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Abstract. Let S be a numerical semigroup. We say that h ∈ N\S is an isolated gap of S if
{h−1, h+1} ⊆ S. A numerical semigroup without isolated gaps is called a perfect numerical
semigroup. Denote by m(S) the multiplicity of a numerical semigroup S. A covariety is
a nonempty family C of numerical semigroups that fulfills the following conditions: there
exists the minimum of C , the intersection of two elements of C is again an element of C , and
S\{m(S)} ∈ C for all S ∈ C such that S 6= min(C ).We prove that the setP(F ) = {S : S is
a perfect numerical semigroup with Frobenius number F} is a covariety. Also, we describe
three algorithms which compute: the set P(F ), the maximal elements of P(F ), and the
elements of P(F ) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect
numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical
semigroup), respectively. We prove that the sets Parf(F ) = {S : S is a Parf-numerical
semigroup with Frobenius number F} and Psat(F ) = {S : S is a Psat-numerical semigroup
with Frobenius number F} are covarieties. As a consequence we present some algorithms
to compute Parf(F ) and Psat(F ).

Keywords: perfect numerical semigroup; saturated numerical semigroup; Arf numerical
semigroup; covariety; Frobenius number; genus; algorithm

MSC 2020 : 20M14, 11D07, 13H10

1. Introduction

Let Z be the set of integers and N = {z ∈ Z : z > 0}. A submonoid of (N,+) is

a subset of N which is closed under addition and contains the element 0. A numerical
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semigroup is a submonoid S of (N,+) such that N \S = {x ∈ N : x /∈ S} has finitely

many elements.

If S is a numerical semigroup, then m(S) = min(S \ {0}), F(S) = max{z ∈ Z :

z /∈ S}, and g(S) = ♯(N \ S) (where ♯X denotes the cardinality of a set X) are three

important invariants of S, called the multiplicity, the Frobenius number, and the

genus of S, respectively.

IfA is a nonempty subset of N, we denote by 〈A〉 the submonoid of (N,+) generated

by A. That is, 〈A〉 = {λ1a1 + . . . + λnan : n ∈ N \ {0}, {a1, . . . , an} ⊆ A and

{λ1, . . . , λn} ⊆ N}. In [21], Lemma 2.1 it is shown that 〈A〉 is a numerical semigroup

if and only if gcd(A) = 1.

If M is a submonoid of (N,+) and M = 〈A〉, then we say that A is a system

of generators of M . Moreover, if M 6= 〈B〉 for all B  A, then we say that A is

a minimal system of generators of M . In [21], Corollary 2.8 it is shown that every

submonoid of (N,+) has a unique minimal system of generators, which in addition is

finite. We denote bymsg(M) the minimal system of generators ofM . The cardinality

of msg(M) is called the embedding dimension of M and denoted by e(M).

The Frobenius problem (see [17]) focuses on finding formulas to calculate the

Frobenius number and the genus of a numerical semigroup from its minimal system

of generators. The problem was solved in [22] for numerical semigroups with embed-

ding dimension two. Nowadays, the problem is still open in the case of numerical

semigroups with embedding dimension greater than or equal to three. Furthemore,

in this case the problem of computing the Frobenius number of a general numerical

semigroup becomes NP-hard, see [16].

Let S be a numerical semigroup. We say that h ∈ N \ S is an isolated gap of S

if {h− 1, h+1} ⊆ S. A numerical semigroup without isolated gaps is called a perfect

numerical semigroup.

If F ∈ N \ {0}, we put

P(F ) = {S : S is a perfect numerical semigroup and F(S) = F}.

The main aim of this work is to study the set P(F ).

In order to collect common properties of some families of numerical semigroups,

the concept of covariety was introduced in [13]. A covariety is a nonempty family C

of numerical semigroups that fulfills the following conditions:

(1) There exists the minimum of C with respect to set inclusion.

(2) If {S, T} ⊆ C , then S ∩ T ∈ C .

(3) If S ∈ C and S 6= min(C ), then S \ {m(S)} ∈ C .

In this paper, by using the techniques of covarieties, we study the set P(F ). The

paper is structured as follows. In Section 2, we see that P(F ) is a covariety and its
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elements can be ordered in a rooted tree. Additionally, we see how the children of

an arbitrary vertex of this tree are. These results will be used in Section 3 to show

three algorithms which compute: the setP(F ), the maximal elements ofP(F ), and

the elements of P(F ) with a given genus.

We say that a set X is a P(F )-set if it satisfies two conditions:

(1) X ∩min(P(F )) = ∅.

(2) There is S ∈ P(F ) such that X ⊆ S.

If X is a P(F )-set in Section 4 we prove that then there exists the least ele-

ment of P(F ) (with respect to set inclusion) containing X. This element will be

denoted byP(F )[X] and we will say that X is aP(F )-system of generators. It will

be shown that the minimal P(F )-system of generators, in general, is not unique.

