

19

20

21

22

23

24

25

26

27

28

29

Article Parallel PSO for the Efficient Training of Neural Networks Using the GPGPU and Apache Spark in an Edge Computing Environment

Manuel I. Capel ^{1,‡}*^D, Alberto Salguero-Hidalgo ^{2,‡}^D and Juan A. Holgado-Terriza ^{1,‡}^D

- ¹ ETSIIT, Software Engineering Department, Universidad de Granada; {manuelcapel,jholgado}@ugr.es
- ² ETSII, Department of Computer Science and Programming Languages, Universidad de Málaga; alberto.salguero@uma.es
- * Correspondence: manuelcapel@ugr.es; Tel.: +34-958-24-2816

[‡] These authors contributed equally to this work.

Abstract: Deep learning neural networks require an immense amount of computation, especially in the training phase of the network when networks with multiple layers of intermediate neurons 2 need to be built. In this paper, we will focus on the PSO algorithm with the aim of significantly 3 accelerating the DLNN training phase by taking advantage of the GPGPU architecture and the 4 Apache Spark analytics engine for large-scale data processing tasks. PSO is a bio-inspired stochastic optimization method whose goal is to iteratively improve the solution to a (usually complex) problem by attempting to approximate a given objective. However, parallelizing an efficient PSO is not a 7 straightforward process due to the complexity of the computations performed on the swarm of particles and the iterative execution of the algorithm until a solution close to the objective with 9 minimal error is achieved. In the present work, two parallelizations of the PSO algorithm have been 10 implemented, both designed for a distributed execution environment. The synchronous parallel PSO 11 implementation ensures consistency at the cost of potential idle time due to global synchronization, 12 while the asynchronous parallel PSO approach improves execution time by reducing the need for 13 global synchronization, making it more suitable for large datasets and distributed environments such 14 as Apache Spark. Both variants of PSO have been implemented to distribute the computational load 15 supported by this algorithm -due to the costly fitness evaluation and updating of particle positions-16 across the different Spark cluster executor nodes to effectively achieve coarse-grained parallelism, 17 resulting in a significant performance increase over current sequential variants of PSO. 18

Keywords: Apache Spark; Classification recall; Deep Neural Networks; GPU Parallelism; Optimization research; Particle Swarm Optimization (PSO); Predictive Accuracy.

Citation: Capel, M.I.; Salguero-Hidalgo, A.; Holgado-Terriza, J.A. Parallel PSO for Efficient DLNN Training Using GPGPU and Apache Spark. *Algorithms* 2024, 1, 0. https://doi.org/

Received: Revised: Accepted:

Published

Copyright: © 2024 by the authors. Submitted to *Algorithms* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

The increasing use of applications with intelligence at the edge, not just in the cloud, requires the optimization of load balancing, workload placement and resource provisioning, especially when resource-intensive tasks need to be moved out of the cloud. This is because in DLNN with many intermediate layers of neurons and a lot of input data, the amount of computation to be performed is enormous and requires evaluating of the fitness of a very large number of particles. In recent articles [1][2] [3] it has long been demonstrated that the training phase of neural networks can be accelerated by using different approaches [4] [5] [6] [7] [8] [9] [10].

In our proposal we have used the Apache Spark analytics engine, which supports RDD and the use of lambda functions and a functional programming style of Scala and Java languages and on a Java JVM. The basic idea that motivates our work is to go beyond existing studies on parallelizing the PSO algorithm to date [11] [12] [13] [14] [15] [16], to create a new algorithm that achieves greater independence between the processes 34

themselves, so that they can specialize in the parallel computation of functions of the algorithm, but without the need for synchronization points or collection of partial results between such processes.

PSO is one of many other algorithms known as metaheuristics, a class of optimization 38 algorithms that are commonly used to find near-optimal solutions to complex optimization 39 problems. Using PSO in an edge computing environment can make it feasible to train 40 DLNN on edge devices rather than in centralized data centers or cloud environments. Edge 41 devices are typically situated closer to the data source, such as IoT devices, smartphones, 42 and embedded systems, and they often have limited computating resources compared to 43 traditional centralized hosts. However, achieving an efficient PSO implementation is not 44 straightforward due to the complexity of the computations that are inferred on the particle 45 swarm and their own iterative execution until convergence to a solution close to the target 46 with minimal error is achieved. 47

An example of multi-objective evolutionary multiheuristic approaches has been pro-48 posed in [17] to optimize the energy performance of buildings by balancing energy con-49 sumption and comfort levels. They implemented a PSO-based method with an improved 50 update strategy to overcome the problem of local convergence. Another PSO-based so-51 lution was proposed in [11], which integrates an energy-efficient clustering approach to 52 address the problem of limited sensor battery life. A butterfly-inspired algorithm was 53 proposed in [18] to minimize the energy consumption of an office building in Seattle. And 54 an ant colony optimization approach in [19] to estimate energy demand of Turkey. There 55 are many other optimization algorithms commonly used in literature such as Artificial 56 Bee Colony [20], Harmony Search [21], Firefly Algorithm [22], Cuckoo Search [22] or 57 Gravitational Search Algorithm [23]. 58

Several studies have investigated the application of PSO for solving forecasting prob-59 lems. For example, [16] proposed a DLNN model with efficient feature fusion for predicting 60 building power consumption. They integrated temperature data and applied an innovative 61 feature fusion technique to improve the learning ability of the model. The study conducted 62 extensive ablation studies to evaluate the performance of the proposed model. In [12], 63 it was proposed a hybrid PSO and NN algorithm for building energy prediction and in-64 troduced two modifications to improve its performance. They compared their proposed 65 model with simple ANN and SVN and demonstrated the effectiveness of their approach. 66 PSO was used in combination with Adaptive Neuro Fuzzy Inference System (ANFIS) to 67 determine industrial energy demand in Turkey, in [14]. The PSO algorithm was used to 68 optimize the parameters of the ANFIS model. A common strategy for modifying PSO is to 69 adjust its control parameters, as discussed by [13]. Another approach is to hybridize PSO 70 with other metaheuristic algorithms such as Genetic Algorithms (GA) [24] and Differential 71 Evolution (DE) [25] In addition, parallelization and multi-swarm techniques have been 72 used to improve the performance of PSO, which has been applied to energy consumption 73 prediction in various domains. For example, [15] proposed a multi-swarm PSO algorithm 74 for static workflow scheduling in cloud fog environments. Their approach outperformed 75 the classical PSO [26] and other approaches in terms of execution time and stability. 76

Thus, the motivation arises to realize the parallelization of the PSO algorithm accord-77 ing to two different parallelization schemes, which are discussed in section 3. The first 78 parallelization, DSPSO, follows a synchronous scheme, i.e., the best global position found 79 by the particles is globally updated before executing the next iteration of the algorithm. 80 DSPSO proved to be more efficient on medium sized datasets (<40000 data). The second 81 implementation, called DAPSO, is an asynchronous parallel variant of the PSO algorithm 82 that showed lower execution time for large datasets (> 170,000 data) that DSPSO and 83 also presents better scalability and elasticity with respect to increasing in dataset size. 84 Both variants, DSPSO and DAPSO, have been implemented for a distributed execution 85 environment to distribute the particle fitness computation and particle position update, 86 among the different execution nodes of an standalone Spark cluster, to effectively achieve 87

35

36

coarse-grained parallelism, which has provided us with significant performance gains over current sequential variants of PSO.

