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On Density and
Bishop–Phelps–Bollobás-Type Properties
for the Minimum Norm

Domingo Garćıa , Manuel Maestre , Miguel Mart́ın and
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Abstract. We study the set MA(X,Y ) of operators between Banach
spaces X and Y that attain their minimum norm, and the set QMA(X,Y )
of operators that quasi attain their minimum norm. We characterize the
Radon–Nikodym property in terms of operators that attain their mini-
mum norm and obtain some related results about the density of the sets
MA(X,Y ) and QMA(X,Y ). We show that every infinite-dimensional
Banach space X has an isomorphic space Y , such that not every oper-
ator from X to Y quasi attains its minimum norm. We introduce and
study Bishop–Phelps–Bollobás type properties for the minimum norm,
including the ones already considered in the literature, and we exhibit a
wide variety of results and examples, as well as exploring the relations
between them.
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1. Introduction

Let X,Y be Banach spaces over the field K = R or C. Let L(X,Y ), K(X,Y ),
and F(X,Y ), respectively, denote the spaces of bounded and linear operators,
of compact operators, and of finite-rank operators from X to Y . We denote
by BX , SX , and X∗ the closed unit ball of X, the unit sphere of X, and
the topological dual of X, respectively. Classical Banach sequence spaces and
their finite-dimensional versions will also use standard notations, such as c0,
�p (1 ≤ p ≤ ∞), and �n

p (1 ≤ p ≤ ∞, n ∈ N).

1.1. Background on Norm-Attaining Operators

An operator T ∈ L(X,Y ) is said to attain its norm if there is x ∈ SX ,
such that ‖T (x)‖ = ‖T‖. The set of norm-attaining operators from X to
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Y will be denoted by NA(X,Y ). A cornerstone in Functional Analysis is a
result by R. C. James which shows that a Banach space X is reflexive if
and only if NA(X,K) = X∗ (see for instance [17, Corollary 3.131]). In 1961,
E. Bishop and R. R. Phelps showed that for every Banach space X, the set
NA(X,K) is dense in X∗ (see for instance [17, Theorem 7.41]), and they
wondered whether this density also holds for operators from X to Y . In 1963
J. Lindenstrauss answered that question in the negative in his seminal paper
[26]. He also showed that the density holds for some classes of Banach spaces,
such as when X is reflexive or when Y has a geometrical property known as
property β of Lindenstrauss (see Section 3 for the definition). Since then, the
study of when NA(X,Y ) is a dense subset of L(X,Y ) has interested many
researchers, and is still nowadays a very fruitful and active line of research in
Functional Analysis. We refer to [1,13] for surveys with the most important
results on the density of norm-attaining operators. It is worth noting that it
is still open nowadays whether NA(X,Y ) is always dense in L(X,Y ) when
Y is finite-dimensional.

Recall that a Banach space X has the Radon–Nikodym property (RNP)
if every non-empty closed and bounded subset X of X is dentable (we refer
to [16, p. 217] for several characterizations of this property). A Banach space
X is said to have property A of Lindenstrauss (respectively, property B of
Lindenstrauss) if, for every Banach space Y , NA(X,Y ) is dense in L(X,Y )
(respectively, NA(Y,X) is dense in L(Y,X)). As a consequence of the work of
J. Bourgain and R. E. Huff, it is known that a Banach space X has the RNP
if and only if every Banach space isomorphic to X has property A of Linden-
strauss (see [7,20]). However, let us note that there are Banach spaces having
property A of Lindenstrauss but not the RNP (see [29, Proposition 3.1]), and
there are Banach spaces with RNP but failing property B of Lindenstrauss
(see [19, Appendix]).

An operator T ∈ L(X,Y ) is said to be quasi-norm-attaining if there is
a sequence {xn}n ⊂ SX and a point y ∈ ‖T‖ ·SY , such that T (xn) converges
to y. The class of quasi norm-attaining operators from X to Y , QNA(X,Y ),
was introduced and studied in [11]. Analogously to properties A and B of
Lindenstrauss, a Banach space has property quasi -A (respectively, property
quasi -B) if for all Banach spaces Y , QMA(X,Y ) is dense in L(X,Y ) (respec-
tively, QMA(Y,X) is dense in L(Y,X)). Although the RNP does not imply
property B of Lindenstrauss, it has been shown in [11, Corollary 3.8] that a
Banach space X has the RNP if and only if every Banach space Z isomorphic
to X has properties quasi-A and quasi-B.

In 1970, B. Bollobás showed that for a Banach space X, not only the
norm-attaining functionals are dense on X∗, but actually whenever a func-
tional x∗ ∈ X∗ almost attains its norm at a point x ∈ SX , a nearby functional
y∗ ∈ X∗ attains its norm at a nearby point y ∈ SX (see for instance [17, Ex-
ercise 7.53]). This quantitative result for functionals is known nowadays as
the Bishop–Phelps–Bollobás theorem. In 2008, M. D. Acosta, R. M. Aron, D.
Garćıa, and M. Maestre introduced a version of the Bishop–Phelps–Bollobás
theorem for operators as follows.
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Definition 1.1 ([3, Definition 1.1]). A pair of Banach spaces (X,Y ) is said
to have the Bishop–Phelps–Bollobás property (or just BPBp) if given ε > 0,
there is some η = η(ε) > 0, such that whenever T ∈ SL(X,Y ) and x ∈ SX

satisfy that ‖T (x)‖ > 1 − η, there exist S ∈ SL(X,Y ) and y ∈ SX such that
‖S(y)‖ = 1, ‖S − T‖ < ε, and ‖x − y‖ < ε.

It is known, for instance, that if Y has property β of Lindenstrauss (
[3, Theorem 2.2]), if X is uniformly convex ( [23, Theorem 3.1]), or if both
X and Y are finite-dimensional ( [3, Proposition 2.4]), then the pair (X,Y )
has the BPBp. It is also known that there are pairs of Banach spaces X
and Y , such that (X,Y ) fails the BPBp despite the fact that NA(X,Y ) is
dense in L(X,Y ) (see [3, Proposition 3.9 and Theorem 4.1] and [7, Theorem
7] for instance). Several versions of the BPBp have been considered in the
literature. We will recall some of these versions, as they will be mentioned in
Sect. 3.

Remark 1.2. A pair of Banach spaces (X,Y ) has a Bishop–Phelps–Bollobás-
type property if, for every ε > 0, x ∈ SX , and T ∈ SL(X,Y ), there is some
η(ε, x, T ) > 0, such that if the condition ‖T (x)‖ ≥ 1 − η is met, then there
exist S ∈ SL(X,Y ) and y ∈ SX , such that ‖S(y)‖ = 1, ‖S − T‖ < ε, and
‖x − y‖ < ε. In particular

• If η = η(ε) does not depend on x and T , then (X,Y ) has the BPBp.
• If η = η(ε, T ) depends on T but not on x, then (X,Y ) has the Lo

property.
• If η = η(ε, T ) depends on T but not on x, and also S = T , then (X,Y )

has the Lo,o property.
• If η = η(ε) does not depend on x and T , and also S = T , then (X,Y )

has the BPBop.
• If η = η(ε) does not depend on x and T , and also y = x, then (X,Y )

has the BPBpp.

These and more versions of the BPBp have been widely studied in recent
years. We refer to the surveys [2,14] for a complete exposition of results
about the BPBp and its versions up to 2022. In particular, [14, Sects. 4 and
5] summarize the known results and relations between the versions of the
BPBp mentioned above, among others.

