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Preface 

The necessity and utility of writing this book arise from the vast number 

of studies based on the Ontosemiotic Approach (OSA) to mathematical 

knowledge and instruction published since the early 1990s. As can be seen in 

the web repository available at the University of Granada, 

http://enfoqueontosemiotic.ugr.es, following the publication of the article 

Institutional and Personal Meaning of Mathematical Objects (Godino & 

Batanero, 1994) in Recherches en Didactique des Mathématiques, the 

number of doctoral theses and research articles using the conceptual and 

methodological tools of the OSA has increased substantially. These 

theoretical tools have grown and refined over time and have been applied to 

didactic research related to various mathematical contents and educational 

levels. The successive developments of the OSA have encompassed the 

problems involved in the processes of mathematics education, including 

ontological, semiotic, and epistemological issues specific to mathematics 

education and those related to teaching and learning in different contexts 

and educational levels. As a result, a theoretical system was developed that 

coherently articulates the various dimensions involved in research on the 

teaching and learning of mathematics and the education of mathematics 

teachers.  

Thirty years after publishing the first works on the OSA, it was necessary 

to undertake a review and systematization to facilitate its dissemination, 

which was carried out in multiple postgraduate courses, conferences, and 

research projects. This book aims to present the modules or theories that 

http://enfoqueontosemiotic.ugr.es/


 

form the OSA theoretical system, the basic assumptions that support them, 

their articulation, their connections with other theories, and examples of 

applying the conceptual and methodological tools. 

The OSA provides a system of notions, principles, and methodological 

tools to study and understand the nature of mathematical activity, 

mathematical knowledge, and teaching and learning processes. A 

technological (prescriptive) component —comprising a system of criteria or 

norms to optimize the design, implementation, and evaluation of 

educational-instructional processes— and a model of teachers’ professional 

development complement the scientific (descriptive, explanatory, and 

predictive) component of mathematics education. 

The OSA theoretical system presented in this book comprises five 

articulated theories: 

1. Ontosemiotic Theory of Mathematical Activity: This theory develops 

an anthropological and pragmatist view of mathematics, that is, as a 

human activity centered on problem-solving. This anthropological 

view of mathematics is complemented and articulated with two other 

conceptions: mathematics as a system of objects and processes and 

mathematics as a system of signs. 

2. Ontosemiotic Theory of Meaning and Mathematical Cognition: This 

theory develops a global view of the meaning of mathematical objects, 

articulating realistic and pragmatic assumptions as the basis of 

mathematical cognition from an individual (personal) and social 

(institutional) perspective. 

3. Theory of Educational Design in Mathematics: This theory develops 

assumptions and theoretical tools for the description and design of 

teaching and learning processes in mathematics based on the specific 

theory of mathematical activity and the meaning of objects proposed 

by the OSA. 



4. Theory of Didactic Suitability: This theory develops a system of 

criteria for the local optimization of the design, implementation, and 

evaluation of educational-instructional processes in mathematics 

based on OSA assumptions and constructs. These criteria consider the 

epistemic, ecological, mediational, interactional, cognitive, and 

affective facets of teaching and learning processes. 

5. Theory of Professional Development for Teachers: This theory 

develops a model of knowledge and competencies for mathematics 

teachers that considers the facets, components, and sub-components 

of the educational processes involved in the activities of foundation, 

design, planning, and evaluation. It also includes a system of principles 

or criteria for the efficiency of teacher education programs. 

Acknowledgments 

Other researchers, particularly C. Batanero, V. Font, A. Contreras, B. 

D’Amore, M. Rodríguez-Wilhelmi, T. Fernández, T. Neto, L. Pino-Fan, L. 

Aké, M. Burgos, M. Gea, B. Giacomone, and P. Beltrán, have supported the 

development and application of the OSA. I sincerely thank all of them.  

 

  

  



 

 
 
 
 
 
 
 
Contents 
 
 Page 

Preface   4 

Chapter 1. Background and presentation  

Introduction ………………………………………………………………………….  17 

1.1. Dilemmas in conceptualizing mathematics education ………….  19 

1.2. Dilemmas in conceptualizing mathematical knowledge and its 

emergence …………………………………………………………………….. 

 

 23 

       1.2.1. The ontology and epistemology of mathematics ……………  24 

       1.2.2. Semiotics of mathematics …………………………………………  25 

       1.2.3. Internal and external representations …………………………  26 

1.3. Dilemmas in conceptualizing learning …………………………………  27 

       1.3.1. Radical constructivism ……………………………………………..  28 

       1.3.2. Social constructivism ………………………………………………..  28 

       1.3.3. Enactivism ……………………………………………………………...  29 

       1.3.4. Discursive learning …………………………………………………..  29 

1.4. Teaching dilemmas …………………………………………………...........  30 

       1.4.1. Student-centered teaching ………………………………….........  31 

       1.4.2. Teacher-centered teaching ………………………………………..  32 

1.5. Dilemmas in evaluating educational-instructional processes …  33 

1.6. Dilemmas in mathematics teacher education ………………………  35 

1.7. Emergence and development of OSA ………………………………….  37 

1.8. Book structure …………………………………………………………………  39 



 References ………………………………………………………………………......  43 

  

Chater 2. Ontosemiotic theory of mathematical activity    

Introduction ………………………………………………………………………….  51 

2.1. Characterization of educational mathematics ………………………  53 

2.2. Philosophies of mathematics …………………………………………….  56 

2.3. The ontosemiotic configuration as a tool for the analysis of 

mathematical activity …………………………………………………….. 

 

 63 

2.4. Mathematics as an activity …………………………………………………  66 

2.5. Mathematics as a system of objects and processes ………………  69 

2.6. Mathematics as a system of signs ………………………………………  73 

2.7. Idealization, generalization, and unitarization ……………………  76 

       2.7.1. Ostensive-non-ostensive duality ………………………………..  77 

       2.7.2. Unitary-systemic duality ………………………………………….  78 

       2.7.3. Extensive-intensive duality ………………………………………  80 

2.8. Abstraction processes and abstract objects in OSA ………………  81 

2.9. Theoretical frameworks related to the ontosemiotic theory of 

mathematical activity …………………………………………………….. 

 

 87 

       2.9.1. The discursive theory of thinking ………………………………  88 

       2.9.2. Theory of objectification ……………………………………………  89 

       2.9.3. Other related frameworks …………………………………………  92 

2.10. Examples of applying the ontosemiotic theory of 

          mathematical activity …………………………………………………….. 

 

 93 

       2.10.1. An ontosemiotic approach to visualization in 

mathematics education ………………………………………….. 

 

 94 

       2.10.2. Development of an algebraic reasoning level model ……  96 

2.11. Synthesis of the ontosemiotic theory of mathematical activity   99 

References ……………………………………………………………………………. 101 

  



 

Chapter 3. Ontosemiotic theory of meaning and 

mathematical cognition 

 

Introduction …………………………………………………………………………. 109 

3.1. Theories of meaning …………………………………………………………. 113 

       3.1.1. Realist or analytical theories of meaning …………………….. 113 

       3.1.2. Operational or pragmatic theories of meaning ……………. 114 

       3.1.3. Semiotics and philosophy of language ………………………… 115 

       3.1.4. Pragmatism and Peirce’s semiotics ……………………………. 117 

       3.1.5. Language games and forms of life: Language as a tool …. 120 

       3.1.6. Cognitive semiotics …………………………………………………. 122 

       3.1.7. Cultural semiotics ……………………………………………………. 124 

3.2. Theories of meaning in mathematics education …………………… 125 

       3.2.1. Sense and reference in Frege ……………………………………… 125 

       3.2.2. The conceptual triplet by Vergnaud …………………………… 128 

       3.3.3. The epistemological triangle …………………………………….. 129 

3.3. The ontosemiotic theory of meaning …………………………………. 132 

       3.3.1. Practices, objects, and meanings ………………………………. 134 

       3.3.2. Use and intentionality of practices ……………………………. 138 

       3.3.3. Meaning and semiotic function ………………………………… 139 

       3.3.4. Relativity of practices, objects, and meanings ……………… 142 

3.4. An ontosemiotic approach to mathematical cognition ………… 144 

       3.4.1. Knowledge and understanding ………………………………….. 144 

       3.4.2. Knowledge and beliefs ……………………………………………… 148 

3.5. Educational mathematics as an ecology of meanings …………… 150 

3.6. Pragmatic meanings and ontosemiotic configurations. An 

example of articulation …………………………………………………… 

 

151 

      3.6.1. Pragmatic meanings of proportionality ………………………. 152 

      3.6.2. Ontosemiotic configurations ……………………………………… 158 

3.7. Concordances and complementarities between semiotic 

theories ………………………………………………………………………….. 

 

162 



      3.7.1. Theories of meaning versus OSA ………………………………… 162 

      3.7.2. Registers of semiotic representation versus OSA ………… 165 

3.8. Examples of ontosemiotic analysis of mathematical cognition  168 

       3.8.1. Natural numbers as cultural and personal objects s ……… 168 

       3.8.2. Meanings of the concept of function and development of 

functional reasoning ………………………………………………. 

 

170 

       3.8.3. Other examples of institutional meaning reconstruction  172 

3.9. Ontosemiotic approach to affective domain in mathematics 

education ……………………………………………………………………… 

 

173 

       3.9.1. Primary affective entities …………………………………………. 174 

       3.9.2. Contextual dualities ………………………………………………… 179 

       3.9.3. Affectivity dynamics ………………………………………………… 185 

3.10. Synthesis of ontosemiotic theory of meaning and 

mathematical cognition ………………………………………………….. 

 

186 

References ………………………………………………………………………....... 190 

  

Chapter 4. Educational design theory in mathematics 

based on OSA 

 

Introduction …………………………………………………………………………. 201 

4.1. Structure model of an educational-instructional process ……… 203 

4.2. Normative dimension ……………………………………………………… 208 

       4.2.1. Epistemic norms ……………………………………………………… 210 

       4.2.2. Ecological norms …………………………………………………….. 211 

       4.2.3. Interaction norms …………………………………………………… 212 

       4.2.4. Mediational norms ………………………………………………….. 212 

       4.2.5. Cognitive norms ……………………………………………………... 213 

       4.2.6. Affective norms ………………………………………………………. 213 

       4.2.7. Meta-normative dimension ………………………………………. 214 

       4.2.8. Didactic suitability criteria ……………………………………….. 216 



 

4.3. Reference didactic configurations. OSA didactic 

model.......................................................................................... 

 

218 

4.4. Dynamics of an educational-instructional process ……………… 223 

       4.4.1. Epistemic subtrajectory ……………………………………………. 225 

       4.4.2. Instructional subtrajectory ………………………………………. 226 

       4.4.3. Cognitive subtrajectory ……………………………………………. 227 

       4.4.4. Affective subtrajectory …………………………………………….. 228 

       4.4.5. Complexity of didactic interactions …………………………… 228 

4.5. Preliminary analysis: Reconstruction of reference meanings … 229 

       4.5.1. Application example of preliminary analysis tools ………. 232 

4.6. Design and a priori task analysis ………………………………………. 233 

       4.6.1. A priori analysis of a data analysis project …………………… 235 

4.7. Instructional implementation …………………………………………… 240 

4.8. Retrospective analysis ……………………………………………………… 241 

4.9. Theoretical perspectives related to OSA educational design 

theory …………………………………………………………………………….. 

 

242 

       4.9.1. The dilemma of constructivism versus objectivism ……… 243 

       4.9.2. Design-based research …………………………………………….. 247 

4.10. Synthesis of the theory of instructional design in 

mathematics based on OSA ……………………………………………. 

 

249 

References ………………………………………………………………………....... 253 

  

Chapter 5. Theory of didactic suitability based on OSA  

Introduction …………………………………………………………………………. 261 

5.1. Quality of instruction and its measurement ………………………… 263 

5.2. Conceptualizing didactic suitability …………………………………… 265 

       5.2.1. Definition and structure of didactic suitability ……………. 265 

       5.2.2. A broader view of suitability …………………………………….. 270 

5.3. System of didactic suitability criteria …………………………………. 271 

       5.3.1. Epistemic facet ………………………………………………………… 271 



       5.3.2. Ecological facet ……………………………………………………….. 275 

       5.3.3. Mediational facet …………………………………………………….. 277 

       5.3.4. Interactional facet …………………………………………………… 281 

       5.3.5. Cognitive facet ………………………………………………………... 284 

       5.3.6. Affective facet …………………………………………………………. 286 

       5.3.7. Interaction between facets ………………………………………… 288 

5.4. Suitability criteria for specific contents ……………………………… 292 

5.5. Application example of didactic suitability theory. Reflecting 

on the experience of teaching proportionality ……………………. 

 

293 

      5.5.1. Describing the teaching experience ……………………………. 293 

      5.5.2. Didactic-mathematical knowledge on proportionality 

and percentages …………………………………………………….. 

 

295 

      5.5.3. Assessment of didactic suitability and proposals for 

change …………………………………………………………………… 

 

295 

5.6. Concordances and complementarities with other theories ….. 301 

      5.6.1. Epistemic facet …………………………………………………………. 301 

      5.6.2. Cognitive facet …………………………………………………………. 303 

      5.6.3. Affective facet ………………………………………………………….. 304 

      5.6.4. Interactional facet ……………………………………………………. 305 

      5.6.5. Mediational facet ……………………………………………………… 306 

      5.6.6. Ecological facet ………………………………………………………… 307 

5.7. Synthesis of didactic suitability theory based on OSA …………… 307 

References ……………………………………………………………………………. 309 

  

Chapter 6. Theory of teacher professional development 

based on the OSA 

 

Introduction …………………………………………………………………………. 315 

6.1. Teacher professional development: Conceptualization and 

background …………………………………………………………………… 

 

318 

       6.1.1. Mathematics teachers’ and teacher educators’ knowledge  319 



 

       6.1.2. Characteristics of effective professional development 

programs ………………………………………………………………. 

 

320 

6.2. Structure of teacher education processes …………………………… 322 

6.3. Didactic-mathematical knowledge and competencies in 

mathematics instruction ………………………………………………….. 

 

325 

6.3.1. Knowledge of characteristics of mathematical content 

(epistemic and ecological facets) ………………………………. 

 

326 

6.3.2. Knowledge of the characteristics of mediational and 

interactional facets ………………………………………………….. 

 

329 

6.3.3. Knowledge of student learning characteristics 

(cognitive and affective facets) ………………………………….. 

 

332 

       6.3.4. Extended DMK Model ……………………………………………… 335 

       6.3.5. Model of didactic-mathematical competencies …………… 336 

        6.3.6. Edumat-Teacher books and the DMKC-Teacher model  341 

6.4. Criteria for the suitability of teacher education and learning 

activities ……………………………………………………………………….. 

 

345 

6.4.1. Criteria for the interactional, mediational, and 

ecological facets of formative processes …………………… 

 

346 

       6.4.2. Criteria for the cognitive and affective facets of the 

training process …………………………………………………….. 

 

348 

6.5. System of knowledge and competencies of mathematics 

teacher educators ………………………………………………………….. 

 

350 

       6.5.1. The DMKC-Educator model ……………………………………… 350 

       6.5.2. Edumat-Teacher books and the DMKC-Educator model  351 

6.6. Guidelines for analyzing the didactic suitability of TPD 

processes ………………………………………………………………………. 

 

353 

6.7. Example of research performed using tools from the theory .. 355 

       6.7.1. Description of formative actions ……………………………….. 355 

6.7.2. Analysis of the knowledge and competencies of the 

teacher managing the video-recorded class ……………….. 

 

359 



       6.7.3. Explanation. Analysis of norms and metanorms ………… 363 

       6.7.4. Assessment. Analyzing didactic suitability ………………… 364 

       6.7.5. Limitations of the available information and final 

reflections …………………………………………………………….. 

 

367 

6.8. Concordances and complementarities with other theories …… 368 

6.9. Synthesis of the teacher professional development model 

based on OSA………………………………………………………………….. 

 

370 

References ………………………………………………………………………....... 373 

  

Chapter 7. The OSA theoretical system  

Introduction …………………………………………………………………………. 381 

7.1. Connecting the OSA’s theoretical tools ………………………………. 382 

7.2. Mathematics education dilemmas and conflicts addressed by 

OSA ……………………………………………………………………………….. 

 

384 

7.3. Research problems and methods from OSA perspective ……… 388 

       7.3.1. Classification of research problems …………………………… 389 

       7.3.2. Methodological approach ………………………………………… 392 

7.4. OSA as a theoretical framework for research ……………………… 396 

7.5. Concordances and complementarities with other theories …… 399 

       7.5.1. Theory of didactic situations …………………………………….. 399 

       7.5.2. Anthropological theory in didactics of mathematics …… 404 

       7.5.3. Realistic mathematics education ………………………………. 408 

       7.5.4. APOS theory …………………………………………………………… 414 

       7.5.5. Objectivation theory ………………………………………………… 417 

       7.5.6. Ethnomathematics program …………………………………….. 422 

       7.5.7. Comparing theories regarding the understanding-use 

duality ……………………………………………………………………. 

 

427 

7.6. OSA applications and diffusion ………………………………………… 429 

7.7. Synthesis of OSA philosophical postulates.…………………………. 430 

7.8. Synthesis of OSA theoretical system and open questions …….. 434 

Juan
Texto escrito a máquina



 

References ……………………………………………………………………………. 439 

Author …………………………………………………………………………………. 447 

Synopsis ………………………………………………………………………………. 448 

 



 
 



 
 

Chapter 1  

Background and presentation 

 

 

 

Introduction 

Since the emergence of Didactics of mathematics in the 1970s, the 

research community has been developing various theories to describe and 

explain phenomena related to the processes of teaching and learning 

mathematics, with the aim of contributing to the improvement of these 

processes. The complexity of these phenomena, the different factors that 

must be considered, and the influence of the diverse cultural contexts in 

which theories are generated explain their profusion and the appearance of 

diverse dilemmas or controversies among them. This situation generates 

communication difficulties and efficient use of the knowledge produced 

by the research activity. 

In this book, we present the theoretical framework of the Ontosemiotic 

Approach (OSA) in mathematics education (Godino and Batanero, 1994; 

Godino, 2002; Godino et al., 2007; Font et al., 2013; Godino et al., 2020), 

whose objective is to address in an articulated way the problems of 

grounding, design, implementation, and evaluation of the processes of 

teaching and learning mathematics. The strategy of clarification, 

comparison, hybridization and modular construction of theories, from an 

ontological and semiotic approach, lies at the foundation of OSA. We assume 

the relevance and potential usefulness of advancing toward the construction 

of a theoretical system that allows us to address in an articulated way the 

epistemological, ontological, semiotic, cognitive, and educational problems 

involved in the teaching and learning of mathematics. 
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In this first chapter, we motivate the construction of the OSA by 

responding to various dilemmas and contradictions between the different 

research paradigms and theories used in mathematics education. We also 

present chapters in which we describe the assumptions adopted and the 

theoretical tools developed to address the foundational issues of 

mathematics education as a field of research and their application to 

educational design and teacher education. 

In Section 1.1, we analyze the tension between theory and practice 

observed in different ways of understanding mathematics education: as a 

field of basic scientific research or as a field of technological research and 

practical action. In Section 1.2, we describe various divergent theoretical 

positions on ontological and epistemological issues in mathematics, i.e., the 

nature of mathematical objects, the emergence and development of 

mathematical knowledge, and the role of languages and systems of 

representation. In Section 1.3, we describe various dilemmas in 

conceptualizing mathematical learning, constructivism, enactivism, cultural 

psychology, and discursive learning. Different ways of conceptualizing 

mathematics teaching, either student-centered or teacher-centered, the role 

of inquiry, and the transmission of knowledge are described in Section 1.4. 

Regarding the assessment of student learning and educational-instructional 

processes, various positions and views are summarized in Section 1.5. In 

Section 1.6, we identify some dilemmas among various approaches to 

mathematics teacher education that motivate the development of a specific 

model based on the OSA. Finally, in Section 1.7, we set out the structure of 

the book in six chapters, in addition to this introductory chapter. We present 

the OSA as a theoretical system consisting of five partial theories: 

ontosemiotic theory of mathematical activity and emergent objects; 

ontosemiotic theory of mathematical meaning and cognition; theory of 

instructional-educational design; theory of didactic suitability; and theory of 

teacher professional development. The last three theories are based on 
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ontological and semiotic assumptions and tools described in Chapters 2 and 

3. 