In addition, a library was built in Scala that implements the parallelization of the 90 learning process of multilayer feed-forward neural networks using both variants of the 91 PSO algorithm, allowing us to perform the training of a neural network in a distributed 92 manner using Spark. The neural networks were programmed as part of the case study to 93 solve a regression problem and a classification problem. In this way, we can verify that 94 the implemented networks work correctly. On the other hand, we compare the efficiency 95 of the implemented DSPSO and DAPSO variants with their sequential variants, since a 96 comparison with another learning algorithm is not reasonable. 97

In the current literature, it is common to see authors using machine learning models 98 such as Artificial Neural Networks (ANN) [27], Support Vector Machines (SVM) [28] or 99 Random Forests (RF) [29] to solve a variety of problems. However, these authors often 100 limit their efforts to specific parameters and do not consider other important aspects of the 101 modeling process, such as optimizing the model structure. This can lead to suboptimal 102 performance and a lack of robustness in their models. In order to achieve optimal results, it 103 is critical to consider not only the choice of model and its parameters but also to follow an 104 optimization strategy. In the case of ANN, this may include selecting the optimal number 105 of layers, nodes, activation functions as well as fine-tuning the connection weights. A 106 well-optimized model structure can improve the accuracy and robustness of the model, 107 and ultimately lead to better results [6]. While the time cost of developing optimization 108 strategies is a common challenge faced by researchers, the use of a GPU parallel strategy 109 can potentially help mitigate this problem. By implementing and using two variants of the 110 PSO distributed synchronously and asynchronously, we intend to leverage the strengths of 111 the PSO algorithm to train the DLNN to, for example, predict energy consumption more 112 efficiently and solve complex classification problems with good accuracy. 113

The rest of the paper is organized as follows: Section 2 gives an overview of PSO algo-114 rithms, their common control structure, and the sources of complexity of their paralleliza-115 tion on distributed computing platforms. Section 3 presents the two PSO parallelizations 116 proposed in this work and the pseudocodes of both variants, along with general details 117 about them, according to the conditions imposed by many-core GPU architectures, for use 118 in training DLNN and obtaining the measurements and plots shown to test their efficiency 119 and scalability. Section 4 explains the results of the experiments and discusses the two case 120 studies proposed to evaluate a Spark-based implementation of both PSO variants. Finally, 121 the last section summarizes the conclusions and future work. 122

2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired stochastic optimization algorithm. 124 Invented by Eberthart and Kennedy in 1995 [26], PSO is an algorithm whose goal is to 125 improve a randomly generated solution iteratively with respect to a given objective. The 126 algorithm focuses on a population of entities called particles. A particle is represented 127 as a point in an N-dimensional Cartesian coordinate system. Particles are abstractions of 128 entities that are at a position and move with a velocity. Initially these particles are randomly 129 assigned a position and velocity. In addition each particle *id* keeps track of its personal best 130 position P_{id} and global best position P_{bg} , which is reached by other particles up to that time 131 and detected by the current particle. Thus, the positions and velocities of each particle are 132 updated at each time t as follows, 133

$$X_{id}(t) = X_{id}(t-1) + V_{id}(t-1)$$
(1)

$$V_{id}(t) = \omega V_{id}(t-1) + c_1 r_1 (P_{id} + X_{id}(t-1)) + c_2 r_2 (P_{bg} + X_{bg}(t-1))$$
(2)

 c_1 and c_2 are non-negative constants called learning factors and r_1 and r_2 are two random 134 numbers with uniform distribution in the interval [0, 1]. Also note the inertia constant ω 135

which allows balancing the local and global search and which is a value in the interval [0, 1]. ¹³⁶ In addition, the maximum velocity V_{max} is restricted to the values of $V_{id} \in [-V_{max}, V_{max}]$. ¹³⁷

In addition each particle keeps a record of the personal best position and global best position achieved by other particles up to that time and detected by the current particle. The best position is measured using the *fitness* function, which is what we seek to optimize, therefore, the term best refers here to the minimum or maximum value found during the *evaluation* of the particle position with the *fitness* function defined in the algorithm. The fitness is a type of objective function used to calculate how close a given solution is to achieving the objectives initially established in the algorithm.

Figure 1. Graphical representation of a PSO algorithm's particle with its attributes.

PSO works through iterations, during which all particles are evaluated for their *fitness* 145 in terms of local P_{id} and global P_{bg} best position. The way to detect the best position 146 and the fitness reached by the other particles will depend on whether there is common 147 memory among them and then it will be done by reading a global variable. In case of 148 distributed systems, there is no such shared memory, and a message passing protocol 149 has to be implemented that, in a first approximation, ensures the coherency of the value 150 of the global best position for all the particles. At the end of each iteration, all particle 151 velocities and positions must be updated, which is a drawback for the asynchronous 152 parallel implementation of such updates. 153

The solution proposed here for the implementation of the distributed parallel PSO algorithm consists of the design and implementation of two variants of the distributed PSO, which we have called distributed synchronous (DSPSO) and distributed asynchronous (DAPSO).

The DSPSO variant makes use of the most common form of implementation based on serial iterations. First the fitness of each particle is evaluated with the position of the particle as input, then the best local position of each particle is evaluated and then the best global position among all particles is determined. Finally, the position and velocity of each particle is updated based on the best global position.

The second variant, DAPSO, changes from the previous variant in the information 163 available when updating the particles, in such a way that they are updated as soon as 164 their *fitness* is evaluated and, therefore, the update of the position and velocity of the 165 individual particles does not have to wait for the evaluation of the *fitness* of all the others, as 166 occurs in the DSPSO variant, thus avoiding a synchronization of the type *barrier* or *multiple* 167 rendez-vous between processes and that the particles suffer undesired waits due to the fact 168 that each one of these has to know the data of the others before proceeding to its update. 169 In this way the desired *asynchronicity* of the calculations between particles is achieved, 170 which move to the next position with the information available at that moment, so that 171 several values of the global best position could coexist during the execution, which in a 172 later stage of the algorithm will have to converge in only 1 global value. The validity of 173 the final result of the global best position is not affected because the communications that 174 will be established between the processes in charge of updating the position and velocity of 175 each particle ensure the coherence of the global position and velocity that will be finally 176 communicated to each particle will be achieved. 177

2.1. Complexity of the PSO and approaches for its parallelization in a cluster

The classical PSO algorithm works on the basis of iterations, during which particles 179 are evaluated in terms of their *fitness* and their personal and global best positions. At the 180 end of each iteration, the velocities and positions of all particles have to be updated, which 181 is a drawback for the asynchronous parallel implementation of such an update. 182

The use of PSO for solving prediction and classification problems has advantages and disadvantages,

- As a metaheuristic algorithm, no specific knowledge of the problem to be solved is • required
- As an evolutionary algorithm, it is easy to adapt to parallel computing structures.
- Being able to work with different solutions, it has a higher tolerance to local maxima 188 or minima. 189
- The main disadvantage is that the PSO algorithm needs a large amount of time to reach a good solution in problems of high complexity, i.e., with a large number of particles or with many dimensions, because many evaluations of the fitness function 192 are required.

The use of parallelization of the PSO algorithm to train neural networks represents a 194 cutting-edge strategy with multiple applications and outstanding benefits in the field of 195 machine learning and artificial intelligence. Among the benefits of parallelizing the PSO 196 algorithm [30], we can mention: efficiency improvement, faster scanning of solutions, 197 scalability, increased accuracy and reduction of development time. 198

The first variant considered here is the Distributed Synchronous PSO (DSPSO), which 199 uses the most common form of iteration. First, the fitness of each particle is evaluated 200 using the particle's position as input. Then the best personal position of each particle is 201 evaluated to determine the best global position among all particles, and finally the position 202 and velocity of each particle are updated based on the best global position. 203

The second variant studied and fully implemented is the so-called distributed asyn-204 chronous PSO (DAPSO), which differs from the previous one in the information available 205 when updating the position and velocity of the particles, so that they are updated as soon 206 as their *fitness* is evaluated and, therefore, the update of the position and velocity of each 207 particle is not necessarily consistent in all the nodes of the cluster during the computation of 208 this variant of the PSO. The distributed nature of this computation will make its execution 209 faster than that of the DSPSO, without affecting the validity of the final result, since the 210 communication that will be established between the processes in charge of updating the 211 position and velocity of each particle will ensure that, in the end, the consistency of the 212 global position and velocity that will be finally detected by each of the particles in the 213 algorithm will be achieved. 214

