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A B S T R A C T

We analyze a modification of the Richards growth model by introducing a time-dependent
perturbation in the growth rate. This modification becomes effective at a special switching time,
which represents the first-crossing-time of the Richards growth curve through a given constant
boundary. The relevant features of the modified growth model are studied and compared
with those of the original one. A sensitivity analysis on the switching time is also performed.
Then, we define two different stochastic processes, i.e. a non-homogeneous linear birth–death
process and a lognormal diffusion process, such that their means identify to the growth
curve under investigation. For the diffusion process, we address the problem of parameters
estimation through the maximum likelihood method. The estimates are obtained via meta-
heuristic algorithms (namely, Simulated Annealing and Ant Lion Optimizer). A simulation study
to validate the estimation procedure is also presented, together with a real application to
oil production in France. Special attention is devoted to the approximation of switching time
density, viewed as the first-passage-time density for the lognormal process.

. Introduction

The Richards growth model is a generalization of the well-known logistic model. The main difference between the two models
ays in symmetry properties of the resulting curves. Indeed, the logistic function has a symmetrical pattern with respect to the
nflection point, in the sense that the carrying capacity (which is the limit value of the growth function) is twice the value of the
urve in the inflection point. This behavior may not be particularly appropriate to describe some real phenomena which show
symmetrical growth patterns. For this reason, Richards in 1959 introduced a new growth curve that was called Richards growth
urve (cf. Richards (1959) [1]). Some authors refer to it as Bertalanffy–Richards growth curve, since Richards extended previous
orks of Bertalanffy regarding plants growth. The flexibility of the afore-mentioned curve is another great advantage of the model.

ndeed, for some particular choices of the involved parameters the most known growth functions (such as the Malthusian, the logistic
nd the Gompertz) can be obtained from the Richards curve. Nevertheless, if one refers to the classical representation of the curve,
t is easy to note that the carrying capacity does not depend explicitly on the initial state. This feature may not be so realistic, since
t is intuitive to believe that the maximum achievable value of a population size is influenced by the initial size. For this reason, a
eformulation of the model that includes the initial size in the expression of the carrying capacity is useful.
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The flexibility of the Richards deterministic model is also demonstrated by several applications in different fields which range
rom agricultural studies (such as in Hiroshima (2007) [2] and in Gerhard and Moltchanova (2022) [3]), to zoological studies (see
or example Matis et al. (2011) [4], Nahashon (2006) [5], Köhn et al. (2007) [6], Lv et al. (2007) [7] and Russo et al. (2009) [8])
nd to health sciences (cf. Macêdo et al. (2021) [9], Smirnova et al. (2022) [10] and Wang et al. (2012) [11]).

In order to include the randomness (which is typical in the phenomenological reality) in the description of the model, it is
seful to introduce a stochastic counterpart of the considered growth curve. Typically, researchers define two classes of stochastic
rocesses related to growth curves, that are the birth–death processes (e.g. Asadi et al. (2020) [12]) whose state-space is given
y a discrete set and the diffusion processes (e.g. Román-Román et al. (2018) [13]) whose state-space is an interval of the real
ine. Both processes are usually constructed in such a way that the mean identifies with the corresponding deterministic curve.
ne of the main features of these ‘‘dynamic’’ models lays in their more accurate predictive capability with respect to the ‘‘static’’
eterministic models. Clearly, to perform real applications of these models, a good estimation of the involved parameters is required
see Dey et al. (2019) [14] where the problem of estimation of the Bertalanffy growth model is addressed). When the likelihood
unction is available in closed form, one can obtain the maximum likelihood estimates directly. However, this reasoning may lead
o complex systems of non-linear equations which cannot be solved analytically. For this reason, as done elsewhere (see for example
i Crescenzo et al. (2022) [15], Hole et al. (2017) [16], Román-Román et al. (2015) [17] and Vera et al. (2008) [18]) we can adopt
eta-heuristic optimization methods. In particular, the Simulated Annealing algorithm allows to obtain satisfactory estimates. In

eneral, it is convenient making use of gradient free algorithms, especially when the expression of the derivative of the likelihood
s intricate. In any case, since the parametric space 𝛩 (which is the set containing all the possible values of the parameters) is in
rinciple unbounded and continuous, it is better to provide a restriction of 𝛩 based on the knowledge of the curve. In this way, we

avoid unnecessary calculations and a long running time of execution of the algorithms.
The Richards growth model, as other competing models in this area, does not take into account external factors which may

modify the growth rate at a certain time instant. For example, we may think about the oil production of a country. When the
amount of produced oil decreases and crosses a fixed critical threshold, the government may decide to support new explorations
in order to increase the quantity of extracted resources. As a further real example, we can refer to the evolution of some diseases
in patients. In this case, when the monitoring parameters reach critical values, the medical team may consider to introduce a new
therapy, whose effects is the stabilization of critical parameters and the reduction of the evolution of the disease. Inspired by these
motivations, we would like to investigate the possible modifications of the classical Richards growth model in order to take into
account the perturbations of the growth rate due to external factors that are effective from a certain moment on. Such modifications
may lead to multi-sigmoidal growths, namely growths with multiple inflections. On the same line, a multi-sigmoidal version of
the logistic model has been introduced in Di Crescenzo et al. (2022) [15] by increasing the number of the involved parameters.
Instead, in the present work, the proposed modified curve and the classical one possess the same number of parameters. Indeed,
the modification affects the time-dependence of one parameter. A similar study has been conducted recently to estimate the effect
of a therapy on tumor dynamics described by Gompertz diffusion processes by Albano et al. (2015) [19]. The resulting modified
model will be analyzed both from a deterministic and stochastic point of view. The problem of parameters estimation will be also
addressed. A strategy to obtain the maximum likelihood estimates of the parameters involved in the definition of the corresponding
diffusion process will be proposed.

The study introduces a time-dependent perturbation into the Richards growth model, offering an approach to take into account
external factors affecting growth rates, which is effectively demonstrated through both theoretical analysis and practical applications,
in particular the oil production in France. One of the strengths of this research lies in its comprehensive statistical analysis, employing
meta-heuristic algorithms like Simulated Annealing and Ant Lion Optimizer for parameters estimation, thus ensuring robust results
validated by simulation studies. The structure of the paper is organized as follows. In Section 2, the classical deterministic Richards
growth model is introduced. Several features of the model are analyzed, such as the limit behavior with respect to the parameters,
the inflection point, the approximation of the curve with a straight line near the inflection point and the first-crossing-time problem.
In Section 3, we consider a modification of the classical Richards growth model, by adding a time dependent function to one of
the relevant parameters. Such modification, whose consequences are visible after a certain time, called critical or switching time,
affects the growth rate which becomes, under suitable conditions, greater than the previous one. The resulting deterministic curve
is then studied and a sensitivity analysis on the switching time is also considered. In Sections 4 and 5, the stochastic counterparts
of the proposed models are introduced. In detail, we first consider two different special time-inhomogeneous birth–death processes
following the line of Majee et al. (2022) [20]. Sufficient and necessary conditions are provided in order to have a mean of the birth–
death processes of modified Richards type. Moreover, in order to have a more manageable stochastic counterpart, we define two
lognormal diffusion processes whose means are of Richards and modified Richards type, respectively. Some comparisons between
the two diffusion processes are also provided. In particular, one of them turns out to be very useful for the estimation of the modified
model. The problem of parameters estimation is addressed in Section 6. A procedure to estimate the modified process is described.
The relevant parameters are estimated by means of maximum likelihood method since an explicit expression of the log-likelihood
function is available. This function is maximized via meta-heuristic algorithms, in particular Simulated Annealing and Ant Lion
Optimizer are used in Section 7. A simulation study to validate the described procedures ends the estimation study in Section 8.
Finally, an application to real data regarding oil production in France is studied in Section 9.
2
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2. The Richards growth curve

The Bertalanffy–Richards growth curve 𝑥𝜃(𝑡), 𝑡 ≥ 𝑡0, is given by (cf. Román-Román et al. (2015) [17])

𝑥𝜃(𝑡) = 𝑥0

(

𝜂 + 𝑘𝑡0
𝜂 + 𝑘𝑡

)𝑞
, 𝑡 ≥ 𝑡0, (1)

where 𝜃 ∶= (𝑞, 𝑘, 𝜂)𝑇 is the vector of the parameters with 𝑞 > 0, 0 < 𝑘 < 1 and 𝜂 > 0. The function (1) is a generalization of the
logistic growth curve which can be obtained for 𝑞 = 1. The main difference between Eq. (1) and the logistic model lays in the
behavior of the curve at the inflection point. Indeed, the value at inflection point of the logistic model equals a half of the carrying
capacity (namely the asymptotic value of a growth curve) whereas the one of Bertalanffy–Richards is equal to a (possibly) different
fraction of the carrying capacity. In particular, the carrying capacity of (1) depends explicitly on the initial value 𝑥0. Indeed, it is
given by

𝜃 ∶= lim
𝑡→+∞

𝑥𝜃(𝑡) = 𝑥0

(

1 + 𝑘𝑡0
𝜂

)𝑞
. (2)

The function (1), is the solution of a particular inhomogeneous Malthusian equation having a time-dependent growth rate ℎ𝜃(𝑡), i.e.
d
d𝑡 𝑥𝜃(𝑡) = ℎ𝜃(𝑡)𝑥𝜃(𝑡), 𝑡 ≥ 𝑡0, 𝑥𝜃(𝑡0) = 𝑥0, (3)

where

ℎ𝜃(𝑡) ∶= 𝑞
𝑘𝑡| log 𝑘|
𝜂 + 𝑘𝑡

. (4)

It is not hard to see that the growth rate ℎ𝜃(𝑡) is a positive and decreasing function for 𝑡 ≥ 𝑡0. The function 𝑥𝜃(𝑡) is also the
olution of a particular differential equation in which the time dependence of the right-hand-side is expressed only through 𝑥𝜃(𝑡),
.e.

d
d𝑡 𝑥𝜃(𝑡) = 𝑞 ∣ log 𝑘 ∣ 𝑥𝜃(𝑡)

[

1 −
𝜂

𝜂 + 𝑘𝑡0

(

𝑥𝜃(𝑡)
𝑥0

)1∕𝑞
]

, 𝑡 ≥ 𝑡0. (5)

Note that when 𝜂 → +∞, 𝑞 → +∞ and
(

𝜂
𝜂+𝑘𝑡0

)𝑞
→

𝑥0
𝜃

, Eq. (5) becomes

d
d𝑡 𝑥𝜃(𝑡) =∣ log 𝑘 ∣ 𝑥𝜃(𝑡) log

𝜃
𝑥𝜃(𝑡)

, 𝑡 ≥ 𝑡0,

which is a particular Gompertz equation having a carrying capacity given by 𝜃 .

Remark 2.1. Without loss of generality, it is possible to take 𝑡0 = 0. Indeed, by setting 𝑡′ ∶= 𝑡 − 𝑡0, we get a model of the same
type of (1). Precisely,

𝑥𝜃(𝑡) = 𝑥0

(

𝜂 + 𝑘𝑡0
𝜂 + 𝑘𝑡

)𝑞
= 𝑥0

(

𝜂 + 1
𝜂 + 𝑘𝑡′

)𝑞
=∶ 𝑦𝜃(𝑡′), 𝑡′ ≥ 0,

here 𝜂 ∶= 𝜂∕𝑘𝑡0 . We point out that the parameter 𝑘 is the same for both the models.

In Table 1, we provide some limit behaviors of the proposed growth model (in agreement with the results given by Albano et al.
2022) [21]). Note that for 𝜂 → 0+, the Richards curve 𝑥(𝑡) converges to a Malthusian growth curve.