Given an element S ∈ P(F ), we define the P(F )-rank of S as

P(F )- rank(S) = min{♯X : X is a P(F )-set and P(F )[X] = S}.

We finish with Section 4, characterizing how the elements of P(F ) with P(F )-

rank 0, 1 and 2 are.

In the semigroup literature one can find a long list of works dedicated to the

study of one dimensional analytically irreducible domains via their value semigroup.

One of the properties studied for this kind of rings using this approach is to have the

Arf property and to be saturated, see [2], [4], [6], [9], [14], [15], [23], [24], and [25].

The characterization of Arf rings and saturated rings via their value semigroup gave

rise to the notion of Arf semigroup and saturated numerical semigroup.

Following the notation introduced in [10], a Parf-semigroup (or Psat-semigroup) is

a perfect numerical semigroup that in addition is Arf (or saturated, respectively). Put

Arf(F ) = {S : S is an Arf numerical semigroup and F(S) = F},

Sat(F ) = {S : S is a saturated numerical semigroup and F(S) = F},

Parf(F ) = {S : S is a Parf-numerical semigroup and F(S) = F}, and

Psat(F ) = {S : S is a Psat-numerical semigroup and F(S) = F}.

By [12] and [11], we know that Arf(F ) and Sat(F ) are covarieties and, additionally,

min(Arf(F )) = min(Sat(F )) = min(P(F )). This fact will be used in Section 5 to

prove that Parf(F ) and Psat(F ) are also covarieties. Moreover, we present some

algorithms to compute all the elements of Parf(F ) and Psat(F ).

Throughout this paper, some examples are shown to illustrate the results proven.

The computation of these examples has been performed by using the GAP, see [8]

and package numericalsgps, see [5].
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2. The covariety P(F ) and its associated tree

Along whole this work, we suppose F is a positive integer greater than or equal

to 2. Our first aim is to prove that P(F ) is a covariety.

The following result has an immediate proof.

Lemma 2.1. The numerical semigroup ∆(F ) = {0, F + 1,→}, where the sym-

bol→ means that every integer greater than F+1 belongs to the set, is the minimum

of P(F ).

The next lemma is well known and it is very easy to prove.

Lemma 2.2. Let S and T be numerical semigroups and x ∈ S. Then the following

statements hold:

(1) S ∩ T is a numerical semigroup and F(S ∩ T ) = max{F(S),F(T )}.

(2) S \ {x} is a numerical semigroup if and only if x ∈ msg(S).

(3) m(S) = min(msg(S)).

Next we describe a characterization of perfect numerical semigroups that appears

in Proposition 1 of [10].

Lemma 2.3. Let S be a numerical semigroup. The following conditions are

equivalent.

(1) S is a perfect numerical semigroup.

(2) If {s, s+ 2} ⊆ S, then s+ 1 ∈ S.

By applying Lemmas 2.2 and 2.3, we can easily deduce the following result.

Lemma 2.4. If {S, T} ⊆ P(F ), then S ∩ T ∈ P(F ).

The following lemma is straightforward to prove.

Lemma 2.5. Let S ∈ P(F ) be such that S 6= ∆(F ). Then S \ {m(S)} ∈ P(F ).

As a consequence of Lemmas 2.1, 2.4 and 2.5, we have the following result.

Proposition 2.6. Whith the above notation, P(F ) is a covariety and ∆(F ) is

its minimum.

A graph G is a pair (V,E), where V is a nonempty set and E is a subset of

{(u, v) ∈ V × V : u 6= v}. The elements of V and E are called vertices and edges,

respectively.

4 Online first



A path (of length n) connecting the vertices x and y of G is a sequence of different

edges of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y.

A graph G is a tree if there exists a vertex r (known as the root of G) such that

for any other vertex x of G there exists a unique path connecting x and r. If (u, v)

is an edge of the tree G, we say that u is a child of v.

Define the graph G(P(F )) in the following way:

⊲ the set of vertices of G(P(F )) is P(F ),

⊲ (S, T ) ∈ P(F )× P(F ) is an edge of G(P(F )) if and only if T = S \ {m(S)}.

As a consequence of Proposition 2.6 and Proposition 2.3 of [13] we can assert

that G(P(F )) is a rooted tree.

Proposition 2.7. With the above notation, G(P(F )) is a tree with root ∆(F ).

A tree can be built recurrently starting from the root and connecting, through

an edge, the vertices already built with their children. Hence, it is very interesting

to characterize the children of an arbitrary vertex of the tree G(P(F )). For this

reason, next we are going to introduce some concepts and results that are necessary

to understand the work.

