59. https://doi.org/https: 667

//doi.org/10.1016/j.ijar.2021.03.002. 668

10. Criado-Ramón, D.; Ruiz, L.; Pegalajar, M. Electric demand forecasting with neural networks and symbolic time series representa- 669

tions. Applied Soft Computing 2022, 122, 108871. https://doi.org/https://doi.org/10.1016/j.asoc.2022.108871. 670

11. Sahoo, B.M.; Amgoth, T.; Pandey, H.M. Particle swarm optimization based energy efficient clustering and sink mobility in 671

heterogeneous wireless sensor network. Ad Hoc Networks 2020, 106, 102237. https://doi.org/https://doi.org/10.1016/j.adhoc.20 672

20.102237. 673

12. Malik, S.; Kim, D. Prediction-Learning Algorithm for Efficient Energy Consumption in Smart Buildings Based on Particle 674

Regeneration and Velocity Boost in Particle Swarm Optimization Neural Networks. Energies 2018, 11. https://doi.org/10.3390/ 675

en11051289. 676

https://doi.org/https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/10.3390/en14134038
https://doi.org/https://doi.org/10.1016/j.asoc.2018.12.028
https://doi.org/https://doi.org/10.1016/j.eswa.2017.09.059
https://doi.org/10.3390/en9090684
https://doi.org/https://doi.org/10.1016/j.ijar.2021.03.002
https://doi.org/https://doi.org/10.1016/j.ijar.2021.03.002
https://doi.org/https://doi.org/10.1016/j.ijar.2021.03.002
https://doi.org/https://doi.org/10.1016/j.asoc.2022.108871
https://doi.org/https://doi.org/10.1016/j.adhoc.2020.102237
https://doi.org/https://doi.org/10.1016/j.adhoc.2020.102237
https://doi.org/https://doi.org/10.1016/j.adhoc.2020.102237
https://doi.org/10.3390/en11051289
https://doi.org/10.3390/en11051289
https://doi.org/10.3390/en11051289

Version July 15, 2024 submitted to Algorithms 22 of 22

13. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A 677

comprehensive survey. IEEE Access 2022, 10, 10031–10061. 678

14. Determination of industrial energy demand in Turkey using MLR, ANFIS and PSO-ANFIS. Journal of Artificial Intelligence and 679

Systems 2021, 3. https://doi.org/10.33969/AIS.2021.31002. 680

15. Subramoney, D.; Nyirenda, C.N. Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments. IEEE 681

Access 2022, 10, 117199–117214. https://doi.org/10.1109/ACCESS.2022.3220239. 682

16. Wang, J.; Chen, X.; Zhang, F.; Chen, F.; Xin, Y. Building Load Forecasting Using Deep Neural Network with Efficient Feature 683

Fusion. Journal of Modern Power Systems and Clean Energy 2021, 9, 160–169. https://doi.org/10.35833/MPCE.2020.000321. 684

17. Yong, Z.; Li-juan, Y.; Qian, Z.; Xiao-yan, S. Multi-objective optimization of building energy performance using a particle 685

swarm optimizer with less control parameters. Journal of Building Engineering 2020, 32, 101505. https://doi.org/https: 686

//doi.org/10.1016/j.jobe.2020.101505. 687

18. Ghalambaz, M.; Jalilzadeh, Y.R.; Davami, A.H. Building energy optimization using butterfly optimization algorithm. Thermal 688

Science 2022, 26, 3975–3986. 689

19. Duran Toksarı, M. Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 2007, 35, 3984–3990. 690

https://doi.org/https://doi.org/10.1016/j.enpol.2007.01.028. 691

20. Sundareswaran, K.; Sankar, P.; Nayak, P.S.R.; Simon, S.P.; Palani, S. Enhanced Energy Output From a PV System Under 692

Partial Shaded Conditions Through Artificial Bee Colony. IEEE Transactions on Sustainable Energy 2015, 6, 198–209. https: 693

//doi.org/10.1109/TSTE.2014.2363521. 694

21. Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Asadi, S.; Kim, J.H.; Geem, Z.W. Harmony search algorithm for energy system 695

applications: an updated review and analysis. Journal of Experimental & Theoretical Artificial Intelligence 2019, 31, 723–749, 696

[https://doi.org/10.1080/0952813X.2018.1550814]. https://doi.org/10.1080/0952813X.2018.1550814. 697

22. dos Santos Coelho, L.; Mariani, V.C. Improved firefly algorithm approach applied to chiller loading for energy conservation. 698

Energy and Buildings 2013, 59, 273–278. https://doi.org/https://doi.org/10.1016/j.enbuild.2012.11.030. 699

23. Nadjemi, O.; Nacer, T.; Hamidat, A.; Salhi, H. Optimal hybrid PV/wind energy system sizing: Application of cuckoo search 700

algorithm for Algerian dairy farms. Renewable and Sustainable Energy Reviews 2017, 70, 1352–1365. https://doi.org/https: 701

//doi.org/10.1016/j.rser.2016.12.038. 702

24. Rong-Zhi Qi, Zhi-Jian Wang, S.Y.L. A Parallel Genetic Algorithm Based on Spark for Pairwise Test Suite Generationk. Journal of 703

Computer Science and Technology 2015. https://doi.org/https://doi.org/10.1007/s11390-016-1635-5. 704