2.1. Inflection point and related quantities

The inflection point 𝑡𝐼 of the Bertalanffy–Richards curve (1) has an explicit expression given by

𝑡𝐼 =
log(𝜂∕𝑞)
log 𝑘

, 𝑥𝜃(𝑡𝐼 ) = 𝜃

(

𝑞
1 + 𝑞

)𝑞
. (6)

ee Fig. 1 for some plots of the Bertalanffy–Richards growth curve.
From Eq. (6), we note that the ratio between 𝑥𝜃(𝑡𝐼 ) and the carrying capacity (2) depends only on 𝑞, and it is given by

(

𝑞
1+𝑞

)𝑞
.

In the logistic case (obtained for 𝑞 = 1), this fraction is equal to 1∕2. Moreover, one has 𝑡𝐼 > 𝑡0 if and only if 𝜂 < 𝑞𝑘𝑡0 . Now, we can
provide an interpretation of the relevant parameters of the model, i.e. 𝜃 = (𝑞, 𝑘, 𝜂)𝑇 . It turns out that

∙ The parameter 𝑞 affects the ratio between the carrying capacity 𝜃 of the model and the inflection point 𝑥𝜃(𝑡𝐼 ). Indeed, the
ratio 𝜃∕𝑥𝜃(𝑡𝐼 ) = (1 + 1∕𝑞)𝑞 is increasing in 𝑞 > 0.

∙ The parameter 𝜂 represents a measure of the distance between 𝑥𝜃(𝑡) and the exponential function 𝑥0𝑘−𝑞𝑡. Indeed, the bigger
𝜂 is, the further the function 𝑥𝜃(𝑡) is from being the exponential function 𝑥0𝑘−𝑞𝑡 (see also Fig. 2). In particular, as shown in
Table 2, for 𝜂 → 0+ the function 𝑥𝜃(𝑡) converges to 𝑥0𝑘−𝑞𝑡.

∙ The parameter 𝑘 affects the value of the inflection point 𝑡 . Indeed, for 𝜂 < 𝑞𝑘𝑡0 the value of 𝑡 increases for increasing 𝑘.
3
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Table 1
The growth equation, the growth function and the carrying capacity of the model (3) under the
specified limit conditions, where 𝑥′𝜃 (𝑡) =

𝑑
𝑑𝑡
𝑥𝜃 (𝑡).

Case no. Limit conditions Growth equation

1 𝑘→ 0+ 𝑥′𝜃 (𝑡) = 0
2 𝑘→ 1− 𝑥′𝜃 (𝑡) = 0
3 𝜂 → 0+ 𝑥′𝜃 (𝑡) = 𝑞 ∣ log 𝑘 ∣ 𝑥𝜃 (𝑡)
4 𝑞 → 0+ 𝑥′𝜃 (𝑡) = 0
5 𝑞 → 1 𝑥′𝜃 (𝑡) =

𝑘𝑡 | log 𝑘|
𝜂+𝑘𝑡

𝑥𝜃 (𝑡)

6 𝜂, 𝑞 → +∞,
(

𝜂
𝜂+𝑘𝑡0

)𝑞
→

𝑥0


𝑥′𝜃 (𝑡) =∣ log 𝑘 ∣ 𝑥𝜃 (𝑡) log
𝜃

𝑥𝜃 (𝑡)

Case no. Growth function Carrying capacity

1 𝑥𝜃 (𝑡) = 𝑥0 𝑥0
2 𝑥𝜃 (𝑡) = 𝑥0 𝑥0
3 𝑥𝜃 (𝑡) = 𝑥0𝑘−𝑞𝑡 +∞
4 𝑥𝜃 (𝑡) = 𝑥0 𝑥0
5 𝑥𝜃 (𝑡) = 𝑥0

(

𝜂+𝑘𝑡0
𝜂+𝑘𝑡

)

𝑥0
(

𝜂+𝑘𝑡0
𝜂

)

6 𝑥𝜃 (𝑡) = 𝜃 exp[− log(𝜃∕𝑥0)𝑒log 𝑘(𝑡−𝑡0 )] 𝜃

Fig. 1. The function 𝑥𝜃 (𝑡) and the inflection point 𝑡𝐼 (dot) given in Eq. (6) with 𝑡0 = 0, 𝑥0 = 2, 𝑘 = 0.5, 𝜂 = 0.2, 0.3, 0.4 and (a) 𝑞 = 2 and (b) 𝑞 = 3.

Fig. 2. The function 𝑥𝜃 (𝑡) with 𝑡0 = 0, 𝑥0 = 2, 𝑘 = 0.5, (a) 𝑞 = 2 and (b) 𝑞 = 3 for 𝜂 = 0, 0.1, 0.15, 0.2, 0.25.

As already done in other similar researches (see, for example, Asadi et al. (2020) [12] and Di Crescenzo et al. (2022) [15]), we
can analyze the behavior of the growth curve 𝑥𝜃(𝑡) around the inflection point 𝑡𝐼 by using a linear approximation. With this aim,
we consider the maximum specific growth rate, denoted by 𝜇, which is the slope of the line tangent to 𝑥𝜃(𝑡) in 𝑡𝐼 and the lag time
𝜆 which is the intersection between the 𝑥-axis and the tangent. For the Bertalanffy–Richards curve, these quantities are given by

𝜇 = (𝜂 + 𝑘𝑡0 )𝑞
𝑥0 ∣ log 𝑘 ∣

(

𝑞
)𝑞+1

> 0, 𝜆 = 𝑡𝐼 −
1 + 1∕𝑞

< 𝑡𝐼 .
4

𝜂𝑞 𝑞 + 1 | log 𝑘|
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Fig. 3. The function 𝑥𝜃 (𝑡) (solid line), the line tangent to the curve (dashed line), the inflection point (star point) and the lag time (dot point) in 𝑡𝐼 (dot) with
𝑡0 = 0, 𝑥0 = 2, 𝑘 = 0.5, 𝑞 = 2 and (a) 𝜂 = 0.2 and (b) 𝜂 = 0.3. In (a) 𝜇 ≃ 14.79 and 𝜆 ≃ 1.16. In (b) 𝜇 ≃ 7.71 and 𝜆 ≃ 0.57.

Note that if 𝑘 → 1 or 𝑞 → 0, then 𝜇 tends to 0 and thus the tangent line tends to be parallel to the 𝑥-axis. Indeed, in these limit
cases the curve 𝑥𝜃(𝑡) degenerates into a horizontal line. In Fig. 3, we provide the plot of the line tangent to the Bertalanffy–Richards
curve at the inflection time instant 𝑡𝐼 .

2.2. Threshold crossing problem

In this section, we consider the problem of first crossing time. Let 𝐵(𝑡) be a time-dependent boundary given by

𝐵(𝑡) ∶= (1 + 𝑝)𝑥𝜃(𝑡), 𝑡 ≥ 𝑡0, 𝑝 > 0.

The corresponding first crossing time 𝜃𝑡 for a fixed time instant 𝑡 is then defined as follows

𝜃𝑡 ∶= min{𝑠 ≥ 𝑡0 ∶ 𝑥𝜃(𝑠) = 𝐵(𝑡)},

and it represents the first instant in which the growth curve 𝑥𝜃(𝑡) crosses the threshold 𝐵(𝑡). Clearly, if 𝐵(𝑡) is greater than the carrying
apacity, the set {𝑠 ≥ 𝑡0 ∶ 𝑥𝜃(𝑠) = 𝐵(𝑡)} is empty and then 𝜃𝑡 ∶= +∞. Otherwise, 𝜃𝑡 is finite and it can be explicitly determined. The
xpression one gets is the following

𝜃𝑡 =
1

log 𝑘
log

(

𝜂 + 𝑘𝑡

(1 + 𝑝)1∕𝑞
− 𝜂

)

= 𝑡𝐼 +
log

(

𝑞(𝜂+𝑘𝑡)
𝜂(1+𝑝)1∕𝑞

− 𝑞
)

log 𝑘
.

Note that when 𝑡 = 𝑡0, then 𝐵(𝑡0) = (1 + 𝑝)𝑥0 > 𝑥0 and

𝜃𝑡0 =
log

(

𝜂+𝑘𝑡0
(1+𝑝)1∕𝑞

− 𝜂
)

log 𝑘
.

oreover, when 𝑡 = 𝑡𝐼 , then the boundary is

𝑆 ∶= 𝐵(𝑡𝐼 ) = (1 + 𝑝)𝑥𝜃(𝑡𝐼 ) (7)

and the corresponding first crossing time is given by

𝑡∗ ∶= 𝜃𝑡𝐼 = 𝑡𝐼 +
log

(

1+𝑞
(1+𝑝)1∕𝑞

− 𝑞
)

log 𝑘
> 𝑡𝐼 . (8)

. A modified model

Once the parameters of the model are set, the evolution of the growth curve follows the resulting pattern and no further
odifications are considered. On the other hand, there are several real situations in which the growth rate may be modified due to

he presence of external factors. Usually, the effects produced by external modifications become significant starting from a critical
ime. As an example, think about the case of oil production of a country: when the quantity of produced oil is lower than a fixed
hreshold, the government may decide to support new explorations aiming to increase the amount of production.

For this reason we consider a modified version of the classical Bertalanffy–Richards growth curve by introducing a time-varying
erm into the growth rate ℎ𝜃(𝑡) of the Malthusian Eq. (3). Specifically, in Eq. (1) we substitute the parameter 𝑞 with a time-dependent
ne defined as

𝑞(𝑡) ∶=

{

𝑞, 𝑡0 ≤ 𝑡 ≤ 𝑡∗
∗

(9)
5

𝑞 + 𝐶(𝑡), 𝑡 > 𝑡 ,
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Fig. 4. (a) The function 𝐶(𝑡) given in Eq. (12) with 𝑚 = 0.5, 1, 1.5, 𝑝 = 0.3, 𝑡0 = 0, 𝑥0 = 2. (b) The function 𝐶(𝑡) given in Eq. (13) with 𝑦 = 5, 6, 7, 𝛼 = 1, 𝛽 = 0.75,
𝑝 = 0.8. In both cases, we have 𝑘 = 0.5, 𝜂 = 0.2, 𝑞 = 2.

where 𝑡∗ ≥ 𝑡0 and 𝐶(𝑡) is a continuous, bounded and positive function with lim𝑡→𝑡∗ 𝐶(𝑡) = 0.
Hence, the growth rate ℎ̃𝜃(𝑡) of the new model is given by

ℎ̃𝜃(𝑡) =
𝑞(𝑡)
𝑞
ℎ𝜃(𝑡) = 𝑞(𝑡)

𝑘𝑡 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑡

, 𝑡 ≥ 𝑡0. (10)

From now on, we consider 𝑡∗ > 𝑡𝐼 as the time instant defined in Eq. (8). Note that the conditions verified by the function 𝐶(𝑡) ensure
the continuity of the function 𝑞(𝑡) and consequently of the function ℎ̃𝜃(𝑡). It can be also noticed that the adoption of the new term
given in (9) increases the growth rate, indeed

ℎ̃𝜃(𝑡) − ℎ𝜃(𝑡) = 𝐶(𝑡)
𝑘𝑡 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑡

> 0, 𝑡 ≥ 𝑡∗.

Let us denote by 𝑥𝜃(𝑡) the corresponding growth curve, which is the solution of Eq. (3) where the function ℎ𝜃(𝑡) is replaced by ℎ̃𝜃(𝑡).
In particular, we have that for any 𝑡 ≥ 𝑡0

𝑥𝜃(𝑡) = 𝑥𝜃(𝑡) exp

(

∫

max{𝑡,𝑡∗}

𝑡∗
𝐶(𝑠)

𝑘𝑠 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑠

d𝑠

)

=

⎧

⎪

⎨

⎪

⎩

𝑥𝜃(𝑡), 𝑡0 ≤ 𝑡 < 𝑡∗

𝑥𝜃(𝑡) exp
(

∫

𝑡

𝑡∗
𝐶(𝑠)

𝑘𝑠| log 𝑘|
𝜂 + 𝑘𝑠

d𝑠
)

, 𝑡 ≥ 𝑡∗.