1.2. Background on Minimum-Attaining Operators

Given T ∈ L(X,Y ), we define its minimum norm as the value

m(T ) := inf{‖T (x)‖ : x ∈ SX}.

We say that T ∈ L(X,Y ) attains its minimum norm if there is some x ∈ SX ,
such that m(T ) = ‖T (x)‖. The class of all minimum-attaining operators
from X to Y is denoted by MA(X,Y ). An operator T ∈ L(X,Y ) such that
m(T ) > 0 is called bounded below, and the set of bounded below operators
from X to Y is denoted by BL(X,Y ). It is well known that an operator is
bounded below if and only if it is a monomorphism, or equivalently, it is
injective and has closed range (see for instance [22, Sect. 10.2.3]). If X and
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Y are linearly isomorphic Banach spaces, the set of linear isomorphisms from
X onto Y is denoted by ISO(X,Y ). Note the following clear facts:

• If an operator T ∈ L(X,Y ) is non-injective, then m(T ) = 0.
• If T ∈ BL(X,Y ), then T ∈ ISO(X,T (X)).

The study of minimum-attaining operators can be traced back to 1962
(see [18]), but it remained overlooked for a long time afterward. Later, in
2014, X. Carvajal and W. Neves re-initiated it (see [8]), and since then, sev-
eral works have been done about minimum-attaining operators, a topic that
has proven to be useful due to its connections with the spectral theory of
operators between complex Hilbert spaces (see for instance [5] and the ref-
erences therein). Analogously to the theory of norm-attaining operators, in
recent years, there has been an increasing interest in studying when an oper-
ator is minimum-attaining, and when the set MA(X,Y ) is dense in L(X,Y )
(see [6,8–10,12,25]). We summarize now some background on the topic.

Note first the following clear facts from [8]:

• If T ∈ L(X,Y ) is not injective, then m(T ) = 0 and T ∈ MA(X,Y ).
• If T ∈ L(X,Y ) is injective and X is infinite-dimensional, if m(T ) = 0,

then T /∈ MA(X,Y ), and if m(T ) > 0, both scenarios can happen.
• If X is finite-dimensional or Y is finite-dimensional, then MA(X,Y ) =

L(X,Y ) (note that the converse is false, see [9, Remark 2.6]).
• In particular, in general, F(X,Y ) ⊂ MA(X,Y ), so the analogous of the

Bishop–Phelps theorem on density for m always holds in every Banach
space X (see also [12, Proposition 2.8] for a stronger claim).

• If X is infinite-dimensional and T ∈ K(X,Y ), then m(T ) = 0.

The class QMA(X,Y ) of quasi-minimum-attaining operators from X to
Y was introduced in [9, Definition 4.1] by U. S. Chakraborty as the class
of those operators T ∈ L(X,Y ), such that there is a sequence {xn}n ⊂ SX

and a point y ∈ m(T ) · SY , such that T (xn) converges to y. It is shown
in [9, Sect. 4] that MA(X,Y ) ⊂ QMA(X,Y ), and L(X,Y )\BL(X,Y ) ⊂
QMA(X,Y ), and the inclusions cannot be reversed in general. Moreover,
if T ∈ L(X,Y ) has closed range (in particular, if T ∈ BL(X,Y )), then
T ∈ MA(X,Y ) if and only if T ∈ QMA(X,Y ), and there are operators that
are not quasi minimum-attaining (see [9, Example 4.8]). Chakraborty also
showed in that paper that all the following claims are equivalent for Banach
spaces: (a) X is finite-dimensional, (b) QMA(X,Y ) = MA(X,Y ) for all Y ,
(c) MA(X,Y ) = L(X,Y ) for all Y , (d) QMA(X,Y ) = L(X,Y ) for all Y ,
and (e) QMA(Y,X) = MA(Y,X) for all Y , (f) MA(Y,X) = L(Y,X) for all
Y .

The density of MA(X,Y ) in L(X,Y ) was first studied in [25] and [9]. We
say that a Banach space X has property AM (respectively, property BM ) if for
all Banach spaces Y , MA(X,Y ) is dense in L(X,Y ) (respectively, MA(Y,X)
is dense in L(Y,X)). The following is known. Let X and Y denote Banach
spaces as usual.

(1) If X and Y are infinite-dimensional complex Hilbert spaces, then
MA(X,Y ) is dense in L(X,Y ) (see [25, Corollary 3.7]).
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(2) MA(X,Y ) and QMA(X,Y ) are not always dense (see [9, Example 3.4
and Remark 4.10]).

(3) While there are Banach spaces, such that QNA(X,Y ) is dense in L(X,Y )
but NA(X,Y ) is not (see [11, Example 3.7]), for the minimum counter-
part, this can never be the case, since MA(X,Y ) and QMA(X,Y ) always
coincide (see [9, Theorem 4.11]).

(4) If every Z isomorphic to X has property A of Lindenstrauss (that is, if
X has RNP), then X has property AM . Also, if every closed subspace
Z of Y has property A of Lindenstrauss (for instance, if Y has RNP),
then Y has property BM (see [9, Theorem 3.8]).

(5) If Y is a separable Banach space with property BM , then BY has an
extreme point (see [9, Theorem 3.12]).

Finally, some versions of the BPBp for the minimum norm have been
considered in the literature (see [6,9,10]). In particular, the following has been
shown (we will omit some details here, as this will be discussed throughout
Sect. 3).

(1) If H is a complex Hilbert space, (H,H) satisfies an analogous property
to the Lo for m (see [6, Theorems 3.5 and 3.8]).

(2) Chakraborty introduced in [10, Definition 1.4] an analogous property to
the Lo,o for m, the AMp, and he showed for instance that the following
claims are equivalent for real Banach spaces: (a) X is finite-dimensional,
(b) (X,Y ) has the & for all Y , and (c) (Y,X) has the & for all Y .

(3) Finally, let us notice that Chakraborty showed in [9, Lemma 3.7] that
operators T ∈ L(X,Y )\BL(X,Y ) always satisfy a property analogous
to the BPBpp-m. Let us explicitly state this result. Let X and Y be
Banach spaces and ε > 0. If T ∈ L(X,Y ) is such that m(T ) = 0 and
x ∈ SX is such that ‖T (x)‖ < ε, then there is S ∈ L(X,Y ) such that
‖S(x)‖ = m(S) = 0 and ‖T − S‖ < ε.

1.3. Outline of the Document

The rest of the document is structured as follows. In Sect. 2, we provide new
results related to the density of the sets MA(X,Y ) and QMA(X,Y ). We im-
prove some results of [9] and get a characterization of the Radon–Nikodym
property in terms of operators that attain their minimum (see Theorem 2.6).
We also show that every infinite-dimensional Banach space X has an isomor-
phic space Y , such that QMA(X,Y ) �= L(X,Y ) (see Theorem 2.10).

In Sect. 3, we study Bishop–Phelps–Bollobás-type properties for the
minimum norm. We consider the versions from the literature [6,9,10] and
another natural version that is partially related to the usual BPBp (see The-
orem 3.17), and we provide a wide list of classes of Banach spaces that do or
that do not satisfy all these properties. We also study the relations between
those properties. Among other results, we show that many pairs of classical
Banach sequence spaces satisfy some of these properties (see for instance Ex-
amples 3.5 and Theorem 3.17 and its consequences), and we also improve the
claim from [6, Theorems 3.5 and 3.8] by showing that a much wider class of
Banach spaces satisfy a strenghtening of the property stated in those results
(see Corollary 3.20).
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2. New Results on Minimum-Attaining Operators

In [11, Corollary 3.5], a characterization of the Radon–Nikodym property was
provided in terms of operators that quasi attain their norm. We will present
in Theorem 2.6 a new characterization of the RNP in terms of operators that
attain their minimum.