 

1.1. Dilemmas in conceptualizing mathematics 

education 

The term education has a broader use than didactics; thus, we can 

distinguish between mathematics education and didactics. However, in the 

Anglo-Saxon world the expression "mathematics education" is used to 

describe the area of knowledge that in continental Europe is called "didactics 

of mathematics". In this book, we use both expressions interchangeably, 

although as Steiner (1985) states, mathematics education, in addition to 

naming the scientific discipline, can also refer to the interactive social system 

comprising theory, development, and practice. 

Philosophical reflection on the nature of mathematics education as a field 

of knowledge is essential to adequately orient the research because it 

conditions the formulation of the central questions of the research. 

Is mathematics education a discipline, a field of research, an 

interdisciplinary area, a field of extra disciplinary applications, or something 

else? Is it a branch of applied mathematics or a special part of educational 

theory? Is it a science, a social, artistic, or humanistic science, or none or all 

of them? (Kilpatrick, 2008) What is its relationship with other disciplines, 

such as philosophy, mathematics, sociology, psychology, linguistics, 

anthropology, etc. (Ernest, 2018, p. 22)? 

Among the authors who have reflected on the nature of mathematics 

education, Steiner (1985) and Brousseau (1989) stand out, in an essay with 

the significant title, The Tower of Babel. Faced with the extreme complexity 

of problems related to mathematics education, Steiner (1985, p. 11) indicated 

two extreme reactions: 
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− Authors who affirm that mathematics education cannot become a 

field with a scientific foundation and that mathematics teaching is 

essentially an art. 

− Those who think that the existence of mathematics education as a 

science is possible and reduce the complexity of its problems by 

selecting only a partial aspect of them (for example, the analysis of 

the content to be taught, the construction of the curriculum, the 

improvement of teaching methods, the development of student 

skills, classroom interaction, etc.), to which they attribute a special 

weight within the whole, giving rise to different definitions and 

visions of mathematics education. 

Brousseau (1989) expresses himself similarly, although in his case he 

speaks of didactic of mathematics. The first conception of the didactics of 

mathematics identifies it as the art of teaching, that is, the set of means and 

procedures that tend to make mathematics known. In addition, he 

distinguished two conceptions of a scientific nature: an applied 

multidisciplinary one and an autonomous one (described by Brousseau 

himself as fundamental or mathematical). As a hinge between these two 

visions, he also distinguished a technonicist conception, in which didactics 

would be the set of teaching techniques, that is, the invention, description, 

study, production, and control of new means for teaching: curriculum, 

objectives, means of evaluation, materials, manuals, software, etc. 

In the multidisciplinary conception, which would emerge with the second 

trend pointed out by Steiner, didactics appears as a label to designate the 

teachings necessary for the technical and professional training of teachers. 

Steiner (1990) identified various disciplines related to mathematics 

education, such as mathematics, epistemology and philosophy of 

mathematics, history of mathematics, psychology, sociology, or pedagogy. 

The activity of theorizing or grounding is seen by Steiner as a component of 
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mathematics education, an academic field and a domain of interaction 

between research, development and practice. 

Lesh and Sriramn (2010) also reflect on the nature of mathematics 

education as a field of research and ask the following questions: Should 

mathematics educators view themselves as applied educational 

psychologists, cognitive psychologists, or applied social scientists? Should 

they see themselves as similar to scientists in the field of physics, or other 

pure sciences, or rather as engineers or other design-oriented technicians 

whose research draws on multiple practical and disciplinary perspectives and 

whose work is driven by the need to solve real problems and also by the need 

to develop relevant theories? These authors consider mathematics education 

in the latter sense, that is, as a science oriented to the design of processes and 

resources to improve the processes of teaching and learning mathematics. 

There is some controversy between those who emphasize the science 

aspect of mathematics education (Gascón and Nicolás, 2017), whose 

objective is to understand educational phenomena, and those who consider 

education as a form of sociotechnology (Bunge, 1998) and emphasize the 

component of intervention on practice for its improvement. 

At the OSA, we consider it necessary to articulate a vision that recognizes 

the complementarity of the scientific and technological components of 

didactics. This means that, on the one hand, theoretical problems of 

ontological, epistemological and semiotic clarification of mathematical 

knowledge must be addressed, insofar as such problems are related to 

teaching and learning processes (scientific, descriptive, explanatory and 

predictive component). On the other hand, it is necessary to intervene in 

these processes to make them as suitable as possible (technological-

prescriptive component). It is understood that description, explanation and 

prediction are the aims of scientific activity, while prescription and 

assessment are the main objectives of technological activity, although the 

latter also includes elements of research applied to the resolution of specific 
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problems. We therefore assume an expanded conception of didactics as 

related to processes of teaching and learning, to mathematical knowledge 

and practice (genesis, development, dissemination, transposition and use), 

and the optimization of these processes in educational contexts. 

In this book, mathematics education is considered, in addition to being a 

field or area of knowledge, as a system of activities carried out by individual 

subjects or teams in communities that are interested in problems related to 

the foundation of research, the dissemination of knowledge and the practice 

of mathematics education.  The application of the notion of activity system in 

the sense of Cultural-Historical Activity Theory (CHAT) (Engeström, 1987; 

Engeström and Sannino, 2021; Roth and Lee, 2007) allows us to describe and 

understand mathematics education as a whole composed of several 

subsystems. For this purpose, we differentiate between several partial 

activities: foundation, design, implementation, evaluation, and teacher 

professional development. Identifying the different elements of each partial 

activity and their relationships can help to recognize controversial positions 

and progress in the elaboration of a modular and inclusive theoretical system 

(Ruthven, 2014) that addresses the complexity of mathematics education 

activity. The CHAT notion of contradiction, which includes dilemmas, 

tensions, and conflicts between elements of the activity (Núñez, 2009) or 

between related activities, clarifies the reasons for changing systems and 

identifying unresolved contradictions that need to be addressed in new 

developments. The idea of dilemma (controversies, contradictions) is useful 

for motivating the construction of the OSA as a theoretical system that seeks 

to address them, in some cases through a hybridization strategy of existing 

theories, and in others by recognizing the complementarity and coordinated 

use of various theories. 
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1.2. Dilemmas in conceptualizing mathematical 

knowledge and its emergence 

The foundation of mathematics education activity requires problematizing 

the nature of mathematical knowledge: how can we approach the study of 

numbers, for example, if we do not clearly understand what numbers are and 

what it means to understand them? Tackling this question requires including 

ontological (nature and types of objects), epistemological (how knowledge 

arises and evolves), and semiotic (diversity and role of signs) questions about 

mathematics in mathematics education research. 

Several theoretical frameworks have been addressing this issue by 

considering the interconnections between mathematical activity and 

mathematics education activity, often focusing on partial aspects and 

adopting different epistemological, ontological, semiotic, and cognitive 

positions. Improving the coherence and effectiveness of mathematics 

education research requires confronting and articulating this diversity of 

approaches. 

The study of literature on the theoretical foundations of mathematics 

education allows us to identify the following tensions: 

− Mathematics as human activity versus mathematics as a system of 

objects. 

− Platonism (mathematical objects as pre-existing entities) and 

nominalism (mathematical objects reduced to names or symbols). 

− Relationships between personal (cognitive) and institutional 

(epistemic) dimensions of knowledge. 

− Links between internal (cognitive schemas, conceptions) and 

external (languages and material artifacts) representations of 

knowledge. 

− Meaning as a mental reference to words, symbols, or their uses. 
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− Connections between professional mathematical knowledge, 

school knowledge, and processes of transposition or 

elementaritation. 

These dilemmas are discussed in greater detail below. 

 

1.2.1. The ontology and epistemology of mathematics 

The ontology and epistemology of mathematics are two interrelated 

philosophical branches. Ontology is concerned with the nature of what we 

are studying in mathematics, i.e., mathematical objects, while epistemology 

focuses on how we understand those objects. The ontology of mathematics 

raises central questions about the nature of mathematical objects and their 

relation to the physical world and language: 

− What kind of existence do numbers, functions, and geometric 

figures have? 

− What relationships exist among mathematical objects, the physical 

world, and languages? 

− Is mathematics universal, or does it depend on cultures and 

people's activity? 

Regarding the nature of mathematical objects, Platonic realism has been 

the dominant philosophical trend. This philosophical position views 

mathematical objects as existing independently of the physical world in an 

ideal realm (Linnebo, 2009). Conceptualists and nominalists defend 

contrary positions. Conceptualism holds that mathematical objects are 

mental entities, i.e., they exist only in the human mind. In this sense, 

numbers, geometric figures, functions, etc., are mental constructs that have 

no existence independent of the mind that creates them. Nominalism, on the 

other hand, holds that mathematical objects are not real entities but simply 

names or labels for sets of physical objects (Bueno, 2020). In this sense, 

numbers are nothing but names for the quantities of objects, geometric 
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figures are nothing but names for sets of points, and functions are nothing 

but names for relations between sets. Sociological and anthropological 

positions in philosophy of mathematics (Bloor, 1983) postulate that 

mathematical objects emerge from social and cultural practices; 

mathematics is not a product of the individual mind but the result of the 

interaction of people with each other and with their environment. 

Consequently, regarding questions of the epistemology of mathematics—

the nature of mathematical knowledge, its foundation, justification, and the 

ways of coming to know and learn—there are various approaches that are not 

always compatible and can also be identified in mathematics education. We 

find in it a series of epistemological controversies: 

including the subjective-objective character of mathematical knowledge; its 

role in knowledge of the social and cultural context; the transfer of 

knowledge and learning from one social context to another; the relationships 

between language and knowledge; and the tensions between the main tenets 

of constructivism, sociocultural views, interactionism, and French didactics, 

from an epistemological perspective. (Ernest, 2018, p. 27) 

 

1.2.2. Semiotics of mathematics  

Because mathematical objects cannot be apprehended directly through 

the senses, their ontological status, communication and learning require the 

use of signs, such as specific terms, symbols, diagrams or graphs. 

Consequently, semiotics, as the study or doctrine of signs, that is, the 

systematic investigation of their nature, properties and types, is receiving 

great attention in mathematics education research. "Semiotics has been a 

fruitful theoretical lens used by researchers interested in various 

mathematics education issues in recent decades" (Presmeg, 2014, 539). 

The central questions in semiotic mathematics are as follows: 

− What mathematical signs, such as numbers, geometric diagrams, 

and algebraic symbols, refer to? 
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− How do various representations (words, symbols, graphs) relate to 

each other and mathematical objects? 

− How do students interpret and understand mathematical symbols 

and expressions? 

− How does culture and context influence mathematical semiosis, 

that is, how are mathematical signs interpreted and given meaning 

in different cultural contexts? 

There are several theories to address these issues, and they take different 

positions on the use of language. In realist or referential theories of the 

meaning of words and symbols (such as those defended by Frege or Carnap), 

linguistic expressions have a relation of attribution with certain entities 

(objects, attributes, facts). In pragmatic theories, such as the one defended 

by Wittgenstein (1953), the meaning of linguistic expressions depends on the 

language games in which they are used; the meaning of abstract objects must 

be inferred from their use. In Chapter 3 we develop the ontosemiotic theory 

of meaning and mathematical cognition, where we propose a complementary 

view between referential and pragmatic theories of meaning. 

 

1.2.3. Internal and external representations 

Research on mathematics education has highlighted the importance of 

using multiple representations in teaching and learning processes and the 

complexity of related factors. As Font et al. (2010) pointed out, one of the 

central open questions raised using representations is the nature and 

diversity of both the objects that play the role of representation and the 

objects represented. The large number of publications on the topic of 

representations (Cobb et al., 2000; Goldin, 1998; Goldin, 2020; Janvier, 

1987) demonstrates their importance for mathematics education and at the 

same time their complexity. The reason for this interest is to be sought in the 

fact that talking about representation is equivalent to talking about 

knowledge, meaning, understanding, modeling, etc. Undoubtedly, these 



Juan D. Godino 27 

 

notions constitute the central core, not only of mathematics, but also of 

epistemology, psychology, and other sciences and technologies that deal with 

human cognition, its nature, origin, and development. This diversity of 

disciplines interested in representation is the reason for the diversity of 

approaches and ways of conceptualizing representation, not without debate. 

The complexity of the subject, the ambiguity of representations, and 

their importance lie in the mathematical objects that one attempts to 

represent, their diversity, and nature. Talking about representation 

(meaning and understanding) necessarily implies talking about 

mathematical knowledge, and therefore, about mathematical 

activity, its cultural and cognitive "productions" and those related to 

the world around us. (Font et al., 2010, p. 59-60) 

 

1.3. Dilemmas in conceptualizing learning  

Substantial discussions exist among radical constructivist, social 

constructivist, enactivist, and sociocultural learning theories. "These are 

primarily epistemological differences, although proponents and critics of the 

various theories also incorporate ontological, ethical, social, and 

methodological analyses and reasoning into their arguments" (Ernest, 2018, 

p. 28). 

The various constructivisms share the construction metaphor, according 

to which they describe the subject's understanding as the construction of 

mental structures. They recognize that knowing is active, individual, and 

personal and that it is based on previously constructed knowledge. The 

construction metaphor is contained in the first principle of constructivism, 

as expressed by von Glasersfeld (1989, p. 182): "knowledge is not passively 

received by the cognitive subject but actively constructed". 
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1.3.1. Radical constructivism 

In the radical version of constructivism, a second principle is added: "the 

function of cognition is adaptive and serves the organization of the 

experiential world, not the discovery of an ontological reality" (von 

Glasersfeld, 1989, p. 182). Overall, radical constructivism is neutral in its 

ontology, making no assumptions about the existence of the world behind the 

subjective domain of experience. "The epistemology is decidedly fallibilist, 

skeptical, and anti-objectivist" (Ernest, 1994, p. 6). The fact that no ultimate 

possible true knowledge exists about the state of affairs in the world or about 

domains such as mathematics is a consequence of the second principle, 

which is proper for epistemological relativity. As its name indicates, learning 

theory is radically constructivist; individuals construct all knowledge based 

on their cognitive processes in dialog with their experiential world.  

 

1.3.2. Social constructivism 

The social version of constructivism considers the individual subject and 

the social domain as inextricably interconnected (Ernest, 1994). People are 

shaped by their interactions with others (as well as by their individual 

processes). Certainly, the underlying metaphor corresponds to that of people 

in conversation, encompassing meaningful linguistic and extralinguistic 

interactions. The mind is seen as part of a broader context, the 'social 

construction of meaning. Similarly, the social constructivist model of the 

world corresponds to a socially constructed world that creates (and is 

constrained by) the shared experience of the underlying physical reality. 

In short, the social constructivist research paradigm adopts a modified 

relativistic ontology (there is an external world supporting appearances to 

which we have shared access, but we do not have secure knowledge of it). It 

is based on a fallibilist epistemology that regards conventional knowledge as 

that which is lived and socially accepted. The associated learning theory is 

constructivist (in the sense shared by sociologists such as Schutz, Berger and 
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Luckman, as well as constructivists), with an emphasis on the essential and 

constitutive nature of language and social interaction (Ernest, 1994). 

Piagetian constructivism emphasizes internal cognitive processes at the 

expense of social interaction in the construction of knowledge by learners. 

However, constructivism must accommodate the complementarity between 

individual constructions and social interactions. 

 

1.3.3. Enactivism 

Enactivism has become a learning theory of importance for researchers in 

mathematics education. According to this theory of cognition, "the individual 

is not a mere observer of the world but is bodily immersed in the world and 

is shaped, cognitively and as a complete physical organism, by his or her 

interaction with the world" (Ernest, 2010, p. 42). Another source of 

enactivism is found in the theory on the bodily basis of thought, through the 

role of metaphors, following the works of Lakoff and Johnson (1980) and 

Johnson (1987). According to these authors, all human understanding, 

including meaning, imagination, and reason, is based on the schemas of 

bodily movement and its perception. These schemas are extended using 

metaphors, which provide the basis for all human understanding, thinking, 

and communication. In the book by Lakoff and Núñez (2000), this idea was 

developed and applied to mathematics. 

 

1.3.4. Discursive learning 

In the research literature, the use of cognitive notions, such as mental 

schemes, conceptions, or cognitive conflicts, predominates, but the 

progressive introduction of others is observed, such as activity, interaction 

patterns, or communication failure (Kieran et al., 2001). Learning, conceived 

as a personal acquisition, is being complemented by a new vision as a process 

of participation in a collective activity. What is important is not the change 

in the individual learner but the change in the ways in which individuals 
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communicate with others. The new research framework begins to be 

designated as discursive or communicational due to the emphasis that 

research attributes to language and communication, which is one of the 

various possible implementations of the sociocultural approach linked to the 

Vygotsky school of thought and the philosophy of Wittgenstein. This 

approach proposes a vision of human thought as essentially social in its 

origins and that is complexly dependent on historical, cultural, and 

situational factors in a complex way. According to Sfard (2001), the 

communication approach to cognition is based on the theoretical principle 

that "communication should not be considered as a mere aid to thinking but 

almost as equivalent to thinking itself" (p. 13). Thinking is conceived as a 

special case of communication activity, and “mathematical learning means 

mastering discourse that is recognized as mathematical by expert 

interlocutors” (Kieran et al. 2001, p. 5). Learning is conceived in terms of 

discourse, activity, culture, and practice, and its development focuses on 

interpersonal interactions. In the communication or discursive approach, the 

dichotomy between thought and language practically disappears; language 

ceases to be a mere "window of the mind", that is, a secondary activity of 

thought that expresses something already available. Although thought and 

language must be considered two different entities, "both must be 

understood basically as aspects of the same phenomenon, without either of 

them being prior to the other" (Sfard, 2001, p. 27). 

 

1.4. Teaching dilemmas 

Teaching in different disciplinary areas, particularly mathematics, raises 

various dilemmas about which teachers must make decisions: 

− Individualization vs. standardization: Adapting teaching to the needs 

and interests of each student, respecting their learning pace, or 
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ensuring that all students progress at the same time, using a uniform 

curriculum and assessment. 

− Theory vs. Practice: Emphasizing the understanding of mathematical 

concepts and principles or prioritizing the application of knowledge to 

real situations and problem solving. 

− Rigor vs. Creativity: Prioritize accuracy and academic rigor when 

teaching mathematics or encourage creativity and exploration in 

students. 

Next, we develop two other dilemmas about which we find strong 

controversies: student-centered or teacher-centered teaching. 

 

1.4.1. Student-centered teaching  

The family of inquiry-based instructional theories; “Inquiry-Based 

Education (IBE), “Inquiry-Based Learning” (IBL), and “Problem-Based 

Learning” (PBL), designate theoretical models of instruction developed from 

various curricular disciplines. In them, a key role is attributed to the 

resolution of “authentic” problems, under a constructivist approach. In some 

applications to the field of mathematics education, it is assumed that 

students can construct knowledge following the work guidelines of 

mathematical and scientific professionals. Mathematicians face non-routine 

problems, explore, seek information, make conjectures, justify, and 

communicate their results to the scientific community. Mathematics 

instruction should follow similar guidelines. 

In these theories, the use of problem situations (applications to everyday 

life, to other fields of knowledge, or internal problems to the discipline itself) 

is considered essential so that students can make sense of the conceptual 

structures that make up mathematics or science as cultural reality. The 

formulation of “rich” problem situations that require analysis and reflection 

on the mathematical structure involved, their solutions, and communication 

are key to developing students’ mathematical competence. This is the main 
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objective of the tradition called “problem solving” (Schoenfeld, 1992), whose 

emphasis is on the identification of heuristics and metacognitive strategies. 

It is also a key focus for other theoretical models such as Realistic 

Mathematical Education (Freudenthal, 1973; 1991) and the Theory of 

Didactic Situations (Brousseau, 2002). 