(11)

We remark that 𝑥𝜃(𝑡) ≥ 𝑥𝜃(𝑡) for any 𝑡 ≥ 𝑡0. The carrying capacity of the new growth curve (11) is given by

̃𝜃 = 𝜃 exp
(

∫

+∞

𝑡∗
𝐶(𝑠)

𝑘𝑠| log 𝑘|
𝜂 + 𝑘𝑠

d𝑠
)

> 𝜃 ,

where 𝜃 is given in Eq. (2).

Example 3.1. Fig. 4(a) provides some plots of 𝐶(𝑡), where

𝐶(𝑡) =
(

1
𝜂 + 𝑘𝑡

)𝑚
−
(

1
𝜂 + 𝑘𝑡∗

)𝑚
, 𝑡 ≥ 𝑡∗, (12)

with 𝑚 > 0. In this case the function 𝐶(𝑡) has a downward concavity, for any 𝑡 ≥ 𝑡∗. In Fig. 5(a) the behavior of the corresponding
modified model 𝑥𝜃(𝑡) is shown.

A different case is shown in Fig. 4(b) where

𝐶(𝑡) = 𝑦 exp
(

𝛼
𝛽
[

1 − (𝑡 − 𝑡∗)−𝛽
]

)

, 𝑡 > 𝑡∗, (13)

with 𝑦, 𝛼, 𝛽 > 0. In this case, the function 𝐶(𝑡) has a sigmoidal behavior. Fig. 5(b) illustrates the behavior of the corresponding
modified model 𝑥𝜃(𝑡), which is multi-sigmoidal with multiple inflections.

In general, since 𝐶(𝑡) is a bounded function, one has ̃𝜃 < +∞. The difference between the original curve 𝑥𝜃(𝑡) and the modified
one 𝑥𝜃(𝑡) becomes more and more relevant after the time instant 𝑡∗. Indeed, for 𝑡0 < 𝑡 ≤ 𝑡∗ it results 𝑥𝜃(𝑡) = 𝑥𝜃(𝑡), whereas for 𝑡 > 𝑡∗

d
d𝑡 [𝑥𝜃(𝑡) − 𝑥𝜃(𝑡)] = 𝑥𝜃(𝑡)

[

ℎ̃𝜃(𝑡) exp
(

∫

𝑡

𝑡∗
𝐶(𝑠)

𝑘𝑠| log 𝑘|
𝜂 + 𝑘𝑠

d𝑠
)

− ℎ𝜃(𝑡)
]

> 0.
6
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Fig. 5. The Bertalanffy–Richards curve (solid line) and the modified curve (dashed line) (a) for 𝐶(𝑡) given in Eq. (12) with 𝑝 = 0.3, 𝑚 = 1 and (b) for 𝐶(𝑡) given
in Eq. (13) with 𝑝 = 0.8, 𝑦 = 2, 𝛼 = 4, 𝛽 = 0.5. In both cases 𝜂 = 0.2, 𝑡0 = 0, 𝑥0 = 2, 𝑘 = 0.5, 𝑞 = 2. The dots and the star points represent the inflection point at
𝑡𝐼 and the point at 𝑡∗, respectively.

Remark 3.1. Similarly as Remark 2.1, also for the modified model (11) one can take 𝑡0 = 0 without loss of generality. Indeed, by
setting 𝐶(𝑡′) ∶= 𝐶(𝑡) with 𝑡′ ∶= 𝑡 − 𝑡0, 𝑡̂∗ ∶= 𝑡∗ − 𝑡0 and 𝜂 ∶= 𝜂∕𝑘𝑡0 we have

𝑥𝜃(𝑡) = 𝑥0

(

𝜂 + 𝑘𝑡0
𝜂 + 𝑘𝑡

)𝑞
exp

(

∫

𝑡

𝑡∗
𝐶(𝑠)

𝑘𝑠| log 𝑘|
𝜂 + 𝑘𝑠

d𝑠
)

= 𝑥0

(

𝜂 + 1
𝜂 + 𝑘𝑡′

)𝑞
exp

(

∫

𝑡′

𝑡̂∗
𝐶(𝑠′)

𝑘𝑠′ | log 𝑘|
𝜂 + 𝑘𝑠′

d𝑠′
)

=∶ 𝑦𝜃(𝑡′), 𝑡′ ≥ 0.

It is easy to note that the curve 𝑦𝜃(𝑡′) is of the same type of (11).

3.1. Sensitivity analysis

In this section we analyze the consequences of a perturbation on the time instant 𝑡∗ involved in the definition of the modified
growth curve 𝑥𝜃(𝑡). Hereafter, we will denote the modified curve by 𝑥𝑡∗𝜃 and the modified function 𝐶𝑡∗ (𝑡) to point out their dependence
on the time instant 𝑡∗. To perform the sensitivity analysis, we expand 𝑥𝑡

∗+𝜀
𝜃 in a Taylor series centered in 𝑡∗ with 𝜀 > 0. Therefore,

one has

𝑥𝑡
∗+𝜀
𝜃 − 𝑥𝑡

∗

𝜃 = 𝜀 ⋅ 𝜕
𝜕𝑡∗

𝑥𝑡
∗

𝜃 + 𝑜(𝜀)

with lim𝜀→0+
𝑜(𝜀)
𝜀 = 0. Since

𝜕
𝜕𝑡∗

𝑥𝑡
∗

𝜃 (𝑡) = 𝑥𝑡
∗

𝜃 (𝑡) ⋅ ∫

𝑡

𝑡∗

( 𝜕
𝜕𝑡∗

𝐶𝑡∗ (𝑠)
) 𝑘𝑠 ∣ log 𝑘 ∣

𝜂 + 𝑘𝑠
d𝑠, 𝑡 > 𝑡∗,

we have that

sgn
(

𝑥𝑡
∗+𝜀
𝜃 − 𝑥𝑡

∗

𝜃

)

= sgn
(

∫

𝑡

𝑡∗

( 𝜕
𝜕𝑡∗

𝐶𝑡∗ (𝑠)
) 𝑘𝑠 ∣ log 𝑘 ∣

𝜂 + 𝑘𝑠
d𝑠

)

, 𝑡 > 𝑡∗.

Whereas, 𝑥𝑡∗+𝜀𝜃 − 𝑥𝑡∗𝜃 = 0 for 𝑡 ≤ 𝑡∗. As an example, in Fig. 6 we plot the modified curve 𝑥𝜃(𝑡) and the effect of the perturbation
for 𝜀 = 0.5 and for the function 𝐶(𝑡) given in Eq. (12). The curve 𝑥𝑡∗+𝜀𝜃 goes down as the parameter 𝜀 increases since the derivative
of 𝐶(𝑡) with respect to 𝑡∗ is negative.

4. A special linear birth–death process

In this section, we introduce an evolutionary model based on the birth–death process introduced in Majee et al. (2022) [20]. In
more detail, we suppose that the population size can be described by an inhomogeneous linear birth–death process {𝑋(𝑡); 𝑡 ≥ 0}
with state-space N0 = {0, 1, 2,…} where the state 0 is an absorbing endpoint. The existence of an absorbing endpoint reflects the
situations in which the extinction of the population may occur. Moreover, we consider a positive and integrable function on (0, 𝑡)
for any 𝑡 > 0, denoted by 𝜆(𝑡) (𝜇(𝑡)), which represents the individual birth (death) rate at time 𝑡. Since in real populations there
are some individuals who have no reproduction power, we denote by 𝜌(𝑡) ∈ [0, 1] this portion evaluated at time 𝑡. We assume that
𝜌(𝑡) is time-varying, since the reproduction power of individuals may change over time, due to diseases or other natural reasons.
Therefore, the individual transition rates of this special birth–death process are given by

𝜆(𝑡) ∶= (1 − 𝜌(𝑡))𝜆, 𝜇(𝑡) ∶= 𝜇,
7
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𝑚
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Fig. 6. The modified Bertalanffy–Richards curve 𝑥𝑡∗𝜃 (solid line) and the perturbed ones 𝑥𝑡∗+𝜀𝜃 (dashed and dotted lines) for 𝑥0 = 2, 𝜂 = 0.2, 𝑘 = 0.5, 𝑡0 = 0, 𝑞 = 2,
= 1, (a) 𝑝 = 0.3 and (b) 𝑝 = 0.1 with 𝜀 = 0.3 (dashed) and 𝜀 = 2 (dotted).

here 𝜆, 𝜇 > 0 and 𝜌(𝑡) ∈ [0, 1] is an integrable function over any interval (0, 𝑡) for 𝑡 > 0.
Hence, the transition rates are

𝜆𝑛(𝑡) ∶= lim
ℎ→0+

1
ℎ
𝖯[𝑋(𝑡 + ℎ) = 𝑛 + 1 ∣ 𝑋(𝑡) = 𝑛] = 𝑛𝜆(𝑡) = 𝑛(1 − 𝜌(𝑡))𝜆, 𝑛 ∈ N0,

𝜇𝑛(𝑡) ∶= lim
ℎ→0+

1
ℎ
𝖯[𝑋(𝑡 + ℎ) = 𝑛 − 1 ∣ 𝑋(𝑡) = 𝑛] = 𝑛𝜇(𝑡) = 𝑛𝜇, 𝑛 ∈ N.

(14)

We denote by

𝑃𝑦𝑥(𝑡) = 𝖯[𝑋(𝑡) = 𝑥 ∣ 𝑋(0) = 𝑦], 𝑡 ≥ 0,

the probability that the birth–death process 𝑋(𝑡) is in the state 𝑥 at the time 𝑡, conditional on the initial state 𝑋(0) = 𝑦 ∈ N. As
shown in Tan (1986) [22], the probability generating function of 𝑋(𝑡) has the following expression

𝐺(𝑧, 𝑡) =
{

1 − (𝑧 − 1)[(𝑧 − 1)𝜙(𝑡) − 𝜓(𝑡)]−1
}𝑦 , 0 < 𝑧 < 1, 𝑡 ≥ 0,

where

𝜓(𝑡) = exp
(

𝑡(𝜇 − 𝜆) + 𝜆∫

𝑡

0
𝜌(𝜏)d𝜏

)

,

𝜙(𝑡) = 𝜆∫

𝑡

0
(1 − 𝜌(𝜏)) exp

(

𝜏(𝜇 − 𝜆) + 𝜆∫

𝜏

0
𝜌(𝑠)d𝑠

)

d𝜏, 𝑡 ≥ 0.

In the following proposition, we provide a sufficient and necessary condition so that the birth–death process 𝑋(𝑡) has a modified
Bertalanffy–Richards conditional mean.

Proposition 4.1. The linear birth–death process with birth and death rates given by

𝜆𝑛(𝑡) = 𝑛𝜆(𝑡), 𝜇𝑛 = 𝑛𝜇(𝑡), 𝑡 ≥ 0,

with 𝜆(𝑡) and 𝜇(𝑡) defined in Eqs. (14), has conditional mean

𝐸𝑦(𝑡) ∶= 𝖤[𝑋(𝑡) ∣ 𝑋(0) = 𝑦] = 𝑦
(

𝜂 + 1
𝜂 + 𝑘𝑡

)𝑞
exp

(

∫

max{𝑡,𝑡∗}

𝑡∗
𝐶(𝑠)

𝑘𝑠| log 𝑘|
𝜂 + 𝑘𝑠

d𝑠
)

, 𝑡 ≥ 0,

f, and only if,

1 − 𝜌(𝑡) =
𝜇 + ℎ̃𝜃(𝑡)

𝜆
, 𝑡 ≥ 0, (15)

with 𝜆 − 𝜇 = −𝑞 log 𝑘 > 0 and ℎ̃𝜃(𝑡) given in Eq. (10).