Following the terminology introduced in [19], an integer z is a pseudo-Frobenius

number of S if z /∈ S and z+s ∈ S for all s ∈ S \{0}.We denote by PF(S) the set of

pseudo-Frobenius numbers of S. The cardinality of PF(S) is an important invariant

of S (see [3] and [7]) called the type of S, denoted by t(S).

Given a numerical semigroup S, denote by SG(S) = {x ∈ PF(S) : 2x ∈ S}. The

elements of SG(S) are called the special gaps of S. The following result is Proposi-

tion 4.33 of [21].

Lemma 2.8. Let S be a numerical semigroup and x ∈ N \ S. Then x ∈ SG(S) if

and only if S ∪ {x} is a numerical semigroup.

As a consequence of Proposition 2.6 and Proposition 2.4 of [13], we have the

following result.

Proposition 2.9. If S ∈ P(F ), then the set formed by the children of S in the

tree G(P(F )) is {S ∪ {x} : x ∈ SG(S), x < m(S) and S ∪ {x} ∈ P(F )}.

The proof of the following result is immediate.

Lemma 2.10. Let S ∈ P(F ), x ∈ SG(S) and x < m(S). Then S ∪ {x} ∈ P(F )

if and only if x /∈ {2,m(S)− 2, F}.
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The next result is a consequence of Proposition 2.9 and Lemma 2.10.

Proposition 2.11. If S ∈ P(F ), then the set formed by the children of S in the

tree G(P(F )) is {S ∪ {x} : x ∈ SG(S), x < m(S) and x /∈ {2,m(S)− 2, F}}.

3. Three algorithms

Our goal in this section is to describe some algorithms which compute:

(1) The set P(F ).

(2) The maximal elements of P(F ).

(3) The elements of P(F ) with a fixed genus.

Let S be a numerical semigroup and n ∈ S \ {0}. The Apry set of n in S (named

so in honour of the author of [1]) is defined as Ap(S, n) = {s ∈ S : s− n /∈ S}.

The following result is deduced from Lemma 2.4 of [21].

Lemma 3.1. Let S be a numerical semigroup and n ∈ S \ {0}. Then Ap(S, n) is

a set with cardinality n. Moreover, Ap(S, n) = {0 = w(0), w(1), . . . , w(n−1)}, where

w(i) is the least element of S congruent with i modulo n for all i ∈ {0, . . . , n− 1}.

Let S be a numerical semigroup. In Remark 1 of [13] it appears that if we know

Ap(S, n) for some n ∈ S \ {0}, then we can easily compute SG(S). And in [13],

Remark 2 it is shown that if Ap(S, n) is known for some n ∈ S \ {0}, then it is very

easy to compute Ap(S ∪ {x}, n) for every x ∈ SG(S).

Algorithm 3.2

Input: An integer F greater than or equal to 2.

Output: P(F ).

(1) P(F ) = {∆(F )}, B = {∆(F )} and Ap(∆(F ), F +1) = {0, F +2, . . . , 2F +1}.

(2) For every S ∈ B compute θ(S) = {x ∈ SG(S) : x < m(S) and x /∈

{2,m(S)− 2, F}}.

(3) If
⋃

S∈B

θ(S) = ∅, then return P(F ).

(4) C =
⋃

S∈B

{S ∪ {x} : x ∈ θ(S)}.

(5) P(F ) = P(F ) ∪C, B = C, compute Ap(S, F + 1) for every S ∈ C and go to

Step (2).
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In the next example, we show how the previous algorithm works.

Example 3.3. We are going to compute P(7), by using Algorithm 3.2.

⊲ P(7) = {∆(7)}, B = {∆(7)} and Ap(∆(7), 8) = {0, 9, 10, 11, 12, 13, 14, 15}.

⊲ θ(∆(7)) = {4, 5}.

⊲ C = {∆(7) ∪ {4},∆(7) ∪ {5}}.

⊲ P(7) = {∆(7),∆(7) ∪ {4},∆(7) ∪ {5}}, B = {∆(7) ∪ {4},∆(7) ∪ {5}},

Ap(∆(7) ∪ {4}, 8) = {0, 4, 9, 10, 11, 13, 14, 15} and

Ap(∆(7) ∪ {5}, 8) = {0, 5, 9, 10, 11, 12, 14, 15}.

⊲ θ(∆(7) ∪ {4}) = ∅, θ(∆(7) ∪ {5}) = {4}.

⊲ C = {∆(7) ∪ {4, 5}}.

⊲ P(7) = {∆(7),∆(7) ∪ {4},∆(7) ∪ {5},∆(7) ∪ {4, 5}}, B = {∆(7) ∪ {4, 5}} and

Ap(∆(7) ∪ {4, 5}, 8) = {0, 4, 5, 9, 10, 11, 14, 15}.

⊲ θ(∆(7) ∪ {4, 5}) = ∅.

⊲ Therefore, the algorithm returns

P(7) = {∆(7),∆(7) ∪ {4},∆(7) ∪ {5},∆(7) ∪ {4, 5}}.