English and Sriraman (2010) reported various reflections on and 

evaluations of the effectiveness of research on problem solving, concluding 

on its limited presence in school practice. These authors assert that 

“Unfortunately, there is a lack of studies that address conceptual 

development based on problem solving in interaction with the development 

of problem-solving competencies” (English and Sriraman, 2010, p. 267). 

 

1.4.2. Teacher-centered teaching  

We consider models based on the transmission of knowledge in various 

forms of educational intervention in which direct and explicit instruction 

takes precedence. “When dealing with new information, learners should be 

shown what to do and how to do it” (Kirschner et al., 2006, p. 79). The use of 

worked examples is a characteristic feature of strongly guided instruction, 

while the discovery of a solution to a problem in an information-rich 

environment is, similarly, the epitome of minimally guided discovery 

learning. 

The uncritical adoption of constructivist pedagogical models may be 

motivated by the observation of the large amount of knowledge and skills that 

a subject learns through discovery or immersion in a context, particularly the 

concepts of everyday life. However, Sweller et al. (2007) stated that 

There is no reason to assume or empirical evidence to support the notion 

that constructivist teaching procedures based on the way humans acquire 

biologically primary information will be effective in acquiring the 

biologically secondary information required by citizens of an intellectually 
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advanced society. This information requires direct and explicit instruction 

(p. 121). 

This position agrees with the thesis maintained by Vygotsky, that scientific 

concepts do not develop in the same way as everyday concepts (Vygotsky, 

1934). Sweller et al. (2007) considered that providing students with a 

completely solved example of a problem or task and information regarding 

the process used to reach the solution is necessary for the design of suitable 

learning tasks. These authors assert that empirical research on this problem 

over the past half century on this problem provides overwhelmingly clear 

evidence that minimal guidance during instruction is significantly less 

effective and efficient than guidance specifically designed to support the 

cognitive processing necessary for learning. Alfieri et al. (2011) obtained 

similar results in their meta-analysis. According to Kischner et al. (2006), 

We are skilled in an area because our long-term memory contains enormous 

amounts of information related to the area. This information allows us to 

quickly recognize the characteristics of a situation and tells us, often 

unconsciously, what to do and when to do it (p. 76). 

 

1.5. Dilemmas in evaluating educational-instructional 

processes 

Wheeler (1993) raised the problem of evaluating mathematical knowledge 

from an epistemological perspective. If we need to assess students’ 

mathematical knowledge for a multiplicity of purposes, the first question that 

must be elucidated is the nature of the knowledge itself. The reason this 

author gives seems obvious: “How can we evaluate what we do not know?” 

(p. 87). 

There are tensions between formative and summative assessment in the 

evaluation of learning at local (internal to the classroom) and global 

(external) levels (Stufflebeam et al., 2002). Summative evaluation requires 

the development of objective measurement instruments that allow 
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comparisons between groups, schools and countries to be made when 

making decisions at a macro level. This evaluation reduces complexity in that 

it dispenses with contextual details, which can be essential from an 

educational perspective. 

The use of standardized tests to assess students’ mathematical learning 

has become widespread in many countries. This means imposing pressure on 

schools and teachers to ensure that students receive high scores in these 

exams, implying a series of widely documented threats. According to Ralston, 

the following holds: 

Three of the worst problems are teaching to the test, the emphasis on routine 

mathematics at the expense of advanced topics and problem solving, and the 

inordinate amount of time preparing for these tests, which not only pushes 

out important mathematics classrooms but often involves less attention to 

science, history, and the arts in general. (Ralston, 2006, p. 1651) 

The vision of learning and teaching mathematics has substantially 

changed with the incorporation of different approaches to content, activities, 

and modes of interaction. This expanded vision must mean changes in how 

learning outcomes are evaluated. A complex vision of mathematics, learning 

and teaching requires new approaches to evaluation, especially formative 

evaluation carried out by teachers to intervene based on the organization of 

teaching. 

Niss (1993) identified and discussed crucial issues regarding the 

evaluation of student learning (assessment) in mathematics education and 

the different positions of mathematics educators. He recognized that 

evaluation involves many profound and difficult theoretical and practical 

problems, which have a strong impact on the evaluated subjects. Niss also 

recognizes that what is not evaluated in education becomes invisible or 

unimportant. He concludes by formulating the following general dilemma 

regarding assessment in mathematics education: “How can we assess the 

essential components of mathematical knowledge, understanding, thinking, 
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creativity, problem solving, and general ability without seriously distorting 

them?” (Niss, 1993, p. 27). 

 

1.6. Dilemmas in mathematics teacher education 

In the field of research on mathematics teacher education and thinking 

(Blömeke and Kaiser, 2017; Chapman, 2020; Ponte and Chapman, 2016; 

Wood, 2008), we found various theoretical models that describe the types of 

knowledge that teachers must put into play to promote student learning. 

These models are necessary to organize initial or ongoing training programs 

and evaluate their effectiveness. Although there has been a consensus that 

teachers should master corresponding disciplinary content, no similar 

agreement has been reached on how such mastery can be achieved. It is 

usually recognized that disciplinary knowledge is not sufficient to ensure 

professional competence, and other psychological knowledge is necessary 

(how students learn, what their characteristic difficulties and errors are, their 

emotions and attitudes, etc.). Teachers should also be able to organize 

teaching, design meaningful learning tasks, use appropriate resources, and 

understand the factors that condition educational-instructional processes. 

Shulman's (1986) pioneered drawing attention to the specificity of content 

knowledge in teaching. He introduced the construct “pedagogical content 

knowledge” (PCK), which is widely accepted as relevant to teacher training. 

The PCK has been interpreted and adapted to mathematics by various 

authors (Scheiner et al., 2019). The notion of “mathematical knowledge for 

teaching” elaborated in various articles by Ball and collaborators (Ball, 2000; 

Ball et al., 2001), assumes and develops Shulman’s ideas from the 

observation of teachers’ work in the classroom. However, as Graeber and 

Tirosh (2008, p. 124) stated, “The fact that many researchers do not offer a 

precise and shared description of PCK (pedagogical content knowledge) but 

rather attempt to characterize it with lists or examples is an indication that 

the concept is still poorly defined.” Silverman and Thompson (2008) found 
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similar limitations in the notion of MKT (mathematical knowledge for 

teaching): 

Although mathematical knowledge for teaching has begun to gain 

attention as an important concept in the teacher education research 

community, there is limited understanding of what it is, how it can be 

recognized, and how it can be developed in the minds of teachers. teachers 

(p. 499). 

The search for meaning in mathematics teachers’ knowledge continues to 

be an important topic in this field of research (Scheiner et al., 2019). From 

our point of view, the models of “mathematical knowledge for teaching” 

developed from research on mathematics education include general 

categories. We consider it useful to have models that allow a more detailed 

analysis of each type of knowledge that comes into play in effective 

mathematics teaching. This would guide the design of training actions and 

the development of instruments for evaluating the mathematics teacher's 

knowledge. 

International studies (Even and Ball, 2009) have concluded that 

mathematics teacher training should be closely linked to teaching 

practice. They suggest the following three main issues that could benefit from 

stronger and more systematic international connections in improving 

teacher training and professional development. The first is the need to focus 

teacher training on practice and the problem of doing so effectively (Ball and 

Even, 2009, p. 255), articulating teachers’ personal views from their practical 

experience with approaches derived from research (Potari, 2013). The other 

two problem areas that Ball and Even mention are the problem of training 

teacher educators and the development of valid evaluation instruments for 

teacher learning. To address these problems, it is necessary to develop 

theoretical models that consider the specificity and complexity of facets and 

components that intervene in the educational-instructional processes, both 



Juan D. Godino 37 

 

referring to the mathematical content and the didactic-mathematical content 

that teachers —and consequently teacher educators— must know and master. 

 

1.7. Emergence and development of OSA 

At the beginning of the 90s and in the context of a course on “Theory of 

Mathematics Education” in a doctoral program at the University of Granada, 

we became aware of the need to clarify fundamental notions of the area to 

study cognitive phenomena that were described with different constructs: 

knowledge, conceptions, concepts, schemes, operational invariants, 

meanings, praxeologies, etc. The recognition of the disparity of said 

constructs, formulated in theories such as the Theory of Didactic Situations 

(Brousseau, 2002); Conceptual Fields (Vergnaud, 1990), Registers of 

Semiotic Representation (Duval, 1995), and Anthropological Theory of the 

Didactic (Chevallard, 1992), motivated the first works of the OSA. 

The problem posed in the first stage in the development of the OSA was 

the clarification of the notion of meaning of a mathematical object and its 

relationship with other constructs such as concept, conception, and 

understanding (Godino and Batanero, 1994). The distinction between 

personal and institutional aspects in relation to meaning was essential to 

articulate epistemological and cognitive approaches to mathematics 

education. 

Considering that the epistemic-cognitive problem cannot be separated 

from the ontological and semiotic problem, in the second stage (starting in 

1998), the theoretical framework was expanded (Godino, 2002) to describe 

the mathematical activity and the communication processes. In this 

extension, we advance the development of a specific ontology and semiotics 

to study the interpretation processes of mathematical sign systems put into 

play in didactic interaction. The development of a theory of mathematical 

knowledge on anthropological (Wittgenstein, 1953), pragmatist (Peirce, 
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1931-58) and semiotic (Hjelmslev, 1943) bases provided elements of 

articulation between theories of learning and teaching of mathematics. 

In later stages we apply the OSA to develop tools for the analysis and 

design of educational-instructional processes (Godino et al. 2006), including 

work on the normative and meta-normative dimensions (D'Amore et al., 

2007; Godino et al. , 2009;), the development of a didactic suitability tool 

(Godino et al., 2006; Godino, 2013) that includes a system of criteria for 

comprehensive evaluation of teaching and learning processes and a model of 

knowledge and competencies for mathematics teachers (Godino, 2009; 

Godino et al., 2017). 

The OSA system of theoretical tools has been applied in didactic research 

on specific mathematical contents: arithmetic, algebra, geometry, and 

statistics. The OSA web repository, available at 

https://enfoqueontosemiotico.ugr.es, includes the main publications made 

on these topics, as well as the collection of more than 100 doctoral theses that 

have used OSA as a theoretical framework of reference. The development and 

application of the OSA have been carried out within the framework of various 

research projects and postgraduate programs at different universities. 

The construction of the OSA can be considered a version of expansive 

learning. Engeström (1987) proposed that learning, within the framework of 

CHAT, involves not only the assimilation of existing knowledge but also the 

creation of new knowledge and practices. The collective subject formed by 

people interested in the development of OSA uses tools developed in other 

activity systems (theories). However, through collaborative and socially 

mediated actions, this approach seeks to expand the original activities and 

generate new concepts, tools and ways of approaching research in 

mathematics education. Rather than uncritically adopting existing theories, 

the OSA collective subject actively seeks to contribute to the transformation 

of learning environments. 

 

https://enfoqueontosemiotico.ugr.es/
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1.8. Book structure 

As we have seen previously, mathematics education issues of diverse 

nature must be addressed: epistemological, semiotic, educational design, 

evaluation, and teacher education. This led the OSA to develop five theories 

(Figure 1.1.) to address the specific problems that arise in different activities 

that constitute mathematics education. We understand a theory as a system 

of tools (concepts, principles and methods) that are used to answer a set of 

questions specific to a field of inquiry. 

 

 

Figure 1.1. OSA theoretical system 

 

Next, we synthesize the main characteristics of the five theories described 

in detail in chapters 2 to 6, as well as their articulation in the OSA theoretical 

system, which we present in chapter 7. In each chapter, we present the 

specific background, assumptions, and theoretical tools developed, their 

concordances, and complementarities with other theories, as well as 

examples of their application. The content of each chapter is based on 

previously published articles in journals with the collaboration of various 
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authors. We will cite these documentary sources when appropriate. However, 

overcoming the space limitations inherent to scientific articles, which allows 

the writing of a book, makes it possible to expand the description of the 

background, assumptions, and constructs and, above all, present a global and 

articulated vision of the partial theories that make up the OSA theoretical 

system. 

 

Chapter 2: Onto-semiotic theory of mathematical activity  

The ontosemiotic theory of mathematical activity provides assumptions 

and theoretical tools for the analysis of mathematical activity, both 

professional and school, as well as the objects that intervene and emerge 

from this activity. It provides its own vision of the emergence of 

mathematical knowledge adapted to the educational context, with 

transdisciplinary features when addressing dilemmas in epistemological and 

ontological theories involved in mathematics education. This vision 

complements the formal-logical perspective, typical of the contexts of 

creation and justification of mathematical knowledge, with the empiricist-

factual conception linked to the contexts of application. The postulates of this 

theory are as follows: 

− Mathematics is a human activity that involves solving certain types 

of problems. 

− Mathematical practices can be idiosyncratic to individuals or 

shared within institutions. 

− Problem solving is carried out through the articulation of practice 

sequences. 

− Various kinds of objects that fulfill different roles intervene in 

mathematical practices: instrumental/representational; regulative 

(setting rules on practices); explanatory; and justification. 
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Chapter 3: Onto-semiotic theory of meaning and mathematical cognition 

The ontosemiotic theory of meaning and mathematical cognition develops 

a global vision of the meaning of mathematical objects as the basis of 

mathematical cognition from individual (personal) and social (institutional) 

perspectives. Meaning is the content of any semiotic function, understood as 

a relationship between two objects (functives), one functioning as an 

expression (signifier) and the other as content (signified), related according 

to a criterion or rule of correspondence (interpretant). Functives can be 

elements of the various languages used in mathematical practice and other 

types of objects of the OSA ontology (concepts, propositions, procedures, 

arguments), including the practice systems themselves. In this way, the 

theory articulates realist (referential) and pragmatic (operational) 

assumptions about meaning. The semiotic function construct serves as a 

basis for defining the knowledge and understanding of mathematics in terms 

of the webs of semiotic functions that a subject (person or institution) can 

establish between the objects involved in the practices required for problem 

solving. 

 

Chapter 4: Theory of educational-instructional design in mathematics 

The theory of educational-instructional design in mathematics provides 

assumptions and theoretical tools for designing teaching and learning 

processes in mathematics based on specific theories about mathematical 

activity and the meaning of emerging objects proposed by the OSA. This 

includes a model of the structure and dynamics of educational processes that 

considers the various facets and components that characterize these 

processes. It proposes a model of categories of norms and metanorms that 

explains didactic phenomena and provides guidelines for the optimization of 

educational processes. The configuration and didactic trajectory constructs 

allow for detailed (descriptive and explanatory) analyses of the design and 

implementation of educational processes. Complemented with the postulate 
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of ontosemiotic complexity of content and the didactic suitability construct, 

which is developed in Chapter 5, they allow for the elaboration of a mixed 

didactic model to address the dilemma between constructivist (inquiry) and 

objectivist (transmissive) models to optimize mathematical learning. 

 

Chapter 5: Theory of didactic suitability  

Develops a system of criteria for the local optimization of the design, 

implementation, and evaluation of educational-instructional processes in 

mathematics, based on the assumptions and constructs of OSA. Criteria 

(value judgments) are expressed on the preferred didactic actions carried out 

in the different facets and components that structure educational processes 

(epistemic, ecological, mediational, interactional, cognitive and affective). 

 

Chapter 6: Theory of teacher professional development 

Develops a model of didactic-mathematical knowledge and competencies 

for mathematics teachers based on the structure of the educational-

instructional processes and criteria of didactic suitability. It also develops a 

system of principles or criteria of suitability for training programs and 

actions for mathematics teachers, considering the facets, components, and 

subcomponents of the educational-instructional processes, as well as the 

foundation, design, planning, and evaluation activities of such processes. The 

system of criteria is formulated in terms of value judgements, that is, actions 

that the teacher and teacher educator should carry out to optimize the 

training processes, incorporating a system of knowledge, dispositions, and 

competencies of the trainer involved in the actions. 

 

Chapter 7: OSA theoretical system 

The OSA theoretical system for mathematics education is summarized 

here, and it attempts to provide constructs, principles, and methodological 

tools to study and understand the nature of mathematical activity, 
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mathematical knowledge, as well as the teaching and learning processes of 

mathematics. This scientific component (descriptive, explanatory and 

predictive) on mathematics education is complemented by another 

technological (prescriptive) component formed by a system of criteria or 

standards to optimize the design, implementation and evaluation of 

educational-instructional processes and a professional development model. 

teacher. 

Each chapter includes a list of bibliographic references to facilitate 

independent reading. 
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Chapter 2  

Ontosemiotic theory of mathematical 

activity  

 

 

 

Introduction 

Philosophical reflection on the foundations of mathematics education as a 

scientific and technological discipline is essential to guide research because 

it conditions formulating questions to be addressed in this area and the 

design of instructional models and resources. Likewise, to understand and 

optimize the processes of teaching and learning mathematics, it is necessary 

to investigate epistemological questions about mathematics, as proposed by 

Fundamental Didactics (Gascón, 1998), as well as ontological, semiotic, 

cognitive, sociological, and other questions. Clarifying mathematics, both in 

the contexts of formal uses of creation and justification of mathematical 

knowledge, as well as applied to solving scientific, technological and everyday 

life problems, is essential for mathematics education. However, this 

clarification is insufficient because the study of the processes of learning and 

dissemination of mathematics requires consideration of psychological, 

pedagogical, sociological, and other aspects. It is necessary to adopt a 

transdisciplinary perspective in mathematics education (Arboledas & 

Castrillón, 2007; Steiner, 1985). 

The diversity of theories, as well as the dilemmas and contradictions 

among them, constitute the background against which OSA has generated a 

new vision of mathematical knowledge that can be adapted to the educational 

context with transdisciplinary features. In OSA, it is assumed that to 

understand and intervene in an informed manner in educational-



52 Chapter 2. Ontosemiotic theory of mathematical activity  

 

 

instructional processes is necessary to address empirical problems that are 

proper to the psychology and pedagogy of mathematics, such as How do we 

learn mathematical ideas and how can we help to learn them? However, these 

questions must be addressed in an integrated way with other philosophical 

questions, such as What is the nature of mathematical objects and how do 

they differ from material objects? How do mathematical objects exist? What 

mathematical truth is it? What is mathematical proof? In summary, what is 

mathematical knowledge and how it arises (Leng et al., 2007; Shapiro, 

2004). 

In this chapter, we describe the theoretical tools developed in OSA to 

address the analysis of mathematical activity and the objects that intervene 

and emerge in such activity, highlighting currents in the philosophy of 

mathematics and other disciplines on which they rely. In Section 2.1, we 

introduce the construct of educational mathematics to distinguish, without 

separating, pure and applied mathematics when studying mathematics 

education. Recognizing the specific characteristics of educational 

mathematics as an ecological variety of mathematics, in which formal 

reasoning coexists symbiotically with empirical-intuitive reasoning, is 

important for understanding learning processes and designing informed 

educational interventions. Next, in Section 2.2, we synthesize the principal 

schools of philosophy of mathematics on which we will project an 

ontosemiotic approach to mathematical activity and emergent objects. In 

Section 2.3, we show that the construct configuration of practices, objects, 

and processes (ontosemiotic configuration) allows us to articulate coherently 

the basic elements of a philosophy of educational mathematics, interwoven 

with psychology and sociology. The ontosemiotic configuration condenses 

the vision proposed by OSA in mathematics as an activity (Section 2.4), a 

system of objects and processes (Section 2.5), and a system of signs (Section 

2.6). The processes of idealization, generalization, and objectification that we 

address in Section 2.7 are used to characterize mathematical abstraction in 
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the OSA framework (Section 2.8). In Section 2.9, we describe the 

concordances and complementarities of the ontosemiotic theory of 

mathematical activity with other theoretical frameworks used in 

mathematics education. Then, in Section 2.10, we describe two examples of 

applying the theory: an ontosemiotic approach to visualization in 

mathematics education and a model of algebraic reasoning levels. In Section 

2.11, we include a synthesis of the ontosemiotic theory of mathematical 

activity following the (adapted) guide for describing theories in social and 

behavioral sciences proposed by Michie et al. (2014). 