Proof. The conditional mean 𝐸𝑦(𝑡) satisfies the following differential equation

d
d𝑡𝐸𝑦(𝑡) = (𝜆(𝑡) − 𝜇(𝑡))𝐸𝑦(𝑡), 𝑡 ≥ 0.

On the other hand, the modified Bertalanffy–Richards function 𝑥𝜃(𝑡) verifies the differential Eq. (5) with time-dependent growth
ate ℎ̃ (𝑡). So, the function 𝜌(𝑡) must be chosen as in Eq. (15). □
8
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Fig. 7. The transition probabilities (a) 𝑃𝑦0(𝑡), (b) 𝑃𝑦𝑥(𝑡) as a function of 𝑡 and (c) 𝑃𝑦𝑛(𝑡) as a function of 𝑛 for 𝐶(𝑡) defined in Eq. (12), with 𝜂 = 0.2, 𝑚 = 1,
𝑘 = 0.5, 𝑞 = 2, 𝑝 = 0.8. In (a), one has 𝜇 = 1, 𝑦 = 1, 2, 3. In (b), one has 𝜇 = 1, 𝑦 = 1 and 𝑥 = 5, 10, 20, 30. In (c), one has 𝜇 = 0.01, 𝑡 = 6 and 𝑦 = 1.

From now on, we will assume that the condition (15) holds. Consequently,

𝜓(𝑡) =
(

𝜂 + 𝑘𝑡

𝜂 + 1

)𝑞
exp

(

∫

max{𝑡,𝑡∗}

𝑡∗
𝐶(𝑠)

𝑘𝑠 log 𝑘
𝜂 + 𝑘𝑠

d𝑠
)

,

𝜙(𝑡) = − exp
(

−∫

𝑡

0
ℎ̃𝜃(𝑢)𝑑𝑢

)

+ 𝜇 ∫

𝑡

0
exp

(

−∫

𝑠

0
ℎ̃𝜃(𝑢)d𝑢

)

d𝑠, 𝑡 ≥ 0.

(16)

As shown in Tan (1986) [22], the transition probabilities and the conditional variance of the process can be expressed as follows,
for any 𝑡 ≥ 0,

𝑃𝑦0(𝑡) =
(

1 − 1
𝜓(𝑡) + 𝜙(𝑡)

)𝑦
,

𝑃𝑦𝑥(𝑡) =
(

𝜙(𝑡)
𝜓(𝑡) + 𝜙(𝑡)

)𝑥 min(𝑥,𝑦)
∑

𝑖=0

(

𝑦
𝑖

)(

𝑦 + 𝑥 − 𝑖 − 1
𝑦 − 1

)

(

𝜙(𝑡)−1 − 1
)𝑖
(

1 − 1
𝜓(𝑡) + 𝜙(𝑡)

)𝑦−𝑖

and

𝑉 𝑎𝑟𝑦(𝑡) ∶= 𝖵𝖺𝗋[𝑋(𝑡) ∣ 𝑋(0) = 𝑦] = 𝑦
𝜓(𝑡) + 2𝜙(𝑡) − 1

𝜓2(𝑡)
.

Some plots of the transition probabilities are provided in Fig. 7 for various choices of the parameters. In these cases, the probability
𝑃𝑦0(𝑡) is increasing with respect to 𝑡, whereas the probability 𝑃𝑦𝑛(𝑡) is decreasing with respect both to 𝑡 and 𝑛. It is worth to notice
that, since 𝜓̃ ∶= lim𝑡→+∞ 𝜓(𝑡) < +∞ and 𝜙 ∶= lim𝑡→+∞ 𝜙(𝑡) = +∞, the probability of an ultimate extinction is equal to 1, indeed

𝜋𝑦0 ∶= lim
𝑡→+∞

𝑃𝑦0(𝑡) =

(

1 − 1
𝜓̃ + 𝜙

)𝑦

= 1.

See Fig. 8 for some plots of the conditional variance. Note that since the conditional variance is bounded, the conditional mean is
a significant statistic for the process.

4.1. A special time-inhomogeneous linear birth process

In Section 4 we considered a birth–death process with time-dependent transition rates and we investigated the conditions under
which its mean is of modified Bertalanffy–Richards type. Since the growth curve 𝑥 (𝑡) may be significantly different from the sample
9
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Fig. 8. The conditional variance 𝑉 𝑎𝑟𝑦(𝑡) as a function of 𝑡 with 𝜂 = 0.2, 𝑚 = 1, 𝑘 = 0.5, 𝑞 = 2, 𝜇 = 0.01, 𝑝 = 0.8 and 𝑦 = 2, 3, 4.

paths of the birth–death process (because of the presence of an absorbing endpoint), we now propose a stochastic process 𝑋(𝑡) more
suitable to describe a growth phenomenon by removing the possibility of having downward jumps (deaths). Under this assumption,
the individual transition rates of 𝑋(𝑡) are given by

𝜆(𝑡) ∶= (1 − 𝜌(𝑡))𝜆, 𝜇(𝑡) ∶= 0, (17)

where 𝜆 > 0 and 0 ≤ 𝜌(𝑡) ≤ 1 is an integrable function over the interval (0, 𝑡). Hence, the state-space of the process is given by
 ∶= {𝑦, 𝑦+1,…} being 𝖯[𝑋(0) = 𝑦] = 1. The result of Proposition 4.1 can be updated to this special case as shown in the following

Proposition 4.2. The linear birth process with birth rate

𝜆𝑛 = 𝑛𝜆(𝑡), 𝑡 ≥ 0 (18)

with 𝜆(𝑡) given in Eq. (17), has conditional mean

𝐸𝑦(𝑡) = 𝖤[𝑋(𝑡) ∣ 𝑋(0) = 𝑦] = 𝑦
(

𝜂 + 1
𝜂 + 𝑘𝑡

)𝑞
exp

(

∫

max{𝑡,𝑡∗}

𝑡∗
𝐶(𝑠)

𝑘𝑠| log 𝑘|
𝜂 + 𝑘𝑠

𝑑𝑠

)

, 𝑡 ≥ 0, (19)

if, and only if,

1 − 𝜌(𝑡) =
ℎ̃𝜃(𝑡)
𝜆

, 𝑡 ≥ 0,

with 𝜆 = −𝑞 log 𝑘 > 0 and ℎ̃𝜃(𝑡) given in Eq. (10).

In this case, considering the birth rate given in Eq. (18), the transition probabilities can be expressed as

𝑃𝑦𝑥(𝑡) = 𝖯 [𝑋(𝑡) = 𝑥 ∣ 𝑋(0) = 𝑦] =
(

𝑥 − 1
𝑦 − 1

)

𝑒−𝑦𝛬(𝑡)
(

1 − 𝑒−𝛬(𝑡)
)𝑥−𝑦 , 𝑥 ∈  ,

where

𝛬(𝑡) = ∫

𝑡

0
𝜆(1 − 𝜌(𝑠))d𝑠 = −𝑞 log

(

𝜂 + 𝑘𝑡

𝜂 + 1

)

− ∫

max{𝑡,𝑡∗}

𝑡∗
𝐶(𝑠)

𝑘𝑠 log 𝑘
𝜂 + 𝑘𝑠

d𝑠, 𝑡 ≥ 0.

In Fig. 9 some plots of the transitions probabilities are provided for some choices of the parameters. In these cases, the probability
𝑃𝑦𝑥(𝑡) is decreasing with respect to 𝑡 and increasing with respect to 𝑥. The conditional mean of the process is given by Eq. (19),
whereas, the conditional variance is

𝑉 𝑎𝑟𝑦(𝑡) = 𝑦
1 − 𝜓(𝑡)
𝜓(𝑡)2

, 𝑡 ≥ 0

with 𝜓(𝑡) given in the first of Eqs. (16). Let us now determine some indexes of dispersion of the process which may be useful in
certain applied contexts. In particular, the Fano factor is given by

𝐷(𝑡) ∶=
𝑉 𝑎𝑟𝑦(𝑡)
𝐸𝑦(𝑡)

= 1
𝜓(𝑡)

− 1, 𝑡 ≥ 0. (20)

Note that 𝐷(𝑡) is an increasing function with respect to 𝑡. From Eq. (20), it is possible to note that

- the birth process 𝑋(𝑡) is underdispersed for 𝑡 > 𝑡̃ being 𝑡̃ the solution of the equation 𝜓(𝑡) = 1∕2 which has a solution when
̃ > 2𝑦;
10

𝜃



Communications in Nonlinear Science and Numerical Simulation 139 (2024) 108258A. Di Crescenzo et al.
Fig. 9. The transition probabilities (a) 𝑃𝑦𝑥(𝑡) as a function of 𝑡 for 𝑥 = 3, 4, 5 and (b) 𝑃𝑦𝑥(𝑡) as a function of 𝑥 with 𝑡 = 6. In both cases, we have 𝐶(𝑡) defined in
Eq. (12), 𝜂 = 0.2, 𝑚 = 1, 𝑘 = 0.5, 𝑞 = 2, 𝑝 = 0.8, 𝑦 = 2.

Fig. 10. (a) We consider the conditional mean 𝐸𝑦(𝑡) and (b) the conditional variance 𝑉 𝑎𝑟𝑦(𝑡) as a function of 𝑡 with 𝜂 = 0.2, 𝑚 = 1, 𝑘 = 0.5, 𝑞 = 2, 𝑝 = 0.8,
𝑦 = 2, 3, 4, (b) the Fano factor 𝐷(𝑡) and (c) the coefficient of variation 𝜎𝑦(𝑡) as a function of 𝑡 with 𝑚 = 1, 𝑦 = 2, 𝑘 = 0.5, 𝑞 = 2, 𝑝 = 0.8, 𝜂 = 0.2, 0.3, 0.4.

- the birth process 𝑋(𝑡) is overdispersed for 𝑡 < 𝑡̃.

Similarly, one can obtain the explicit expression for the coefficient of variation 𝜎𝑦(𝑡) which is

𝜎𝑦(𝑡) ∶=

√

𝑉 𝑎𝑟𝑦(𝑡)
𝐸𝑦(𝑡)

=

√

1 − 𝜓(𝑡)
𝑦

, 𝑡 ≥ 0.

We remark that 𝜎𝑦(𝑡) is increasing in 𝑡 and decreasing in 𝑦 and the following limits hold

lim
𝑦→0+

𝜎𝑦(𝑡) = +∞, lim
𝑦→̃𝜃

𝜎𝑦(𝑡) = 0.

Fig. 10 provide some plots of the conditional variance 𝑉 𝑎𝑟𝑦(𝑡), of Fano factor 𝐷𝑦(𝑡) and of the coefficient of variation 𝜎𝑦(𝑡). All
quantities represented are increasing and bounded. Note that all results presented in this section are in agreement with the birth
process studied in Section 4 of Di Crescenzo and Paraggio (2019) [23] related to a logistic growth curve. The following time limits
11
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hold

lim
𝑡→0

𝛬(𝑡) = 0, lim
𝑡→+∞

𝛬(𝑡) = log
̃𝜃
𝑦
,

lim
𝑡→0

𝐷(𝑡) = 0, lim
𝑡→+∞

𝐷(𝑡) =
̃𝜃
𝑦

− 1,

lim
𝑡→0

𝜎𝑦(𝑡) = 0, lim
𝑡→+∞

𝜎𝑦(𝑡) =

√

√

√

√

̃𝜃 − 𝑦

̃𝜃𝑦
.

In order to obtain a more manageable stochastic counterpart, in Section 5 we consider a particular lognormal diffusion process
having the same interesting feature of the BD processes introduced so far: its mean is of type 𝑥𝜃(𝑡).