Denote by max(P(F )) the set of maximal elements of P(F ). Our next aim is

to present two algorithms which allow to compute max(P(F )). For this reason, we

need to introduce some concepts and results.

If S is not a perfect numerical semigroup, then we denote by h(S) its maximum

isolated gap. The following result appears in Proposition 25 of [10].

Lemma 3.4. If S is not a perfect numerical semigroup, then S ∪ {h(S)} is a nu-

merical semigroup.

As a consequence of the previous lemma, we have the following result.

Lemma 3.5. If S is a numerical semigroup with the Frobenius number F and

F − 1 /∈ S, then there exists T ∈ P(F ) such that S ⊆ T.

In the next proposition we present a characterization of maximal elements

of P(F ).

Proposition 3.6. If S is a numerical semigroup, then the following conditions

are equivalent.

(1) S ∈ max(P(F )).

(2) S is maximal in the set {T : T is a numerical semigroup and T ∩{F, F−1} = ∅}.
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P r o o f. (1) ⇒ (2). We suppose that S is not maximal in the set {T : T is

a numerical semigroup and T ∩ {F, F − 1} = ∅}, then there exists a numerical

semigroup T such that T ∩ {F, F − 1} = ∅ and S ( T. It is clear that F(T ) = F

and F − 1 /∈ T. Therefore, by applying Lemma 3.5, there is P ∈ P(F ) such that

T ⊆ P. Thus, S ( P and consequently, S /∈ max(P(F )).

(2) ⇒ (1) First we show that S ∈ P(F ). Otherwise, by applying Lemma 3.5,

there exists T ∈ P(F ) such that S ( T. It is clear that T ∩ {F, F − 1} = ∅ and so S

is not maximal in the set {T : T is a numerical semigroup and T ∩ {F, F − 1} = ∅}.

Finally, S ∈ max(P(F )) because P(F ) ⊆ {T : T is a numerical semigroup and

T ∩ {F, F − 1} = ∅}. �

If C ⊆ N \ {0}, then we put L (C) = {S : S is a numerical semigroup and

S∩C = ∅}. Denote by max(L (C)) the set formed by the maximal elements ofL (C).

Algorithm 1 from [20] allows to compute the set max(L (C)) from C. Therefore, by

using Proposition 3.6, we can assert that we have an algorithm to obtainmax(P(F )).

The following result is deduced from Lemma 4.35 of [21].

Lemma 3.7. Let S and T be numerical semigroups such that S ( T. Then

max(T \ S) ∈ SG(S).

In the following result we show another characterization of the elements of

max(P(F )) by using the set of special gaps.

Proposition 3.8. If S is a numerical semigroup, then the following conditions

are equivalent.

(1) S ∈ max(P(F )).

(2) SG(S) = {F, F − 1}.

P r o o f. (1) ⇒ (2) If S ∈ P(F ) then it is clear that {F, F − 1} ⊆ SG(S).

If SG(S) 6= {F, F − 1}, then there is x ∈ SG(S) such that x /∈ {F, F − 1}. Thus,

S∪{x} is a numerical semigroup and (S ∪ {x})∩{F, F −1} = ∅. By Proposition 3.6,

we obtain that S /∈ max(P(F )).

(2) ⇒ (1) We see that S is a maximal numerical semigroup under the condition

that S ∩ {F, F − 1} = ∅. Otherwise, there is a numerical semigroup T such that

T ∩ {F, F − 1} = ∅ and S ( T. By Lemma 3.7, we know that max(T \ S) ∈

SG(S) = {F, F − 1}, which is absurd. Then, by Proposition 3.6, we conclude that

S ∈ max(P(F )). �

Algorithm 3.5 from [18] enables us to compute the set {S : S is a numerical semi-

group and SG(S) = {F, F − 1}}. Hence, by Proposition 3.8, we have another algo-

rithm to obtain the set max(P(S)).
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Next, we illustrate how the algorithm works.

Example 3.9. By using Algorithm 3.5 from [18], (see [18], Example 3.8),

we have that {S : S is a numerical semigroup and SG(S) = {10, 11}} = {S1 =

{0, 6, 7, 8, 9, 12,→}, S2 = {0, 4, 8, 9, 12,→}, S3 = {0, 3, 6, 9, 12,→}}. Consequently,

by applying Proposition 3.8, we have that max(P(11)) = {S1, S2, S3}.

Note 3.10. In Example 3.9, observe that g(S1) = 7 and g(S2) = g(S3) = 8.

Then we can assert that all the elements of max(P(11)) have not the same genus,

in general.