 

2.1. Characterization of educational mathematics1 

To approach the problems of teaching and learning mathematics in a well-

founded manner, it is essential to clarify the specific characteristics of pure 

and applied mathematics, as well as the relationships between them. This 

analysis revealed the emergence of an ecological variety of mathematics 

(Godino, 1994), which we designate educational mathematics. It is necessary 

to distinguish between the formal (theoretical) and the factual (empirical) 

dimensions of educational mathematics, which does not imply considering 

them as separate but recognizing that they maintain close symbiotic 

relationships when we are interested in the processes of knowledge 

generation and learning. Therefore, the meaning we attribute to “educational 

mathematics” differs substantially from its use in some mathematics 

education communities, where it is considered a synonym of mathematics 

education or didactics of mathematics, as expressed by Cantoral and Farfán 

(2003): “Educational mathematics is then a discipline of knowledge whose 

origin dates back to the second half of the twentieth century and that, in 

general terms, we could say deals with the study of didactic phenomena 

linked to mathematical knowledge” (p. 29). 

 
1 The content of this section 2.1 and the following 2.2 is based on the article by Godino (2023). 
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We now clarify the characteristics of pure and applied mathematics, 

relying mainly on Bunge (1985). We can describe contemporary pure 

mathematics, also designated as abstract, formal, or axiomatic (Marquis, 

2014), as an investigation by theoretical means of problems about conceptual 

systems or their parts to find patterns that satisfy such objects, a finding that 

must be justified only by rigorous demonstration. In mathematics, as a 

formal science, symbols and constructs are involved but not empirical or 

factual objects (facts, things, properties of things and events). Applied 

mathematics deals with problems in factual science, technology, and 

humanities, with the help of constructs that belong to pure mathematics. 

Applied mathematics is then distinguished from pure mathematics as 

follows: 

− Origin of the problems, which are extra mathematical in the first case 

and internal in the second. 

− Ultimate referents, which are real with applied mathematics and 

constructs in the other case, and 

− The goal is to help non-mathematical disciplines and advance pure 

mathematics. 

A problem belongs to formal mathematics when its solution requires 

formal (i.e., non-empirical) proofs or refutations. Applied mathematics uses 

not only formal constructs and models but also artifacts and empirical 

constructs. For these two contexts, Echeverría (2007) added the context of 

education and dissemination of knowledge as a field of reflection in the 

philosophy of science because it constitutes a fundamental component of 

scientific activity, taken in its entirety. 

In the educational context, the study of problems in both the extra-

mathematical and intra-mathematical worlds is addressed, even at the early 

school level. For example, learning natural numbers begins with counting 

problems, where a number is assigned to a cardinal set of perceivable objects. 
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However, this requires the simultaneous learning of a mathematical 

structure, the sequence of number words and symbols, and the principles of 

counting, which constitute the first interconnection between formal 

mathematics and applied mathematics. Applied problems involve factual 

objects and empirical verifications, which must be differentiated from formal 

constructs and the conventional rules by which they are operated and 

justified. 

In educational mathematics, we study not only propositions of reason, 

that is, constructs (conceptual objects, such as numbers or triangles), which 

correspond to pure mathematics, but also propositions of fact that they refer 

to concrete (real, material) things, such as the sizes or dimensions of 

triangular-shaped things. In mathematics teaching, students should be very 

careful not to confuse mathematical objects with their material or symbolic 

representations. This is not important in mathematical applications or pure 

mathematics, which only consider abstract entities. In addition, the 

justification procedures in educational mathematics are different because 

not only logical and deductive procedures are used, but also analogy, 

metaphor, induction, and plausible reasoning (English, 1997). Special care 

should be taken when distinguishing between empirical justifications and 

deductions from definitions and postulates. 

In summary, pure mathematics is an activity that aims at creating 

mathematical models to address the solution of increasingly general 

problems, for which constructs and theories with progressive levels of 

abstraction and formalization are developed. The objective of applied 

mathematics is to solve specific problems in empirical, technological, and 

social sciences by applying mathematical models. The object of educational 

mathematics is the study of the dialectical relationships between pure and 

applied mathematics, between the processes of creation and application of 

mathematical knowledge, as they should be the object of teaching and 

learning. Consequently, educational mathematics should not only study the 



56 Chapter 2. Ontosemiotic theory of mathematical activity  

 

 

process of abstraction (progressive generalization, synthesis and 

formalization), but also the inverse process of interpretation (analysis, 

particularization, and concretion), as well as the dialectical relationships 

between them. 

 

2.2. Philosophies of mathematics 

The philosophies of mathematics that have emerged in the last twenty-five 

centuries address issues such as the following: 

− Ontology: questions about the ontological status of mathematical 

objects. 

− Semantics: questions about meaning, reference, and truth in 

mathematics. 

− Epistemology: questions about the nature and sources of 

mathematical knowledge. 

− Methodology: questions for justification (in particular, proof) and 

application. 

No doubt these questions are essential and characteristic of the philosophy 

of pure and applied mathematics and educational mathematics, although in 

this case, they are intertwined with other questions concerning learning and 

teaching in different educational contexts and levels. Table 2.1 summarizes 

the typical principles of five widely recognized philosophies of mathematics 

(Bunge, 1985, p. 120). 

Mathematical Platonism can be defined as the conjunction of the following 

three theses: (a) existence: mathematical objects exist, and mathematical 

sentences and theories provide true descriptions of such objects; (b) 

abstraction: mathematical objects are abstract, i.e., non-spatial and non-

temporal entities; and (c) independence: mathematical objects are 

independent of intelligent agents and their language, thinking, and practices. 
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Furthermore, according to Platonists, abstract objects are totally non-

physical, non-mental, and non-causal (Linnebo, 2009). 

 

Table 2.1. Principles of five philosophies of mathematics 

Philosophy Math 
objects 

Mode of 
introduction 

Meaning Truth Math 
knowledge 

Math 
activity 

Platonism Self-
existing 
ideal and 
eternal 

Discovery Non- 
contradiction 

Formal A priori and 
conceptual 

Deductive 

Nominalism Symbols Convention Nil Convention Nil Formal 
manipulation 
of symbols 

Intuitionism Mental 
cons- 
tructions 

Invention Reducibility 
to positive 
integers 

Reducibility 
to numerical 
computation 

A priori and 
intuitive 

Intuitive and 
rational 

Empiricism Mental Discovery Reference to 
experience 

Empirical Empirical Trial and 
error, rational 
and empirical 

Conceptualist 
and fictionist 
materialism 

Fictions 
(classes of 
brain 
processes) 

Invention and 
discovery 

Conceptual 
reference and 
contextual 
sense 

Formal A priori and 
conceptual 

Abstraction, 
generalization, 
formal 
manipulation, 
trial and error, 
analogy, 
induction and 
deduction 

 

Nominalist positions attempt to explain mathematics and its applications 

without assuming a mathematical ontology (Burgess & Rosen, 1997). They 

argue that numbers, points, functions, sets, etc., should not be considered 

abstract entities, separate from concrete objects. There is not a single 

program of nominalist reinterpretation or reconstruction of mathematics, 

but there are several, as nominalism is a diffuse set of positions, and its 

different supporters prefer quite different strategies and methods. A 

variation on this theme that has played an important role in the history of 

mathematics is formalism, which holds that the essence of mathematics is 

the following rules without requiring them to make sense. “Mathematics is 

similar to a game like chess, in which the characters written on a piece of 

paper play the role of pieces that must be moved. The only thing that matters 
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for achieving mathematics is that the rules have been followed correctly” 

(Shapiro, 2005, p. 16). 

Intuitionism, a revisionist movement of the foundations of mathematics, 

maintains that mathematics and its objects must be humanly graspable. It 

has three facets: mathematical, formal logic, and philosophical (Posy, 2020). 

From a philosophical perspective, it is considered that mathematical objects 

are not abstract entities that exist independently of the human mind but 

rather mental constructions that arise from intuition and experience. From 

the semantic aspect, it is considered that only intuitive mathematical ideas—

particularly those ultimately reducible to the intuition of the sequence of 

natural numbers—are significant. Mathematical knowledge is obtained 

through intellectual intuition rather than sensory experience or pure reason. 

Anything that is counterintuitive (for example, non-computable numbers 

and actual infinity) is not really known, so it is not part of mathematics. From 

a methodological viewpoint, only constructive concepts and proofs are 

admissible. 

Empirical realism shares with Platonism the view that mathematics 

consists of the description of objects that exist independently of people and 

the language used to represent them. However, instead of placing such 

objects beyond space and time, empirical realism places them within a 

spatiotemporal world. Mathematical ideas are mental objects that reflect or 

summarize experiences. Mathematical knowledge can be obtained 

inductively, like any other. Regarding methodology, it considers that the 

ultimate test of mathematical propositions is human experience, even if it is 

indirect—for example, through the experimental test of scientific theories in 

which mathematics intervenes. The primary perspectives are physicalism, 

holistic empiricism, and radical empiricism (Font et al., 2013). 

Naturalism in philosophy of mathematics (Kitcher, 1984; Maddy, 1997) 

shares some features with empiricist positions, although it adopts a broader 

perspective. Although both naturalism and empiricism recognize the 
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importance of historical and cultural factors in the development of 

mathematics, naturalism tends to emphasize the interaction between human 

activity and the natural and cultural world in which mathematics is 

developed. Naturalism emphasizes that mathematics is a human activity that 

is subject to the limitations and perspectives of individuals and 

communities of practices. While empiricism may share this perspective to 

some extent, its primary emphasis is on empirical experience as a source of 

knowledge. 

Naturalistic perspectives are considered by Ernest (1998) as a “maverick 

tradition” in philosophy of mathematics that offer a foundation to 

accommodate the social and historical factors involved in mathematics 

education. He argued that the philosophy of mathematics must consider the 

social construction of an individual mathematician and his creativity to 

account for mathematical knowledge naturalistically. Likewise, he highlights 

the negative consequences of Platonism, mathematical realism, and 

foundationalist and absolutist positions on mathematics education. 

Table 2.1 includes the fifth philosophy of mathematics that Bunge (1985) 

calls “conceptualist and fictionist materialism,” which characterizes his 

position on the subject. Although each of the classical philosophies of 

mathematics has its advantages, none adequately covers all aspects of 

mathematical research: “posing and reformulating problems, using theories 

or hypotheses to solve them, proving theorems, inventing axioms, definitions 

and algorithms, calculate, compare constructions, make mathematical 

considerations, etc. — all using intuition, analogy, induction, and deduction” 

(Bunge, 1985, p. 131). A philosophy of mathematics that is consistent with its 

general philosophical system includes, among others, the following 

characteristics: 

− Recognizes the purely conceptual nature of mathematical objects and 

methods, while acknowledging their empirical or intuitive origins in 

some of them. 
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− Mathematical constructs are impersonal and universal and are the 

products of brain processes. 

− Considers the differences between formal and factual propositions and 

between mathematical demonstration and empirical validation. 

− Does not require the introduction of either mythical objects, such as 

self-existing Platonic ideas, or nonrational faculties, such as intuition 

(except as a heuristic aid). 

In addition to the classical philosophies listed in Table 2.1, other relevant 

contributions to the philosophy of educational mathematics are also 

elaborated, such as the philosophical positions of Wittgenstein and Lakatos. 

Wittgenstein (1956) dealt above all with the issues of learning, 

understanding, invention, and using elementary mathematical ideas. 

Wittgenstein’s philosophy of mathematics lies at the opposite end of the 

Platonic-idealist currents and of psychological approaches. He posed the 

challenge of overcoming dominant Platonism and, therefore, of stopping 

discussing mathematical objects as ideal entities that are discovered and of 

considering mathematical propositions as descriptions of the properties of 

such objects. He proposes an alternative vision: mathematical propositions 

must be seen as instruments and rules for the transformation of empirical 

propositions. For example, theorems of geometry are rules for framing 

descriptions of the shapes and sizes of objects, their spatial relationships, and 

making inferences about them. Wittgenstein’s view of mathematical 

language as a tool is also relevant to educational mathematics. He argued that 

we should consider words as tools and should clarify their use in our language 

games. For example, we must not lose sight of the fact that number words are 

instruments for counting and measuring and that the foundations of 

elementary arithmetic (i.e., mastery of natural number series) are based on 

counting training. 
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Lakatos’ ideas about mathematics (Lakatos, 1976) are summarized in the 

following theses (Bunge, 1985). First, mathematical research is not 

essentially different from scientific research because it also involves the 

formulation of conjectures and the search for counterexamples. Second, 

since we often start from inaccurate concepts and errors can be made when 

proving theorems, a fallibilist epistemology of mathematics must be adopted. 

Third, formalism does not accurately represent the real work of a 

mathematician, which involves non-deductive procedures. In Bunge’s 

opinion, these three theses are reasonable, but they do not constitute a 

philosophy of mathematics. On the one hand, Lakatos does not express clear 

ideas about the nature of mathematical objects: he is more interested in 

history than in the ontology or semantics of mathematics. Like any other 

person trying to solve a problem, a professional mathematician must use 

analogy and induction and try to find the correct solution, even when using 

material tools. However, the logic of mathematical discovery and the 

heuristic procedures in problem solving that Lakatos describes provide 

important elements for the philosophy of educational mathematics. 

Progressive mathematical growth, from both a cognitive and historical-

cultural point of view, does not have to be linked to a deductivist style but 

rather follows the steps of the heuristics described in the book Proofs and 

refutations. However, this does not mean that pure mathematics, as a 

specific epistemological variety, is not fundamentally different from the 

factual sciences. 

In mathematics education, we find authors who address issues specific to 

the philosophy of educational mathematics. Such is the case of Sfard (2000; 

2008) when she analyzes the relationships between symbols and 

mathematical objects. The problem she addresses, expressed in semiotic 

terms, is: “Mathematical symbols refer to something, but to what? ... What is 

the ontological status of these entities? Where do they come from? How can 

we access them (or build them)?” (p. 43). Sfard rejects the conception that 
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proposes signs and meanings as independent entities and adopts the view of 

psychologists such as Vygotsky and semioticians such as Peirce that signs 

(language in general) have a constitutive role in the objects of thought and 

are not merely representational. The central thesis defended by Sfard is as 

follows: 

mathematical discourse and its objects are mutually constitutive: discursive 

activity, including the continuous production of symbols, creates the need 

for mathematical objects; and it is the mathematical objects (or rather the 

use of symbols mediated by the objects) that influence the discourse and take 

it in new directions. (Sfard, 2000, p. 47) 

In the study by Font et al. (2013), we argue that the way mathematics is 

taught in schools leads students to develop, even if implicitly, realistic views 

of mathematical objects. This view assumes that mathematical statements 

are descriptions of reality and that the mathematical objects described by 

these statements are part of this reality. 

In the teaching process, this “reality” to which mathematical objects belong 

is situated in an intermediate point between what, in philosophy of 

mathematics, are called Platonic and empiricist positions, although 

depending on the teaching process considered, a clear preference for one or 

the other of these two points of view can be observed, for example, in 

contextualized teaching or in realist mathematics (Font et al., 2013, p. 99). 

The analysis in this chapter of the relationships between pure and applied 

mathematics provides a complementary explanation for this educational 

phenomenon. Mathematics teachers and educators, in general, do not 

discriminate the substantial differences between applied and formal 

mathematics, and there is a need for educational mathematics to identify the 

conflicts and obstacles that are generated in learning processes when they do 

not consider these differences. 

 

 



Juan D. Godino 63 

 

2.3. The ontosemiotic configuration as a tool for the 

analysis of mathematical activity2 

The dilemmas existing in various philosophical and psychological theories 

on the nature and origin of mathematical knowledge motivated the 

elaboration of a framework that would help us understand and act 

informedly on educational-instructional processes. We considered it 

necessary to elaborate a theory of mathematical activity and emergent 

objects that would serve as a basis for a theory of meaning and mathematical 

cognition. We started this project by publishing the article “Personal and 

institutional meaning of mathematical objects” (Godino & Batanero, 1994), 

which is the starting point of the OSA. 

Sharing the perspective of fundamental didactics (Gascón, 1998), OSA 

considers it necessary to problematize the type of mathematics that is studied 

in educational systems. It assumes that educational mathematics must adopt 

a specific vision of mathematics that can be adapted to learning and teaching. 

This vision must complement the formal logical vision, proper to the contexts 

of creation and justification of mathematical knowledge, with an empiricist-

factual vision linked to the contexts of application. It is essential to 

distinguish between pure or formal mathematics, applied mathematics, and 

educational mathematics, which result from ecological processes of 

adaptation of other mathematics to different educational settings and levels. 

It is necessary to elaborate a philosophy of educational mathematics that 

addresses the epistemological (emergence and development of mathematical 

knowledge), ontological (nature and types of mathematical objects), and 

semiotic (syntactic, semantic and pragmatic) problems specific to this variety 

of mathematics. The educational setting must also articulate the 

philosophical problems of mathematics through questions related to the 

 
2 The content of sections 2.3 to 2.7 is based on the articles by Godino and Batanero (1994), Godino 

(2002), Godino, Batanero, and Font (2007), and Font, Godino, and Gallardo (2013). 
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cognitive processes involved in learning, which occur in historical and 

cultural contexts that condition and support them. 

In the following sections of this chapter, we describe the assumptions and 

theoretical constructs developed in OSA to describe mathematical activity 

and the emergent objects of such activity. These assumptions underlie the 

theory of the meaning of mathematical objects and the model of institutional 

and personal cognition that we present later in Chapter 3. 

The theoretical constructs elaborated in the OSA that address central 

issues in philosophy, psychology, and sociology of educational mathematics 

are as follows: 

− Mathematical practices. 

− Mathematical objects and processes. 

− Contextual attributes of practices and objects. 

These theoretical constructs are articulated in the tool ontosemiotic 

configuration of practices, objects, and processes (Figure 2.1), the central 

part of which shows, besides practices, the six types of mathematical objects 

considered primary in the OSA ontology: 

− Problems (intra or extra mathematical). 

− Languages (terms, expressions, notations, graphics) in various 

registers (written, oral, gestural, etc.). 

− Concepts (introduced by definitions or descriptions, such as, line, 

point, number, mean, function). 

− Propositions (statements about concepts). 

− Procedures (algorithms, operations, calculation techniques). 

− Arguments (statements used to explain and validate propositions and 

procedures, deductive or otherwise). 

The primary objects can be viewed from five pairs of viewpoints or 

dualities (contextual attributes); thus, each causes 10 types of secondary 

objects: 
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− Personal (relating to individual subjects); institutional (shared in an 

institution or community of practice). 

− Ostensive objects (material, perceptible); non-ostensive objects 

(abstract, ideal, immaterial). 

− Extensive objects (particular); intensive objects (general). 

− Signifier or signified (antecedent or consequent of a semiotic 

function). 

− Unitary (objects considered globally as a whole); systemic (considered 

as systems formed by structured components). 

 

 

Figure 2.1. Ontosemiotic configuration of practices, objects, and 

processes 
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Both primary and secondary objects (derived from the application of 

dualities) can be considered from the process-product perspective: an object 

is an emergent (product) of sequences of practices (process). This view 

provides criteria for distinguishing primary and secondary mathematical 

processes. There are processes of problematization, definition, enunciation, 

argumentation, particularization-generalization, representation-

signification, etc. 

The different elements of the diagram synthesize OSA assumptions about 

the central role of problem solving in mathematical activity, types of objects 

and processes involved, and complementary points of view from which 

practices, objects, and processes can be viewed. These assumptions and 

elements reflect the position of the OSA on some dilemmas and controversies 

about the foundations of mathematics education related to the nature of 

objects, their emergence, meaning, and mathematical knowledge. 

In the following sections, we explain in more detail the ontosemiotic 

configuration tool that synthesizes the vision proposed by the OSA of 

mathematics as human activity, a system of objects and processes, and a 

system of signs. Including the ostensive–non-ostensive, extensive–intensive, 

unitary–systemic dualities and the corresponding processes of idealization–

materialization, particularization–generalization, and unitarization–

decomposition allow us to develop an ontosemiotic interpretation of 

mathematical abstraction (section 2.8). 