2.2. Background information based on recent research on the parallelization of the PSO

The use of parallelization of the PSO algorithm to train neural networks represents an 216 efficient and scalable approach with several practical applications and notable advantages, 217 such as the ability to process DLNN with many layers of intermediate neurons in a much 218 shorter time frame than with traditional implementations that do not take advantage of the 219 massive parallelism currently provided by multicomputers or, in our study, by GPGPU. 220 This makes it an extremely valuable tool in the field of machine learning and optimization. 221

There are currently many implementations of PSO using the CUDA/GPU environ-222 ment. One of them, called PSO-GPU [1], presents a generic and customizable implementa-223 tion of a PSO algorithm on top of the CUDA architecture, taking advantage of the thousands 224 of threads running on the GPU to reduce execution time and increase performance through 225 parallel processing. One strategy currently used to improve PSO algorithm implementa-226 tions is to adjust its control parameters, thus gaining efficiency without losing precision in 227 determining the objective, as described in [13]. In [2], an asynchronous parallel PSO algo-228 rithm is presented that significantly improves parallel efficiency. Parallel PSO algorithms 229 have mainly been implemented synchronously, where the *fitness* functions, positions and 230

183

184

185

186

187

190

191

193

Main strategy	References	Years
Accelerating PSO in CUDA/GPU	[1][2]	2011, 2005
Adjustment of control parameters	[13]	2002
Hybrid mechanisms with PSO	[31][24][25]	2019, 2015, 2020
Big Data & PSO	[32]	2020

Table 1. Selected approaches for improvement in PSO algorithm implementation to date

velocities of all particles are evaluated in one iteration before the next iteration starts. The 231 latter approaches usually result in a small speedup of the parallel computation over the 232 sequential variant in cases where a heterogeneous parallel environment is used and/or 233 where the execution time depends on the element of the algorithm being computed. There-234 fore [2] was the first work to explore an asynchronous parallel implementation of the PSO 235 algorithm and significantly improved the parallel efficiency of PSO implementations at 236 the time of its publication. This approach had similar goals to those of our study, which 237 focuses on the speedup of the asynchronous PSO algorithm over the synchronous one. 238

A hybrid mechanism of Spark-based particle swarm optimization (PSO) and differen-239 tial evolution (DE) algorithms (SparkPSODE) is proposed in [31]. SparkPSODE is a parallel 240 algorithm that uses RDD and island models. The island model is used to divide the global 241 population into several subpopulations, which are used to reduce the computational time 242 corresponding to the RDD partitions. SparkPSODE is applied to a set of global large-scale 243 optimization benchmark problems and is shown to achieve better performance (speedup, 244 scalability, robustness) of the sought optimization according to the experimental results 245 obtained with respect to other algorithms. 246

There is currently work using Spark to parallelize the genetic algorithm and tackle 247 the problem with very good results; in [25], the GPU is used to parallelize an evolutionary 248 training algorithm. One of the ways to address the problem of climate change and its 249 consequences is to study the energy consumption of the buildings around us. Studying 250 energy consumption can provide us with relevant information to make better decisions and 251 thus reduce costs and pollution. However, ANN training models based on evolutionary 252 methods generally have a high computational cost in terms of time. This paper takes 253 advantage of the high-performance computing capabilities of GPUs to parallelize the PSO 254 evolutionary algorithm to train the ANN. 255

Another area of intense research is the parallel implementation of PSO for big data datasets. Traditional methods cannot meet the requirements of Big Data environments for prediction, so a hybrid distributed computing framework is applied in Apache Spark [32] for wind speed prediction using a distributed computing strategy, the framework can divide the speed data into RDD groups and operate them in parallel.

3. PSO parallelization based on Apache Spark and RDD applied to training neural networks

To carry out this study, we need to perform an efficient parallelization of the PSO 268 algorithm according to the conditions imposed by GPGPU architectures of many cores, to 269 use it in the training of a neural network and to obtain the measurements of the following 270 section. We use the MSE for continuous variables to compute fitness, which we will use 271 to solve regression problems; and the measures of binary cross-entropy and precision for 272 categorical variables in classification. Both variants of the distributed PSO implemented 273 in this study were applied to the training of neural networks to solve two problems: (a) a 274 regression problem to predict the consumption of the institution's buildings in kilowatt 275

266

hours, (b) classification based on the use of a Kaggle dataset to predict whether a set of people are smokers or not, using a binary objective. 277

3.1. Distributed Synchronous PSO

The distributed synchronous PSO adopts the master/worker paradigm, where the 279 master maintains the state of the entire swarm and sends particles to each worker node 280 for evaluation. The master also manages the synchronization required to control specific 281 iterations of the DSPSO, and updates global data relevant to the algorithm through variables 282 of type Broadcast, which are a type of read-only shared variable, e.g., from the Scala 283 programming language, that are cached and available on all nodes in a Spark cluster to be 284 accessed or used by tasks. The tasks performed by the master and worker nodes in this 285 variant are given by the algorithm 1 expressed in pseudocode. 286

Algorithm 1 DSPSO pseudocode

Parameters: <i>I</i> , <i>P</i> , <i>N</i> , <i>M</i>
Output: bg
$context \leftarrow InitSpark()$
$accum \leftarrow context.NewBestGlobalAccumulator((null, \infty)$
$broadVar \leftarrow context.NewBroadcastVariable([N][M])$
$ps \leftarrow InitParticles(P, N, M)$
$bg \leftarrow (null, \infty)$
for $i \leftarrow 0, \dots, I-1$ do //sync
$\lambda_1 \leftarrow FitnessEval(broadVar, accum)$
$ps \leftarrow context.parallelize(ps).map(\lambda_1).collect()$
bg \leftarrow accum.value()
$bgBroad \leftarrow context.NewBroadcastVariable(bg)$
$\lambda_2 \leftarrow \text{PosEval(bgBroad)}$
ps \leftarrow context.parallelize(ps).map(λ_2).collect()
end for
procedure FITNESSEVAL(broadVar, accum) return closure
function CALL(particle)
$pos \leftarrow particle.position()$
$var \leftarrow broadVar.value()$
$err \leftarrow Fitness(pos, var)$
particle.UpdateBestPersonal(pos, err)
accum.add(pos, err)
return particle
end function
end procedure

The function *fitnessEval* (f) is executed on the worker nodes and is responsible for receiving
a particle, calculating the fitness of the current particle position using the variable broadVar
of the Scala *Broadcast* type mentioned above, and then updating the personal best position
of the particle and finally returning it. The pseudocode uses *closure* anonymous function
type, which includes its execution environment.287

3.1.1. Each worker node should perform the following steps:

- 1. wait for a particle to be received from the master node,
- 2. compute the fitness function f and update the personal best position P_{id} ,
- 3. return the evaluated particle to the master node,
- 4. return to step 1 if the master node has not finished yet.

3.1.2. The Master Node process includes the following steps:

- 1. initialize particle parameters, positions and velocities;
- assign the current iteration and initialize the state of the swarm and the received particles;

278

292

293

294

295

296

3.

301

302

303

304

305

306

307

308

309

310

- start the current iteration by distributing all particles to the free executors;
- 4. wait for the results of all evaluated particles (with calculated fitness function) and the personal best position P_{id} for this iteration, which means *for sync*;
- 5. computing the global best position P_{bg} for each incoming particle until there are no more particles left;
- 6. updating the velocity vector V_{id} and the position vector X_{id} of each particle based on the personal best position P_{id} and the global best position P_{bg} found by all particles:
- 7. going back to step 3 if the last iteration has not been reached;
- 8. return the global best position P_{bg} .

3.2. Distributed Asynchronous PSO

DAPSO differs from DSPSO in synchronization becasuse there are no iterations linking all particles. In DAPSO, each particle is evaluated and moves independently of the other particles. This further increases its independence.