We can use the following GAP sentences, to obtain the previous results:

gap> S1:=NumericalSemigroup(6,7,8,9);

<Numerical semigroup with 4 generators>

gap> Genus(S1);

7

gap> S2:=NumericalSemigroup(4,9,14,15);

<Numerical semigroup with 4 generators>

gap> Genus(S2);

8

gap> S3:=NumericalSemigroup(3,13,14);

<Numerical semigroup with 3 generators>

gap> Genus(S3);

8

If we put β(F ) = min{g(S) : S ∈ max(P(F ))}, then we can state that β(11) = 7.

We end this section by giving an algorithm which computes all the elements

of P(F ) with a given genus.

Let S be a numerical semigroup. Define recursively the sequence associated to S

in the following way: S0 = S and Sn+1 = Sn \ {m(Sn)} for all n ∈ N.

If S is a numerical semigroup, then we denote by N(S) = {s ∈ S : s < F(S)} the

set of small elements of S. Its cardinality is denoted by n(S). Note that g(S)+n(S) =

F(S) + 1.

If S is a numerical semigroup and {Sn}n∈N is the sequence associated to S, then

Cad(S) = {S0, S1, . . . , Sn(S)−1} is called the chain associated to S. It is clear that

Sn(S)−1 = {0,F(S) + 1,→}.

Next, if we apply that g(Si+1) = g(Si) + 1 for all i ∈ {0, . . . ,n(S)− 2}, we easily

get the following result.
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Proposition 3.11. Under the notation introduced

{g(S) : S ∈ P(F )} = {x ∈ N : β(F ) 6 x 6 F}.

We illustrate the previous proposition with an example.

Example 3.12. Following Note 3.10, where β(11) = 7, then, by applying Propo-

sition 3.11, we can assert that {g(S) : S ∈ P(11)} = {7, 8, 9, 10, 11}.

We now have all the necessary tools to obtain the previously announced algorithm.

Algorithm 3.13

Input: Two positive integers, F and g.

Output: {S ∈ P(F ) : g(S) = g}.

(1) If g > F, then return ∅.

(2) Compute β(F ).

(3) If g < β(F ), then return ∅.

(4) H = {∆(F )}, i = F.

(5) If i = g, then return H.

(6) For every S ∈ H compute θ(S) = {x ∈ SG(S) : x < m(S) and x /∈

{2,m(S)− 2, F}}.

(7) H =
⋃

S∈H

{S ∪ {x} : x ∈ θ(S)}, i = i− 1, and go to Step (5).

4. P(F )-system of generators

We say that a set X is a P(F )-set if X ∩∆(F ) = ∅ and there is S ∈ P(F ) such

that X ⊆ S.

If X is a P(F )-set, then we denote by P(F )[X] the intersection of all elements

of P(F ) containing X. As P(F ) is a finite set, then by applying Proposition 2.6,

the intersection of elements of P(F ) is again an element of P(F ). Therefore, we

can state the following proposition.

Proposition 4.1. Let X be a P(F )-set. Then P(F )[X] is the smallest element

of P(F ) containing X.

If X is a P(F )-set and S = P(F )[X], then we say that X is a P(F )-system of

generators of S.Moreover, if S 6= P(F )[Y ] for all Y ( X, then X is called a minimal

P(F )-system of generators of S.
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Let S be a numerical semigroup. Then we put

R(S) = {x ∈ msg(S) : x < F(S) and {x− 1, x+ 1} 6⊆ S}

∪ {x ∈ msg(S) : {x− 1, x+ 1} ⊆ S, x+ 1 ∈ msg(S) and x+ 1 < F(S)}.

Proposition 4.2. Let S ∈ P(F ). Then R(S) is a P(F )-set and

P(F )[R(S)] = S.

P r o o f. It is clear that R(S) is a P(F )-set and R(S) ⊆ S. Therefore, by using

Proposition 4.1, we have P(F )[R(S)] ⊆ S.

Let T = P(F )[R(S)] and we suppose that T ( S. Then, there is a = min(S \ T ).

Obviously a ∈ msg(S) and a < F. We distinguish two cases:

Case 1 : If {a − 1, a + 1} 6⊆ S, then by using Lemma 2.2, we deduce that

S \ {a} ∈ P(F ). As T ⊆ S \ {a}, then R(S) ⊆ S \ {a}, which is absurd because

a ∈ R(S).

Case 2 : If {a−1, a+1} ⊆ S, then by the minimality of a, we have that a−1 ∈ T.

As a /∈ T and T ∈ P(F ), then a + 1 /∈ T. Thus, a + 1 ∈ msg(S) and a + 1 < F.

Consequently, S\{a, a+1} ∈ P(F ) and T ⊆ S\{a, a+1}. ThenR(S) ⊆ S\{a, a+1},

which is absurd because a ∈ R(S). �

The following result is straightforward to prove.

Lemma 4.3. If X and Y are P(F )-sets such that X ⊆ Y, then P(F )[X] ⊆

P(F )[Y ].