 

2.4. Mathematics as an activity 

As shown in Figure 2.1, the activity of people to solve problems in specific 

ecological contexts (physical, biological, and social) is considered the central 

element in the construction of mathematical knowledge. This way of 

approaching the epistemological problem of the genesis of knowledge is 

made operational in the OSA with the notion of mathematical practice 
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understood as “any action or expression (verbal, graphic, etc.) carried out by 

someone to solve mathematical problems, communicate to others the 

solution obtained, validate it or generalize it to other contexts and problems” 

(Godino & Batanero, 1994, p. 334). To solve a problem, the subject performs 

an organized sequence of various types of operative and discursive practices, 

intending to provide an answer to the given problem. The epistemological 

question of how mathematics emerges and develops is answered, therefore, 

by assuming an anthropological3 (Wittgenstein, 1953; 1976) and pragmatist 

(Peirce, 1958) vision of mathematics. 

The same type of problem can be solved with systems of practices that 

depend on the institutional contexts in which they occur, for example, within 

communities of mathematics professionals, of people who develop or apply 

new mathematical knowledge, and in diverse educational contexts. The 

relativity of practices regarding the institutional and temporal context adds 

a sociological and historical dimension to the epistemology assumed by the 

OSA. 

An institution comprises people who are involved in the same problematic 

situations. Mutual commitment to the same problem entails the realization 

of shared social practices, which are also linked to the institution to which 

they contribute (Godino & Batanero, 1994, p. 336). 

Problems, which are the origin or motive of mathematical activity, can be 

extra-mathematical, therefore involving material things, objects, and facts, 

or intra-mathematical, in which objects of reason, which are non-material, 

intervene. In educational mathematics, especially at the first level, the 

starting point is extra-mathematical problems related to the environment 

and daily life; therefore, the objects that intervene in the practices can be 

material artifacts and abstractions, both empirical and formal or theoretical. 

 
3 The Anthropological Theory of the Didactic developed by Chevallard also proposes a vision of 

mathematics as a human activity (Chevallard, 1992; 2019). 
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From an educational point of view, it is important to postulate that the 

mathematical activity performed to learn mathematics differs from the 

activity of mathematics professionals through which new knowledge is 

constructed. In the first case, the learner reconstructs or reinvents 

knowledge, which already has a historical-cultural existence; in the second 

case, new postulates are invented, and new relationships derived from 

previously developed knowledge are discovered. 

 

The personal-institutional duality 

The articulation of the epistemic and cognitive facets of mathematical 

knowledge is achieved in OSA by assigning mathematical practices a double 

character: personal (individual) or institutional (social). Mathematical 

practices can be idiosyncratic for individuals or shared within an institution 

or community of practices. There are no institutions without people, nor are 

people separated from the various institutions of which they are part (family, 

school, etc.). The distinction between personal and institutional practices 

allows the researcher to notice the dialectical relationships between them. On 

the one hand, people are subject to shared modes of action within the 

institutions in which they belong. Conversely, institutions are open to the 

initiative and creativity of their members. With this postulate, the cognitive 

(psychological) dimension is articulated with the epistemological and 

sociological dimensions of mathematical knowledge. Mathematics, besides 

the logical-formal dimension, has another factual dimension that accounts 

for the processes of creation of mathematical objects, emerging from 

practices, not as existing Platonic ideals that are discovered. From a personal 

perspective, mathematical objects have a mental/neuronal existence, while 

from an institutional point of view, their mode of existence is cultural. 

The performance of practices by an individual subject occurs within an 

ecological context (institutional frameworks or communities of practices) 

that supports and conditions their performance and, therefore, the 
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appropriation of knowledge by the subject. Therefore, the following Vygotsky 

postulate of the relationship between ontogenesis and phylogenesis (i.e., 

between thought and culture) is assumed:  

Any function in the cultural development of the child appears twice or on two 

levels. It first appears at the social and then psychological levels. It first 

appears among people as an inter-psychological category and then within 

child as an intra-psychological category. (Vygotsky, 1978, p. 57) 

 

2.5. Mathematics as a system of objects and processes 

Mathematics cannot be understood simply as an activity performed by 

individuals but as a system of culturally shared objects that emerge from such 

an activity. Therefore, the ontological problem must be addressed, i.e., to 

clarify what a mathematical object is, what types of objects are involved in 

mathematical activity, what is the way of being of mathematical objects, and 

in what sense mathematics speaks of objects (Parson, 2008). In OSA, 

mathematical practices, i.e., the actions performed by people in certain types 

of problem situations, are the origin and raison d’être of mathematical 

abstractions, ideas, or objects (Godino & Batanero, 1994). It is postulated 

that a mathematical object is any material or immaterial entity that 

intervenes in mathematical practice, supports, or regulates its realization. 

This is a metaphorical use of the term object, since a mathematical concept 

is usually conceived as an ideal or abstract entity, and not as something 

tangible, such as a rock, a drawing, or a manipulative artifact. This general 

idea of the object, consistent with that proposed in symbolic interactionism 

(Blumer, 1969; Cobb & Bauersfeld, 1995), is useful when complemented with 

a typology of mathematical objects that considers their different roles in 

mathematical activity. 

We understand an ostensive object as a thing, in Bunge’s sense, i.e., a real 

object or entity that exists independently and does not depend on human 

perception. These things have an objective existence and are not limited by 
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subjective interpretation. A non-ostensive object is a construct, a conceptual 

entity created by the human mind to represent phenomena or aspects of the 

world. Constructs are products of cognitive and communicative activity; they 

are used as tools to understand, organize, and explain experiences. The 

distinction between constructs and things is essential because it highlights 

the difference between brain representations, regardless of nature or 

objective reality, and provides a clear and systematic way in approaching the 

understanding of the world. 

We pretend that there are constructs, i.e., creations of the human mind that 

we must distinguish not only from things (e.g., words) but also from 

individual brain processes. (But we do not assume that constructs exist 

independently of brain processes.) (Bunge, 2011, p. 154) 

In the mathematical world furniture proposed by the OSA to describe 

mathematical activity, we say that there are ostensive and non-ostensive 

objects, or what is the same, things and constructs. Words and symbols are 

things; concepts, for example, of numbers or functions, are 

constructs. However, what is the relationship between things and 

mathematical constructs? In Figure 2.1, we show that the duality of 

ostensive-non-ostensive applies to all primary objects involved in 

mathematical activity (problems, languages, concepts-definitions, 

propositions, procedures, and arguments). What is meant by this and what 

implications does it have? 

The number 5, as a construct, does not have an existence independent of 

the things we use for its expression and manipulation. Sfard (2008) asserted 

that following Wittgenstein, mathematical constructs are intra-discursive 

entities created to facilitate thought and action about the world. Through 

processes of reification and alienation, constructs gain their own life. They 

become detached from things and from people’s actions in relation to them 

and become part of a virtual, fictitious, metaphorical reality. Thus, we have 

the numbers 5, 10, 17, ..., and hence the constructs of natural, integer, 
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rational, real, and complex numbers. However, we should not lose sight of 

the fact that all these constructs come from things, words, symbols, actions 

of people in situations of the world of things, discourse, and the virtual world 

formed by previously constructed constructs, which pose new problems of 

organization and development to increase the efficiency of mathematical 

work. 

Sfard finds it useful to speak of “mathematical object” (i.e., constructs). 

“My main reason is the hope that this special notion, with its deep 

metaphorical roots, will help us to understand the evolving connection 

between mathematical discourses and discourses about material reality” 

(Sfard, 2008, p. 163). 

In addition to concepts such as numbers and functions, other constructs 

are involved in mathematical activity, such as propositions and statements 

that can be true or false. For example, 2+3=5 is a true proposition but 4x5=21 

is false. To justify that a proposition must be accepted as true requires the 

elaboration of a valid argument, usually constituted by a routine or procedure 

of calculation or logical inference. 

The three types of argumentations proposed by Peirce (1931-58) 

(abduction, induction and deduction) play a crucial role in the ontosemiotic 

model of mathematical activity analysis. In this modeling, a pragmatic theory 

of argumentation is adopted because it is essential to consider context 

(justification, discovery, application, education), audience, and 

communicative goals when constructing and evaluating arguments. 

Demonstrating mathematical propositions in a professional/academic 

context typically requires deductive arguments. However, mathematical 

proofs must involve various arguments in educational settings. Using 

inductive proofs may be justified at certain moments or educational levels, 

although always maintaining the perspective of logical rationality, toward 

which the development of mathematical thinking is directed. The educational 
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context must also attend to the process of mathematical creation, which gives 

abduction a relevant place in the formation of students. 

The propositions, procedures, and arguments involved in mathematical 

practices are non-ostensive objects. They refer to other constructs, not to 

properties of things, although they are linked to words and symbols for 

representation and processing. These representations constitute their 

ostensive facet. 

The six types of primary entities postulated in Figure 2.1 (problems, 

languages, concept-definitions, propositions, procedures and arguments) 

extend the traditional distinction between conceptual and procedural 

entities, considering them insufficient to describe the intervening and 

emergent objects of mathematical activity. Problems are the origin or raison 

d’être of mathematical activity; language represents the remaining entities 

and serves as an instrument for operative practices; and arguments justify 

procedures and propositions that relate concepts to each other. Concepts 

(number, fraction, derivative, etc.) as components of ontosemiotic 

configurations are conceived as entities introduced by definitions, a vision 

different from that proposed by Vergnaud (1990) as a triplet formed by 

situations, operative invariants, and representations. In OSA, the 

ontosemiotic configuration construct assumes the notion of a concept as a 

system. Configurations are organized into more complex entities, such as 

conceptual systems and theories. 

The constitution of objects and relationships, both in their personal and 

institutional facets, occurs over time through mathematical processes that 

are interpreted as sequences of practices. The emerging mathematical objects 

constitute the codified synthesis of such processes. A sequence of practices to 

solve a type of problem (how to crack a nut with two stones or solve linear 

equations)4 is coded as doing the same thing when applied to cases with a 

 
4 Examples taken from Radford (2015). 
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certain similarity. It is not just naming diverse things in the same way; it is 

also synthesizing, guiding, and regulating the way actions should be 

performed to solve a problem. The final synthesis, through mathematical 

activity, is produced using specific practices that we call normative. These 

practices are the product of collective work that codifies efficient approaches 

to specific tasks. The object of knowledge, the construct in its cultural 

version, becomes a rule (definition, proposition, procedure, argument) that 

synthesizes what should be done to approach the solution of a problem, 

which can be extra-mathematical or intra-mathematical. 

The interpretation of mathematical processes as sequences of practices in 

correspondence with mathematical objects provides criteria for categorizing 

them. The constitution of linguistic objects, problems, 

concepts, propositions, procedures, and arguments occurs through the 

primary mathematical processes of communication, problematization, 

definition, enunciation, elaboration of procedures (algorithmization, 

routinization, etc.), and argumentation. Problem solving and modeling 

should be considered rather as a mega-process because they involve the 

articulation of primary processes (establishment of connections between 

objects and generalization of procedures, propositions, and justifications)5. 

The personal-institutional duality also applies to objects and processes. If 

the systems of practices are shared within an institution (community of 

practices, culture), the emerging objects are institutional objects, whereas if 

such systems correspond to a person, they are personal objects. Personal 

objects include cognitive constructs such as conceptions, schemes, and 

internal representations although interpreted in pragmatic and discursive 

terms. 

 

2.6. Mathematics as a system of signs 

 
5 See Font and Rubio (2017) for an analysis of the notion of process in OSA. 
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Educational mathematics must address the semiotic-cognitive problem by 

asking questions like these: What is it to know and understand a 

mathematical object? What does an object mean for a subject at a particular 

time and under certain circumstances? These questions are addressed in 

OSA, considering that mathematical activity and the processes of 

construction and use of mathematical objects are essentially relational. 

Different objects are not conceived as isolated entities but are placed in 

relation to each other. For example, between symbol 2 and the concept of 

number 2, as well as between the concept of natural number and the system 

of practices from which this mathematical object emerges, a relationship is 

established that OSA, following Eco (1991), calls a semiotic function. The 

semiotic function is understood as the correspondence between an 

antecedent object (expression/signifier) and a consequent object 

(content/meaning) established by a subject (person or institution) according 

to a criterion or rule of correspondence. In this way, as developed in Chapter 

3, the triadic conception of sign according to Peirce (1931-58) is assumed. 

The construct semiotic function, included in Figure 2.1 as the expression-

content duality, makes it possible to account for any use given to meaning: 

meaning is the content of a semiotic function (Godino et al., 2021). In OSA, 

it is assumed that any entity that participates in a process of semiosis, 

interpretation, or a language game is an object that can play the role of an 

expression (signifier), content (signified), or interpreter (rule that relates 

expression and content). The systems of operative and discursive practices 

themselves are objects that can be components of semiotic functions. The 

systemic pragmatic meaning construct of a concept (of any object) can thus 

be taken as the system of operative and discursive practices performed by a 

person (personal meaning) or within an institution (institutional meaning) 

to solve a type of mathematical problem. 

As seen more extensively in Chapter 3, the construct semiotic function 

makes it possible to describe mathematical knowledge in a detailed and 
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operational way as the set of relations (or connections) that a subject (person 

or institution) establishes between mathematical objects and practices. To 

speak of knowledge is equivalent to speaking of the content of one (or many) 

semiotic functions, resulting in a variety of types of knowledge that 

correspond to the diversity of semiotic functions that can be established 

between types of practices and objects. Since the systems of practices at play 

in problem solving are relative to individuals and communities of practice 

(institutions), pragmatic meanings and, thus, knowledge are relative. 

However, it is possible to reconstruct the global or holistic meaning of an 

object by systematically exploring its context and the systems of practices 

involved in its solution. This holistic meaning is used as an epistemological 

and cognitive reference model for the partial meanings or senses that an 

object may adopt (Godino et al., 2021). The constructs of institutional and 

personal meaning allow us to interpret understanding in terms of the 

progressive coupling of the subject’s personal meanings with the institutional 

reference meanings (Godino & Batanero, 1994). 

The OSA semiotic cognitive approach assumes that the objects placed in 

correspondence in semiotic functions (functives) are not only ostensive 

linguistic objects (words, symbols, expressions, diagrams, etc.), but that 

definitions, propositions, procedures, arguments, and even problems can 

also be antecedents of semiotic functions. For example, it makes sense, and 

it is necessary to ask about the meaning of the concept of number, as well as 

the meaning of propositions, procedures, arguments, situations, and 

representations involved in numerical practices. Functives in semiotic 

functions can also be unitary or systemic entities, particular or general, 

material or immaterial, personal or institutional. A variety of meanings are 

thus generated, and therefore, of knowledge and understanding, which 

orients and supports the realization of ontosemiotic analyses of 

mathematical activity at the macro and micro levels, both from the socio-

epistemic (institutional) and cognitive (personal) perspectives (Godino et al., 
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2021). Thus, cognition, understood in OSA semiotic terms, is not only 

pragmatist but also empiricist and rationalist. Action is a source of 

knowledge; however, perception and reason are also sources. 

The primary objects of ontosemiotic configurations (Figure 2.1) include 

language in its different registers (oral, written, gestural, iconic, symbolic) 

and the corresponding interpersonal and intrapersonal communication 

processes. Language intervenes in discursive practices to express the 

remaining primary entities (problems, definitions, propositions, procedures, 

and arguments) and acts as an instrument for the realization of operative 

practices. With language, things are said and done; therefore, it has 

representational and operational valence. Definitions, propositions, and 

procedures are understood as grammatical rules of languages used to 

describe problems and support the realization of argumentative practices 

that justify propositions and procedures. They are intra-discursive entities 

that do not have an existence independent of language; they emerge from 

operative and discursive practices. Their metaphorical existence is 

postulated as objects to distinguish between a rule and its various linguistic 

formulations, and consequently to discern between the world of thought and 

culture from the ostensive reality of sounds, images, or material artifacts. 

 

2.7. Idealization, generalization, and unitarization 

To account for the processes of idealization, generalization, and 

unitarization (and their duals, materialization, particularization, 

decomposition), three pairs of contextual attributes have been introduced 

into the OSA ontology from which primary practices and objects can be 

considered: ostensive- non-ostensive (material, immaterial), extensive-

intensive (particular-general; exemplar-type), and systemic-unitary 

(process-object) (Figure 2.1). These constructs allow us to describe the types 

of abstraction (empirical and formal) that come into play in mathematical 
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activity, as well as the objects that intervene and emerge in these processes. 

Likewise, they help to understand the interplay between pure and applied 

mathematics, between constructs and things, which is necessary in 

educational mathematics because, in the learning processes, at least at earlier 

levels, it is necessary to start from the tangible reality to access the virtual 

reality of formal mathematics. 

 

2.7.1. Ostensive-non-ostensive duality 

In OSA, an ostensive object is any perceptible object that can be shown 

directly to others. Symbols, notations, gestures, graphic representations, and 

material artifacts have that character; they are real or concrete objects. 

Concepts, propositions, procedures, and arguments are constructs, 

discursive creations of human activity, i.e., non-ostensive objects; they 

depend on subjects, their actions, and real artifacts for their existence. Non-

ostensive objects can be mental objects (when they intervene in personal 

practices) or institutional objects (when they intervene in shared practices). 

However, the interpersonal communication of non-ostensive objects 

requires that they be materialized through ostensive representations. In both 

cases, non-ostensive objects regulate mathematical activity, whereas their 

ostensive representation supports or facilitates the performance of the said 

work. The distinction between ostensive and non-ostensive objects depends 

on the language game in which they are played. Ostensive objects can also be 

thought of, imagined by a subject, or implicit in mathematical discourse (for 

example, the multiplication sign in algebraic notation). In these cases, they 

participate as non-ostensive objects. This duality allows us to account for the 

dual processes of idealization (creation of non-ostensive objects) and 

materialization (creation of ostensive objects that materialize non-ostensive 

objects) in mathematical activity. For example, the number five is 

materialized by displaying the five fingers of the hand as an application. The 
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number five as the class of all equipotent sets for the five fingers of a hand is 

an idealization. 

 

 

2.7.2. Unitary-systemic duality 

In some circumstances, mathematical objects participate as unitary 

entities (which are assumed to be previously known), whereas in others, they 

intervene as systems that must be decomposed for analysis. “The same object 

can be considered either an individual, a set (or a specific collection). There 

is nothing definitive about being an individual” (Bunge, 2011, p. 145). For 

example, in the study of addition and subtraction, in the last levels of primary 

education, the decimal number system (tens, hundreds, etc.) is considered a 

known unitary entity that does not need to be deployed in more elementary 

entities. These same objects in the first course must be considered 

systemically for learning. Both ontosemiotic configurations (in their socio-

epistemic or cognitive version) and the primary objects that compose them 

can be considered from unitary or systemic perspectives, depending on the 

language game in which they participate. In the first case, unitarization 

(synthesis) processes occur, and in the second case, decomposition (analysis) 

of the system into its components. 

The unitary-systemic duality allows us to reformulate the “naïve” view that 

“there is the same mathematical object (e.g., the arithmetic mean) with 

different representations”. As Rondero and Font stated, 

A complex system of practices that allows problem solving exists, in which 

the mathematical object “arithmetic mean” does not appear directly. 

Instead, what appears are representations of the arithmetic mean, different 

definitions of the arithmetic mean, its propositions and properties, 

procedures and techniques applied to the arithmetic mean, and arguments 

about it. In other words, throughout history, different epistemic 

configurations have been generated for the study of the arithmetic mean, 
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some of which have served to generalize the preexisting ones. (Rondero & 

Font, 2015, p. 33) 

The unitarization process is related to the emergence of new mathematical 

objects. We assert that regulative mathematical objects (definitions, 

propositions, procedures, arguments) emerge from the systems of operative 

and discursive practices. It can also be said that they are operative and 

discursive invariants. In any case, it starts with structured sets of actions or 

other objects (systemic entity), which, for reasons of operational or 

discursive efficiency, form a new unit. We have been calling this process in 

OSA the unitarization process, the formation of a new object as a unitary 

entity, which is why it can also be called the objectification process. In some 

circumstances or language games, the reverse process of considering a 

systemic entity in terms of its components occurs, which in OSA is called the 

decomposition process. 