We will now discuss the implemented DAPSO variant, which is distributed and 314 asynchronous, and uses Spark RDDs to parallelize the updating of particle positions and 315 velocities. Using Spark and its low granularity transformations, the swarm is divided into 316 several sub-swarms that are evaluated in parallel. The particles are updated according to 317 the current state of the entire swarm, i.e., both the position and velocity of each particle are 318 modified as soon as the fitness function is evaluated, taking into account the best global 319 position found so far. This creates complete independence between the particles, which 320 move to their next position with the information available to them at the time of each 321 particle's evaluation. 322

The DAPSO distributed algorithm follows the master-worker paradigm: a master node is responsible for coordinating the rest, the worker nodes, which are responsible for performing the computations sent by the master. Each particle in the swarm moves and evaluates the fitness function autonomously.

For efficiency, the algorithm uses an abstraction called SuperRDD, which consists of a 327 set of particles that are interdependent and run in the cluster as a single subswarm. That 328 is, instead of sending each particle to the cluster independently, they are grouped into 329 subswarms of variable size between 1 and *S*, where *S* is the number of particles. The larger 330 the size of the subswarm, the lower the degree of asynchronicity of the algorithm, since 331 more particles are dependent on each other. However, this change improves the efficiency 332 of the algorithm by removing some of the computational overhead of communication 333 between the nodes, which partially sacrifices asynchronicity as the master node pauses the 334 global computation while waiting for the partial results of the subswarm. In the context 335 of Spark, the SuperRDD consists of the grouping of multiple individual RDD particles 336 that are then evaluated. In the context of Spark, the SuperRDD is the grouping of multiple 337 individual RDD particles that are then evaluated by the cluster. In this way, and as the 338 number of particles in the RDD increases, fewer Spark jobs need to be scheduled, reducing 339 the communication overhead, at the cost of the particles having to wait for the rest of the 340 RDD to be evaluated by the node. 341

As for the implementation in Scala and Spark, two concepts are key to proper operation: 342 an accumulator that receives the evaluated particle data (or SuperRDDs) from the worker 343 nodes and a way to distribute these particles to the worker nodes. The best global position 344 update is performed by the broadVar, as in the DSPSO algorithm. The accumulator imple-345 mentation (see Appendix A) consists of a communication channel capable of storing lists of 346 numbers. We will call this the accumulator channel. The worker nodes, when evaluating 347 the particles, send to this channel a list containing the position of the particle, its velocity, 348 and the processed value of its fitness. The master node then reads the elements of this 349 channel to update the particle values. In the pseudocode 2, srch represents the channel to 350 send particles in one batch to the worker nodes and fuch is the fitness update channel to 351 receive the updated values of these particles. 352

Algorithm 2 DAPSO pseudocode

```
Parameters: I, P, N, M, S
Output: bg
    context \leftarrow InitSpark()
    broadVar \leftarrow context.NewBroadcastVariable([N][M])
    ps \leftarrow InitParticles(P,N,M)
    bg \leftarrow (null, \infty)
    srch \leftarrow NewChannel()
    fuch \leftarrow NewChannel()
    aggr \leftarrow Aggregator(S, srch)
    for particle \in ps do
                                  aggr.Aggregate(particle)
    end for
    for sr \in srch do //async
         \lambda \leftarrow \text{FitnessEval(broadVar)}
         psfu \leftarrow context.parallelize(ps).map(\lambda).CollectAsync()
         fuch.Send(psfu)
    end for
```

3.2.1	. The Master Node process consists of the following steps:	353
1.	initializing the particle parameters, positions and velocities,	354
2.	initializing the state of the swarm, as well as that of a particle queue to send to the	355
	worker nodes,	356
3.	loading the initial particles into the queue,	357
4.	distributing the particles from the queue to the available executors,	358
5.	waiting for the results of all evaluated particles (with calculated fitness function) of	359
	the subswarm and the personal best position P_{id} for this iteration,	360
6.	updating the velocity vector V_{id} and position vector X_{id} of each particle based on the	361
	personal best position P_{id} and the global best position P_{bg} found by all the particles,	362
7.	placing the particle back in the queue and returning to step 4 if the stop condition is	363
	not satisfied,	364
8.	return the best global position P_{bg} .	365
3.2.2	2. The process of worker nodes	366
	Same as in the synchronous variant.	367
3.3.	Apache Spark implementation	368
	This work was not programmed directly in CUDA, but used an open-source data	369
proc	ressing framework with a processor cluster architecture that allows for massively	370
para	Illel and distributed computations. This is the main feature of the analytics engine	371
know	wn as <i>Apache Spark</i> [33], designed for efficient processing and analysis of large amounts	372
of d	ata, with the ability to achieve scalability and quality of service when implementing	373

parallel and distributed computations. This is the main feature of the analytics engine known as *Apache Spark* [33], designed for efficient processing and analysis of large amounts of data, with the ability to achieve scalability and quality of service when implementing ML models. Spark is implemented in the Scala programming language, which is why it has been chosen as the primary programming language in this study. Based on RDDs, *resilient distributed datasets*, described by Matei Zaharia in [34], Spark is the most widely used tool for performing scalable computational tasks and data science.

is the most widely used tool for performing scalable computational tasks and data science. 377 RDDs are fault-tolerant parallel structures that allow intermediate results to be persisted in 378 memory and manipulated by a set of operators. They are particularly useful for applica-379 tions where intermediate computations are reused across multiple computations, such as 380 most iterative machine learning algorithms: logistic regression, K-means, ... Formally, an 381 RDD is a partitioned collection of read-only data sets that can be created from deterministic 382 operations on data in stable storage or from other RDDs. We will call these operations trans-383 formations to distinguish them from other operations. Examples of these transformations 384 include mapping, filtering and joining. The main goal of RDDs is to define a programmatic 385 interface that is able to provide fault tolerance in an efficient way. On the other hand, distributed shared memory architectures provided an interface based on fine-grained updates of mutable states such as cells in a table. The only way to provide fault tolerance in the latter is to replicate data to other machines or to log updates on nodes, which unlike Spark RDDs, turns out to be quite inefficient.

There are three important features associated with an RDD: dependencies, partitions 391 (with some locality information) and transformations (computational functions). First, you 392 need a list of dependencies, which tell Spark how to construct an RDD from its inputs. 393 When results need to be replicated, Spark can rebuild an RDD from these dependencies 394 and replicate operations on it. This feature gives RDDs resiliency. Second, partitioning 395 gives Spark the ability to divide the work of parallelizing computations into partitions by 396 mapping them to Spark cluster executors. Third, transformations apply to data frames as 397 follows: Partition => Iterator[T]. All three are fundamental to the simple RDD program-398 ming model on which all top-level application programming functionality is based, which 399 approximates a functional programming paradigm. 400

In the Spark environment, data are fragmented into partitions, which are the elemen-401 tary unit of data that can be processed autonomously. RDDs are segmented into these 402 partitions and distributed across the cluster. The number of partitions is generally adjustable and depends on factors such as data volume and availability of resources in the 404 system. Associated with each RDD are partitions that provide Spark with the ability to 405 divide the work of parallelizing the computation among executors in the Spark cluster. 406 In some cases, for example, when reading from HDFS, Spark uses locality information to 407 send work to executors close to the data. In this way, less data are transmitted over the 408 network (Figure 2) and greater efficiency is achieved than using the map/reduce distributed 409 computing and Hadoop.