In the following result we present a characterization of a minimal P(F )-system

of generators.

Lemma 4.4. Let X be a P(F )-set and S = P(F )[X]. Then X is a minimal

P(F )-system of generators of S if and only if x /∈ P(F )[X \ {x}] for all x ∈ X.

P r o o f. Necessity. If x ∈ P(F )[X \ {x}], then by Proposition 4.1 we have

that every element of P(F ) containing X \ {x}, contains X, too. Therefore,

P(F )[X \ {x}] = P(F )[X].

Sufficiency. If X is not a minimal P(F )-system of generators of S, then there

exists Y ( X such that P(F )[Y ] = S. If x ∈ X \ Y, then by applying Lemma 4.3,

we have that x ∈ P(F )[Y ] ⊆ P(F )[X \ {x}]. �

In general, the minimal P(F )-systems of generators are not unique. Moreover,

they may not even have the same cardinality as we show in the following example.

Online first 11



Example 4.5. Let

S = 〈10, 11, 12, 13, 14, 15, 16〉 = {0, 10, 11, 12, 13, 14, 15, 16, 20,→}.

It is clear that S ∈ P(19). It is obvious that if T ∈ P(19) and {10, 12, 14, 16} ⊆ T ,

then S ⊆ T. Hence, P(19)[{10, 12, 14, 16}] = S. Furthemore, it is easy to see that

P(19)[{10, 12, 14}] = {0, 10, 11, 12, 13, 14, 20,→},

P(19)[{10, 12, 16}] = {0, 10, 11, 12, 16, 20,→},

P(19)[{10, 14, 16}] = {0, 10, 14, 15, 16, 20,→} and

P(19)[{12, 14, 16}] = {0, 12, 13, 14, 15, 16, 20,→}.

Thus, by applying Lemma 4.4, we have that {10, 12, 14, 16} is a minimal P(19)-

system of generators of S.

Reasoning in a similar way, the reader will have no difficulty in seeing that

{10, 11, 13, 15, 16} is also a minimal P(19)-system of generators of S.

If S ∈ P(F ), then theP(F )-rank of S is defined asP(F )-rank(S) = min{♯X : X

is a P(F )-set and P(F )[X] = S}. By applying Propositions 6.1, 6.2 and 6.4; and

Lemma 6.1 of [13], we obtain the following result.

Proposition 4.6. If S ∈ P(F ) then the following statements hold.

(1) P(F )- rank(S) 6 e(S).

(2) P(F )- rank(S) = 0 if and only if S = ∆(F ).

(3) If S 6= ∆(F ) and X is a P(F )-set such that P(F )[X] = S, then m(S) ∈ X.

(4) P(F )- rank(S) = 1 if and only if S = P(F )[{m(S)}].

For integers a and b, we say that a divides b if there exists an integer c such that

b = ca, and we denote this by a | b. Otherwise, a does not divide b, and we denote

this by a ∤ b.

The following result has an easy proof.

Lemma 4.7. If m is a positive integer such that m < F, m ∤ F and m ∤ (F − 1),

then {m} is a P(F )-set and P(F )[{m}] = 〈m〉 ∪ {F + 1,→}.

Proposition 4.8. If m is a positive integer such that m < F, m ∤ F and

m ∤ (F − 1), then S = 〈m〉 ∪ {F +1,→} ∈ P(F ) and P(F )-rank(S) = 1. Moreover,

every element of P(F ) with P(F )-rank equal to 1 has this form.
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P r o o f. By Lemma 4.7, we know that S ∈ P(F ) and by Proposition 4.6 we know

thatP(F )-rank(S) = 1. If T ∈ P(F ) withP(F )-rank(T ) = 1, then, Proposition 4.6

asserts thatm(T ) < F and T = P(F )[{m(T )}]. Clearlym(T ) ∤ F andm(T ) ∤ (F−1).

Finally, by Lemma 4.7, we conclude that T = 〈m(T )〉 ∪ {F + 1,→}. �

Our next goal is to characterize the elements ofP(F ) withP(F )-rank equal to 2.

For this purpose we introduce some concepts and results.

If S is a numerical semigroup, we recursively define the following sequence of

numerical semigroups:

S0 = S, Sn+1 =

{
Sn ∪ {h(Sn)} if Sn is not perfect,

Sn otherwise.

The number of isolated gaps of S is denoted by i(S). The following result appears

in Proposition 26 of [10].

Proposition 4.9. If S is a numerical semigroup and {Sn}n∈N is the sequence

previously defined, then S = S0 ( S1 ( . . . ( Si(S). Moreover, Si(S) is a perfect

numerical semigroup and ♯(Sk+1 \ Sk) = 1 for all k ∈ {0, . . . , i(S)− 1}.

The numerical semigroup Si(S) is called a perfect closure of S and denoted by P(S).