Interpreting the unitarization process in terms of Sfard’s (2008) 

discursive theory of thought allows us to obtain an operational and coherent 

breakdown of the unitary-systemic duality. Sfard (2008) identified three 

mechanisms (discursive devices) that produce the emergence of new objects 

(non-ostensive or constructs): assimilation (saming), encapsulation, and 

reification. 

− Assimilation (saming), that is, giving a common name to things that, 

although apparently unrelated, can be seen in certain contexts as 

equivalent (this happens, for example, when the term quadratic 

function is introduced to simultaneously refer to things as different as 

the expression x2, a certain curve called a parabola, the set of numbers 

paired with their squares, etc.). 

− Encapsulation, that is, replacing talk about separate objects with talk 

about a single entity (this occurs when several objects are referred to 

collectively as a single set; for example, when it is claimed that many 

ordered pairs of elements constitute a function). 
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− Reification, that is, converting discourse about a mathematical process 

into discourse about an object (this is the case, for example, when we 

replace “When I add 5 to 7, I get 12” with “the sum of 5 and 7 is 12“). 

Once a new noun is introduced in one or more of these three ways, 

alienation from the new object gradually occurs: the noun ends up being used 

in impersonal narratives, implying that its referent exists independently of 

discourse. The discursive construct thus created becomes the object of 

mathematical explorations through which new mathematical narratives 

emerge. Alienation, as a complementary aspect of reification, ends the 

process of objectification, i.e., the emergence of the object by being 

completely dissociated from the actor. 

With the last traces of people’s agency carefully erased, even the most 

common arithmetic propositions, such as the phrase “two plus three equals 

five” convey the message of the mind-independent existence of the 

mathematical object. Once reified and put into impersonal phrases, 

numbers have a “life of their own” (Sfard, 2008, p. 50). 

The descriptions of the processes of assimilation, encapsulation, and 

reification demonstrate that, in all three cases, the process of unitarization 

occurs, thus constituting a breakdown of the process. 

 

2.7.3. Extensive-intensive duality 

A characteristic feature of mathematical activity is the generalization of 

problems, solution procedures, definitions, propositions, and justifications. 

Solutions are organized and justified in progressively more general 

structures. However, in instructional processes, the study begins with 

particular models of these general structures, although they gradually 

become more generalized as the study advances. The analysis of 

mathematical activity therefore requires consideration of both processes: 

particularization and generalization, and the objects involved in these 

processes. The generalization process involves finding or conjecturing a 
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pattern or regularity in similar cases, whereas particularization involves 

generating or presenting individual examples that follow a pattern. 

In OSA, the contextual attribute extensive-intensive (exemplar-type) has 

been introduced, applicable to primary practices and objects, to analyze the 

dialectic between particularization and generalization. Depending on the 

situation being worked on, an object can be an exemplar (extensive) if it 

intervenes by itself or a type (intensive) if it intervenes as a representative of 

a broader class. 

An extensive object is used as a particular case (a specific example, e.g., the 

function y = 2x + 1) of a more general class (e.g., the family of functions y = 

mx + n), which is an intensive object. The terms extensive and intensive are 

suggested by two ways of defining a set: by extension (an extensive is one of 

the members of the set) and by intension (all the elements are considered at 

once). By extensive, we mean a particularized (individualized) object, and by 

intensive, a class or set of objects. (Font et al., 2008, p. 169) 

For example, Font and Contreras (2008) conducted a microscopic analysis 

of the objects, processes, and semiotic functions involved in defining the 

concept of the derivative of a function. The application of the ostensive-non-

ostensive, extensive-intensive, expression-content duality enables the 

explanation of semiotic conflicts posed by the dialectic between the particular 

and the general in mathematics education. 

 

2.8. Abstraction processes and abstract objects in OSA 

In a first approximation, we can say that the ostensive-non-ostensive 

duality and its associated processes of materialization and idealization 

account for the concrete (ostensive) and abstract (ideal) objects usually 

considered in everyday language. However, the analysis of mathematical 

activity, from both a professional and educational point of view, requires a 

deeper understanding of the nature of abstraction and emerging abstract 

objects, as well as the reverse process of interpretation. For this reason, the 
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OSA proposes to complement the ostensive-non-ostensive duality with the 

unitary-systemic and exemplar-type duality. Thus, the abstract 

mathematical object is not only an ideal entity (non-ostensive) but also a 

generality that can be considered a unitary whole or a system, depending on 

the language game in which it participates. Because unitary objects are 

symbolically represented to intervene in new systems of practices, the 

abstraction process also involves the expression-content duality and the 

processes of representation and meaning. 

Mathematical abstraction involves various facets, includes different 

components, and occurs at different levels (Figure 2.2). It can be seen as 

forms of the subjective act of knowing and as a characteristic of knowledge 

as a historical and objective product of collective activity (personal and 

institutional dimension). Sinaceur asserts from a philosophical perspective, 

“Mathematical abstraction is a multifaceted and multilevel process that leads 

to a sophisticated and branched hierarchy of mathematical concepts and 

operations”. (Sinaceur, 2014, p. 100) 

Abstraction is a gradable characteristic of objects, a matter of more or less, 

rather than presence or absence. The gradation of abstraction begins with the 

direct categorization of perceptive objects and continues to rise to 

increasingly higher levels of abstract objects. Concept F can be more abstract 

(intensive) than concept G, which can be abstract but less abstract, more 

concrete (extensive) than F. 

For example, in the epistemic analysis of the concept of function, one must 

identify, besides the definitions that have been used, the different elements 

represented in Figure 2.1, which are mobilized to respond to the problems in 

which the function object participates determinately, although it may be 

implicit in the early stages of its emergence. Each configuration is interpreted 

as a partial pragmatic meaning of a function object that reflects and 

synthesizes the mathematical activity performed to solve specific problems 

in certain contexts or historical stages. The evolution of the concept implies 
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a sequence of progressively more abstract configurations through which 

definitions, procedures, properties, and arguments are generalized, moving 

from the use of ordinary, tabular, and graphical language to alphanumeric 

language and from arithmetic to algebraic and analytical calculation. 

 

Figure 2.2. Facets, components, and levels of abstraction in mathematics 

The creation of progressively more abstract mathematical objects is based 

on the natural tendency of mathematicians and scientists to organize their 

experiences with the help of unifying patterns and structures to produce 

useful generalizations. The construct of abstraction cannot be avoided in the 

analysis of mathematical activity from both a philosophical and educational 

perspective. Attempting to organize learning processes by imposing highly 

abstract mathematics from the outset without considering prior levels and 

particularization and contextualization processes is doomed to failure. 
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Next, we analyze the statement and solution of a sequence of problems 

using the ontosemiotic configuration tool, identifying the abstraction 

processes that occur and assigning degrees of intension (or generality) to the 

emerging objects. The different levels of abstraction depend on the degree of 

generality. There are no separate levels of abstraction and degrees or layers 

of generalization; instead, the levels of abstraction are inherited from the 

degrees of generality of the objects. 

 

Examples of abstraction processes and their levels 

Problem 1: Concrete number and abstract number (first level of abstraction) 

Statement: How many apples are there in the 

figure? Are there more or fewer cherries than 

apples? Justify your answer. 

Solution: 

We say there are three apples and three cherries. There are the same 

number of apples as cherries. I counted the number of apples by matching 

each apple with the series of number words one, two, three, etc., and the last 

word was three apples. The same for the cherries. Therefore, there are the 

same number of apples as cherries. 

 

Ontosemiotic analysis:  

In the situation posed as problem 1, and the operative and discursive 

practices accompanying it as a solution, various types of objects and 

relationships are involved. The green, yellow, and red apples are shown. 

Through empirical abstraction, color and size are ignored, and it is said that 

there are three apples. Their position in the figure is also ignored. The same 

applies to the cherries. 

The solution mentions the series of number words one, two, three, etc., 

suggesting that it is an unlimited series. The first three terms of this series 

are used for counting, a procedure in which each number word is matched 
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one-to-one with each material (represented) object while respecting the 

principles of counting. Three apples and three cherries correspond to 

“concrete numbers.” 

The ostensive, perceptible nature of the objects being counted leads us to 

propose that the level of abstraction of the concepts involved is 0 (apples, 

cherries, three apples, three cherries). The transition from level 0 of 

generality to level 1 occurs when empirical abstraction (i.e., ignoring certain 

attributes and focusing on others) occurs. 

Conversely, the nature of the series of number words, one, two, three, etc. 

(which can be replaced by other words, one, two, three, etc., or symbols 1, 2, 

3, …), the numeral system, is entirely different. Any of these systems refers 

to a set of natural numbers whose nature essentially differs from empirical 

objects, although some materialization is required for mental processing or 

interpersonal communication. 

The number 3 is neither more nor less than the one preceded by 2 and 1 

(and, if applicable, 0), followed by 4, 5, etc. Or, more precisely, it is an object 

preceded by two (or three) objects in a pre-established order and followed by 

infinitely many others, also ordered, such that any two elements defined as 

“contiguous” will always be so. Any object can play the role of 3; any object 

can be the third element in some progression (arbitrarily pre-established). 

What is peculiar to 3 is that it defines that role—not by being a paradigm of 

any object that plays it but by representing the relationship that any third 

member of a progression has with the rest of the progression (Godino et al., 

2009, p. 42). 

The concept of number arises from a formal or theoretical abstraction 

specific to mathematics that is fixed through a system of axioms. In OSA, 

natural numbers are abstract objects with a degree 1 of intension or 

generality because degree 0 corresponds to perceptible objects. This is so 

even for a particular number, e.g., 3, which is an abstract, albeit particular, 
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object. The duality particular-general (extensive-intensive) is relative to the 

language game in which the object participates. 

 

Problem 2 (Unlimited sequences of numbers through recurrence 

laws) 

Starting from the unlimited sequence of natural numbers, 1, 2, 3, …, xn 

=x(n-1)+1. In the sequence of even numbers, what is the even number 

corresponding to position 10? In the generic position n? 

Solution: The even number corresponding to position 10 is 20 (2, 4, 6, 8, 

10, … 20). The even number y corresponding to position n is y=2n because 

for any natural number, its image in the correspondence can be obtained by 

multiplying it by 2. 

 

Ontosemiotic analysis:  

The unlimited sequence of natural numbers, considered as a unitary 

whole, is a new object at level 2 of abstraction. The transition from a finite 

collection to an infinite one, with its corresponding formation rule (intensive 

object), is a process that produces new, higher-level abstract objects. The 

formation rule is to add 1 to the previous one (recurrence rule). 

Instead of adding 1, we can consider adding 2, 3, etc. (multiples of 2, 3, …). 

In this way, we obtain unlimited collections of multiples of 2, 3, and so on. 

Each collection is a new abstract object given by the function y=2n; y=3n; 

etc. Each of these unlimited collections, defined by their respective functional 

rules, is a new abstract object of level 2, similar to the sequence of natural 

numbers. Consequently, the function defined in this case between the set N 

of naturals, with an image also in N, and the formula y=2n is a mathematical 

object with abstraction level 2 (intensive object of the 2nd kind). 

We can generate an object with a higher level of abstraction (generality) 

by considering the collection of collections of multiples of any number a. This 
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collection is given by the following parametric rule: y=an, a ∈ N, n ∈ N. It 

seems reasonable to assign this object level 3 of abstraction. 

The function defined between arbitrary numerical sets is an intensive 

object at level 4: 𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝐶, 𝑓(𝑥) ∈ 𝐶′, where C and C' are arbitrary 

numerical sets. 

The function defined between any sets is an intensive object at level 5: 

(𝑦~𝑓(𝑥), 𝐴, 𝐵), 𝑥 ∈ 𝐴, 𝑓(𝑥) ∈ 𝐵, where A and B denote any sets. 

It is observed that new ideal (non-ostensive) objects can be generated 

horizontally without increasing the level of abstraction. For example, finite 

collections of natural numbers (1, 2, 3, 4, 5) or multiples of a finite number 

(pairs, trios, …) are abstract objects but not more abstract (general) than the 

objects that constitute them. 

 

2.9. Theoretical frameworks related to the ontosemiotic 

theory of mathematical activity 

The foundations of mathematics education described in Sections 2.4 to 2.7 

are being used to develop tools that address issues related to the design, 

implementation, and evaluation of mathematical instruction processes. To 

consider issues related to the analysis of implementing instructional 

processes, the didactic configuration tool was developed (Godino et al., 

2006). The theory of didactic suitability (Godino et al., 2023) examines 

issues concerning the evaluation of instructional processes and teacher 

education. All these tools are based on the ontosemiotic modeling of 

mathematical activity, the emerging objects described in this chapter, and 

the meaning and mathematical cognition developed in Chapter 3. 

In this section, we examine the concordances and complementarities of 

the Theory of mathematical activity and emerging objects with the Discursive 

theory of thinking (Sfard), the Objectification theory (Radford), and related 

theoretical frameworks. 
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2.9.1. The discursive theory of thinking 

The commognition theory (an acronym combining communication and 

cognition) developed by Sfard (2008) models individual thinking in 

discursive terms, drawing on Wittgenstein’s postulates of language, thought, 

and meaning as use. Sfard challenges Platonic-idealist and mentalist views 

of thinking in general and mathematical thinking in particular. Mathematical 

objects should not be considered entities to be discovered or inaccessible 

mental entities; propositions are not descriptions of the properties of such 

objects. Instead, she proposes that understanding mathematical objects can 

be viewed as discursive entities emerging from interpersonal or self-

communication. Sfard’s central thesis is that mathematical discourse and its 

objects are mutually constitutive: 

Discursive activity, including the continuous production of symbols, creates 

the need for mathematical objects and mathematical objects (or better, the 

use of symbols mediated by the objects) in turn influence discourse and 

guide it in new directions (Sfard, 2000, p. 47). 

Sfard’s motivation to develop a discursive theory of thinking stems from 

the controversies surrounding the objectification of discourses intended to 

investigate cognitive processes. In these processes, it is as if there is a reality 

(in the mind) that these processes describe. However, the abstract, artificial 

nature of the objects being discussed, which are not effectively existing and 

can thus be disposed of, goes unnoticed. When describing what a subject does 

and says, we do not need to use constructs such as cognitive schemas, 

conceptions, intentions, and meanings, which are intangible and invisible. 

Sfard identified various dilemmas and dangers in using the object 

metaphor to describe thought and its use in mathematics education. The 

reification and alienation of processes through which the ideal or abstract 

object is constructed, essential for human thought and communication, 

obscure its origin in discursive practices. The development of the 
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commognition model is a proposal to keep the object metaphor alive while 

avoiding its pitfalls, i.e., the confusion it introduces into the study of 

knowledge, understanding, and learning. 

The OSA Theory of mathematical activity addresses this issue but adds 

Peirce’s pragmatic dimension to Wittgenstein’s linguistic perspective and 

Vygotsky’s discursive perspective. The strategy followed in the OSA to avoid 

the idealist or mentalist view of non-ostensive mathematical objects is to 

associate as the meaning of these objects the system of operative and 

discursive practices for solving problems from which such objects originate. 

Language, words, symbols, and discursive practices are considered primary 

entities, but situational problems and the operative and normative practices 

involved in mathematical activity are also given a central role. 

The personal-institutional duality for practices, objects, and processes 

proposed by the OSA allows for a broader view of cognition than 

commognition, as cognition can be understood not only as an individual 

reality but also as a community and historical-cultural reality. It also 

accounts for the interdependent relationships between individual and 

community discourse in which the subject participates (i.e., the process of 

progressive coupling, through dialogical participation, of personal meanings 

with intended institutional ones. Additionally, the exemplar-type duality, 

with its recursive nature, accounts for processes of generalization and 

particularization and successive levels of abstraction, i.e., the creation of 

progressively more complex objects. 

 

2.9.2. Theory of objectification 

Radford (2008; 2015) developed a specific view on teaching and learning 

that considers not only the knowledge at play but also the formation of 

students as human subjects. This political-conceptual position is known as 

the Theory of Objectification (TO), which posits the goal of mathematics 

education as a political, social, historical, and cultural effort aimed at creating 
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ethical and reflective individuals who critically engage in historically and 

culturally constituted mathematical practices. An essential principle of 

objectification theory is the idea of labor or work, as given by Hegel, Marx, 

Leóntiev, and dialectical materialism. Through labor or work, individuals 

continuously develop and transform, encountering the systems of ideas of 

culture (scientific, legal, artistic ideas, etc.). 

TO assumes that thought is primarily an active reflection of the world 

mediated by artifacts, the body (through perception, gestures, movements, 

etc.), language, signs, etc. The notion of an object is essential in TO because 

“Thinking, indeed, is thinking about something. Thinking and that 

something which is the object of thought are intertwined and inseparable” 

(Radford, 2015, p.130). Knowledge objects are sociohistorical and cultural 

entities, not mental entities. 

In fact, they are the result of social labor and are produced through it. In 

more precise terms, knowledge objects are a culturally and historically 

codified synthesis of doing, thinking, and relating to others and the world 

(Radford, 2015, p. 134). 

Radford distinguishes between knowledge objects, culturally codified 

forms of doing and thinking, and concepts, which are particular realizations 

a subject makes of cultural objects through the process of objectification 

through school learning. “Learning arises from the sensual and conceptual 

awareness that results from the realization of the knowledge object (e.g., 

cracking nuts, solving linear equations) in its concrete realization or 

individualization” (Radford, 2015, p. 139). The concept is constituted from 

what has truly become an object of awareness for students during their joint 

work with teachers: the sensual and real forms of thinking and doing as 

encountered and known by the students. 

Objectification is the social, co-transformative, and sensual process of 

meaning-making through which students gradually become critically 
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familiar with historically constituted cultural meanings and forms of 

thinking and acting (p. 139). 

Through objectification processes embedded in the activity, cultural 

knowledge objects can become objects of awareness and thought. 

In TO, as in OSA, certain epistemological and ontological principles about 

mathematical knowledge and learning are assumed, and these principles are 

shared by sociocultural approaches: 

p1: knowledge is historically generated during an individual’s mathematical 

activity. 

p2: the production of knowledge is not responsive to adaptive piloting but is 

immersed in cultural forms of thought intertwined with a symbolic and 

material reality that provides the basis for interpreting, understanding and 

transforming the world of individuals and the concepts and ideas formed 

from them (Radford, 2018, pp. 4066-4067). 

The postulate of considering mathematics as both a human activity and 

work with a social component underlies the emergence of knowledge objects 

or constructs (abstract or general entities) in TO and OSA. The process of 

objectification is equivalent in cognitive and educational terms to the process 

of students’ personalization of institutional/cultural meanings, as proposed 

by OSA. The consideration of conceptual objects in their unitary version as 

socially agreed rules referring to how languages and artifacts should be used 

helps to understand the two sources of learning proposed by TO: contact with 

the material world, the world of cultural artifacts surrounding us (objects, 

instruments, etc.), and social interaction. Socially agreed rules for the use of 

artifacts must be learned. 

The epistemological model proposed by OSA is broadly consistent with 

that corresponding to TO. Both theories share similar anthropological 

assumptions about mathematical activity and emerging sociocultural 

processes and products. However, OSA explicitly incorporates the basic 

elements of the linguistic turn introduced by Wittgenstein in the philosophy 
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of mathematics and the contributions of Peircean semiotics to explain 

mathematical communication and interpretation processes. Anthropological 

and sociocultural changes in the way of conceiving mathematics assumed by 

both theories have not led to the neglect of the cognitive dimension, i.e., the 

role of the subject who learns mathematics and forms as a person. For this 

reason, OSA introduces, alongside a model of institutional cognition, another 

model of individual cognition, constructed on its same pragmatic, 

anthropological, and semiotic bases. 

A notable difference between the two theories lies in the unequal 

development of the institutional/cultural, and personal dimensions of 

mathematical knowledge. TO preferentially focused on the cognitive 

(personal) dimension and learning processes, whereas OSA developed tools 

that address both institutional and personal knowledge dimensions. The 

ontosemiotic configuration tool (in its dual epistemic and cognitive versions) 

allows for a detailed analysis of mathematical activity and the objects 

involved, which are not reduced to conceptual or abstract objects. 