Figure 2. Spark components communicating through the Spark driver

In the main loop of a neural network implemented for solving prediction problems, we can 411 find three distinct parts, the computation of the fitness function, the update of local and 412 global data values, and finally the output of results that can change over time and have 413 time constraints. To achieve the required efficiency of the ANN training implementation, 414 Spark RDDs have been used for both DSPSO and DAPSO implementations, where each 415 row contains a particle with the information of its position, velocity, personal best position 416 and personal best fitness. With this information the particle's fitness can be computed and 417 its personal best position and fitness can be updated, computations that are performed in 418 parallel for each particle in the RDD using Spark. Instead of setting this data along with 419 each task on the cluster executors, Spark distributes the broadcast variables to the machines 420 using efficient broadcast algorithms to achieve lower communication costs in massively 421 parallel applications. 422

4. Case Study and Applications

We propose two cases for evaluating a Spark-based implementation that can run on both CPUs and GPUs to take full advantage of the performance capabilities that the DSPSO and DAPSO variants of the PSO algorithm implementation can offer us, as follows

- efficiency improvement: parallelization leverages the computing power of multiple resources, such as graphics processing units (CPUs or GPUs) or central processing units (CPUs), thus speeding up the training process,
- faster scanning: parallelization techniques for the PSO algorithm allow multiple solutions to be evaluated simultaneously, speeding up the search for optimal solutions in 431 a large parameter space,
- scalability: It can handle problems of varying size and complexity, from small tasks to 433 large challenges with massive data sets,
- increased accuracy: by enabling faster and more efficient training, parallelization of the PSO algorithm can improve the quality of the neural network models that are designed, resulting in better performance in prediction and classification tasks,
- reduction of development time:parallelization reduces development time by speeding up 438 the training process, leading to faster development of machine learning models. 439

Predicting energy consumption (EC) across a range of buildings is a formidable challenge. 440 This explains why companies and governments around the world are focusing their efforts 441 in this area. One of the most critical areas to address this problem is the prediction of 442 energy consumption (EC) at the local level, for example, in buildings associated with an organization or institution. This allows us to anticipate future events and, as a result, make 444 more informed decisions about energy savings. In this context, the analysis of energy 445 consumption recorded by sensors at the individual level, in specific areas or buildings, has 446 the potential to reduce energy costs and mitigate the environmental impact derived from 447 energy production. 448

In addition to its application to regression problems, the PSO algorithm can also be 449 used to train neural networks focused on solving classification problems. To this end, we 450 propose here a second case study, to develop which we have taken a dataset from the 451 Kaggle platform corresponding to the challenge Binary Prediction of Smoker Status using 452 Bio-Signals challenge. The Kaggle website can be found here: https://www.kaggle.com/ 453 competitions/playground-series-s3e24. 454

4.1. A regression problem: prediction of the electrical consumption of Institution buildings

In order to achieve the performance required for the application to make useful predic-456 tions about energy consumption, we propose here two Spark-based model implementations 457 for useful EC predictions for a given time horizon, such as the hourly power consumption 458 during the month and presented here, can be run on both CPUs and GPUs to take full 459 advantage of the performance capabilities that such an implementation can offer us. Several 460 studies have provided solutions to the problem of predicting EC in buildings using EAs 461 and ANN. However, the main drawback of these methods is that they have an unreliable 462 response time. So far, some approaches have been proposed to solve this problem [35]. As 463 a result, there is still a lot of work to be done in this line of research, while interesting imple-464 mentations of GPU-based EAs have been proposed in [1], where different data structures, 465 configurations, data sizes and complexities have been studied to solve the problem. 466

The two variants DSPSO and DAPSO implemented in Scala/Spark in this study 467 have been used here to solve a 24-hour EC prediction problem in buildings as one of 468 the fundamental objectives of this work. To test the performance we have used the PSO 469 algorithm as baseline and the Spark tool to train a perceptron-type neural network to make 470 predictions about the EC of a set of buildings (Figure 3, 4) at the University of Granada, UGr 471 (Spain). The performance of both algorithm implementations has been tested by measuring 472 the execution time required to execute each of them. For this, we have used an abstraction 473 related to each benchmark performed, according to which we always use a monotonic clock 474

425

426

427

428

429

430

432

435

436

437

Figure 3. Prediction with DSPSO implementation of the hourly power consumed during the month of January 2024 by a group of UGr buildings

Figure 4. Prediction with DAPSO implementation of the hourly power consumed during the month of January 2024 by a group of UGr buildings

in our measurements, i.e., the time always goes forward and is not affected by hardware 475 issues, such as time skew. 476

4.2. Performance evaluation of a regression problem implementation

To test the performance, we have used the implemented variants of the PSO algorithm 478 and Spark primitives to train a perceptron neural network with the parameters given in 479 Table 2, which correspond to the attributes in the rows of the dataset provided by the 480 institution, such as the day, hour, and minute of the measurement, as well as the power 481 scheduled for that day. We have evaluated the realized implementation of the DSPSO 482 algorithm with synchronous individual update of particle velocity/position and that of 483 the DAPSO algorithm with asynchronous distributed update of the same parameters. 484 Moreover, to check the performance of each algorithm, only one of the first two constant 485

Parameter	Value
Number of PSO iterations	100, 200, 500, 1000
Number of neurons in the input layer	15
Number of neurons in the hidden layer	30
Number of particles	100, 200, 500, 1000
SuperRDDs	4
Batch size	10
Interval of particle positions	[-1,1]
Particle velocity ranges	[-0.6,0.6] (0.6×pos max)
w	1
c_1	0.8
c_2	0.2

Table 2. Parameter configuration for the EC prediction of a set of buildings for the DSPSO and DAPSO variants.

parameters in Table 2 was increased at a time, while the other remained unchanged in 486 each test. In this way were able to analyze how each algorithm reacts to an increase in the

Figure 5. Performance evaluation with change in the number of (a)particles, (b) iterations.

complexity of one parameter: particles, iterations , under certain conditions, individually. Figure 5(a) shows that, for a small number of particles (100,200), the distributed algorithms (DSPSO and DAPSO) perform slightly better than the traditional sequential PSO algorithm, 490 as the overhead introduced by Spark affects the overall measured performance. However, 491 when the number of particles increases to (500, 100), the distributed algorithms DAPSO 492

and DSPSO are significantly faster, achieving on average 4 times and 2 times more speedup, 493 respectively, than the traditional PSO. Figure 5(b) shows a similar behavior to the previous 494 graph as the number of iterations is increased. The performance of DAPSO is observed to 495 be similar to DSPSO for (500, 1000) iterations. This is because the number of Spark-jobs 496 generated increases mainly with the number of iterations. Therefore, for a high number of 497 iterations, the number of jobs created is similar for both algorithms. This differs from the 498 observation in Figure 5(a) when the number of iterations is kept constant and the number 499 of particles is increased. Therefore, both algorithms perform well regardless of the number 500 of iterations or particles.

Figure 6. Mean square error obtained with: (a)100 iterations, (b) 100 particles.

The performance of the distributed PSO algorithms is enhanced by using multiple 502 executors for parallel fitness evaluation of particles on the Spark cluster. Of course, this 503 performance is more visible on complex optimization problems where the overhead caused 504 by Spark is negligible compared to the traditional PSO implementations. Figures 6 show 505 the results relative to the error (MSE) of the measures of both the DSPSO and DAPSO 506 implementations. The network was trained on 80% of the data (training set) and the 507 remaining 20% was used to measure the errors (test set). In Figure 6, the errors obtained by 508 both algorithms with 100 iterations (a) are much larger when using 12000 samples. This is 509 due to the excessive task creation when there are not enough samples, resulting in a less 510 representative search space. As a result, the particles may have difficulty converging to an 511 optimal solution. 512

522

On the other hand, we observe that the error variability increases with the number 513 of particles in the scan when using 12000 data. This is due to the updating made to the 514 best position and fitness computed by the particles. However, as the number of particles 515 increases, the errors converge to the same values as the asynchronous algorithm (DAPSO). 516 This suggests that the reliability of both implemented variants depends mainly on the 517 quality of the training data set. The DAPSO variant is generally more accurate, even with 518 fewer samples. Finally, both graphs in the figure Figure 6(b) show that for more than 30240 519 samples, DAPSO produces the lowest error for higher values of the number of particles 520 and iterations. 521

4.3. A Classification problem: Binary Prediction of Smoker Status using Bio-Signals

The PSO algorithm can be used to train neural networks focused on solving classification problems. Therefore, a dataset was selected from the Kaggle platform, corresponding to a competition where the objective is to predict the binary variable *smoking* using a set of biological characteristics such as the presence of caries or the levels of haemoglobin or triglycerides. The metrics to be used were accuracy, precision, recall and f1-score.