. The corresponding diffusion processes

We now consider two lognomal diffusion processes {𝑋(𝑡); 𝑡 ∈ 𝐼} and {𝑋(𝑡); 𝑡 ∈ 𝐼}, with 𝐼 = [𝑡0,+∞), having a mean which
orresponds the former to the curve (1) and the latter to the curve (11). The considered non-homogeneous lognormal diffusion
rocesses can be regarded as diffusive approximations of suitable birth–death processes having quadratic rates, as shown in Section
.2 of Di Crescenzo et al. (2021) [24]. The stochastic differential equation (SDE) related to the classical model (1) is given by

d𝑋(𝑡) = ℎ𝜃(𝑡)𝑋(𝑡)d𝑡 + 𝜎𝑋(𝑡)d𝑊 (𝑡), 𝑋(𝑡0) = 𝑋0 (21)

here 𝑊 (𝑡) denotes a Wiener process independent on the initial condition 𝑋0, ℎ𝜃(𝑡) is defined in Eq. (4) and 𝜎 > 0.
Similarly, the diffusion process {𝑋(𝑡); 𝑡 ∈ 𝐼} modeling the modified curve is the solution of the following SDE

d𝑋(𝑡) = ℎ̃𝜃(𝑡)𝑋(𝑡)d𝑡 + 𝜎𝑋(𝑡)d𝑊 (𝑡), 𝑋(𝑡0) = 𝑋0 (22)

here ℎ̃𝜃(𝑡) is defined in Eq. (10). It is worth to remark that both Eq. (21) and (22) are obtained by adding to the corresponding
althusian equations (cf. Eq. (3)) a multiplicative noise term. The solutions of the SDEs (21) and (22) can be easily determined by
eans of Itô’s formula with the variable transformation 𝑓 (𝑌 ) ∶= log(𝑌 ), with 𝑌 ∈ {𝑋(𝑡), 𝑋(𝑡)}. Indeed, they are given by

𝑋(𝑡) = 𝑋0 exp
(

𝐻𝜉 (𝑡0, 𝑡) + 𝜎
(

𝑊 (𝑡) −𝑊 (𝑡0)
))

, 𝑡 ≥ 𝑡0, (23)

𝑋(𝑡) = 𝑋0 exp
(

𝐻̃𝜉 (𝑡0, 𝑡) + 𝜎
(

𝑊 (𝑡) −𝑊 (𝑡0)
)

)

, 𝑡 ≥ 𝑡0, (24)

here, for 𝑡 > 𝑠

𝐻𝜉 (𝑠, 𝑡) = 𝑞 log
𝑘𝑠 + 𝜂
𝑘𝑡 + 𝜂

− 𝜎2

2
(𝑡 − 𝑠), (25)

𝐻̃𝜉 (𝑠, 𝑡) = 𝐻𝜉 (𝑠, 𝑡) + ∫

max{𝑡,𝑡∗}

max{𝑠,𝑡∗}
𝐶(𝑢)

𝑘𝑢 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑢

d𝑢, (26)

with 𝜉 ∶= (𝜃𝑇 , 𝜎)𝑇 = (𝑞, 𝑘, 𝜂, 𝜎)𝑇 . The processes (23) and (24) are lognormal diffusion processes with state-space (0,+∞) and
infinitesimal moments

𝐴1(𝑥, 𝑡) = ℎ𝜃(𝑡)𝑥, 𝐴2(𝑥) = 𝜎2𝑥2

𝐴1(𝑥, 𝑡) = ℎ̃𝜃(𝑡)𝑥, 𝐴2(𝑥) = 𝜎2𝑥2,

respectively. In Fig. 11, some simulated sample paths of the process 𝑋(𝑡) are provided by considering the function 𝐶(𝑡) defined in
Eq. (12). Clearly, the sample paths are more variable around the sample mean when 𝜎 is larger.

By developing a well-known strategy (cf. Román-Román et al. (2018) [13]), it is possible to get the probability distribution of
𝑋(𝑡). More in detail, if 𝑋0 follows a lognormal distribution 𝛬1(𝜇0, 𝜎20 ) or if 𝑋0 is a degenerate random variable (i.e. 𝖯[𝑋0 = 𝑥0] = 1,

ith 𝑥0 > 0), then the finite-dimensional distributions of the process are lognormal. Indeed, fixing 𝑛 time instants 𝑡1 < ⋯ < 𝑡𝑛, the
ector

(

𝑋(𝑡1),… , 𝑋(𝑡𝑛)
)𝑇

is distributed according to a 𝑛-dimensional lognormal distribution 𝛬𝑛(𝜖, 𝛴), where 𝜖 = (𝜖1,… , 𝜖𝑛)𝑇 with

𝜖𝑖 = 𝜇0 + 𝐻̃𝜉 (𝑡0, 𝑡𝑖) = 𝜇0 + 𝑞 log
𝑘𝑡0 + 𝜂
𝑘𝑡𝑖 + 𝜂

+ ∫

max{𝑡𝑖 ,𝑡∗}

𝑡∗
𝐶(𝑢)

𝑘𝑢 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑢

d𝑢 − 𝜎2

2
(𝑡𝑖 − 𝑡0), 𝑖 = 1,… , 𝑛

nd 𝛴 = (𝜎𝑖𝑗 ) with

𝜎𝑖𝑗 = 𝜎20 + 𝜎
2 (min(𝑡𝑖, 𝑡𝑗 ) − 𝑡0

)

, 𝑖, 𝑗 = 1,… , 𝑛.

rom the case 𝑛 = 2, it is possible to obtain the conditional probability distribution of the process 𝑋(𝑡), i.e.
[

𝑋(𝑡) ∣ 𝑋(𝑠) = 𝑥
]

∼ 𝛬1

(

log 𝑥 + 𝑞 log
𝑘𝑠 + 𝜂
𝑡 + ∫

max{𝑡,𝑡∗}
𝐶(𝑢)

𝑘𝑢 ∣ log 𝑘 ∣
𝑢 d𝑢 − 𝜎2 (𝑡 − 𝑠), 𝜎2(𝑡 − 𝑠)

)

,
(27)
12

𝑘 + 𝜂 max{𝑠,𝑡∗} 𝜂 + 𝑘 2



Communications in Nonlinear Science and Numerical Simulation 139 (2024) 108258A. Di Crescenzo et al.

𝜎

t

Fig. 11. 25 simulated sample paths of 𝑋(𝑡) with (a) 𝜎 = 0.01 and (b) 𝜎 = 0.05 and of 𝑋(𝑡) with 𝐶(𝑡) defined in Eq. (12), 𝑝 = 0.5, 𝑚 = 1, (c) 𝜎 = 0.01 and (d)
= 0.05. In all cases 𝑡0 = 0, 𝑥0 = 2, 𝜂 = 0.2, 𝑘 = 0.5, 𝑞 = 2. The black line is the sample mean.

Table 2
The conditional and unconditional mean, mode and 𝛼-percentile of 𝑋(𝑡) where 𝐺𝜆 is defined in
Eq. (28) and 𝑧𝛼 is the 𝛼-percentile of the standard normal random variable.

Characteristic Expression 𝜆

𝖤
[

𝑋(𝑡)𝑛 ∣ 𝑋(𝑠) = 𝑦
]

𝐺𝜆(𝑡 ∣ log 𝑦, 𝑠) (𝑛, 𝑛2∕2, 0, 1)𝑇

Mode
[

𝑋(𝑡) ∣ 𝑋(𝑠) = 𝑦
]

𝐺𝜆(𝑡 ∣ log 𝑦, 𝑠) (1,−1, 0, 1)𝑇

𝐶𝛼
[

𝑋(𝑡)𝑛 ∣ 𝑋(𝑠) = 𝑦
]

𝐺𝜆(𝑡 ∣ log 𝑦, 𝑠) (1, 𝑧𝛼 , 0, 1∕2)𝑇

𝖤
[

𝑋(𝑡)𝑛
]

𝐺𝜆(𝑡 ∣ 𝜇0 , 𝑡0) (𝑛, 𝑛2∕2, 1, 1)𝑇

Mode
[

𝑋(𝑡)
]

𝐺𝜆(𝑡 ∣ 𝜇0 , 𝑡0) (1,−1, 1, 1)𝑇

𝐶𝛼
[

𝑋(𝑡)𝑛
]

𝐺𝜆(𝑡 ∣ 𝜇0 , 𝑡0) (1, 𝑧𝛼 , 1, 1∕2)𝑇

for 𝑡 > 𝑠 ≥ 𝑡0. By employing Eq. (27), in Table 2 we provide some of the most relevant characteristics of the process making use of
he following auxiliary function

𝐺𝜆(𝑡 ∣ 𝑦, 𝜏) ∶= exp
(

(𝑦 + 𝐻̃𝜉 (𝜏, 𝑡))𝜆1 + 𝜆2(𝜆3𝜎20 + 𝜎
2(𝑡 − 𝜏))𝜆4

)

, (28)

with 𝜆 ∶= (𝜆1, 𝜆2, 𝜆3, 𝜆4)𝑇 and 𝐻̃𝜉 (𝑡) defined in Eq. (26).
Taking into account the expression of the quantities given in Table 2, we now get some relations between the diffusion processes

𝑋(𝑡) and 𝑋(𝑡). Let

𝐺𝜆(𝑡 ∣ 𝑦, 𝜏) ∶= exp
(

(𝑦 +𝐻 (𝜏, 𝑡))𝜆 + 𝜆 (𝜆 𝜎2 + 𝜎2(𝑡 − 𝜏))𝜆4
)

,

13

𝜉 1 2 3 0
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with 𝐻𝜉 (𝑡) defined in Eq. (25), be the corresponding auxiliary function for the process 𝑋(𝑡). After some algebra, we have that

𝖤[𝑋(𝑡)]
𝖤[𝑋(𝑡)]

= exp

(

∫

max{𝑡,𝑡∗}

𝑡∗
𝐶(𝑠)

𝑘𝑠 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑠

d𝑠

)

, 𝑡 ≥ 𝑡0, (29)

and

𝖵𝖺𝗋[𝑋(𝑡)]
𝖵𝖺𝗋[𝑋(𝑡)]

= exp

(

2∫

max{𝑡,𝑡∗}

𝑡∗
𝐶(𝑠)

𝑘𝑠 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑠

d𝑠

)

, 𝑡 ≥ 𝑡0.

The above mentioned relations are useful also for estimation purposes. Indeed, in Section 6 we employ Eq. (29) for estimating the
unknown function 𝐶(𝑡).