Recognizing the complex web of objects and processes involved in problem 

solving is an explanatory factor for learning and teaching difficulties and a 

necessary step for the proper management of educational-instructional 

processes. An a priori analysis of solutions to activities and the recognition 

of practices, objects, and processes is an epistemic or institutional analysis 

that refers to an epistemic or ideal subject. This a priori analysis helps 

understand and manage individual subject learning processes. This learning 

can be described through the ontosemiotic configuration tool in its cognitive 

version and applied to the students’ responses and dialogs. 

 

2.9.3. Other related frameworks 

Various authors have developed constructs and theories to respond to the 

epistemological, ontological, and semiotic cognitive problems described in 

this chapter, which are specific to educational mathematics. The 
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concordances and complementarities of the OSA model on these issues have 

been addressed in previous studies. In particular, the OSA is confronted with 

the Anthropological Theory of Didactic (Chevallard, 1992) by D’Amore and 

Godino (2007), the APOS theory (Dubinsky & McDonald, 2001) by Font et 

al. (2015), and the Theory of semiotic representation registers (Duval, 1995) 

by Godino et al. (2016). Manolino et al. (2023) compared OSA with the 

Theory of Semiotic Bundles (Arzarello et al., 2009). 

 

2.10. Examples of applying the ontosemiotic theory of 

mathematical activity 

The analysis of practices, objects, and processes that characterize 

mathematical activity has been applied in various studies as a component of 

didactic analysis. For instance, Rondero and Font (2015) used ontosemiotic 

configurations to study the complexity of the arithmetic mean. They develop 

an integrated view of the articulations of objects and configurations (levels of 

generalization, metaphorical projections, and networks of semiotic 

functions) through which a unitary vision of the arithmetic mean can be 

constructed. Molina et al. (2019) identified ontosemiotic configurations in 

processes of argumentation by analogy, complementing the analysis of 

argumentation according to Toulmin’s model. This model highlights and 

describes the abductive and analogical arguments produced by students, 

while the ontosemiotic configuration tool concretizes how the mathematical 

objects activated in practices were articulated by the associated 

argumentative processes. Burgos et al. (2021) performed a microscopic 

analysis of two presentations of the definite integral, one informal/intuitive 

and the other formal, aimed at explicitly recognizing the objects involved and 

emerging in the corresponding mathematical practices. They also identify the 

processes (interpretation/signification, representation, argumentation, 

generalization, etc.) involved in these practices, considering that such 
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analyses help explain learning difficulties and support informed decision-

making regarding the teaching of the definite integral. 

In the following sections, we include a broader synthesis of two works that 

use the ontosemiotic theory of mathematical activity, one characterizing 

visualization in mathematics education and the other developing a model of 

algebraic reasoning levels. 

 

2.10.1. An ontosemiotic approach to visualization in mathematics 

education 

Visualization has received much attention as a research topic in 

mathematics education (Bishop, 1989; Clements, 2014; Rivera, 2011), 

especially in geometry, where it has focused on evaluating individuals’ 

processes and capacities to perform tasks requiring the mental “seeing” or 

“imagining” of spatial geometric objects. Interest in this topic is also seen 

from the perspective of the mathematician’s own work, addressing problem-

solving, conjecture formulation, and in areas other than geometry (Guzmán, 

1996). Presmeg (2006), among others, posed the following questions related 

to visualization in mathematics education: “How can visualization be used to 

promote mathematical abstraction and generalization? ... What is the 

structure and components of a general visualization theory for mathematics 

education?”. (Presmeg, 2006, p. 227) 

In the study by Godino et al. (2012), we developed an analysis model on 

the nature and components of visualization and its relationship with other 

processes involved in mathematical activity, using OSA to understand the 

network of mathematical objects involved in visualization processes. In this 

study, we consider that a key aspect of developing a theory of visualization 

must include the study of its relationships with other modes of ostensive 

expression (analytical or sequential languages) and, above all, its relationship 

with non-ostensive mathematical objects (whether mental, formal, or ideal). 
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The analysis of mathematical activity and objects and processes initially 

focuses on the practices performed by individuals engaged in solving specific 

mathematical problem-situations. This visualization analysis allows us to 

distinguish between visual, non-visual, symbolic, and analytical practices. 

We focus on the linguistic objects and visual artifacts involved in a practice 

as they engage with visual perception. Although symbolic representations 

(natural language or formal languages) are visible, we do not consider such 

inscriptions visual but as analytical or sentential. 

In Godino et al. (2012), visualization is analyzed first from the perspective 

of the primary objects involved, i.e., the problem situations (tasks), linguistic 

and material elements, concepts, propositions, procedures, and arguments. 

Visual objects usually participate in mathematical practices along with other 

non-visual (analytical or other) objects. Visualization in mathematics is not 

limited to seeing; it encompasses interpretation, action, and relationships. 

Second, visualization is analyzed by applying contextual dualities or 

modalities from which previously identified visual objects can be considered. 

Distinctions are made between personal (cognitive) and institutional (socio-

epistemic) visual objects; particular (extensive) and general (intensive) 

objects; ostensive (material) and non-ostensive (mental, ideal, immaterial) 

objects; unitary (used as a whole) and systemic (formed by a system of 

structured elements) objects. Finally, visual objects are considered 

antecedents or consequents of semiotic functions (expression and content 

duality). 

The developed visualization model is applied to the analysis of two 

problems: 1) algebraic and visual demonstration that the sum of the first n 

odd numbers is n²; 2) demonstration that the sum of the interior angles of a 

triangle is a straight angle. The analysis focuses on the network of visual and 

non-visual objects and the relationships established between them, i.e., the 

semiotic system they form. In summary, it reveals the knowledge applied to 
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problem solving and the synergy established between visual and analytical 

objects. 

The application of the ostensive-non-ostensive duality to different 

primary mathematical objects (problems, languages, concepts, propositions, 

procedures, and arguments) provides a new perspective on the role of 

visualization in mathematical practice. Initially, Peirce’s distinction of sign 

types is assumed to differentiate between visual languages, which are 

characterized by indices, icons, and diagrams, and analytical languages, 

based on the use of symbols. Subsequently, visual problems/tasks are 

distinguished from non-visual or analytical ones; the former refers to 

situations involving objects from the sensible world (physical bodies, spatial 

relationships, and visual representations), while the latter essentially involve 

logical, numerical, and analytical entities. These distinctions also apply to 

other primary entities (rules and justifications). 

It is concluded that visualization permeates all branches of mathematics 

(not just geometry) in coordination with other forms of expression, 

particularly analytical/sequential languages. It is also present at various 

levels of mathematical study, from elementary to higher education or 

professional work. However, the role of visualization in mathematical work, 

whether professional or educational, is complex, as it is often intertwined 

with the use of symbolic inscriptions that, although “seen”, have purely 

conventional significance. The problem is relevant even when visualization 

refers to the use of visual objects, which interact not only with symbolic 

inscriptions but also with the network of conceptual, procedural, 

propositional, and argumentative objects involved in the corresponding 

ontosemiotic configurations. 

 

2.10.2. Development of an algebraic reasoning level model 

As we will see in Chapters 3 to 6, the ontosemiotic theory of mathematical 

activity underpins the remaining theories that make up OSA: theory of 
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meanings and mathematical cognition, theory of educational-instructional 

design, theory of didactic suitability, and theory of teacher professional 

development. Assumptions about mathematical activity, types of 

mathematical objects, and processes have enabled the development of a 

model of levels of elementary algebraic reasoning (Godino et al., 2014; 2015), 

which we refer to below as an example of the application of the ontosemiotic 

configuration tool. In addition to the degree of generality of the objects 

involved in mathematical practices, the languages used (natural, gestural, 

symbolic) and types of calculations performed with the represented objects 

are also considered. Thus, the model of levels of abstraction described in 

section 2.8 is expanded to algebraic reasoning. 

A mathematical practice is algebraic if it involves certain types of objects 

and processes usually considered “algebraic” in the literature. The following 

are types of algebraic objects: 

1) Binary relations—equivalence or order—and their respective 

properties (reflexive, transitive, and symmetric or antisymmetric). 

These relations are used to define new mathematical concepts. 

2) Operations and their properties are performed on elements of various 

sets of different objects (numbers, geometric transformations, etc.). 

Algebraic calculations are characterized by applying various 

properties, such as associative, commutative, distributive, existence of 

identity elements, and inverses. Other concepts like equation, 

inequality, and unknowns, as well as procedures like elimination, 

transposition of terms, factorization, and expansion of terms, may also 

be involved. 

3) Functions. It is necessary to consider the different functions and 

algebra associated with them, i.e., operations and their properties. The 

various objects involved (functions, variables, formulas, parameters, 

etc.) and their different representations (tabular, graphical, formulaic, 

analytical) must be distinguished. 
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4) Structures, their types, and properties (semigroup, monoid, 

semimodule, group, module, ring, field, vector space, etc.), 

characteristic of higher or abstract algebra. 

In algebraic practice, particularization-generalization processes are 

especially important because generalization is a characteristic feature of 

algebraic reasoning (Carraher et al., 2008; Cooper & Warren, 2008; Mason 

& Pimm, 1984). Thus, to analyze levels of algebraization in mathematical 

activity, it is useful to focus on objects resulting from generalization and the 

dual process of particularization. A generalization process results in a type of 

mathematical object called an intensive object in OSA, which is essentially a 

rule that generates the class, type, or generality involved. Through the inverse 

process of particularization, extensive objects (i.e., particular objects) can be 

obtained. An intensive object can be considered a rule that generates the 

elements comprising a collection or set, whether finite or infinite. A finite 

collection of enumerated data is not considered intensive until a criterion or 

rule is applied to delimit the constituent elements of the set. Then, the set 

becomes something new, different from its constituent elements, emerging 

as a unitary entity from the system. Therefore, besides generalizing the set, a 

unitarization process is also possible. 

The new unitary entity must be made ostensive or materialized through a 

name, icon, gesture, or symbol so that it can participate in other practices, 

processes, and operations. The ostensive object that materializes a unitary 

object emerging from generalization is another object that refers to the new 

intensive entity and thus involves a representation process accompanying 

generalization and materialization. Finally, the symbol detaches from the 

referents it represents/substitutes becoming an object to be acted upon. 

These symbol-objects form new sets on which operations, properties, and 

structures are defined, i.e., they are syntactically, analytically, or formally 

operated. 
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The triple process of recognizing or inferring generality, unitarization, and 

materialization allows us to define two primary levels of algebraic thinking 

that are distinguishable from a more advanced level, where the intensive 

object is a new entity represented by an alphanumeric language. We refer to 

Godino et al. (2014), who described the criteria for discriminating among 

these three levels of algebraization in elementary mathematics education. 

The use and treatment of parameters are the criteria used to delineate higher 

levels of algebraization because they are linked to families of equations and 

functions, thus implying new “layers” or degrees of generality (Radford, 

2011). The first encounter with parameters is associated with a fourth level 

of algebraization, and performing combined treatments of parameters and 

variables is associated with a fifth level. Studying specific algebraic structures 

led to the recognition of the sixth level of algebraization in mathematical 

activity (Godino et al., 2015). 

 

2.11. Synthesis of the ontosemiotic theory of 

mathematical activity 

To summarize what was stated in the chapter, Table 2.2 includes a 

synthesis of the theory of mathematical activity presented in this chapter, 

following the (adapted) guide for the description of theories proposed by 

Michie et al. (2014) for the field of social and behavioral sciences. 

 

Table 2.2. Synthesis of the ontosemiotic theory of mathematical activity 

Elements Description 
Summary. What is the 
theory about and what 
are its main 
propositions? 

The ontosemiotic theory of mathematical activity provides 
theoretical assumptions and tools for analyzing both 
professional and educational mathematical activities, as well as 
the objects involved and emerging from them. It offers a unique 
perspective on the emergence of mathematical knowledge 
tailored to the educational context, with transdisciplinary traits, 
by addressing dilemmas in epistemological and ontological 
theories involved in mathematics education. This perspective 
complements the logical-formal view, which is typical of the 
contexts of creation and justification of mathematical 
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knowledge, with the empiricist-factual view linked to the 
contexts of application. The postulates of this theory are as 
follows: 

− Mathematics is a human activity that involves solving certain 
classes of problem situations. 

− Mathematical practices can be idiosyncratic to individuals or 
shared within institutions. 

− Problem-solving involves articulating sequences of 
practices. 

− Various classes of objects play different roles in 
mathematical practices: instrumental/representational, 
regulatory (fixation of rules on practices), explanatory, and 
justificative. 
 

Scope/Objective. What 
phenomena does the 
theory explain? 

The objective of this theory is to understand the nature of 
mathematics, its relationship with human activity, the various 
types of objects and processes emerging from this activity, and 
the relational nature of mathematical knowledge, both 
professional and educational. 
 

Justification. Why is 
this theory necessary 
and how does it 
improve on previous 
theories? 

The theory emerges by considering the diversity of philosophical 
approaches to the nature of mathematics and the contradictions 
and dilemmas among different theories and approaches. It is 
deemed possible and necessary to develop a coherent 
epistemological and ontological model of mathematics that 
serves as a foundation for mathematics education. 
 

Hypotheses. What 
specific hypotheses 
does the proposed 
theory propose, and 
how do they differ 
from other theories? 

It starts with the postulate that mathematical objects emerge 
from human activity when solving types of problems 
(anthropological postulate). Mathematical objects can be 
categorized according to the role they play (functional entities). 
Practices and objects can be viewed from five pairs of contextual 
dualities: personal-institutional, expression-content, ostensive-
non-ostensive, particular-general, and unitary-systemic. 
 

Constructs. What 
elements constitute 
the theory? 

The theoretical constructs that constitute this theory are: 
mathematical practices, mathematical objects and processes, 
and contextual attributes of practices and objects. These 
theoretical constructs are articulated in the ontosemiotic 
configuration tool, which coordinates three complementary 
perspectives on mathematics: human activity, a system of 
objects, and a system of signs. 
 

Relations. How are the 
elements of the theory 
related to each other? 

The construct of the ontosemiotic configuration of practices, 
objects, and processes, including five pairs of dualities or 
contextual attributes from which these elements can be 
considered, reflects the relationships among the various 
components of the theory. 
 

Origin. On which 
theories is it based, 
and how? 

From an epistemological standpoint, the theory is based on 
Wittgenstein’s anthropological perspective on mathematics, 
viewing mathematics as a human activity and attributing a 
conventional and regulatory nature to mathematical concepts 
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and propositions. It is also based on Peirce’s pragmatic 
approach to semiotics and Vygotsky's historical-cultural 
perspective on cognition. 
 

Similarity. Which 
theories are most 
similar to this theory? 

In mathematics education, the theory shares some assumptions 
with the Anthropological Theory in Didactics (Chevallard), the 
Theory of Objectification (Radford), and the Theory of 
Communication and Cognition (Sfard). 
 

Complementarity. 
With which theories 
can it be 
complemented? 

This theory includes the principles and methodological tools 
necessary to underpin the educational-instructional processes 
of mathematics in the epistemological and ontological 
dimensions. It should be complemented with an explicit theory 
of meaning and mathematical cognition (developed in Chapter 
3) and with theories of educational design and professional 
development of teachers (Chapters 4 and 5). 
 

Operationalization. 
How are the constructs 
measured or 
identified? 

The constructs of the theory are unmeasurable traits. These are 
descriptive categories of the different types of practices, objects, 
and processes involved in mathematical activity. The 
institutional genesis of mathematical knowledge is investigated 
through 1) the identification and categorization of problem 
situations that require a response; 2) the description of the 
sequences of practices involved in the resolution; 3) the 
identification of the objects involved and their relationships. 
 

Uses. What can the 
theory be used for? 

This theory provides a foundation for the educational-
instructional processes of mathematics. This approach allows 
for detailed analyses of mathematical activity from both 
personal (cognitive) and institutional (cultural) perspectives 
and allows understanding of the complexity of objects and 
processes involved in problem-solving. This theory is used as the 
foundation for the theory of meaning and mathematical 
cognition described in Chapter 3 and educational theories 
included in Chapters 4, 5, and 6. 
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Chapter 3  

Ontosemiotic theory of meaning and 

mathematical cognition 

 

 

 

Introduction 

The term “meaning”, closely linked to “understanding”, is insistently used 

in mathematical education research and practice because it is crucial for 

students to understand the meaning of mathematical terms, expressions, and 

representations, i.e., to understand what mathematical language refers to in 

its various registers. The importance of semiosis in mathematics education 

lies in its use of signs, which are omnipresent across all branches of 

mathematics. This is necessarily the case because the objects of mathematics 

are ideal in nature; to represent and work with them, it is necessary to employ 

sign vehicles, which are not the mathematical objects themselves but 

represent them in some manner (Presmeg et al., 2018). 

The terms meaning and sense are persistently used in curricula related to 

understanding mathematics. In Principles and Standards (NCTM, 2000), the 

standard “understand the meanings of operations and how they relate to one 

another” was included in all grades from P-K2 to 9-12. It was related to the 

meaning of concepts and operations such as numbers, numerals, fractions, 

equal signs, addition, multiplication; the meanings and uses of variables, 

equations, inequalities, and relations; the meaning of equivalent forms of 

expressions, similarity, etc. The notion of sense also played an important role 

in the NCTM (2000), where it was used synonymously with meaning in 

expressions such as “Develop a sense of whole numbers”; “Make sense of 
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mathematical ideas”; “Mathematics should make sense to students,” etc. The 

Spanish mathematics curriculum (MEFP, 2022) is also structured around 

the concept of mathematical sense and is organized into two dimensions: 

cognitive and affective. Senses are understood as a set of skills related to 

mastery of numerical, metric, geometric, algebraic, stochastic, and socio-

affective content. 

An author who considers the idea of meaning as fundamental to 

mathematics education is Sierpinska (1990), who intimately relates it to 

understanding: 

Understanding the concept will then be conceived as the act of grasping this 

meaning. This act will probably be an act of generalization and synthesis of 

meanings related to particular elements of the “structure” of the concept (the 

“structure” being the net of senses of the sentences we have considered). 

These particular meanings also have to be grasped in acts of understanding 

(Sierpinska, 1990, p. 27). 

However, the term “meaning” “is one of the most ambiguous and 

controversial in the theory of language” (Ullmann, 1962, p. 62). For example, 

Speaks (2014, p. 1) suggests that: “The term ‘theory of meaning’ has figured, 

one way or another, in a great many philosophical disputes over the last 

century. Unfortunately, this term has also been used to mean a great many 

different things”. In their classic text The Meaning of Meaning, Ogden and 

Richards (1923) compiled 17 definitions of meaning to which new uses, 

whether implicit or explicit, have since been added, thus increasing 

ambiguity. In the case of mathematics education, Pimm (1995) also notes the 

lack of clarity in using the terms understanding and meaning: “What we 

variously understand by ‘understanding’ and mean by ‘meaning’ is far from 

obvious or clear, despite these being two central terms in any discussion of 

the learning and teaching of mathematics at whatever level” (Pimm, 1995, p. 

3). 
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The complexity of semantic linguistic problems increases with 

mathematics because of the variety of semiotic registers (ordinary language, 

oral and written, specific symbols, graphs and tables, material objects, etc.) 

used in mathematical practice. We are not only interested in analyzing the 

meaning of mathematical linguistic elements but also in the various objects 

involved in the mathematical practices that individuals engage in when 

solving problem situations (languages, concepts, procedures, propositions, 

arguments). These objects require competent interpretation and use by 

teachers and researchers when they are concerned with teaching and 

learning. The question remains whether it is possible to develop a specific 

theory of meaning for mathematics education. This theory should consider 

both realistic/referential and pragmatic/operational positions on meaning 

and serve as a basis for addressing the epistemological, semiotic, cognitive, 

and sociocultural problems involved in the processes of teaching and 

learning mathematics. 