25. J.R.S. Iruela, L.G.B. Ruiz, M.C. A parallel solution with GPU technology to predict energy consumption in spatially distributed 705

buildings using evolutionary optimization and artificial neural networks. Energy Conversion and Management 2020. https: 706

//doi.org/https://doi.org/10.1016/j.enconman.2020.112535. 707

26. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN’95-international conference on 708

neural networks. IEEE, 1995, Vol. 4, pp. 1942–1948. 709

27. Panapakidis, I.P.; Dagoumas, A.S. Day-ahead electricity price forecasting via the application of artificial neural network based 710

models. Applied Energy 2016, 172, 132–151. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.03.089. 711

28. Bouzerdoum, M.; Mellit, A.; Massi Pavan, A. A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale 712

grid-connected photovoltaic plant. Solar Energy 2013, 98, 226–235. https://doi.org/https://doi.org/10.1016/j.solener.2013.10.002. 713

29. Lahouar, A.; Ben Hadj Slama, J. Day-ahead load forecast using random forest and expert input selection. Energy Conversion and 714

Management 2015, 103, 1040–1051. https://doi.org/https://doi.org/10.1016/j.enconman.2015.07.041. 715

30. Marcel Waintraub, Roberto Schirru, C.M.P. Multiprocessor modeling of parallel Particle Swarm Optimization applied to nuclear 716

engineering problems. Progress in Nuclear Energy 2009. https://doi.org/https://doi.org/10.1016/j.pnucene.2009.02.004. 717

31. Fan, D.; Lee, J. A Hybrid Mechanism of Particle Swarm Optimization and Differential Evolution Algorithms based on Spark. 718

Transactions on Internet and Information Systems 2019. https://doi.org/http://doi.org/10.3837/tiis.2019.12.010. 719

32. Yinan Xu, Hui Liu, Z.L. A distributed computing framework for wind speed big data forecasting on Apache Spark. Sustainable 720

Energy Technologies and Assessments 2020. https://doi.org/https://doi.org/10.1016/j.seta.2019.100582. 721

33. Foundation, A.S. Apache Spark™ - Unified Engine for large-scale data analytics. https://spark.apache.org, 2018. [Resource 722

online, accessed July 3, 2024]. 723

34. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient Distributed 724

Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th USENIX Symposium on 725

Networked Systems Design and Implementation (NSDI 12), San Jose, CA, abril 2012; pp. 15–28. 726

35. Oh, K.S.; Jung, K. GPU implementation of neural networks. Pattern Recognition 2004, 37, 1311–1314. https://doi.org/10.1016/j. 727

patcog.2004.01.013. 728

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 729

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 730

people or property resulting from any ideas, methods, instructions or products referred to in the content. 731

https://doi.org/10.33969/AIS.2021.31002
https://doi.org/10.1109/ACCESS.2022.3220239
https://doi.org/10.35833/MPCE.2020.000321
https://doi.org/https://doi.org/10.1016/j.jobe.2020.101505
https://doi.org/https://doi.org/10.1016/j.jobe.2020.101505
https://doi.org/https://doi.org/10.1016/j.jobe.2020.101505
https://doi.org/https://doi.org/10.1016/j.enpol.2007.01.028
https://doi.org/10.1109/TSTE.2014.2363521
https://doi.org/10.1109/TSTE.2014.2363521
https://doi.org/10.1109/TSTE.2014.2363521
http://arxiv.org/abs/https://doi.org/10.1080/0952813X.2018.1550814
https://doi.org/10.1080/0952813X.2018.1550814
https://doi.org/https://doi.org/10.1016/j.enbuild.2012.11.030
https://doi.org/https://doi.org/10.1016/j.rser.2016.12.038
https://doi.org/https://doi.org/10.1016/j.rser.2016.12.038
https://doi.org/https://doi.org/10.1016/j.rser.2016.12.038
https://doi.org/https://doi.org/10.1007/s11390-016-1635-5
https://doi.org/https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.03.089
https://doi.org/https://doi.org/10.1016/j.solener.2013.10.002
https://doi.org/https://doi.org/10.1016/j.enconman.2015.07.041
https://doi.org/https://doi.org/10.1016/j.pnucene.2009.02.004
https://doi.org/http://doi.org/10.3837/tiis.2019.12.010
https://doi.org/https://doi.org/10.1016/j.seta.2019.100582
https://spark.apache.org
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.patcog.2004.01.013

	Introduction
	Particle Swarm Optimization
	Complexity of the PSO and approaches for its parallelization in a cluster
	Background information based on recent research on the parallelization of the PSO

	PSO parallelization based on Apache Spark and RDD applied to training neural networks
	Distributed Synchronous PSO
	Each worker node should perform the following steps:
	The Master Node process includes the following steps:

	Distributed Asynchronous PSO
	The Master Node process consists of the following steps:
	The process of worker nodes

	Apache Spark implementation

	Case Study and Applications
	A regression problem: prediction of the electrical consumption of Institution buildings
	Performance evaluation of a regression problem implementation
	A Classification problem: Binary Prediction of Smoker Status using Bio-Signals
	Statistical study of covariates
	Odds ratio calculation
	Relative Risk calculation

	Evaluation of classification accuracy based on neural networks trained with the PSO
	Assessment of implementation performance

	Conclusions
	Appendix A
	References