6. Parameters estimation

The model proposed in Section 5 is useful in real applications, in particular to model a Bertalanffy–Richards type growth with
external modifications. To this aim, an estimation of the unknown parameters of the model is necessary. Since the distribution of
𝑋(𝑡) is available in explicit form, we propose to obtain the maximum likelihood estimates (MLEs) of the parameters, following the
same strategy of Di Crescenzo et al. (2022) [15]. In the following reasoning, the time instant 𝑡∗ is supposed to be known, otherwise
𝑡∗ needs to be estimated following the strategies described in Section 8.2. Let us consider a discrete sampling of the diffusion
process 𝑋(𝑡) consisting of 𝑑 independent sample paths, with 𝑛𝑖 observations for the 𝑖th sample path. Hence, the observation times
are denoted by 𝑡𝑖𝑗 , for 𝑖 = 1,… , 𝑑 and 𝑗 = 1,… , 𝑛𝑖. We also assume, for simplicity, that the first observation time is the same for
any trajectory, i.e. 𝑡𝑖1 = 𝑡0, 𝑖 = 1,… , 𝑑. Moreover, let X̃ = (X̃

𝑇
1 ∣ ⋯ ∣ X̃

𝑇
𝑑 )
𝑇 be the vector which contains all the observed states, with

X̃𝑖 = (𝑋𝑖1,… , 𝑋𝑖𝑛𝑖 )
𝑇 = (𝑋(𝑡𝑖1),… , 𝑋(𝑡𝑖𝑛𝑖 ))

𝑇 . In agreement with the assumptions about 𝑋0 given in Section 5, we suppose that 𝑋(𝑡0)
follows a lognormal distribution 𝛬1(𝜇1, 𝜎21 ) with 𝜇1 ∈ R and 𝜎21 ∈ R+, so that the density of X̃ is given by

𝑓X̃(𝑥) =
𝑑
∏

𝑖=1

exp
(

− (log 𝑥𝑖1−𝜇1)2

2𝜎21

)

𝑥𝑖1𝜎1
√

2𝜋

𝑛𝑖−1
∏

𝑗=1

exp

(

−
(log(𝑥𝑖,𝑗+1∕𝑥𝑖𝑗 )−𝑚̃

𝑖,𝑗+1,𝑗
𝜉 )2

2𝜎2𝛥𝑗+1,𝑗𝑖

)

𝑥𝑖𝑗𝜎
√

2𝜋𝛥𝑗+1,𝑗𝑖

, (30)

where 𝑥 = (𝑥1,1,… , 𝑥1,𝑛1 ∣ ⋯ ∣ 𝑥𝑑1,… , 𝑥𝑑,𝑛𝑑 )
𝑇 ∈ R𝑛+𝑑+ , with 𝑛 =

∑𝑑
𝑖=1(𝑛𝑖 − 1), for (cf. (26))

𝑚̃𝑖,𝑗+1,𝑗𝜉 ∶= 𝐻̃𝜉 (𝑡𝑖𝑗 , 𝑡𝑖,𝑗+1) = 𝑞 log
𝑘𝑡𝑖𝑗 + 𝜂
𝑘𝑡𝑖,𝑗+1 + 𝜂

+ ∫

max{𝑡𝑖,𝑗+1 ,𝑡∗}

max{𝑡𝑖𝑗 ,𝑡∗}
𝐶(𝑢)

𝑘𝑢 ∣ log 𝑘 ∣
𝜂 + 𝑘𝑢

d𝑢 − 𝜎2

2
(𝑡𝑖,𝑗+1 − 𝑡𝑖𝑗 ),

nd 𝛥𝑗+1,𝑗𝑖 ∶= 𝑡𝑖,𝑗+1 − 𝑡𝑖𝑗 for 𝑖 = 1,… , 𝑑 and 𝑗 = 1,… , 𝑛𝑖. In order to simplify the cumbersome expression of the density given in
q. (30), we perform the following change of variables:

𝑉0𝑖 ∶= 𝑋𝑖1, 𝑖 = 1,… , 𝑑

𝑉𝑖𝑗 ∶=
(

𝛥𝑗+1,𝑗𝑖

)−1∕2
log

𝑋𝑖,𝑗+1

𝑋𝑖𝑗
, 𝑗 = 1,… , 𝑛𝑖 − 1, 𝑖 = 1,… , 𝑑.

Therefore, by setting V = (V𝑇
0 ∣ V𝑇

1 ∣ ⋯ ∣ V𝑇
𝑑 )
𝑇 with V𝑇

𝑖 = (𝑉𝑖1,… , 𝑉𝑖𝑛𝑖 ), the corresponding density is

𝑓V(𝑣) =
exp

(

− 1
2𝜎21

(𝑙𝑣0 − 𝜇1I𝑑 )𝑇 (𝑙𝑣0 − 𝜇1I𝑑 )
)

∏𝑑
𝑖=1 𝑣0𝑖(2𝜋𝜎

2
1 )
𝑑∕2

⋅
exp

(

− 1
2𝜎2 (𝑣(1) − 𝛾

𝜉 )𝑇 (𝑣(1) − 𝛾𝜉 )
)

(2𝜋𝜎2)𝑛∕2
,

where
𝑣 = (𝑣𝑇0 |𝑣

𝑇
(1)) ∈ R𝑛+𝑑 , 𝑣0 = (𝑣01,… , 𝑣0𝑑 )𝑇 ∈ R𝑑 , 𝑙𝑣0 = (log 𝑣01,… , log 𝑣0𝑑 )𝑇 ,

𝑣(1) = (𝑣11,… , 𝑣1,𝑛1−1|… |𝑣𝑑1,… , 𝑣𝑑,𝑛𝑑−1)
𝑇 ∈ R𝑛, I𝑑 = (1,… , 1)𝑇 ∈ R𝑑 ,

with 𝛾𝜉 = (𝛾𝜉11,… , 𝛾𝜉1,𝑛1−1,… , 𝛾𝜉𝑑1,… , 𝛾𝜉𝑑,𝑛𝑑−1)
𝑇 ∈ R𝑛 and 𝛾𝜉𝑖𝑗 =

(

𝛥𝑗+1,𝑗𝑖

)−1∕2
𝑚̃𝑖,𝑗+1,𝑗𝜉 , for 𝑗 = 1,… , 𝑛𝑖 − 1 and 𝑖 = 1,… , 𝑑.

By supposing that the parameters of the process, 𝜉, and those of the initial distribution, (𝜇1, 𝜎21 ), are functionally independent,
the log-likelihood function can be expressed as follows

𝐿V(𝜉, 𝜇1, 𝜎21 ) = 𝐿̃V(𝜉) −
𝑛 + 𝑑
2

log 2𝜋 − 𝑑
2
log 𝜎21 −

𝑑
∑

𝑖=1
log 𝑣0𝑖 −

∑𝑑
𝑖=1(log 𝑣0𝑖 − 𝜇1)

2

2𝜎21
,

here

𝐿̃ (𝜉) ∶= − 𝑛 log 𝜎2 −
𝑍1 +𝛷𝜉 − 2𝛤𝜉 (31)
14

V 2 2𝜎2
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f
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𝑍1 ∶=
𝑑
∑

𝑖=1

𝑛𝑖−1
∑

𝑗=1
𝑣2𝑖𝑗 , 𝛷𝜉 ∶=

𝑑
∑

𝑖=1

𝑛𝑖−1
∑

𝑗=1

(𝑚̃𝑖,𝑗+1,𝑗𝜉 )2

𝛥𝑗+1,𝑗𝑖

, 𝛤𝜉 ∶=
𝑑
∑

𝑖=1

𝑛𝑖−1
∑

𝑗=1

𝑣𝑖𝑗 𝑚̃
𝑖,𝑗+1,𝑗
𝜉

(𝛥𝑗+1,𝑗𝑖 )1∕2
.

By performing the partial derivatives of the log-likelihood 𝐿V with respect to 𝜇1 and 𝜎21 , we can easily get the following MLEs:

𝜇1 =
1
𝑑

𝑑
∑

𝑖=1
log 𝑣0𝑖, 𝜎21 = 1

𝑑

𝑑
∑

𝑖=1
(log 𝑣0𝑖 − 𝜇1)2. (32)

In order to obtain the MLEs of 𝜉, we decide to adopt suitable metaheuristic optimization methods to avoid numerical problems in
the resolution of the system of maximum likelihood. In addition, we need to estimate also the unknown function 𝐶(𝑡) occurring in
the definition of the modified model 𝑋(𝑡). To this aim, we assume to dispose of a data set concerning the observations of a modified
Bertalanffy-Richards model 𝑋(𝑡) in the time interval [𝑡0, 𝑇 ]. Consider first Eq. (29), which allows us to implement the following
procedure.

Procedure 1 - Estimation of the parameters

Step 1 Compute the MLEs 𝜉 = (𝑞, 𝑘̂, 𝜂̂, 𝜎̂)𝑇 .
Step 2 Determine an estimation of 𝑡∗.
Step 3 Obtain an estimation of the function 𝐶(𝑡).

A description of the steps of Procedure 1 is provided in the hereafter.
Step 1 In order to determine the MLEs 𝜉, we use the data over an interval 𝐼𝑡 = [𝑡0, 𝑡] ⊃ [𝑡0, 𝑡𝐼 ], being 𝑡 a time instant quite close

to 𝑡∗. For example, we can take 𝑡 as the time instant in which the spline 𝑆(𝑡) interpolating the mean of the paths intercepts the
threshold 𝑆, defined in Eq. (7).

Step 2 To determine an estimation of 𝑡∗ two different strategies are available: (i) we can use Eq. (8) and consider 𝑡∗ as a parametric
unction of the MLEs determined at Step 1 or (ii) we can consider the mean of the first-passage-time of the estimated process (i.e.
he process given in Eq. (23) obtained by considering the MLEs of the parameters) through the fixed boundary 𝑆.

Step 3 Considering the sample mean 𝖤[𝑋(𝑡)] of the modified process (24) and the estimated mean 𝖤 [𝑋(𝑡)] of the classical process
ver the full time interval [𝑡0, 𝑇 ], we then obtain the estimation of the function 𝐶(𝑡) from Eq. (29) as follows

𝐶(𝑡) =
𝜂 + 𝑘𝑡

𝑘𝑡 ∣ log 𝑘 ∣
d
d𝑡𝑚(𝑡), 𝑡 > 𝑡∗, (33)

with 𝑚(𝑡) ∶= log
(

𝖤[𝑋(𝑡)]
𝖤[𝑋(𝑡)]

)

, for 𝑡 > 𝑡∗. Note that since the mean of the process 𝑋(𝑡) (cf. Eq. (23)) corresponds to the classical

eterministic curve 𝑥𝜃(𝑡) (cf. Eq. (1)), in Eq. (33) we consider

𝖤 [𝑋(𝑡)] = 𝖤[𝑋0]

(

𝜂 + 𝑘̂𝑡0

𝜂 + 𝑘̂𝑡

)𝑞

.

7. Determination of MLEs through heuristic optimization methods

To determine the MLEs mentioned in the Step 1 of Procedure 1, we develop the following reasoning.
Since the numerical methods employed to solve system of maximum likelihood may fail to converge even in the case of a quite

accurate initial solution, we now propose to employ two different meta-heuristic optimization methods, namely Simulated Annealing
(SA) and Ant Lion Optimizer (ALO). These two methods belong to the family of gradient-free algorithms and they are suggested
when the use of the derivative of the function to be maximized is intricate. The estimation of the parameters of the initial distribution
can be obtained through the explicit expressions given in Eq. (32). Hence, we need to maximize Eq. (31) on the parametric space
𝛩 = {(𝑞, 𝑘, 𝜂, 𝜎) ∶ 𝑞 > 0, 0 < 𝑘 < 1, 𝜂 > 0, 𝜎 > 0}. Since this space is continuous and unbounded, a restriction of 𝛩 is needed. A
similar problem has been considered in Section 3.1.1 of Román-Román and Torres-Ruiz (2015) [17]. Their main idea is to find,
first of all, a bounded interval 𝐼𝑞 ∶= [𝑞1, 𝑞2] for 𝑞 and from that determine sequentially two bounded intervals, the former for 𝑘 and
the latter for 𝜂. Further on, as usual, we use the interval 𝐼𝜎 ∶= (0, 0.1) for the parameter 𝜎 so that the paths are compatible with a
Bertalanffy–Richards type growth.