We say that a Banach space X has property quasi -AM (respectively,
property quasi -BM ) if for all Banach spaces Y , QMA(X,Y ) is dense in
L(X,Y ) (respectively, QMA(Y,X) is dense in L(Y,X). Let us begin by not-
ing the following: it is known that properties B and quasi-B are not equiv-
alent, since the RNP implies property quasi-B (see [11, Corollary 3.5]), but
it does not imply property B in general (see [19, Appendix]). As for prop-
erties A and quasi-A, it is not known whether or not they are equivalent
(see [11, Problem 7.7]). However, for the case of minimum attaining opera-
tors, it was shown in [9, Theorem 4.11] that for all Banach spaces X and Y ,
QMA(X,Y ) = MA(X,Y ), and so, the following clearly holds.

Proposition 2.1. Let X be a Banach space.
(1) If X has property quasi-AM , then it has property AM .
(2) If X has property quasi-BM , then it has property BM .

Let X be a Banach space. In [9, Theorem 3.8], it was shown that if every
space Z isomorphic to X has property A, then X has property AM , and that
if every closed subspace Z of X has property A, then X has property BM . In
view of [11, Lemma 2.1], one can equivalently state the first claim as follows.

Remark 2.2. If X is a Banach space such that every Banach space isomorphic
to X has property quasi-A, then X has property AM .

Moreover, the second part of [9, Theorem 3.8] can also be adapted ac-
cordingly.

Proposition 2.3. If Y is a Banach space such that every closed subspace Z of
Y has property quasi-A, then Y has property BM .

Proof. Let X be a Banach space and let T ∈ L(X,Y ). Note that if T /∈
BL(X,Y ), then T ∈ MA(X,Y ) by [9, Lemma 3.7], so that case is finished. As-
sume now that T ∈ BL(X,Y ). Then T : X → T (X) is an isomorphism. Since
T (X) has property quasi-A, QNA(T (X),X) is dense in L(T (X),X). Since
T−1 ∈ ISO(T (X),X) and ISO(T (X),X) is open in L(T (X),X), there
exists a sequence of operators (Sn)n in ISO(T (X),X) ∩ QNA(T (X),X),
such that ‖Sn − T−1‖ → 0. However, by [11, Lemma 2.1], for all n ∈ N,
Sn ∈ ISO(T (X),X) ∩ NA(T (X),X). Also, by [9, Lemma 3.2.(c)], if for any
n, Sn attains its norm at some point yn ∈ ST (X), then S−1

n : X → T (X) ⊂ Y

attains its minimum norm at Sn(yn)
‖Sn(yn)‖ ∈ SX , and ‖S−1

n − T‖ → 0. Conse-

quently, T ∈ MA(X,Y ), and so, Y has property BM as desired. �

Using similar ideas, the following can also be shown. The proof is very
similar, but we include the details for the sake of completeness.



MJOM On Density and Bishop–Phelps–Bollobás Page 7 of 21   163 

Proposition 2.4. If X is a Banach space with property quasi-B, then X has
property AM .

Proof. Let X be a Banach space with property quasi-B, and let Y be a
Banach space. Let T ∈ L(X,Y ). Note that if T /∈ BL(X,Y ), then T ∈
MA(X,Y ) by [9, Lemma 3.7], so that case is finished. Assume now that
T ∈ BL(X,Y ). Then, T : X → T (X) is an isomorphism. Since X has prop-
erty B, NA(T (X),X) is dense in L(T (X),X). Since T−1 ∈ ISO(T (X),X)
and ISO(T (X),X) is open in L(T (X),X), there exists a sequence of opera-
tors (Sn)n in ISO(T (X),X) ∩ QNA(T (X),X), such that ‖Sn − T−1‖ →
0. However, by [11, Lemma 2.1], for all n ∈ N, Sn ∈ ISO(T (X),X) ∩
NA(T (X),X). Also, by [9, Lemma 3.2.(c)], if for any n, Sn attains its norm
at some yn ∈ ST (X), then S−1

n : X → T (X) ⊂ Y attains its minimum norm
at Sn(yn)

‖Sn(yn)‖ ∈ SX . Consequently, T ∈ MA(X,Y ), and so, X has property AM

as desired. �

In particular, property B of Lindenstrauss implies property AM , so by
[28, Theorem 1]), we get the following consequence.

Corollary 2.5. Let X be a Banach space. Then, there exists a Banach space
Z isomorphic to X, such that Z has property AM .

Let us remark some facts. The space �2 has the RNP, so it has property
A of Lindenstrauss as well as properties AM and BM (see [9, Corollary 3.10]),
but it does not have property B of Lindenstrauss (see [19, Appendix]). On
the other hand, c0 has property B of Lindenstrauss (and hence property
AM by Proposition 2.4), but it does not satisfy property A of Lindenstrauss
or property BM (see [26] and [9, Example 3.4]). Whether property A of
Lindenstrauss implies properties AM or BM , or property BM implies property
A of Lindenstrauss, remains open (see also [9, Question 3.11]).

Recall that in [9, Corollary 3.10], it was shown that the RNP implies
properties AM and BM . In view of [20], we can characterize now the RNP in
terms of minimum-attaining operators.

Theorem 2.6. Let X be a Banach space. The following claims are equivalent.
(1) X has the RNP.
(2) Every Banach space isomorphic to X has property AM .
(3) Every Banach space isomorphic to X has property BM .

Proof. Note that the RNP implies both properties AM and BM (see [9, Corol-
lary 3.10]), and it is stable under equivalent renormings, so the implications
(1) ⇒ (2) and (1) ⇒ (3) follow.

Finally, we show by contradiction that the other two implications hold.
Indeed, if X does not have the RNP, then by [20], there exist two equivalent
norms on X, ‖ · ‖a and ‖ · ‖b, such that the identity

Id : (X, ‖ · ‖a) → (X, ‖ · ‖b)

cannot be approximated by norm-attaining operators. In particular, since
Id ∈ ISO((X, ‖ · ‖a), (X, ‖ · ‖b)), its inverse cannot be approximated by
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minimum-attaining operators. Therefore, X can have neither property AM

for every equivalent norm nor property BM for every equivalent norm. �

In [9, Theorem 3.12], it was shown that if a separable infinite-dimensional
Banach space Y has property BM , then its unit ball has an extreme point.
We show now an improvement of this result. Recall that a Banach space X
is said to be locally uniformly rotund (or just LUR) if

lim
k

‖xk − x‖ = 0 whenever lim
k

∥
∥
∥
∥

1
2
(xk + x)

∥
∥
∥
∥

= lim
k

‖xk‖ = ‖x‖.

It is known that every separable Banach space admits an LUR equivalent
norm (see [31, Theorem 1]). For a Banach space Y , a point y ∈ BY is a
strongly exposed point if there is y∗ ∈ SY ∗ , such that whenever a sequence
{yn}n ⊂ SX satisfies that limn y∗(yn) = 1, then yn converges to y0 (in par-
ticular, y∗(y0) = 1). Note that every strongly exposed point is an extreme
point. The following holds.

Proposition 2.7. Let Y be a Banach space with property BM . If Y admits an
LUR equivalent norm (in particular, if Y is separable), then its unit ball has
a strongly exposed point.