Variable	Chi-square value	P-value
height	35178.19	0.0
weight	20419.24	0.0
waist	10849.84	0.0
eyesight(left)	2819.29	0.0
eyesight(right)	3432.92	0.0
hearing(left)	232.12	2.06e-52
hearing(right)	215.86	7.25e-49
systolic	1090.97	3.31e-236
relaxation	1875.90	0.0
fasting blood sugar	2089.03	0.0
Cholesterol	1215.51	3.16e-263
triglyceride	18319.41	0.0
HDL	10973.96	0.0
LDL	1067.00	5.24e-231
hemoglobin	34114.14	0.0
Urine protein	165.31	7.82e-38
serum creatinine	13429.07	0.0
AST	725.64	5.77e-157
ALT	7484.18	0.0
Gtp	26874.75	0.0
dental caries	1810.41	0.0

Table 3. Chi-squared tests for each variable

4.3.1. Statistical study of covariates

A statistical study of the covariates on the dataset was carried out using Python libraries, specifically the function *chi2_contingency* from the scipy library to perform the chi-squared test (Table 3) and the statsmodels library to calculate the odds ratio and the relative risk. As most of the characteristics we have in the dataset are continuous, we have converted them to categorical variables, creating four categories for each continuous variable,

- *Low*: Those between the 0th percentile and the 25th percentile are classified here
- *Medium low*: Those between the 25th percentile and the 50th percentile are classified here
- *Medium high*: Those between the 50th percentile and the 75th percentile are classified here
- *High*: Those between the 75th percentile and the 100th percentile are classified here

527

529

530

531

532

533

534

535

536

537

538

539

In this case we will set a standard confidence level of 95%, i.e. a significance level of alpha = 0.05. Since the p-value is very close to 0 and much smaller than alpha = 0.05, we reject the null hypothesis that the variables are independent in all cases. 543

4.3.2. Odds ratio calculation

The odds ratio (OR) is used to quantify the association between two events. It compares the odds of the event occurring in one group with the odds of the event occurring in the other group. It is given by the equation

$$OR = \frac{Odds \, in \, favor \, of \, event \, in \, Group \, 2}{Odds \, in \, favor \, of \, event \, in \, Group \, 1} \tag{3}$$

The odds ratio should be interpreted according to three ranges of values: OR ==1, there is no association between exposure and outcome; OR > 1, indicates a positive association between exposure and outcome; OR < 1, indicates a negative association between exposure and outcome.

Table 4. Odds Ratio for Categorical Variables

Variable	Odds ratio
weight(kg)_Low	0.20961654947072159
weight(kg)_Medium_Low	1.218644191656455
weight(kg)_Medium_High	2.097852237464934
weight(kg)_High	2.8299577733161576
fasting blood sugar_Low	0.6308223587839904
fasting blood sugar_Medium_Low	0.9541383540661215
fasting blood sugar_Medium_High	1.173636730372843
fasting blood sugar_High	1.4547915548094907
triglyceride_Low	0.23407715488962197
triglyceride_Medium_Low	0.7200827234227996
triglyceride_Medium_High	1.6370622749650663
triglyceride_High	3.1767870705800836
HDL_Low	2.365531709348869
HDL_Medium_Low	1.4317551296401139
HDL_Medium_High	0.7715794823329627
HDL_High	0.3282304510981655
LDL_Low	1.1629428483574764
LDL_Medium_Low	1.1890457266489936
LDL_Medium_High	1.0438026307432897
LDL_High	0.6844025582281992

The main results of Table 4 with odds ratio values are as follows: (1) Those with higher 552 sugar and relaxation indices are more likely to smoke than those with low indices. (2) 553 There is an association between smoking and higher body weight.(3) We see a significant 554 increase in triglycerides (a type of blood fat) and haemoglobin and a large decrease in HDL. 555 (4) We also see, although to a much lesser extent a decrease in LDL and an increase in 556 serum creatinine which is a waste product present in the blood.(5) There is also a significant 557 increase in alanine aminotransferase (ALT) which is an enzyme found mainly in the liver, 558 the excess of which in the bloodstream can indicate damage to liver cells. 559

544

4.3.3. Relative Risk calculation

The risk ratio (RR) is a statistical measure used to assess the relationship between the 561 probability of a particular outcome in a group exposed to an event compared with a group 562 not exposed. It is given by the equation

$$RR = \frac{Incidence in the of exposed Group}{Incidence in the unexposed Group}$$
(4)

The results of the RR calculation are interpreted in the same way as the OR calculation. 564 RR==1, there is no association between exposure and outcome. RR > 1, suggests a positive 565 association, i.e., exposure is associated with an increased risk of the outcome. RR < 1, 566 suggests a negative association between exposure and outcome. 567

The main results of Table 5 with RR values confirm those of Table 4 and are as follows: 568 (1) There is again an association between smoking and higher body weight. (2) There is also 569 an increase in blood glucose, although less steep than that seen in the odds ratio calculation. 570 (3) As in the previous table, there is a significant increase in triglycerides (a type of blood 571 fat) and haemoglobin and a large decrease in HDL. (4) There is also an increase in serum 572 creatinine. (5) There is also a significant increase in alanine aminotransferase (ALT) and a 573 large increase in guanosine triphosphate (GTP). 574

4.4. Evaluation of classification accuracy based on neural networks trained with the PSO

We carried out a validation process. We compared all the accuracy assessment points 576 with the ground truth values. The calculated parameters are the next ones, 577

Precision: The precision is the probability value that a detected class element is valid. It is given by the equation 579

$$Precision = \frac{Number of correctly detected}{Number of all detected} = \frac{TP}{TP + FP}$$
(5)

Table 5. Relative Risk for Categorical Variables

Variable	Relative Risk
weight(kg)_Low	0.38230844375970974
weight(kg)_Medium_Low	1.1138572402084614
weight(kg)_Medium_High	1.4722921983586552
weight(kg)_High	1.657394753125524
•••	
fasting blood sugar_Low	0.7625790496264635
fasting blood sugar_Medium_Low	0.9737980190980333
fasting blood sugar_Medium_High	1.0923983061205762
fasting blood sugar_High	1.2241433259236203
triglyceride_Low	0.38822905484291464
triglyceride_Medium_Low	0.8257440932973402
triglyceride_Medium_High	1.2999795981567317
triglyceride_High	1.7644652462095984
HDL_Low	1.552294793364521
HDL_Medium_Low	1.21516619862005
HDL_Medium_High	0.8603055475766019
HDL_High	0.49401247683404703
LDL_Low	1.0871634378867505
LDL Medium Low	1.1002852299103176
LDL Medium High	1.0242964148293716
LDL_High	0.80065254077625

560

563

575

Figure 7. Classification performance with (a) ROC curve, (b) precision/recall curve.

Recall: The recall is the probability value that a detected class element is detected in the ground truth. It is given by the equation

$$Recall = \frac{Number of correctly detected}{Number of detected in ground truth} = \frac{TP}{TP + FN}$$
(6)

F1 score: This is a metric usually calculated to evaluate the performance of a binary classification model. It is given by the equation

$$F1 - score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$
(7)

The results obtained when contrasted with the interpretation of the ROC and Precision/Re-584 call plots (Figure 7), indicate that the binary classification model we have obtained has 585 a balanced performance. The obtained precision of 77% on average indicates that this 586 percentage of positive predictions is correct and that the obtained classification has been 587 performed reliably by the implemented PSO variants. The obtained recall implies that 588 the model also correctly identifies 77% of all positive cases in the ground truth. F1-score 589 calculated for 100 particles and 100 iterations: 0.7697050147492625, confirms that both 590 measures of precision and recall are consistent with the results obtained, showing a balance 591 between them and that the results have also been obtained with performance. 592

Table 6. Accuracy assessment of smoking Status using bio-Signals, with 10 and 100 particles and the 2 PSO variants.