Note that P(S) is the least perfect numerical semigroup that contains S.

Lemma 4.10. Let S ∈ P(F ) and a ∈ msg(S) such that {a − 1, a + 1} 6⊆ S and

a < F. If X is a P(F )-set and P(F )[X] = S, then a ∈ X.

P r o o f. By Lemma 2.2, we deduce that S \ {a} ∈ P(F ). If a /∈ X, then

X ⊆ S\{a}. Therefore, by applying Proposition 4.1, we have thatP(F )[X] ⊆ S\{a}.

Consequently, S ⊆ S \ {a}, which is absurd. �

Now let us define the ratio of a numerical semigroup. This concept will be needed

in the proof of the following proposition.

Let S be a numerical semigroup such that S 6= N, the ratio of S is defined as

r(S) = min{s ∈ S: m(S) ∤ s}. Note that r(S) = min(msg(S) \ {m(S)}).

Proposition 4.11. Let m and r be positive integers such that m < r < F, m ∤ r,

and 〈m, r〉∩{F −1, F} = ∅. Then P(〈m, r〉∪{F +1,→}) is an element ofP(F ) with

P(F )-rank equal to 2. Moreover, every element ofP(F ) withP(F )-rank equal to 2

has this form.
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P r o o f. If T = 〈m, r〉 ∪ {F + 1,→}, then T is a numerical semigroup with the

Frobenius number F and F − 1 /∈ T. Thus, P(T ) ∈ P(F ). As P(T ) 6= ∆(F ) and

P(T ) 6= 〈m〉 ∪ {F + 1,→}, then P(F )-rank(P(T )) > 2. Certainly P(T ) is the least

element of P(F ) that contains {m, r} Hence, P(T ) = P(F )[{m, r}] and so, P(F )-

rank(P(T )) 6 2. Consequently, P(F )-rank(P(T )) = 2.

Let S ∈ P(F ) such that P(F )-rank(S) = 2. Then there is a P(F )-set, X,

with cardinality 2 such that P(F )[X] = S. By Proposition 4.6, we know that

m(S) ∈ X. As {r(S)− 1, r(S) + 1} 6⊆ S since it cannot happen that m(S) | (r(S)− 1)

and m(S) | (r(S) + 1), then by Lemma 4.10 we know that r(S) ∈ X. Therefore,

X = {m(S), r(S)}. It is clear that m(S) < r(S) < F, m(S) ∤ r(S) and 〈m(S), r(S)〉 ∩

{F,F− 1} = ∅.

Finally, as S = P(F )[X] = P(F )[{m(S), r(S)}], then S is the least element

ofP(F ) containing {m(S), r(S)}.We conclude that S = P(〈m(S), r(S)〉∪{F+1,→}).

�

Next we illustrate this proposition with an example.

Example 4.12. Let m = 8, r = 11 and F = 26. Then 8 < 11 < 26, 8 ∤ 11 and

〈8, 11〉∩{25, 26} = ∅. By applying Proposition 4.11, we have that P(〈8, 11〉∪{27,→})

is an element of P(26) with P(26)-rank equal to 2.

Finally, as 〈8, 11〉 ∪ {27,→} = {0, 8, 11, 16, 19, 22, 24, 27,→}, then

P (〈8, 11〉 ∪ {27,→}) = {0, 8, 11, 16, 19, 22, 23, 24, 27,→} = 〈8, 11, 23, 28, 29〉.

5. The Arf or saturated elements in P(F )

We say that a numerical semigroup S is an Arf numerical semigroup if x+y−z ∈ S

for all {x, y, z} ⊆ S such that x > y > z.We put Arf(F ) = {S : S is an Arf numerical

semigroup and F(S) = F}.

Let A ⊆ N and a ∈ A \ {0}. Set dA(a) = gcd{x ∈ A : x 6 a}. A numerical

semigroup is saturated if s + dS(s) ∈ S for all s ∈ S \ {0}. Put Sat(F ) = {S : S is

a saturated numerical semigroup and F(S) = F}.

In Lemma 3.31 of [21] relation is shown between the saturated numerical semi-

groups and the Arf numerical semigroups. That is the following result.

Proposition 5.1. Every saturated numerical semigroup is an Arf numerical semi-

group.
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By applying Proposition 2.7 of [11] and Proposition 11 of [12], we obtain the

following result.

Proposition 5.2. Under the notation introduced, we have that Arf(F ) and

Sat(F ) are covarieties and ∆(F ) is their minimum.

Following the notation introduced in [10] a Parf-semigroup (or Psat-semigroup) is

a perfect numerical semigroup which in addition is Arf (or saturated, respectively).

Put Parf(F ) = {S : S is a Parf-semigroup and F(S) = F} and Psat(F ) = {S : S

is a Psat-semigroup and F(S) = F}. Our next aim in this section is to prove that

Parf(F ) and Psat(F ) are covarieties.