Proof. Suppose that Y has no strongly exposed points. Let Y0 denote the
space Y equipped with an LUR equivalent norm. If T : Y0 → Y is an isomor-
phism, then T−1 : Y → Y0 cannot attain its norm, as the unit ball of Y has no
strongly exposed points (note that, by [21, Lemma 2.2.(1)], if T−1 attained
its norm, it would attain it at a strongly exposed point). Since m(T ) = 1

‖T −1‖ ,
we get that T cannot attain m(T ). But since ISO(Y0, Y ) is an open set, T

cannot be in MA(Y0, Y ). Hence, Y does not satisfy property BM , which is a
contradiction. �

Remark 2.8. Note that the previous proposition allows us to get with a differ-
ent approach the implication (3) ⇒ (1) of Theorem 2.6 for separable Banach
spaces, since if every Banach space isomorphic to X has a strongly exposed
point, then X has the RNP (see [20, Corollary 1], and note that strongly
exposed points are always denting).

In [9, Theorem 4.17], it was shown that if X is any infinite-dimensional
Banach space, then there always exists a Banach space Y , such that
QMA(X,Y ) �= L(X,Y ). This was achieved by considering an infinite-
dimensional separable subspace X0 of X and setting Y = X⊕1(�∞⊕1X/X0).
To finish this section, we will show that the claim from that theorem can also
be always achieved with some range space Y that is isomorphic to the original
space X. We do not know, however, if for every infinite-dimensional space Y ,
there is always a Banach space X, such that QMA(X,Y ) �= L(X,Y ).

We will use a result on remotality. Given a Banach space X, a set
S ⊂ X is said to be remotal from a point x ∈ X if there exists y ∈ S,
such that ‖x − y‖ = sup{‖x − z‖ : z ∈ S}. There have been several works
investigating the existence of non-remotal sets with nice properties (such as
being closed and convex) inside the unit ball of a Banach space X (see for
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instance [27,32]). In [32, Proposition 2.1], it was shown that given a real
infinite-dimensional Banach space X and any ε ∈ (0, 1), there is always a
bounded closed and absolutely convex set D with (1 − ε)BX ⊂ D ⊂ BX

and such that D is not remotal from 0. The argument used in the proof only
works for the real case. However, this result is also true in the complex case.

Lemma 2.9. Let X be an infinite-dimensional Banach space, and let ε ∈
(0, 1). Then, there is a bounded closed and absolutely convex set D with
(1 − ε)BX ⊂ D ⊂ BX and such that D is not remotal from 0.

Given a set S ⊂ X, let aconv(S) and aconv(S), respectively, denote the
absolutely convex hull and the closed absolutely convex hull of S.

Proof (Proof of Lemma 2.9). In [11, Corollary 4.6], it was shown that there is
a subset K of BX that is bounded, closed, absolutely convex, and not remotal
from 0. In fact, we can have it, so that sup{‖x‖ : x ∈ K} = 1 (but ‖x‖ < 1 for
all x ∈ K). Note that K = aconv(K). Let D1 := aconv(K ∪ (1− ε)BX). This
set is absolutely convex, and it also satisfies that sup{‖x‖ : x ∈ D1} = 1
but ‖x‖ < 1 for all x ∈ D1, since for all x ∈ D1, there are y ∈ K and
z ∈ (1 − ε)BX , such that x ∈ conv{y, z}, and note that ‖y‖, ‖z‖ < 1. Let
D = D1, and note that (1 − ε)BX ⊂ D ⊂ BX . We show that D is also
not remotal from 0 by contradiction. Suppose otherwise that there exists
x ∈ D, such that ‖x‖ = 1. Then, there is a sequence {xn}n ⊂ D1, such
that x = limn xn. For each n ∈ N, there are yn ∈ K, zn ∈ (1 − ε)BX , and
an, bn ∈ BK, such that |an| + |bn| ≤ 1 and xn = anyn + bnzn.

Note that there is a subsequence {|ank
|}k of {|an|}n converging to 1,

since otherwise we would have lim supn |an| < 1, and so, since ε > 0, for each
n ∈ N, we have

‖xn‖ ≤ |an|‖yn‖ + (1 − ε)|bn| ≤ |an| + (1 − ε)(1 − |an|) = 1 + ε|an| − ε,

so lim supn ‖xn‖ < 1 = ‖x‖, which would be a contradiction.
Therefore, bnk

converges to 0, and so, we can write

x = lim
k

xnk
= lim

k
ank

ynk
∈ aconv(K) = K,

and so, ‖x‖ < 1, which is a contradiction. Therefore, D is not remotal from
0. �

Using this lemma, we can finally show the promised result.

Theorem 2.10. Let X be an infinite-dimensional Banach space. Then, there
is a Banach space Y isomorphic to X, such that QMA(X,Y ) �= L(X,Y ).

Proof. Fix any ε > 0. By Lemma 2.9, there is a bounded, closed, and abso-
lutely convex set D with (1 − ε)BX ⊂ D ⊂ BX , such that D is not remotal
from 0. Using Minkowski’s functional, there exists an equivalent norm on X,
|||·|||, such that B(X,|||·|||) = D. Call Y = (X, |||·|||). Note that Id : Y → X is not
norm-attaining, by the non-remotality from 0 of D, so its inverse Id : X → Y
is not minimum-attaining, and since it is an isomorphism; in particular, it is
not quasi minimum-attaining. �
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3. Bishop–Phelps–Bollobás-Type Properties for the Minimum

Several variations of the Bishop–Phelps–Bollobás property have been con-
sidered in the literature (see for instance [14, Sects. 4 and 5] for a detailed
exposition of several versions of the BPBp and the relations between them).
The corresponding properties for the minimum norm can be defined in an
analogous way. In this section, we will consider some of these properties and
we will study their implications and the relations between them, building
upon the results from the literature.

We begin with a very strong version.

Definition 3.1. A pair of Banach spaces (X,Y ) has the Bishop–Phelps–Bollobás
point property for the minimum (abbreviated BPBpp-m) if, for every ε ∈
(0, 1) and every ρ ≥ 0, there exists η(ε, ρ) ∈ (0, 1) (converging to 0 with ε)
satisfying that whenever T ∈ L(X,Y ) with m(T ) = ρ and x ∈ SX are such
that ‖T (x)‖ < ρ(1 + η(ε, ρ)), if ρ > 0, or ‖T (x)‖ < η(ε, ρ), if ρ = 0, there
exists S ∈ L(X,Y ), such that m(S) = ‖S(x)‖ = ρ, and ‖S − T‖ < ε.

U. S. Chakraborty showed in [9, Lemma 3.7] that for the class of oper-
ators T ∈ L(X,Y ) with m(T ) = 0, the previous definition is always satisfied
with η(ε, 0) = ε. As a consequence, it suffices to state the property as follows.

Remark 3.2. A pair of Banach spaces (X,Y ) has the BPBpp-m if and only
if for every ε ∈ (0, 1), there exists η(ε) ∈ (0, 1) satisfying that whenever
T ∈ L(X,Y ) with m(T ) = 1 and y ∈ SX are such that ‖T (x)‖ < 1 + η(ε),
there exists S ∈ L(X,Y ), such that m(S) = ‖S(x)‖ = 1, and ‖S − T‖ < ε.
We omit the details; see Proposition 3.14 for an analogous equivalence on a
weaker property.

In particular, [9, Lemma 3.7] yields the following.

Proposition 3.3. If the Banach spaces X and Y are such that BL(X,Y ) = ∅,
then (X,Y ) satisfies the BPBpp-m.

As a consequence, the following strong version of the Bishop–Phelps–
Bollobás theorem is always true for the minimum norm.