Classifier	Precision		Recall		F1-score	
	10	100	10	100	10	100
DSPSO	0.62	0.74	0.73	0.74	0.67	0.74
DAPSO	0.68	0.77	0.74	0.77	0.71	0.77

4.5. Assessment of implementation performance

The model appears to be robust and thus quite acceptable, as shown in the summary of one selected run of Table 7, with similar performance measured for the DSPSO and DAPSO variants, along with the near 0.77 accuracy (Table 6) discussed above, again indicating good predictive performance of both algorithms.

Table 7 contains information extracted from the Apache Spark Web UI (Web UI), which is a web-based graphical interface that provides detailed information about the status and performance of running Spark applications. In particular, it shows information about the executors in the cluster, including resource usage, especially memory blocks used by the

	DSPSO	DAPSO
# cores	16	16
Storage memory	25 MiB	135 KiB
Max. active tasks	15	5
Total number of created tasks	2960	992
Task execution (CPU) accumul. time	28800 s.	660 s.
Task execution (GPU) accumul. time	384 s.	7 s.
Average time of 1 parallel run	1554 s.	1060 s.

Table 7. Performance of DSPSO and DAPSO on a Spark cluster with information on the number of executors and the number of blocks.

entire computation, and the activity of Spark jobs or tasks. From the point of view of the 602 distributed PSO algorithms implemented in this study, each job contains a set of particles 603 whose fitness function is evaluated by the executor nodes. So, as the Table 7 shows, we 604 have achieved concurrent execution of multiple jobs in the Spark cluster, where each job 605 means parallel execution of multiple tasks. With the DAPSO implementation the master 606 node collects asynchronously from the cluster the results of the execution of each task, 607 updates the global variables, and returns the particle to the task, thus reusing the tasks and 608 trying to achieve a better load balancing between them. In this way, DAPSO manages to 609 significantly reduce the number of tasks for the fitness evaluation of each particle in the 610 cluster. It can be observed in the table that only up to 5 simultaneously active tasks are 611 necessary. We can say that DAPSO is much more a Spark-jobs "recycler" than DSPSO and 612 therefore the memory usage is only 135 KiB versus the 25MiB needed by DSPSO to do the 613 same job. We can therefore conclude that the DAPSO variant is more suitable for execution 614 on resource constrained nodes in an edge architecture. 615

5. Conclusions

The two distributed implementations of the PSO algorithm presented serve to demon-617 strate the feasibility of their use in deep neural network training in a distributed-edge 618 setting. The asynchronous DAPSO implementation improves the synchronous DSPSO 619 one in terms of performance and accuracy, performing the tasks of fitness evaluation and 620 particle update in a fully parallel and independent way by the workers of an Apache Spark 621 cluster and yields really satisfactory results in terms of performance and scalability. While 622 it has been noted that in problems with few samples, the problem size may be insufficient 623 for DAPSO to achieve optimal performance, however, the MSE obtained with both variants 624 are similar with a considerable amount of data and DAPSO is notoriously superior in terms 625 of performance versus the synchronous DSPSO implementation, improving times in both 626 the regression problem with 175104 samples and the classification problem presented here. 627 In the latter one, due to the volume of the dataset with 127405 samples in the training set 628 and 69 features used for classification, a huge improvement in execution times is achieved. 629

Regarding the implementation performed with an Apache Spark cluster, a higher performance has been observed with the DAPSO variant than with the implementation of the DSPSO variant. Although the programs developed with Spark can be executed on different distributed platforms, in this work the results shown refer only to the execution on a departmental GPU cluster. Therefore, as future work we want to design the presented algorithms for different platforms, such as Kubernetes or Databricks.

Funding: This research was funded by the Spanish Science Ministry (Ministerio de Ciencia e Innovación) grant PID2020-112495RB-C21.

Data Availability Statement: The code with the implementation of the trained neural network has been used to predict the energy consumption of a set of buildings in the University of Granada

(Spain). T mcapeltu	'he Scala/Spark code and the dataset used in this study are available at https://github.com/ /PSO_Spark_Scala.git.	640 641
Abbrevi	ations	642
The follow	ving abbreviations are used in this manuscript:	643
ANN	Artificial Neural Network	644
DAPSO	Distributed Asynchronous PSO	
DLNN	Deep Learning Neural Networks	
DSPSO	Distributed Synchronous PSO	
EA	Evolutionary Algorithms	
EC	Energy consumption	645
GPGPU	General-purpose computing on Graphics Processing Units	
MSE	Mean Squared Error	
NN	Neural Network	
PSO	Particle Swarm Optimization	
RDD	Resilient Distributed Datasets	

Appendix A. DAPSO Implementation

646

Code 1. Channels Implementation

import scala.collection.mutable.ListBuffer

```
class BatchPSO(private val size: Int) {
  private val batches: ListBuffer[Array[Double]] = ListBuffer.empty[Array[Double]]
  private var index: Int = 0
  def add(elem: Array[Double]): Unit = {
    if (index < size) {
      batches += elem
      index += 1
    } else {
      throw new IllegalStateException("Batch_full")
    }
  }
  def isFull: Boolean = index == size
  def getBatch: ListBuffer[Array[Double]] = batches
  def getIndex: Int = index
  def copy(): BatchPSO = {
    val copiedBatch = new BatchPSO(size)
    copiedBatch.index = index
    for (i <- 0 until index) {</pre>
      copiedBatch.batches += batches(i).clone()
    }
    copiedBatch
  }
  def clean(): Unit = {
    batches.clear()
    index = 0
  }
}
```

Code 2. Channels declaration

```
val srch = new Channel[BatchPSO]()
val fuch = new Channel[ListBuffer[Array[Double]]]()
```

```
Code 3. Obtaining accumulator particles and updating values
```

```
val iters = nIters * nParticles / batchSize
for (i <- 0 until iters) {</pre>
// Read from the Fitness writing channel
var data = fuch.read
var pos: Array[Double] = new Array[Double](0)
var velocity: Array[Double] = new Array[Double](0)
var bestGlobalPos: Array[Double] = new Array[Double](0)
var fit: Double = 0
// PSO
for (posVel <- data) {</pre>
  pos = posVel.slice(0, nWeights)
  velocity = posVel.slice(nWeights, 2 * nWeights)
  bestGlobalPos = posVel.slice(2 * nWeights, 3 * nWeights)
  fit = posVel(3 * nWeights)
  if (fit < bestFitness)</pre>
    bestFitness = fit
    bestPos = bestGlobalPos
  1
}
```

Code 4. Distribution of particles to the worker nodes

```
// Get batch
val batch = srch.read
val batchData = batch.getBatch.toArray
// Set parallelization
val RDD = spContext.parallelize(batchData, nTasks)
val psfu_array = RDD.map(part => calculateFitness(x, y, part,
nInput, nHidden, isClas)).collect()
```