1.1 Let us start from the determination of 𝐼𝑞 . By interpolating the mean of the sample paths with a natural cubic spline 𝑆(𝑡), we
find the time instant 𝑡∗𝐼 which is the ‘‘observed’’ inflection instant. Then, we select 𝑡1 as the first instant in which 𝑆(𝑡)∕∗ > 𝑒−1,
where ∗ is an approximation of the boundary 𝑆 = (1+𝑝)𝑥∗𝑖 being 𝑥∗𝑖 the value of the curve at the observed inflection time. In

∗

15

this way,  may represent an approximation of the carrying capacity of the classical Bertalanffy–Richards model. Thus, we
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Fig. 12. The ratio 𝑆(𝑡𝑗 )
∗ as a function of 𝑞 (black) and the line 𝑦 = 𝑒−1 (red).

consider the interval [𝑡1, 𝑡2] where 𝑡2 is the observation instant immediately after 𝑡∗𝐼 . Consequently, we determine the endpoints
of the interval 𝐼𝑞 = [𝑞1, 𝑞2] being 𝑞𝑗 the solutions of the following equations

𝑆(𝑡𝑗 ) = ∗
( 𝑞𝑗
1 + 𝑞𝑗

)𝑞𝑗
, 𝑗 = 1, 2. (34)

1.2 We now proceed on the determination of 𝐼𝑘 and 𝐼𝜂 . From the characteristics of the classic Bertalanffy–Richards curve, we have

𝜂 = 𝑞𝑘𝑡𝐼 , 𝑘 =

(

𝑞

(

(

∗

𝑥0

)1∕𝑞
− 1

))1∕(𝑡0−𝑡𝐼 )

.

This allows us to consider the following functions

𝑔(𝑡, 𝑞) =

(

𝑞

(

(

∗

𝑥0

)1∕𝑞
− 1

))1∕(𝑡0−𝑡)

, ℎ(𝑞, 𝑘, 𝑡) = 𝑞𝑘𝑡, (35)

for 𝑞 ∈ 𝐼𝑞 , 𝑡 ∈ [𝑡1, 𝑡2], 𝑘 ∈ 𝐼𝑘 ⊂ (0, 1). From Eq. (35), it follows that the minimum value of 𝑔(𝑡, 𝑞) is reached at (𝑡1, 𝑞1) and
its maximum at (𝑡2, 𝑞2). Hence, we consider for the parameter 𝑘 the interval 𝐼𝑘 ∶= [𝑘1, 𝑘2] = [𝑔(𝑡1, 𝑞1), 𝑔(𝑡2, 𝑞2)]. Similarly, the
function ℎ(𝑞, 𝑘, 𝑡) assumes its minimum value at (𝑞1, 𝑘1, 𝑡2) and its maximum at (𝑞2, 𝑘2, 𝑡1), so that for the parameter 𝜂 we can
use the interval 𝐼𝜂 ∶= [𝜂1, 𝜂2] = [ℎ(𝑞1, 𝑘1, 𝑡2), ℎ(𝑞2, 𝑘2, 𝑡1)], since the function ℎ(𝑞, 𝑘, 𝑡) is decreasing with respect to 𝑡.

t is worth to notice that the width of the interval 𝐼𝑞 may be too large, since small variations of the ratio 𝑆(𝑡𝑗 )
∗ correspond to large

variations of the parameter 𝑞 (cf. Eq. (34)), as can be deducted from Fig. 12. Nevertheless, the resulting MLEs obtained via SA and
LO are quite accurate as can be noticed from the results shown in Section 8.

. Simulation

In this section, we devote our analysis to a simulation study in order to validate the procedures described in Sections 6 and
. The pattern of the simulations is based on 25 sample paths of 𝑋(𝑡), defined in Eq. (24), the time interval [0, 10] with 𝑞 = 2,
= 0.5, 𝜂 = 0.2, 𝜎 ∈ {0.01, 0.02}. Moreover, 𝐶(𝑡) is taken as in Eq. (12) for 𝑚 = 1 and where the value of 𝑡∗ is obtained by setting
= 0.5 in Eq. (8). The sample paths share the same length since the common observation time instants are taken as 𝑡𝑗 = 𝑗 ⋅ 0.1 with
= 0,… , 100. For the initial condition we consider a degenerate distribution centered in 𝑥0 = 2. In the study, we suppose that the

hreshold 𝑆 = (1+𝑝)𝑥(𝑡𝐼 ) is known, in the sense that the value of 𝑝 is given. Otherwise, a set of possible values for 𝑝 can be explored
o select the best estimation (in terms of minimization of the absolute relative error between the sample mean and the estimated
ean). Once the sample paths are simulated, we consider a sample size 𝑛 = 51, being the data equally spaced in the interval under

onsideration. With the aim of obtaining better estimates, the steps of Procedure 1 are replicated 300 times. For any parameter,
he mean of the resulting estimates is taken as the final value. As can be seen in Fig. 13, the estimates stabilize around a specific
alue as the number of replications increases.

For the realization of the simulation study and the application to real data, the R software has been used. Specifically, the
etaheuristicOpt package, which implements the metaheuristic Ant Lion Optimizer algorithm, and the GenSA package, which
ontains the Simulated-Annealing algorithm. For both methods, the intervals, determined in Section 7, were given in input. Then,
he initial solution of each parameter was determined by choosing a random value with a uniform distribution in any interval. The
16
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Fig. 13. Convergence of the estimates of the parameter (a) 𝑞, (b) 𝑘̂, (c) 𝜂, (d) 𝜎 in the case 𝜎 = 0.01. The red lines represent the real parameters.

Table 3
The theoretical and the observed inflection instant, and the corresponding absolute relative error (RAE).

Parameter Theoretical inflection instant 𝜎 Observed inflection instant RAE

𝑡𝐼 3.32193 0.01 3.36223 0.01213
0.02 3.49254 0.05136

machine used for the computations was an Apple M1, with a total of 8 cores. The time taken to obtain the results reported below
with 300 replications is 1800.325 s, and with 100 replications is 582.049 s.

Let us now focus on the estimation of the parameters 𝑞, 𝑘, 𝜂, 𝜎 and of the function 𝐶(𝑡).

.1. Step 1: Estimate of 𝜉

For any 𝑗 = 0,… , 50 we approximate the sample mean of 𝑥𝑖(𝑡𝑗 ), 𝑖 = 1,… , 25, with a natural cubic spline 𝑆(𝑡). Then, through
ts derivatives, we also determine an approximation of the observed inflection time instant. See Fig. 14 for the plot of d

d𝑡𝑆(𝑡) and
d2
d𝑡2 𝑆(𝑡), and Table 3 for a comparison between the theoretical inflection point 𝑡𝐼 and observed inflection instant.

To apply SA or ALO algorithm, we first compute the intervals 𝐼𝜈 with 𝜈 ∈ {𝑞, 𝑘, 𝜂, 𝜎} using the strategy described in Section 7.
We remark that in this first part of the procedure the knowledge of the exact value of 𝑡∗ is irrelevant since we use the data over
the time interval [𝑡0, 𝑡] where 𝑡 represents the time instant corresponding to the boundary 𝑆 = (1 + 𝑝)𝑥∗𝐼 . The obtained intervals are
given in Table 4. After that, we apply SA and ALO algorithms. The results, given in Table 4, show that even if the width of the
intervals 𝐼𝜈 , 𝜈 ∈ {𝑞, 𝑘, 𝜂, 𝜎}, is large, the RAE of the resulting MLEs is small. In Table 5 we provide the MLEs obtained by considering
different number of replications. We remark that the estimates are still reasonable even when the number of replications is smaller.
17
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Fig. 14. The 1st and 2nd derivative of the spline 𝑆(𝑡) for (a) 𝜎 = 0.01 and (b) 𝜎 = 0.02.

Table 4
The real values, the minimum and maximum width of the bounded intervals, the MLEs (determined with SA and ALO algorithm)
and the corresponding absolute relative error (RAE) of the parameters.

Parameter Real value min width max width Method MLE RAE

𝑞 2 4.15554 5.11776 SA 1.99990 0.00005
ALO 2.03645 0.01822

𝑘 0.5 0.63553 0.67700 SA 0.49992 0.00015
ALO 0.50340 0.00680

𝜂 0.2 1.47345 1.97406 SA 0.19999 0.00001
ALO 0.20703 0.03514

𝜎 0.01 0.1 0.1 SA 0.00995 0.00487
ALO 0.00988 0.01200

Parameter Real value min width max width Method MLE RAE

𝑞 2 3.78010 5.68256 SA 1.99645 0.00177
ALO 2.08720 0.04360

𝑘 0.5 0.60332 0.69750 SA 0.49942 0.00115
ALO 0.50685 0.01370

𝜂 0.2 1.36523 2.39929 SA 0.19941 0.00295
ALO 0.21742 0.08710

𝜎 0.02 0.1 0.1 SA 0.01993 0.00337
ALO 0.01994 0.00293

By comparing the RAE of the MLEs obtained via SA and via ALO, we note that the results obtained via SA are better than those
obtained via ALO. For this reason, from now on, we adopt the MLEs obtained via SA.

8.2. Step 2: Estimate of 𝑡∗

In order to compute the estimated time instant 𝑡∗, two options are available: (i) we can use the MLEs obtained so far and compute
𝑡∗ by means of the deterministic formula given in Eq. (8), or (ii) we can compute 𝑡∗ as the mean of first-passage-time (FPT) of the
estimated process (i.e. the process whose parameters are estimated by the MLEs) through the boundary 𝑆 = (1 + 𝑝)𝑥𝑖 being 𝑥𝑖 the
observed inflection point, in agreement with Eq. (7) and 𝑝 = 0.5. The results obtained by means of procedure (i) are shown in Table 6:
note that the estimated time instant has an absolute relative error (RAE) equal to 1.09% for 𝜎 = 0.01 and 1.00% for 𝜎 = 0.02. For the
procedure (ii), as done in other similar works (cf. for instance, Di Crescenzo et al. (2022) [15]), we use the R package fptdApprox
(see Román-Román et al. (2008) [25,26]) to approximate the FPT density of the process through the boundary 𝑆. Fig. 15 shows the
approximated FPT density and the FPT location function. In Table 6 we provide the mean, the standard deviation, the mode, the
1st, the 5th and the 9th deciles of the FPT. In this case, the RAE between the estimated and the theoretical inflection time is 2.71%
for 𝜎 = 0.01 and 8.45% for 𝜎 = 0.02.
18
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Table 5
The MLEs (determined with SA and ALO algorithm) and the corresponding absolute relative error of the parameters with different
numbers of replications. The real values of 𝑞, 𝑘, 𝜂 and 𝜎 are given in the first row of both the tables.

Method No. of replications 𝑞 = 2 𝑘 = 0.5 𝜂 = 0.2 𝜎 = 0.01

SA 30 𝑞 = 2.00928 𝑘̂ = 0.50094 𝜂̂ = 0.20171 𝜎̂ = 0.00998
(relative error:) (0.00464) (0.00187) (0.00854) (0.00167)

ALO 30 𝑞 = 2.00880 𝑘̂ = 0.50098 𝜂̂ = 0.20166 𝜎̂ = 0.00984
(relative error:) (0.00440) (0.00195) (0.00831) (0.01616)

SA 300 𝑞 = 1.99990 𝑘̂ = 0.49992 𝜂̂ = 0.19999 𝜎̂ = 0.00995
(relative error:) (0.00005) (0.00015) (0.00001) (0.00487)

ALO 300 𝑞 = 2.03645 𝑘̂ = 0.50340 𝜂̂ = 0.20703 𝜎̂ = 0.00988
(relative error:) (0.00680) (0.00681) (0.03514) (0.01200)

Method No. of replications 𝑞 = 2 𝑘 = 0.5 𝜂 = 0.2 𝜎 = 0.02

SA 30 𝑞 = 2.00871 𝑘̂ = 0.50074 𝜂̂ = 0.20187 𝜎̂ = 0.02001
(relative error:) (0.00435) (0.00148) (0.00934) (0.00031)

ALO 30 𝑞 = 2.02218 𝑘̂ = 0.50107 𝜂̂ = 0.20448 𝜎̂ = 0.01999
(relative error:) (0.01109) (0.00215) (0.02238) (0.00060)

SA 300 𝑞 = 1.99645 𝑘̂ = 0.49942 𝜂̂ = 0.19941 𝜎̂ = 0.01993
(relative error:) (0.00177) (0.00115) (0.00295) (0.00337)

ALO 300 𝑞 = 2.08720 𝑘̂ = 0.50685 𝜂̂ = 0.21742 𝜎̂ = 0.01994
(relative error:) (0.04360) (0.01370) (0.08710) (0.00293)

Table 6
The theoretical value and the estimate obtained via Procedure (i) of the time instant 𝑡∗. The mean, the mode, the 1st, the 5th and the 9th decile and the
standard deviation (st. dev.) of the FPT of the approximated diffusion process through the boundary 𝑆 = (1 + 𝑝)𝑥𝑖, for 𝑝 = 0.5. The absolute relative error of the
stimates is also provided. The quantities are obtained by using SA.
Instant th. val. 𝜎 Result of Proc. (i) Mean Mode 1st dec. 5th dec. 9th dec. st. dev.