Corollary 3.4. If X is any Banach space, then (X,K) satisfies the BPBpp-m.

Let us see some more examples.

Example 3.5. Given two Banach spaces X and Y , recall that an operator
T ∈ L(X,Y ) is called strictly singular if T is not bounded below on any
closed infinite-dimensional subspace of X. If SS(X,Y ) denotes the class of
strictly singular operators from X to Y , it is clear and well known that
K(X,Y ) ⊂ SS(X,Y ) ⊂ L(X,Y )\BL(X,Y ). We have the following.
(1) If SS(X,Y ) = L(X,Y ) (in particular, if K(X,Y ) = L(X,Y )), then

(X,Y ) has the BPBpp-m. A wide collection of pairs of spaces satisfying
this property can be found in [24, Theorem 1]. In particular, this holds
for instance if X = c0 and Y = �p (1 ≤ p < ∞), if X = �p (1 ≤ p ≤ ∞)
and Y = c0, or if X = �p (1 < p ≤ ∞) and Y = �q (1 < q < ∞, p �= q).
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Note that it is open whether the pair (c0, �1) has the BPBp in the real
case, but for the minimum counterpart, we have that both pairs (c0, �1)
and (�1, c0) satisfy the BPBpp-m.

(2) Note also that there exist pairs of infinite-dimensional Banach spaces
(X,Y ) with the BPBpp-m but such that not all operators are strictly
singular. Indeed, it suffices to take a Banach space X with a
1-complemented proper infinite-dimensional subspace Y , such that the
cardinality of the Hamel basis of X is bigger than that of Y (so that
no operator is injective), and note that the corresponding projection is
bounded below on Y (see for instance Theorem 3.9 for an example of
such pair of spaces).

(3) More generally, any pair of Banach spaces (X,Y ) such that no operator
in L(X,Y ) is injective satisfies the BPBpp-m. Note that this is some-
times possible even with spaces, such that the corresponding Hamel
basis has the same cardinality: let Γ be an index set with cardinality
bigger than the continuum c, and note that if p, q ∈ (1,∞) are such
that p > q, then every operator from �p(Γ) to �q(Γ) is compact by Pitt’s
theorem, and so, it is non-injective, as its range is separable.

(4) There exist pairs of Banach spaces (X,Y ) with the BPBpp-m but such
that not every operator has minimum 0. Indeed, this is trivially the case
for X = Y = R.

We turn now our attention to local versions of the BPBp for the min-
imum. U. S. Chakraborty introduced in [10, Definition 1.4] the approximate
minimizing property (AMp) as the minimum counterpart of the Lo,o prop-
erty. Although this was done in the real case, the definition is analogous in
the complex case. Let us denote this property Lo,o-m in this paper.

Definition 3.6. A pair of Banach spaces (X,Y ) has the Lo,o property for the
minimum (abbreviated Lo,o-m) if for every ε ∈ (0, 1) and every T ∈ L(X,Y ),
there exists η(ε, T ) ∈ (0, 1) (converging to 0 with ε) satisfying that whenever
x ∈ SX is such that ‖T (x)‖ < m(T )(1 + η(ε, T )), if m(T ) > 0, or ‖T (x)‖ <
η(ε, T ), if m(T ) = 0, there exists y ∈ SX , such that ‖T (y)‖ = m(T ), and
‖x − y‖ < ε.

Remark 3.7. Note that this definition is trivially equivalent to the one given
in [10, Definition 1.4], since, once more, in view of [9, Lemma 3.7], the condi-
tion “‖T (x)‖ < η(ε, T ) if m(T ) = 0” can be removed from the definition by
taking η(ε, T ) ≤ ε for these operators.

The following result has been stablished in [9, Sect. 3] in the real case,
although a quick glance at the proof shows that the result also holds in the
complex case.

Theorem 3.8 [9, Theorems 3.5 and 3.6]. Let X be a Banach space. The fol-
lowing claims are equivalent:
a) X is finite-dimensional.
b) (X,Y ) has the Lo,o-m for all Banach spaces Y .
c) (Y,X) has the Lo,o-m for all Banach spaces Y .
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Note that if (X,Y ) has the Lo,o-m, then necessarily we must have
MA(X,Y ) = L(X,Y ). Chakraborty found in [10, Example 3.7] a pair of
Banach spaces, such that MA(X,Y ) �= L(X,Y ), but (X,Y ) still fails the
Lo,o-m for the class of minimum-attaining operators (that is, the Lo,o-m but
only defined for those operators T that are in MA(X,Y )). On the other hand,
we show now that the condition MA(X,Y ) = L(X,Y ) is not enough to get
the Lo,o-m.

Theorem 3.9. There exist infinite-dimensional Banach spaces X and Y , such
that MA(X,Y ) = L(X,Y ), but the pair (X,Y ) fails the Lo,o-m.

Recall that for an index set Γ, the Banach space c0(Γ) is defined as
{f : Γ → K : for all ε > 0, {γ ∈ Γ : |f(γ)| > ε} is finite}, endowed with the
supremum norm.

Proof of Theorem 3.9. Let Γ be a big enough index set, so that the Hamel ba-
sis of c0(Γ) has cardinality bigger than that of c0, and note that MA(c0(Γ), c0)
= L(c0(Γ), c0), as no operator can be injective. Fix a countable set {βn}n ⊂ Γ.
Define T : c0(Γ) → c0 as follows: for each f ∈ c0(Γ), T (f) is the sequence
(T (f)n)n ∈ c0 given by T (f)n := f(βn)

n for each n ∈ N. Note that ‖T‖ = 1.
Moreover, we have that

m(T ) ≤ inf
n

‖T (δβn
)‖ = inf

n

1
n

= 0,

where δβn
is the Dirac delta function at βn. By definition, it is also clear that

for all f ∈ c0(Γ), ‖T (f)‖ = 0 if and only if f(βn) = 0 for all n ∈ N.
Now, fix ε ∈ (0, 1) and suppose that there exists η(ε, T ) ∈ (0, 1) for

which the Lo,o-m holds. There must exist some n0 ∈ N, such that η(ε, T ) >
1

n0
. Fix n > n0. We have that ‖T (δβn

)‖ < 1
n < η(ε, T ), so there must exist

g ∈ Sc0(Γ), such that ‖T (g)‖ = 0 and ‖g−δn‖ < ε, but that is a contradiction.
Therefore, (c0(Γ), c0) fails the Lo,o-m. �

Corollary 3.10. There are pairs of Banach spaces (X,Y ) satisfying the BPBpp-
m but not the Lo,o-m.

We will also see later in Theorem 3.21 that the Lo,o-m does not imply
the BPBpp-m. We turn now our attention to a less-restrictive property, the
minimum analogous to the Lo.

Definition 3.11. A pair of Banach spaces (X,Y ) has the Lo property for the
minimum (abbreviated Lo-m) if for every ε ∈ (0, 1) and every T ∈ L(X,Y ),
there exists η(ε, T ) ∈ (0, 1) (converging to 0 with ε) satisfying that whenever
x ∈ SX is such that ‖T (x)‖ < m(T )(1 + η(ε, T )), if m(T ) > 0, or ‖T (x)‖ <
η(ε, T ), if m(T ) = 0, there exist S ∈ L(X,Y ) and y ∈ SX , such that ‖S(y)‖ =
m(S) = m(T ), and ‖x − y‖ < ε.