References

- 1. Daniel Leal Souza, Tiago Carvalho Martins, V.A.D. PSO-GPU: Accelerating Particle Swarm Optimization in CUDA-Based Graphics Processing Units. In Proceedings of the GECCO11, 07 2011.
- Gerhard Venter, J.S.S. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations. In Proceedings of the 6-th World Congresses of Structural and Multidisciplinary Optimization, 03 2005.
- Iruela, J.; Ruiz, L.; Pegalajar, M.; Capel, M. A parallel solution with GPU technology to predict energy consumption in spatially distributed buildings using evolutionary optimization and artificial neural networks. *Energy Conversion and Management* 2020, 207, 112535. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112535.
- 4. Iruela, J.R.S.; Ruiz, L.G.B.; Capel, M.I.; Pegalajar, M.C. A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm. *Energies* **2021**, *14*. https://doi.org/10.3390/en14134038.
- Busetti, R.; El Ioini, N.; Barzegar, H.R.; Pahl, C. A Comparison of Synchronous and Asynchronous Distributed Particle Swarm Optimization for Edge Computing. In Proceedings of the Proceedings of the 13th International Conference on Cloud Computing and Services Science–CLOSER. INSTICC.SciTePress, 2023, Vol. I, pp. 194–203.
- 6. Ruiz, L.; Capel, M.; Pegalajar, M. Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem. *Applied Soft Computing* **2019**, *76*, 356–368. https://doi.org/https://doi.org/10.1016/j.asoc.2018.12.028.
- 7. Ruiz, L.; Rueda, R.; Cuéllar, M.; Pegalajar, M. Energy consumption forecasting based on Elman neural networks with evolutive optimization. *Expert Systems with Applications* **2018**, *92*, 380–389. https://doi.org/https://doi.org/10.1016/j.eswa.2017.09.059.
- 8. Ruiz, L.G.B.; Cuéllar, M.P.; Calvo-Flores, M.D.; Jiménez, M.D.C.P. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings. *Energies* **2016**, *9*. https://doi.org/10.3390/en9090684.
- Pegalajar, M.; Ruiz, L.; Cuéllar, M.; Rueda, R. Analysis and enhanced prediction of the Spanish Electricity Network through Big Data and Machine Learning techniques. *International Journal of Approximate Reasoning* 2021, 133, 48–59. https://doi.org/https://doi.org/10.1016/j.ijar.2021.03.002.
- 10. Criado-Ramón, D.; Ruiz, L.; Pegalajar, M. Electric demand forecasting with neural networks and symbolic time series representations. *Applied Soft Computing* **2022**, *122*, 108871. https://doi.org/https://doi.org/10.1016/j.asoc.2022.108871.
- Sahoo, B.M.; Amgoth, T.; Pandey, H.M. Particle swarm optimization based energy efficient clustering and sink mobility in heterogeneous wireless sensor network. *Ad Hoc Networks* 2020, 106, 102237. https://doi.org/https://doi.org/10.1016/j.adhoc.20 20.102237.
- Malik, S.; Kim, D. Prediction-Learning Algorithm for Efficient Energy Consumption in Smart Buildings Based on Particle Regeneration and Velocity Boost in Particle Swarm Optimization Neural Networks. *Energies* 2018, 11. https://doi.org/10.3390/ en11051289.

647 648

649

655

656

657

658

659

660

661

662

663

664

665

666

667

669

670

671

672

673

674

675

- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A 13. 677 comprehensive survey. IEEE Access 2022, 10, 10031–10061.
- Determination of industrial energy demand in Turkey using MLR, ANFIS and PSO-ANFIS. Journal of Artificial Intelligence and 14. 679 Systems 2021, 3. https://doi.org/10.33969/AIS.2021.31002. 680
- Subramoney, D.; Nyirenda, C.N. Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments. IEEE 15. Access 2022, 10, 117199–117214. https://doi.org/10.1109/ACCESS.2022.3220239.
- Wang, J.; Chen, X.; Zhang, F.; Chen, F.; Xin, Y. Building Load Forecasting Using Deep Neural Network with Efficient Feature 16. Fusion. Journal of Modern Power Systems and Clean Energy 2021, 9, 160–169. https://doi.org/10.35833/MPCE.2020.000321.
- 17. Yong, Z.; Li-juan, Y.; Qian, Z.; Xiao-yan, S. Multi-objective optimization of building energy performance using a particle swarm optimizer with less control parameters. Journal of Building Engineering 2020, 32, 101505. https://doi.org/https: //doi.org/10.1016/j.jobe.2020.101505.
- 18. Ghalambaz, M.; Jalilzadeh, Y.R.; Davami, A.H. Building energy optimization using butterfly optimization algorithm. *Thermal* Science 2022, 26, 3975–3986.
- 19. Duran Toksari, M. Ant colony optimization approach to estimate energy demand of Turkey. *Energy Policy* 2007, 35, 3984–3990. 690 https://doi.org/https://doi.org/10.1016/j.enpol.2007.01.028.
- 20. Sundareswaran, K.; Sankar, P.; Nayak, P.S.R.; Simon, S.P.; Palani, S. Enhanced Energy Output From a PV System Under Partial Shaded Conditions Through Artificial Bee Colony. IEEE Transactions on Sustainable Energy 2015, 6, 198–209. https:// //doi.org/10.1109/TSTE.2014.2363521.
- Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Asadi, S.; Kim, J.H.; Geem, Z.W. Harmony search algorithm for energy system 21. applications: an updated review and analysis. Journal of Experimental & Theoretical Artificial Intelligence 2019, 31, 723–749, [https://doi.org/10.1080/0952813X.2018.1550814]. https://doi.org/10.1080/0952813X.2018.1550814.
- 22. dos Santos Coelho, L.; Mariani, V.C. Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy and Buildings 2013, 59, 273–278. https://doi.org/https://doi.org/10.1016/j.enbuild.2012.11.030.
- 23. Nadjemi, O.; Nacer, T.; Hamidat, A.; Salhi, H. Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms. Renewable and Sustainable Energy Reviews 2017, 70, 1352–1365. https://doi.org/https: //doi.org/10.1016/j.rser.2016.12.038.
- Rong-Zhi Qi, Zhi-Jian Wang, S.Y.L. A Parallel Genetic Algorithm Based on Spark for Pairwise Test Suite Generationk. Journal of 24. Computer Science and Technology 2015. https://doi.org/https://doi.org/10.1007/s11390-016-1635-5.
- J.R.S. Iruela, L.G.B. Ruiz, M.C. A parallel solution with GPU technology to predict energy consumption in spatially distributed 25. buildings using evolutionary optimization and artificial neural networks. Energy Conversion and Management 2020. https://www.artificial.org/a //doi.org/https://doi.org/10.1016/j.enconman.2020.112535.
- 26. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN'95-international conference on neural networks. IEEE, 1995, Vol. 4, pp. 1942-1948.
- 27. Panapakidis, I.P.; Dagoumas, A.S. Day-ahead electricity price forecasting via the application of artificial neural network based models. Applied Energy 2016, 172, 132–151. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.03.089.
- Bouzerdoum, M.; Mellit, A.; Massi Pavan, A. A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale 28. grid-connected photovoltaic plant. Solar Energy 2013, 98, 226–235. https://doi.org/https://doi.org/10.1016/j.solener.2013.10.002.
- 29. Lahouar, A.; Ben Hadj Slama, J. Day-ahead load forecast using random forest and expert input selection. Energy Conversion and Management 2015, 103, 1040–1051. https://doi.org/https://doi.org/10.1016/j.enconman.2015.07.041.
- Marcel Waintraub, Roberto Schirru, C.M.P. Multiprocessor modeling of parallel Particle Swarm Optimization applied to nuclear 30. engineering problems. Progress in Nuclear Energy 2009. https://doi.org/https://doi.org/10.1016/j.pnucene.2009.02.004.
- 31. Fan, D.; Lee, J. A Hybrid Mechanism of Particle Swarm Optimization and Differential Evolution Algorithms based on Spark. Transactions on Internet and Information Systems 2019. https://doi.org/http://doi.org/10.3837/tiis.2019.12.010.
- Yinan Xu, Hui Liu, Z.L. A distributed computing framework for wind speed big data forecasting on Apache Spark. Sustainable 32. Energy Technologies and Assessments 2020. https://doi.org/https://doi.org/10.1016/j.seta.2019.100582.
- Foundation, A.S. Apache Spark[™] Unified Engine for large-scale data analytics. https://spark.apache.org, 2018. [Resource 33. 722 online, accessed July 3, 2024]. 723
- Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient Distributed 34. 724 Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th USENIX Symposium on 725 Networked Systems Design and Implementation (NSDI 12), San Jose, CA, abril 2012; pp. 15–28.
- 35. Oh, K.S.; Jung, K. GPU implementation of neural networks. *Pattern Recognition* **2004**, *37*, 1311–1314. https://doi.org/10.1016/j. 727 patcog.2004.01.013. 728

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual 729 author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 730 people or property resulting from any ideas, methods, instructions or products referred to in the content. 731

681

682

683

684

685

686

687

688

689

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721