𝑡∗ 4.42611

0.01 4.47456 4.54597 4.55862 4.53713 4.43811 4.54388 0.09363
(relative error:) (0.01095) (0.02708) (0.02994) (0.02508) (0.00271) (0.02661) –

0.05 4.47060 4.80032 4.75344 4.54871 4.78756 5.08003 0.78458
(relative error:) (0.01005) (0.08455) (0.07395) (0.02770) (0.08166) (0.14774) –

8.3. Step 3: Estimate of 𝐶(𝑡)

With the aim of estimating the function 𝐶(𝑡), we consider the mean of the stochastic process 𝑋(𝑡) (cf. Eq. (23)) which corresponds
o the classical deterministic curve 𝑥𝜃(𝑡) (cf. Eq. (1)). The estimated function 𝐶(𝑡) has been obtained by means of Eq. (33), and it is
lotted in Fig. 16(a)–(b). In particular, the plot shows a worsening of the estimation of 𝐶(𝑡) for large times, as expected.

In order to have a quantitative measure of the goodness of its estimation, we have also computed the RAE between the theoretical
unction 𝐶(𝑡) and the estimated function 𝐶(𝑡), i.e.

𝑅𝐴𝐸 = 1
𝑁∗

𝑁∗
∑

𝑗=1

|

|

|

𝐶(𝑡𝑗 ) − 𝐶(𝑡𝑗 )
|

|

|

𝐶(𝑡𝑗 )
,

where 𝑁∗ denotes the number of observation times between 𝑡̂∗ and 𝑇 . When 𝜎 = 0.01, we have 𝑅𝐴𝐸 ≃ 0.02101, whereas if 𝜎 = 0.02,
we find 𝑅𝐴𝐸 ≃ 0.05775.

Using the estimated function 𝐶(𝑡), we obtain the estimated mean 𝖤[𝑋(𝑡)] of the modified process given in Eq. (24). Both the
estimated mean and the sample mean are plotted in Fig. 16(c)–(d) and they almost coincide. Clearly, when 𝑡 → 𝑇 the difference
between 𝐶(𝑡) and 𝐶(𝑡) is more relevant.

9. Application to real data of oil production

The considered model (cf. Eq. (24)) is reasonable to describe phenomena in which the growth rate may be modified starting
from a specific instant by known external factors. A representative example will be considered in this section. It is concerning
oil production since external causes may be effective at a certain time in order to increase the amount of extracted oil. Hence,
let us consider an application of the stochastic model introduced in Section 5 to real data concerning oil production in France,
taken from [27] and reported in Fig. 17(a). The amount of produced oil is measured in TWh (Terawatt per hour). We consider the
time interval from 1958 (the first year in which the cumulative oil production exceeds 100 TWh) to 2016. In this case, the curve
representing the yearly oil production exhibits more than one peak, as in Laherrère (2000) [28]. Our main goal is to establish that
the considered model (24) is in agreement with the observed real data by following the steps of Procedure 1.

Step 1 As illustrated in Section 8.1, we approximate the data with a natural cubic spline 𝑆(𝑡) and we determine an approximation
of the inflection time instant 𝑡 by means of the derivatives of 𝑆(𝑡). The derivative of 𝑆(𝑡) is plotted in Fig. 17(b). The approximated
19
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Fig. 15. The approximated FPT density function with the MLEs obtained by SA algorithm for (a) 𝜎 = 0.01 and (c) 𝜎 = 0.02. The FPT location function with the
MLEs obtained by SA algorithm for (b) 𝜎 = 0.01 and (d) 𝜎 = 0.02.

inflection time instant is given by 𝑡𝐼 ≃ 1964. The intervals 𝐼𝜈 with 𝜈 ∈ {𝑞, 𝑘, 𝜂, 𝜎} and the corresponding MLEs are given in Table 7.
The MLEs have been determined by means of the data over the restricted interval [𝑡0, 𝑡], where 𝑡 is the time instant corresponding
to the boundary 𝑆 = (1 + 𝑝)𝑥∗𝐼 being 𝑥∗𝐼 the observed inflection point and 𝑝 > 0. Unlike the examples examined in the simulation
study (cf. Section 8) where 𝑝 was assumed to be known, we now examine the case where 𝑝 is previously unknown. For estimate
purposes, we consider a set of reasonable values for 𝑝. Among these, we select the value 𝑝 which finally minimizes the RAE between
the estimated mean and the sample mean (see Step 3 below).

Step 2 We compute the estimated value of 𝑡∗ by means of the two available procedures: (i) using the MLEs and compute 𝑡∗ by
means of the deterministic formula given in Eq. (8), or (ii) computing 𝑡∗ as the mean of the FPT of the estimated process through
𝑆 = (1+𝑝)𝑥∗𝐼 (see Section 8.2 for further details). The obtained results are given in Table 8. As can be noticed, for any value of 𝑝, the
deterministic value of 𝑡∗ is different whereas the mean of the FPT is almost the same. We select the deterministic FPT to estimate
𝑡∗ for the results given in the simulation study (cf. Section 8). We point out that, for 𝑝 = 0.5, the specific value of the estimate 𝑡∗ is
𝑡∗ ≃ 1970 (by considering the deterministic estimate of 𝑡∗). This estimate is in agreement with new oil explorations started in 70 s as
a consequence of the purpose of French government to invest in energy independence after the severe crisis emerged during those
years (as reported in Lieber (1979) [29]).

Step 3 Using the estimated function 𝐶(𝑡) obtained by means of Eq. (33), we compute the mean 𝖤(𝑋(𝑡)) of the modified process.
The estimate 𝑝 is selected by minimizing the RAE between the estimated mean and the sample mean. As can be deducted from
Table 9, in this case, we have 𝑝 = 0.5 which corresponds to the boundary 𝑆 = 1.5𝑥∗𝐼 . In Fig. 18, we show the estimated function

𝑡
𝐶(𝑠)

𝑘̂𝑠| log 𝑘̂|
d𝑠, 𝑡 ≥ 𝑡̂∗ (36)
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Fig. 16. The theoretical function 𝐶(𝑡) and the estimated function 𝐶(𝑡) for (a) 𝜎 = 0.01 and (c) 𝜎 = 0.02. The sample mean and the estimated mean for (b)
𝜎 = 0.01 and (d) 𝜎 = 0.02.

Fig. 17. (a) Cumulative oil production of France and (b) 1st derivative of the cubic spline interpolating the data between 1958 and 2016.
21
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Table 7
The bounded intervals, their width and the MLEs (determined with SA) of the parameters considering different
value of 𝑝.
𝑝 Parameter Interval Width MLE

0.3

𝑞 𝐼𝑞 = [3.16349 ⋅ 10−2 , 2.28375] 2.25211 0.84526
𝑘 𝐼𝑘 = [4.71289 ⋅ 10−8 , 0.94024] 0.94024 0.78784
𝜂 𝐼𝜂 = [0, 2.01897] 2.01897 0.13325
𝜎 𝐼𝜎 = (0, 0.1) 0.1 0.00370

0.5

𝑞 𝐼𝑞 = [7.88791 ⋅ 10−2 , 6.04903] 6.04114 0.72390
𝑘 𝐼𝑘 = [1.11653 ⋅ 10−3 , 0.95147] 0.95035 0.76390
𝜂 𝐼𝜂 = [0, 5.47622] 5.57622 0.10121
𝜎 𝐼𝜎 = (0, 0.1) 0.1 0.00359

0.7

𝑞 𝐼𝑞 = [2.0322 ⋅ 10−1 , 5.43986] 5.23664 0.71189
𝑘 𝐼𝑘 = [1.63578 ⋅ 10−1 , 0.93236] 0.76878 0.76115
𝜂 𝐼𝜂 = [6.36869 ⋅ 10−3 , 4.40902] 4.40265 0.09807
𝜎 𝐼𝜎 = (0, 0.1) 0.1 0.00325

Table 8
The deterministic value of the time 𝑡∗, the mean, the mode, the 1st, the 5th and the 9th decile and the standard deviation (st. dev.) of the FPT of the approximated
iffusion process through the boundary 𝑆 for 𝑡0 = 1958 and different values of 𝑝.
Instant 𝑝 det. val. Mean Mode 1st dec. 5th dec. 9th dec. st. dev.

𝑡∗ − 𝑡0 0.3 10.59037 8.24092 8.23754 8.11223 8.24039 8.37425 0.10849
0.5 12.29745 9.84548 9.83844 9.66999 9.84610 10.02986 0.15087
0.7 15.68183 11.69182 11.67821 11.44741 11.68847 11.94491 0.20993

Table 9
The RAE between the estimated mean and the sample mean by considering different values of
𝑝.
𝑝 0.3 0.5 0.7

𝑅𝐴𝐸 0.00783% 0.00193% 0.04652%

Fig. 18. (a) The estimated function given in Eq. (36), (b) the sample mean and the estimated mean for 𝑝 = 0.5 and parameters given in Table 7.

the estimated mean and the sample mean of the data for 𝑝 = 0.5. The provided example of application confirms that the model
ntroduced in Section 5 is appropriate for describing oil production or other phenomena with a perturbed growth rate. Moreover, as
een in this section, for particular choices of the parameters the model may describe phenomena characterized by multiple inflection
oints.

0. Conclusions

During recent years many growth models have been introduced to describe real phenomena. One of them is the Richards curve,
hich is a generalization of the logistic function. In detail, the main difference between the Richards model and the logistic model
22
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is related to the ratio between the carrying capacity and the value of the curve at the inflection point. In the logistic case, this
ratio is equal to 1∕2 whereas in the Richards case it is equal to (1 + 1∕𝑞)𝑞 . Hence, the Richards curve seems to be more reasonable
to describe phenomena in which the carrying capacity is not necessarily twice the value at the inflection point. In this work, we
studied a special modification of the classical Richards model. Specifically, we substitute a parameter of the classical model with
a time-varying one aiming to describe situations in which the growth rate may be modified by external factors. The modification
starts at a specific time instant which is identified as the first-crossing-time of the curve through a fixed boundary dependent on
the value of the curve at the inflection point. The model has been described both from a deterministic and stochastic point of view.
Two different kinds of stochastic processes have been introduced: birth–death processes and diffusion processes. The problems of
parameters estimation and of the FPT have been also addressed. The determination of the MLEs has been conducted by means of
suitable optimization methods. We considered gradient-free optimization algorithms since the expression of the derivative of the
likelihood function is intricate, even if it is available in closed form. Furthermore, numerical methods have been used to determine
approximations of the probability density function of the FPT of the modified process through constant boundaries.

Regarding future developments, it may be interesting to study in more detail the function 𝐶(𝑡) and provide reasonable
interpretation regarding its effects in real contexts. The model may be also enhanced to include the possibility that external factors
cause a decrease of the growth rate.
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