Remark 3.12. Once more, in view of [9, Lemma 3.7], the condition “‖T (x)‖ <
η(ε, T ) if m(T ) = 0” can be removed from the definition by taking η(ε, T ) ≤ ε
for these operators.
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N. Bala and G. Ramesh showed in [6, Theorems 3.5 and 3.8] that if H
is a complex Hilbert space, then (H,H) satisfies the Lo-m. We will improve
this result in Corollary 3.20 by showing that a much wider class of Banach
spaces satisfies the following strengthening of this property, where instead of
having η depending on each operator, we let it depend on a class of operators
in a more uniform way.

Definition 3.13. A pair of Banach spaces (X,Y ) is said to have the bounded
Bishop–Phelps–Bollobás property for the minimum norm (or just bounded
BPBp-m) if given ε > 0 and 0 ≤ ρ ≤ R, there exists some η(ε,R, ρ) ∈ (0, 1)
(converging to 0 with ε), such that whenever x ∈ SX and T ∈ L(X,Y ) with
‖T‖ ≤ R and m(T ) = ρ satisfy ‖T (x)‖ < m(T )(1 + η(ε,R, ρ)) if ρ > 0, or
‖T (x)‖ < η(ε,R, ρ) if ρ = 0, there exist S ∈ L(X,Y ) and y ∈ SX , such that

‖S(y)‖ = m(S) = m(T ) = ρ, ‖T − S‖ < ε, and ‖x − y‖ < ε.

As usual, [9, Lemma 3.7] yields an equivalent version of this property.
We will include the details of the proof for this one.

Proposition 3.14. The pair of Banach spaces (X,Y ) has the bounded BPBp-
m if and only if given ε > 0 and R ≥ 1, there exists some η(ε,R) > 0, such
that whenever x ∈ SX and T ∈ L(X,Y ) with ‖T‖ ≤ R and m(T ) = 1 satisfy
‖T (x)‖ < 1 + η(ε,R), there exist S ∈ L(X,Y ) and y ∈ SX , such that

‖S(y)‖ = m(S) = m(T ) = 1, ‖T − S‖ < ε, and ‖x − y‖ < ε.

Proof. We prove both implications. Let (X,Y ) have the bounded BPBp-m
with the function η(ε,R, ρ). Define the mapping η2(ε,R) := η(ε,R, 1). Fix
ε > 0 and R > 0. Let T ∈ L(X,Y ) and x ∈ SX be such that m(T ) = 1,
‖T‖ ≤ R, and ‖T (x)‖ < 1 + η2(ε,R) = 1 + η(ε,R, 1). Then, there exist
S ∈ L(X,Y ) and y ∈ SX , such that

‖S(y)‖ = m(S) = m(T ) = 1, ‖T − S‖ < ε, and ‖x − y‖ < ε.

Conversely, let (X,Y ) satisfy the alternative definition with the function
η(ε,R). Define the mapping η2(ε,R, ρ) := η

(

min
{

ε, ε
ρ

}

, R
ρ

)

, if ρ > 0, and
η2(ε,R, 0) := ε. We distinguish 2 cases now.

Case 1 : ρ = 0. Fix ε > 0 and R ≥ 0. Let T ∈ L(X,Y ) and x ∈ SX

be such that m(T ) = 0, ‖T‖ ≤ R, and ‖T (x)‖ < η2(ε,R, 0) = ε. Then,
by [9, Lemma 3.7], there exist S ∈ L(X,Y ) and y = x ∈ SX , such that
m(S) = m(T ) = 0 = ‖S(y)‖, ‖S − T‖ < ε, and ‖x − y‖ = 0 < ε.

Case 2 : ρ > 0. Fix ε > 0 and R ≥ 0. Let T ∈ L(X,Y ) and x ∈ SX

be such that m(T ) = ρ, ‖T‖ ≤ R, and ‖T (x)‖ < ρ · (1 + η2(ε,R, ρ)). Then,
m(T

ρ ) = 1, and ‖T
ρ (x)‖ < 1+η2(ε,R, ρ) ≤ 1+η

(

min
{

ε, ε
ρ

}

, R
ρ

)

. To simplify,

call δ := min
{

ε, ε
ρ

}

. Thus, there are S ∈ L(X,Y ) and y ∈ SX , such that

m(S) = m(T
ρ ) = 1 = ‖S(y)‖, ‖S − T

ρ ‖ < δ, and ‖x − y‖ < δ. Then, the
operator ρS satisfies that m(ρS) = m(T ) = ρ = ‖ρS(y)‖, ‖x − y‖ < δ ≤ ε,
and ‖ρS − T‖ < ρδ ≤ ε.

This shows that (X,Y ) has the bounded BPBp-m. �
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Note that the following implications hold trivially from the definitions,
and they provide several pairs of Banach spaces satisfying the Lo-m.

Proposition 3.15. Let X and Y be Banach spaces.
a) If (X,Y ) has the BPBpp-m, then it has the bounded BPBp-m.
b) If (X,Y ) has either the bounded BPBp-m or the Lo,o-m, then it has the

Lo-m.
c) If (X,Y ) has the Lo-m, then MA(X,Y ) is dense in L(X,Y ).

Also, note that Theorem 3.9 implies, in particular, that there are pairs
of Banach spaces (X,Y ) satisfying the bounded BPBp-m (in particular, the
Lo-m) but failing the Lo,o-m, despite the fact that every operator attains its
minimum.

Theorems 3.5 and 3.6 of [10] imply, in particular, that pairs of finite-
dimensional Banach spaces (X,Y ) always satisfy the Lo-m, but by the nature
of its proof by contradiction, the η depends on each particular operator T a
priori. We show now that, actually, these pairs of spaces have the bounded
BPBp-m. The proof is based on that of [3, Theorem 2.1].

Proposition 3.16. If Y is a finite-dimensional Banach space and X is any
Banach space, then (X,Y ) has the bounded BPBp-m.

Proof. Note that the case where X is infinite-dimensional is a clear conse-
quence of [9, Lemma 3.7], since no operator is injective, and so, the pair (X,Y )
has the BPBpp-m. Therefore, assume now that X is finite-dimensional.

We will argue by contradiction. Note that the case ρ = 0 is already
solved at [9, Lemma 3.7] with the uniform choice η = ε. Therefore, we only
need to prove this for positive ρ. Suppose that this is not the case. Then,
there exist ε > 0, R > 0, and 0 < ρ ≤ R, such that for every n ∈ N, there
are an operator Tn ∈ L(X,Y ) with ‖Tn‖ ≤ R and m(Tn) = ρ and a point
xn ∈ SX , such that ‖Tn(xn)‖ ≤ ρ · (1 + 1

n ), but such that for every operator
S ∈ L(X,Y ) with m(S) = ρ and ‖S − T‖ < ε and for every y ∈ SX with
‖xn−y‖ < ε, we have that ‖S(y)‖ > ρ. Now, by compactness, note that up to
a subsequence, (Tn)n and (xn)n, respectively, converge to some S ∈ L(X,Y )
and y ∈ SX such that ‖S(y)‖ = m(S) = ρ. But note that if n is big enough,
then ‖S − Tn‖ < ε and ‖y − xn‖ < ε, which is a contradiction with the
assumption. �

Note (see for instance [9, Lemma 3.2]) that an invertible operator T ∈
L(X,Y ) attains its norm at x ∈ SX if and only if its inverse attains its
minimum at T (x)

‖T (x)‖ . This motivates wondering if there is a relation between
a pair (X,Y ) satisfying the BPBp and the pair (Y,X) satisfying the bounded
BPBp-m. Proposition 3.16 shows that if Y is a strictly convex space that is
not uniformly convex, then (Y, �21) has the bounded BPBp-m, but the pair
(�21, Y ) cannot have the BPBp (see [4, Corollary 3.3]). However, about the
other implication, we can show the following.