In Lemma 5.1 of [13] the following result appears.

Lemma 5.3. Let {Ci}i∈I be a family of covarieties withmin(Ci) = ∆ for all i ∈ I.

Then
⋂
i∈I

Ci is a covariety with minimum ∆.

By Proposition 2.6, Proposition 2.7 of [11] and Proposition 11 of [12], we know

that P(F ), Arf(F ) and Sat(F ) are covarieties with minimum ∆(F ). Then by ap-

plying Lemma 5.3, we have the following result.

Proposition 5.4. Under the notation introduced, Parf(F ) and Psat(F ) are co-

varieties with minimum ∆(F ).

Our next purpose is to present some algorithms to compute the covarieties Parf(F )

and Psat(F ). The following result appears in Proposition 2.4 of [13].

Lemma 5.5. Let C be a covariety and S ∈ C . Then the set formed by the children

of S in the tree G(C ) is {S ∪ {x} : x ∈ SG(S), x < m(S) and S ∪ {x} ∈ C }.

Let A and B be two covarieties such that B ⊆ A and S ∈ B. Put α(A ,B, S) =

min{x ∈ SG(S) : x < m(S) and S ∪ {x} ∈ B}. Depending of the existence

of α(A ,B, S), we define

L(S) =

{
S ∪ {α(A ,B, S)} if there is α(A ,B, S),

S otherwise.

Define the sequence Ŝ0 = S and Ŝn+1 = L(Ŝn) for all n ∈ N. Obviously, there exists

l(A ,B, S) = min{x ∈ N : L(Ŝx) = Ŝx}.

Let S be a numerical semigroup. Then we define the sequence associated to S in

the form S0 = S and Sn+1 = Sn \ {m(Sn)}.

Let A be a covariety, S ∈ A and {Sn}n∈N the sequence associated to S. Then it

is clear that there exists C(A , S) = min{n ∈ N : Sn = min(A )}. Put CadA (S) =

{S0, S1, . . . , SC(A ,S)}.
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Proposition 5.6. Let A and B be covarieties such that B ⊆ A and min(B) =

min(A ). If γ = {S ∈ B : S has no children in the tree G(A ) which belong to B},

then B =
⋃
S∈γ

CadA (S).

P r o o f. As B is a covariety, γ ⊆ B and min(B) = min(A ), then we easily

deduce that
⋃
S∈γ

CadA (S) ⊆ B. For the other inclusion, if S ∈ B and {Ŝn}n∈N is

the sequence defined previously, then Ŝl(A ,B,S) ∈ γ and S ∈ CadA (Ŝl(A ,B,S)). �

As an immediate consequence of Proposition 5.6, we have the following result.

Corollary 5.7. Under the previous notation:

(1) If γ = {S ∈ Parf(F ) : S has no children in the tree G(P(F )) which belong

to Arf(F )}, then Parf(F ) =
⋃
S∈γ

CadP(F )(S).

(2) If γ = {S ∈ Psat(F ) : S has no children in the tree G(P(F )) which belong to

Sat(F )}, then Psat(F ) =
⋃
S∈γ

CadP(F )(S).

If S ∈ P(F ), then Algorithm 1 of [11] allows us to determine if a child of S in the

tree G(P(F )) is an element of Arf(F ). Therefore, we have an algorithm to compute

the set Parf(F ). In a similar way, if S ∈ P(F ), Proposition 14 of [12] allows to

determine if a child of S in the tree G(P(F )) is an element of Sat(F ). Therefore, we

have an algorithm to compute the set Psat(F ).

As a consequence of Proposition 5.6, we have the following result.

Corollary 5.8. Under the notation introduced:

(1) If γ = {S ∈ Parf(F ) : S has no children in the tree G(Arf(F )) which belong

to P(F )}, then Parf(F ) =
⋃
S∈γ

CadArf(F )(S).

(2) If γ = {S ∈ Psat(F ) : S has no children in the tree G(Sat(F )) which belong

to P(F )}, then Psat(F ) =
⋃
S∈γ

CadSat(F )(S).

We have implemented the gap order IsPerfectNumericalSemigroup, which al-

lows us to know whether a numerical semigroup is perfect. The input is the minimal

system of generators of the numerical semigroup.

We will see an example to illustrate how this order is used. If we want to know

whether the numerical semigroups S1 = 〈2, 3〉 and S2 = 〈4, 5, 11〉 are perfect numer-

ical semigroups, we use the following orders, respectively:

gap> IsPerfectNumericalSemigroup([2,3]);

false

gap> IsPerfectNumericalSemigroup([4,5,11]);

true
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Thererfore, by using this order and Algorithm 2 of [11] or Algorithm 1 of [12], we

get easily an algorithm to compute the set Parf(F ) or Psat(F ), respectively.
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