Theorem 3.17. Let X and Y be Banach spaces, such that given ε ∈ (0, 1),
there is some η = η(ε) ∈ (0, 1), such that for every monomorphism T ∈
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BL(X,Y ), the pair (T (X),X) has the BPBp with η. Then, (X,Y ) has the
bounded BPBp-m.

Proof. Let ε ∈ (0, 1), and let 0 ≤ ρ ≤ R be given. Note that if ρ = 0, then
using δ(ε) = ε, the claim is already contained in the proof of [9, Lemma 3.7].
Therefore, assume now that ρ > 0. Let 0 < ε1 = ε1(ε) be small enough, so
that 0 < 4ε1 < ε

2 , and

0 <
R2ε1/ρ

1 − ε1R/ρ
< ε.

Let

δ = δ(ε,R, ρ) := min
{

ε

2
,

η(ε1)ρ
1 − η(ε1)

}

.

Let T ∈ L(X,Y ) be such that ρ = m(T ) ≤ ‖T‖ ≤ R, and let x ∈ X be such
that ‖T (x)‖ < m(T )(1+ δ) ≤ m(T )(1+ η(ε1)ρ

1−η(ε1)
). Note that T : X → T (X) is

an isomorphism. Denote Z := T (X). Then, if U := T −1

‖T −1‖ and x0 := T (x)
‖T (x)‖ ,

we have

‖U (x0)‖ ≥ (1 − η(ε1)).

Therefore, there exist z0 ∈ SZ and S ∈ SL(Z,Y ), such that

‖S(z0)‖ = ‖S‖, ‖S − U‖ < ε1, and ‖x0 − z0‖ < ε1.

Now, since α := ‖U − S‖ < ε1, then ‖U−1S − IdX ‖ < ‖U−1‖α, and using
Newman series as in [30, Page 193], we get

‖S−1 − U−1‖ ≤ ‖U−1‖2 α

1 − ‖U−1‖α
<

(R/ρ)2ε1

1 − ε1R/ρ
,

since ‖U−1‖ = ‖T−1‖‖T‖ ≤ R/ρ. Moreover, since S attains its norm at z0,
the scalar multiples of S−1 attain their minimum at S(z0)

‖S(z0)‖ = S(z0). Note

also that ‖S−1 − U−1‖ < (R/ρ)2ε1
1−ε1R/ρ , so in particular, since T = mU−1, we

have

‖ρS−1 − T‖ <
R2ε1/ρ

1 − ε1R/ρ
< ε,

and clearly, m(ρ · S−1) = ρ. Finally, it remains to show that S(z0)
‖S(z0)‖ is close

to x. Notice that T (x) = x0‖T (x)‖, and z0 = T (t) for some t ∈ X. First note
that

∥
∥
∥x − t‖T (x)‖

∥
∥
∥ ≤ ‖T (x)‖‖T−1‖ε1 < (1 + δ)ε1 < 2ε1, (1)

since 1 ≤ ‖T (x)‖‖T−1‖ < 1 + δ. Now, since t = U(z0)‖T−1‖, we also have
∥
∥
∥‖T (x)‖‖T−1‖U(z0) − ‖T (x)‖‖T−1‖S(z0)

∥
∥
∥

≤ ‖T (x)‖‖T−1‖ε1 < (1 + δ)ε1 < 2ε1. (2)

Finally, note that ‖S(z0)‖ = ‖S‖ = 1, so
∥
∥
∥‖T (x)‖‖T−1‖S(z0) − S(z0)

∥
∥
∥ =

∣
∣‖T (x)‖‖T−1‖ − 1

∣
∣ < δ ≤ ε

2
. (3)
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Using (1), (2), and (3), by the triangle inequality, we get
∥
∥
∥
∥
x − S(z0)

‖S(z0)‖
∥
∥
∥
∥

< 2ε1 + 2ε1 +
ε

2
< ε..

�

There are some immediate consequences of the previous result. First,
recall that a Banach space X has property β of Lindenstrauss if there are two
sets {xα : α ∈ Λ} ⊂ SX and {x∗

α : α ∈ Λ} ⊂ SX∗ and a number 0 ≤ ρ < 1,
such that the following conditions hold:
(1) x∗

α(xα) = 1 for all α ∈ Λ,
(2) |x∗

α(xγ)| ≤ ρ < 1 if α, γ ∈ Λ are such that α �= γ,
(3) ‖x‖ = supα∈Λ |x∗

α(x)|, for all x ∈ X.
This property is satisfied, for instance, for finite-dimensional polyhedral spaces,
and for Banach spaces X, such that c0 ⊂ X ⊂ �∞, and property β of Lin-
denstrauss is known to imply property B of Lindenstrauss ( [26, Proposition
3]). Moreover, if X has property β with constant ρ < 1, then for all Banach
spaces Y , the pair (Y,X) has the BPBp with an η uniquely determined by ρ
( [3, Theorem 2.2]), so we actually get the following.

Corollary 3.18. If X and Y are Banach spaces and X has property β of
Lindenstrauss, then (X,Y ) has the bounded BPBp-m.

In particular, [28, Theorem 1] implies that every Banach space can be
equivalently renormed to be a universal domain for the bounded BPBp-m.

Corollary 3.19. Given any Banach space X, there exists a Banach space Z
isomorphic to X, such that (Z, Y ) has the bounded BPBp-m for all Banach
spaces Y .

Similarly, note that subspaces of uniformly convex Banach spaces are
also uniformly convex, and the modulus of convexity of the subspace is bigger
or equal than that of the original space. Therefore, due to the computations
from [23, Theorem 3.1], we get the following result, which significantly im-
proves [6, Theorems 3.5 and 3.8].

Corollary 3.20. If X and Y are Banach spaces and Y is uniformly convex,
then (X,Y ) has the bounded BPBp-m.

The Banach spaces Y such that (�21, Y ) has the BPBp are characterized
as those that satisfy a geometrical property called the Approximate Hyper-
plane Series Property for pairs (see [3,4]). On the other hand, it has been
shown already that if X is any Banach space, then (X, �21) satisfies the Lo,o-m
and the bounded BPBp-m. Moreover, note that if dim(X) �= 2, then (X, �21)
has the BPBpp-m by [9, Lemma 3.7], so the following question is natural: is
it true for every Banach space X that (X, �21) has the BPBpp-m? Also, note
that if X and Y are both finite-dimensional, then (X,Y ) has both the Lo,o-m
and the bounded BPBp-m. This motivates to wonder the following: is it true
for every pair of finite-dimensional Banach spaces X and Y that (X,Y ) has
the BPBpp-m? We will answer these questions in the negative.
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Figure 1. Construction of Tn ∈ L(�22, �
2
1)

Theorem 3.21. The pair (�22, �
2
1) fails to have the BPBpp-m in the real case.

Proof. Note that an isomorphism S ∈ L(�21, �
2
2) can only attain its norm at

the points (1, 0), (−1, 0), (0, 1), and (0,−1), as �22 is strictly convex. For each
n ∈ N, we will define a linear operator Tn ∈ L(�22, �

2
1) that maps S�22

into
the unique ellipse containing the points (1, 0), (−1, 0), (0, 1), (0,−1), and
(

1
2 + 1

n , 1
2 + 1

n

)

(see Fig. 1), which satisfies the equation

−((−8 − 8n + 2n2)xy) + (2 + n)2(1 − x2 − y2) = 0.

Moreover, we will make sure that

Tn(e1) =
(

1
2

+
1
n

,
1
2

+
1
n

)

and

Tn(e2) =
(−(n + 2)

4
√

n + 1
,

(n + 2)
4
√

n + 1

)

,

which belong to that ellipse indeed. In other words, for each (x, y) ∈ �22, we
define

Tn(x, y) :=
(

n + 2
2n

x − (n + 2)
4
√

n + 1
y,

n + 2
2n

x +
(n + 2)
4
√

n + 1
y

)

.

If we solve the corresponding systems of linear equations, we can eas-
ily verify that the preimages by T of the points (1, 0), (−1, 0), (0, 1), and
(0,−1) of B�21

are, respectively, the points
(

n
n+2 ,− 2

√
n+1

n+2

)

,
(

− n
n+2 , 2

√
n+1

n+2

)

,
(

n
n+2 , 2

√
n+1

n+2

)

, and
(

− n
n+2 ,− 2

√
n+1

n+2

)

, which clearly belong to B�22
. Note

that, by construction, Tn(B�22
) is a region (delimited by an ellipse) that con-

tains B�21
, and the ellipse Tn(S�22

) intersects S�21
only at the points (1, 0),

(−1, 0), (0, 1), and (0,−1) (due to its strict convexity). Thus, it is geomet-
rically clear (and can be checked analytically) that m(Tn) = 1, and that
‖Tn(e1)‖ = 2

(
n+2
2n

)

= 1 + 2
n .
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Now, we will argue by contradiction. Suppose that (�22, �
2
1) has the

BPBpp-m. Then, for all ε ∈ (0, 1), there must be some η(ε) ∈ (0, 1) (converg-
ing to 0 with ε), such that whenever an operator T ∈ L(�22, �

2
1) and x ∈ S�22

satisfy that m(T ) = 1 and ‖T (x)‖ < 1 + η(ε), then there is an operator
S ∈ L(�22, �

2
1) satisfying that

m(S) = ‖S(x)‖ = m(T ) = 1, and ‖S − T‖ < ε.

Fix 0 < ε < 1 and suppose that such η(ε) exists. There must exist some n ∈ N,
such that η(ε) ≥ 2

n . Take now T = Tn and x = (1, 0) ∈ B�22
, and let S be given

as before. Since S is an isomorphism that attains its minimum at (1, 0), in
particular S−1 is an isomorphism that attains its norm at the point S((1,0))

‖S((1,0)))‖ .
However, S−1 can only attain its norm at the points (1, 0), (−1, 0), (0, 1), and
(0,−1) of B�21

. In particular, S((1, 0)) must be one of those points. Note now
that the distances from those 4 points to Tn((1, 0)) =

(
1
2 + 1

n , 1
2 + 1

n

)

are
bounded below by 1, so we must have

ε > ‖T − S‖ ≥ ‖(T − S)(1, 0)‖ ≥ 1,

which is a contradiction. Since this can be done for every n ∈ N and every
ε ∈ (0, 1), the claim is proven. �

In particular, we get the following.

Corollary 3.22. There are Banach spaces (X,Y ) satisfying the Lo,o-m and
the bounded BPBp-m, but not the BPBpp-m.

As a final remark, in the case of the norm, recall that there is a natural
strengthening of the Lo,o considered in the literature, namely the Bishop–
Phelps–Bollobás operator property (or just BPBop), which is defined like
the Lo,o but where η = η(ε) does not depend on the operator. This property
is known to be very restrictive:
(1) (X,K) has the BPBop if and only if X is uniformly convex (see [23,

Theorem 2.1]).
(2) (X,Y ) always fails the BPBop if X and Y both have dimension at least

2 (see [15, Theorem 2.1]).
It is natural to wonder if we can also consider a uniform strengthening

of the Lo,o-m similarly, but it turns out that this property is even more
restrictive than its norm counterpart.

Proposition 3.23. Let X be a Banach space of dimension at least 2. Then,
there is no nontrivial Banach space Y , such that the following property holds:
“for every ε ∈ (0, 1) and every ρ ≥ 0, there exists η(ε, ρ) ∈ (0, 1) (converging
to 0 with ε) satisfying that whenever T ∈ L(X,Y ) with m(T ) = ρ and x ∈ SX

are such that ‖T (x)‖ < ρ(1 + η(ε, ρ)), if ρ > 0, or ‖T (x)‖ < η(ε, ρ), if ρ = 0,
there exists y ∈ SX , such that m(T ) = ‖T (y)‖ = ρ, and ‖x − y‖ < ε”.

Proof. Given ε ∈ (0, 1), suppose that η(ε, 0) ∈ (0, 1) exists.
Fix ε < 1. Let T ∈ L(X,Y ) be a non-injective (and non-zero) operator,

such that ‖T‖ ≤ η(ε,0)
2 . By Riesz’ lemma, there is some u ∈ SX , such that
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dist(u,Ker(T )) > ε. However, as ‖T (u)‖ ≤ η(ε,0)
2 < η(ε, 0), there must be a

point y, such that ‖u − y‖ < ε and ‖T (y)‖ = 0. This is a contradiction. �
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[3] Acosta, M.D., Aron, R.M., Garćıa, D., Maestre, M.: The Bishop-Phelps-
Bollobás theorem for operators. J. Funct. Anal. 254(11), 2780–2899 (2008)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  163 Page 20 of 21 D. García et al. MJOM

[4] Aron, R.M., Choi, Y.S., Kim, S.K., Lee, H.J., Mart́ın, M.: The Bishop-Phelps-
Bollobás version of Lindenstrauss properties A and B. Trans. Am. Math. Soc.
367(9), 6085–6101 (2015)

[5] Bala, N., Ramesh, G.: Spectral properties of absolutely minimum attaining
operators. Banach J. Math. Anal. 14(3), 630–649 (2020)

[6] Bala, N., Ramesh, G.: A Bishop-Phelps-Bollobás type property for minimum
attaining operators. Oper. Matrices 15(2), 497–513 (2021)

[7] Bourgain, J.: On dentability and the Bishop-Phelps property. Israel J. Math.
28(4), 265–271 (1977)

[8] Carvajal, X., Neves, W.: Operators that attain their minima. Bull. Braz. Math.
Soc. (N.S.) 45(2), 293–312 (2014)

[9] Chakraborty, U.S.: Some remarks on minimum norm attaining operators. J.
Math. Anal. Appl. 12449(2), 14–492 (2020)

[10] Chakraborty, U.S.: Some Bishop-Phelps-Bollobás type properties in Banach
spaces with respect to minimum norm of bounded linear operators. Ann. Funct.
Anal. 46(3), 15–12 (2021)

[11] Choi, G., Choi, Y. S., Jung, M., Mart́ın, M.: On quasi norm attaining operators
between Banach spaces, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.
RACSAM 116 (2022), no. 3, Paper No. 133, 32 pp

[12] Choi, G., Lee, H.J.: On the Crawford number attaining operators. Rev. Mat.
Complut. 36(3), 841–857 (2023)

[13] Choi, Y. S., Kim, S. K., Lee, H. J.: On Norm-attaining mappings on Ba-
nach Spaces. In: G. Godefroy, M. Moslehian, J. B. Seoane-Sepúlveda (eds.).
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Theorem: An Overview. In: Aron, R.M., Moslehian, M.S., Spitkovsky, I.M.,
Woerdeman, H.J. (eds). Operator and Norm Inequalities and Related Topics.
Trends in Mathematics. Birkhäuser, Cham., (2022)
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