The aim of this chapter is to systematize and delve into the characteristics 

of the theory of meaning proposed by OSA and its use in developing a theory 

of mathematical knowledge. We also describe the general theories of 

meaning in linguistics, semiotics, and philosophy that underpin OSA, 

particularly those of Hjelmslev (1943), Peirce (1931-58), and Wittgenstein 

(1953; 1956), as well as the agreements and complementarities with three 

semiotic models that have some impact on mathematics education: Frege 

(1891; 1892), Vergnaud (1990; 2009), and Steinbring (1997; 2006). In this 

way, we provide an initial response to the problem of clarifying and 

comparing the semiotic theories used in mathematics education. 

In Section 3.1, we present a synthesis of general theories on meaning, with 

an emphasis on three authors: Hjelmslev, Peirce, and Wittgenstein, who were 

selected because the ontosemiotic perspective on meaning takes basic 

notions and assumptions from these authors. In particular, OSA interprets 

and adopts Hjelmslev’s notion of semiotic function, Peirce’s semiotic triad, 
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the pragmatic maxim and Wittgenstein’s notions of meaning as a use, 

language game, and form of life. In Section 3.2, we describe three theories 

with a strong impact on mathematics education: Frege introduces a key 

distinction between sense and reference; Vergnaud proposes a cognitive 

interpretation of meaning, and Steinbring emphasizes an epistemological 

interpretation of meaning. In Section 3.3, we present the ontosemiotic theory 

of meaning as a holistic approach to issues of meaning and sense, as well as 

to those of object and sign. Based on an anthropological (Wittgenstein) and 

pragmatist (Peirce) conception of mathematical activity developed in 

Chapter 2 and adopting the linguistic construct of semiotic function 

(Hjelmslev), we develop a semiotics that consider referential, operational, 

cognitive, and cultural theories of meaning. In Section 3.4, we introduce the 

notion of individual and social knowledge based on ontosemiotics, and in 

Section 3.5, we develop the ecology of meanings as a framework for studying 

the adaptations and transformations of mathematics in educational contexts. 

In Section 3.6, we present an example of articulating the notion of pragmatic 

meaning with the ontosemiotic configuration tool. The identification of 

agreements and complementarities among semiotic theories is discussed in 

Section 3.7. To demonstrate the utility of the ontosemiotic analysis of 

mathematical cognition, in Section 3.8, we include examples of its 

application to the study of natural numbers as cultural and personal objects 

and a synthesis of the meanings of the concept of function. The OSA 

framework was used to develop a model for analyzing the affective dimension 

in mathematical education and its relationships with the cognitive and 

epistemic dimensions; in Section 3.9, we include a summary of this model on 

affectivity. We conclude the chapter by synthesizing the ontosemiotic theory 

of meaning and mathematical cognition, responding to the questions 

proposed by Michie et al. (2014) in their model for analyzing theories in the 

social and behavioral sciences. 
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3.1. Theories of meaning6 

There are two schools of thought addressing the issue of meaning from 

different perspectives: the analytical or referential tendency, which attempts 

to capture the essence of meaning by identifying its main components, and 

the operational or pragmatic tendency, which studies words in action and is 

less concerned with what meaning means than with how it operates and how 

the resources of expression and communication are used. 

 

3.1.1. Realist or analytical theories of meaning 

According to Kutschera (1975), theories of meaning can be grouped into 

two categories: realist and pragmatic. Realist (or referential) theories view 

meaning as a conventional relationship between signs and concrete or ideal 

entities that exist independently of linguistic signs, assuming conceptual 

realism. According to this conception, “the meaning of a linguistic expression 

does not depend on its use in specific situations, but it is governed by its 

meaning, being possible a sharp division between semantics and pragmatics” 

(Kutschera, 1975, p. 34). A word becomes meaningful when an object 

(concept or proposition) is assigned as its meaning. Thus, there are entities 

that are not concrete but are always given objectively before words that 

constitute their meanings. 

Authors who attribute to linguistic expressions only a semantic function 

present the simplest form of realist semantics, which comprises designating 

(by conventions) certain entities. Therefore, in realist theories (such as those 

advocated by Frege, Carnap, or appearing in Wittgenstein’s Tractatus), 

linguistic expressions have an attributive relationship with certain entities 

(objects, attributes, facts). The semantic function of an expression comprises 

only a conventional relationship (denoted as a nominal relationship). 

 

 
6 The contents of sections 3.1, 3.2, 3.3, and 3.6 are based on the article by Godino et al. (2022). 
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3.1.2. Operational or pragmatic theories of meaning 

The two basic ideas of the operational or pragmatic category of theories of 

meaning are as follows: 

− The meaning of linguistic expressions depends on the context in which 

they are used. 

− It is not possible to scientifically, empirically, and inter-subjectively 

observe abstract entities—such as concepts or propositions—which are 

implicitly admitted in realist theories. The only thing accessible to 

observation in these cases in a scientific investigation of language is 

linguistic usage. It follows from this usage that the meaning of abstract 

objects must be inferred. 

The operational approach has the merit of defining meaning in contextual 

terms, i.e., in purely empirical terms, without resorting to vague, intangible, 

and subjective mental states or processes. Wittgenstein (1953), in his 

Philosophical Investigations, openly defended a pragmatic or operational 

conception of meaning. In his formulation, a word becomes meaningful by 

performing a certain function in a language game, and it is used in this game 

for a specific purpose. Thus, for a word to be meaningful, there does not need 

to be something that is the meaning of that word, in the sense of realist 

theories. 

For some authors, the realist and operational views of meaning are 

irreconcilable. However, Ullmann (1962) suggested that pragmatic theories 

(which he calls operational or contextual) are a valid and necessary 

complement to realist theories (which he calls referential): 

The researcher should begin by gathering an adequate sample of contexts 

and then deal them with an open spirit, by allowing meaning or meanings to 

emerge from the contexts themselves. Once this phase has been completed, 

he can safely move into the “referential” phase and attempt to formulate the 

meaning, or meanings thus identified. (Ullmann, 1962, pp. 76-77) 

Ullmann’s observation is fundamental and supports the meaning model 

proposed by OSA (described in Section 3.3), where meaning is 
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conceptualized foremost, pragmatically, as it relates to problem-solving 

practices and contexts of use. However, these practices involve words, 

symbols, and various representations that refer to other objects and systems; 

a referential type of meaning is also involved. 

 

3.1.3. Semiotics and philosophy of language 

Because mathematical objects cannot be directly apprehended through 

the senses, their ontological status requires the use of signs such as symbols 

and diagrams. Semiotics, a systematic study of nature, properties, and sign 

types, has received significant attention in mathematics education research. 

“Semiotics has been a fruitful theoretical lens used by researchers 

investigating diverse issues in mathematics education in recent decades” 

(Presmeg, 2014, p. 539). In this study, we have been particularly interested 

in the language theory of the Danish linguist Hjelmslev (1943), since it can 

be useful for describing mathematical activity and the cognitive processes 

involved in the production and communication of mathematical knowledge. 

The description and analysis of mathematical instruction processes 

require to transcribe the participants’ linguistic manifestations and the 

events that occur in didactic interaction into textual form. To perform their 

work, the didactics researcher has at their disposal the instructional planning 

texts, transcripts of class developments, interviews, and written responses to 

assessment tests. Ultimately, the analysis will be primarily applied to texts 

that record the participants’ mathematical activities. 

Starting from the text as data, Hjelmslev’s linguistic theory attempts to 

show the path to a self-consistent and exhaustive description of it through its 

analysis, whose basic principle is that 

both the object under examination and its parts have existence only by virtue 

of these dependences; the whole of the object under examination can be 

defined only by their sum total; and each of its parts can be defined only by 

the dependences joining it to other coordinated parts, to the whole, and to 
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its parts of the next degree, and by the sum of the dependences that these 

parts of the next degree contract with each other .(Hjelmslev 1943, p. 23) 

A key notion in Hjelmslev’s language theory is that of function, conceived 

as the dependency between the text and its components and between these 

components themselves. He calls functives the terminals of a function, which 

are any objects that have a function with others. This notion of function is 

halfway between the logical-mathematical and etymological dimensions and 

is more formally close to the former but not identical to it. 

We shall be able to say that an entity within the text (or within the system) 

has certain functions, and thereby think, first of all, with approximation to 

the logical-mathematical meaning, that the entity has dependences with 

other entities, such that certain entities premise others—and secondly, with 

approximation to the etymological meaning, that the entity functions in a 

definite way, fulfils a definite role, assumes a definite “position” in the chain. 

(Hjelmslev, 1943, p. 34) 

The sign function 

For Hjelmslev, language is a system of signs, and a sign (or sign 

expression) is characterized primarily by being a sign of something else, 

which is hence attributed a functional character. “A ‘sign’, in 

contradistinction to a non-sign, is the bearer of a meaning” (Hjelmslev, 1943, 

p. 43). “Any entity, and thus also any sign, is defined relatively, not 

absolutely, and only by its place in the context” (Hjelmslev, 1943, p. 45). 

Among the dependencies that can be identified between parts of a text, 

those where one part designates or denotes another stand out; the first 

(expression plane) functions or represents the second (content plane), and it 

points to content outside the expression. This function is what Hjelmslev 

designates as the sign function and which Eco (2000, p. 83) presents as a 

semiotic function.7  

 
7 A sign is always constituted by one (or more) elements of a PLANE OF EXPRESSION 

conventionally placed in correlation with one (or more) elements of a PLANE OF CONTENT […]. 
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3.1.4. Pragmatism and Peirce’s semiotics 

Charles Sanders Peirce (1839-1914) wrote a substantial number of works 

on diverse topics related to philosophy, mathematics, and semiotics, among 

other disciplines, which have been receiving special attention in recent years 

across various fields. In this section, we include some ideas that we consider 

of special interest because they have been employed as theoretical 

frameworks in several studies on mathematics education (Campos, 2010; 

Otte, 2006; Sáenz-Ludlow & Kadunz, 2016). 

Pragmatism 

Pragmatism is a philosophical movement that emerged in the United 

States at the end of the 19th century. William James and Charles S. Peirce 

were the main proponents of this doctrine, which is characterized by the 

quest for practical consequences of thought. Pragmatism places the criterion 

of truth in the effectiveness and value of thought in life. For this movement, 

understanding the practical use of a concept is more important than its 

conceptual definition. For pragmatists, the relevance of data arises from the 

interaction between intelligent organisms and the environment, leading to 

the rejection of invariable meanings and absolute truths: ideas, for 

pragmatism, are only provisional and may change based on future 

investigations. By establishing the meaning of things based on their 

consequences, pragmatism is often associated with practicality and utility, 

depending on the context. 

Peirce’s orientation toward pragmatism (who preferred to term his 

position ‘pragmaticism’ to avoid certain interpretations of pragmatism) was 

not the investigation of what signs mean within social life, but how a generic 

individual uses signs to form new ideas and concepts and reach the truth. 

 
A semiotic function is realized when two functions (expression and content) enter into mutual 

correlation. (Eco, 2000, pp. 83-84) 
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“His theory of pragmaticism (that is, the logic of abduction) is the basis of his 

semiotics. For this reason, Peircean semiotics moves close to the realms of 

logic, without being reduced solely to it” (Radford, 2006, p. 9). 

In his work How to Make Your Ideas Clear?, he defends his pragmaticist 

idea of clearly understanding concepts. The pragmatic maxim is a logical 

statement that he proposed as a normative recommendation or regulative 

principle on the optimal way to “achieve clarity in apprehension.” Peirce 

stated the pragmatic maxim in various ways over the years. One that seems 

more comprehensible is the following: 

402. It appears, then, that the rule for attaining the third grade of clearness 

of apprehension is as follows: Consider what effects, that might conceivably 

have practical bearings, we conceive the object of our conception to have. 

Then, our conception of these effects is the whole of our conception of the 

object. (Peirce, 1931-58, CP 5.402) 

According to Burch (2014, p. 8), when Peirce suggests that the complete 

meaning of a conception comprises the entire set of its practical effects, he 

means that a significant conception must have some kind of “effective 

experiential value”, it must somehow be related to some kind of collection of 

possible empirical observations under specifiable conditions. 

The sign notion 

The development of the theory of signs, or semiotics, was fundamental in 

Peirce’s intellectual life, with three stages distinguishable from 1860 to 1910, 

during which the notion of the sign and its different types were progressively 

enriched, although the basic structure of signs and the process of 

signification remained largely the same (Atkin, 2010). 

For Peirce, the world of appearances—the world as we perceive and 

experience it through our senses and immediate experiences—is entirely 

constituted of signs, which refer to qualities, relations, events, states, 

regularities, habits, laws, etc., that have meanings or interpretations. A sign 

is a term in a triad of terms that are indissolubly connected by an essential 
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triadic relation, which Peirce calls the sign relation. In Peirce’s 1897 

definition of a sign: “something that stands in place of something to someone 

in some sense or capacity” (CP 2.228), three basic elements are explicitly 

present: the sign, the object, and the interpretant. 

The sign itself (also called the representamen) is a term that is usually 

used to represent or signify something. The object is what is ordinarily 

understood as the thing meant or represented by the sign, that for which the 

sign is a sign of. The interpretant8 is the understanding we reach of some 

relation between the sign and the object, such as the translation or 

development of the original sign (Atkin, 2010). According to Peirce’s 

definition of the sign relation, the interpretant must itself be a sign, and a 

sign, moreover, of the same object that is (or was) represented by the original 

sign. The interpretant is a second signifier of an object that openly has a 

mental status. However, this second sign must itself have an interpretant, 

which, in turn, is a new, third sign of the original object, and again is one with 

an openly mental status. And so on. Thus, if an object has a sign, then a 

sequence of signs of the same object exists. Therefore, for anything in the 

world of appearances, since it is a sign, an infinite sequence of mental 

interpretants of an object begins. 

Peirce’s pragmatic maxim is interpreted and adopted by the OSA (Section 

3.3) when this framework proposes to conceive the meaning of a 

mathematical concept in terms of the systems of operative and discursive 

practices performed by a person (or institution) to respond to a type of 

problem situations. The OSA also interprets the notion of semiotic function 

from Hjelmslev and articulates this idea with Peirce’s semiotic triad and the 

process of unlimited semiosis. 

 
8 Sáenz-Ludlow and Kadunz (2016, p. 3) represented the triadic sign with the word SIGN (in capital 

letters) to distinguish it from the representamen or sign-vehicle component. They indicate that 

understanding the process of meaning construction involves understanding the active role of the 

interpreting Person in the reconstruction of the real Object of a SIGN, based on the keys and 

indications provided by the sign vehicles, which only indicate certain aspects of the real Object. 
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3.1.5. Language games and forms of life: Language as a tool 

The realistic conception of the meaning of words is based on treating each 

significant word as a name, an idea that informs much of the reflection on 

the philosophy of mathematics and psychology. Mathematical expressions 

such as '0', '-2', √(-1), ‘aleph-null’, or even '+', 'x4', 'ex', are taken as names of 

entities, and the question, what do they mean?, is reduced to what do they 

stand for?. (Baker & Hacker, 1985) 

Wittgenstein (1953; 1956) argued that we should consider words as tools 

and clarify their uses in our language games. For example, numerical words 

are instruments for counting, ordering, and measuring, and the foundations 

of elementary arithmetic, that is, the mastery of the series of natural 

numbers are based on counting training. 

The notions of “language game” and “forms of life” are main concepts in 

Wittgenstein’s philosophy. Since the meaning of words is conceived as their 

use in various contexts, a sense of “language game” must be sought through 

Wittgenstein’s use of the expression. For example, the communicative 

interaction established between master builder A, who requests materials 

from his assistant B, is a language game. The communicative processes 

through which children learn their mother tongue are another example. In 

paragraph 23 of his Philosophical Investigations, Wittgenstein develops this 

idea with new examples: 

23. ... Here the term "language-game" is meant to bring into prominence the 

fact that the speaking of language is part of an activity, or of a form of life. 

Review the multiplicity of language-games in the following examples, and in 

others: 

Giving orders, and obeying them— 

Describing the appearance of an object, or giving its measurements- 

Constructing an object from a description (a drawing)— 

Reporting an event— 
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Speculating about an event— 

Forming and testing a hypothesis— 

Presenting the results of an experiment in tables and diagrams— … 

As Marrades (2014) explains, the expression “form of life” always appears 

in connection with language, more specifically, in particular language games. 

Moreover, in most examples, the notion of a form of life is characterized as a 

mode of acting that underlies the use of language. According to this author, 

recourse to this notion arises in the domain of conceptual language-

understanding problems. Understanding the meaning of an expression 

requires not only appealing to the rules governing its use but also viewing 

that use by reference to a broader existential structure of which the language 

game is a part: 

More specifically, a way of life designates, for Wittgenstein, a factual 

framework of relations between linguistic behavior, non-linguistic behavior 

and situations in the world, within which a language game develops. [...] Life 

forms are always social forms of life, social practices. (Marrades, 2014, p. 

146) 

The constructs, form of life and language game, are incorporated into the 

OSA notion of institution (Section 3.3). The members of an institution or 

community of practice share certain types of problems and specific ways of 

addressing them, as well as habits, norms, material and linguistic resources, 

i.e., members of the institution share forms of life and language games. This 

basic postulate is accepted by any sociocultural approach to knowledge, 

particularly mathematical knowledge. 

In section 3.3, we analyze how the OSA relies on the notions of sign 

function (Hjelmslev) and mathematical practice, operationalizing 

Wittgenstein’s anthropological view of mathematics and its relativity to 

language games and forms of life. Furthermore, the OSA interprets Peirce’s 

semiotic triad in terms of the function or correspondence between two terms, 

antecedent and consequent, connected by a criterion or rule of 
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correspondence. Peirce’s pragmatic maxim is also translated into the OSA in 

terms of systems of operative and discursive practices, used to propose a 

conceptualization of the pragmatic meaning of mathematical objects, as 

opposed to mentalistic or idealistic views of concepts. 

 

3.1.6. Cognitive semiotics 

Cognitive semiotics is an emerging field of research that aims 

…integrating methods and theories developed in the disciplines of cognitive 

science with methods and theories developed in semiotics and the 

humanities, with the ultimate aim of providing new insights into the realm 

of human signification and its manifestation in cultural practices (Zlatev, 

2012, p. 2). 

Cognitive semiotics did not emerge until the mid-1990s, when Daddesio 

(1995) established a project to demonstrate both the feasibility and utility of 

a cognitive approach to semiosis, thus laying the foundation for a cognitive 

theory of symbols. Classical authors such as Piaget (1962) and Vygotsky 

(1962, 1978) have already addressed this issue, but new concepts, research 

methods, and a wealth of data have made it a very fruitful area (Zlatev, 2012, 

p. 4). Paulucci (2021) identified three principles or dimensions underpinning 

cognitive semiotics: 

1) Radical Enactivism. From an enactive standpoint, all cognition, perception, 

or thought results from the interaction of a living organism with its 

environment. From the perspective of cognitive semiotics, this environment 

is not “natural”, but a semiotic environment filled with objects, norms, habits, 

institutions, and artifacts that shape our minds. Another source of enactivism 

is the theory of the embodied basis of thought through the role of metaphors 

(Lakoff & Johnson, 1980; Johnson, 1987). According to these authors, all 

human understanding, including meaning, imagination, and reason, is based 

on schemas of bodily movements and perception. These schemas are 

extended using metaphors, which provide the basis for understanding, 
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thinking, and human communication. Lakoff and Núñez (2000) developed 

and applied these ideas to mathematics. 

2) Pragmatism. Cognition does not serve to construct a true representation of 

the world; rather, it serves as a means of effectively acting in the world. To 

achieve this, it is necessary to construct versions of the world that bring about 

and do not represent it. Meaning is identified through habits and the creation 

of sense. Pragmatism places the criterion of truth in the efficacy and value of 

thought. Therefore, it opposes the philosophy that holds that human concepts 

represent the real meaning of things. For pragmatists, the relevance of data 

arises from the interactions between intelligent organisms and the 

environment. This leads to the rejection of invariable meanings and absolute 

truths: ideas, for pragmatism, are only provisional and can change based on 

future research. 

3) Material Engagement Theory. Material Engagement Theory (MET) 

(Malafouris, 2013) considers the role of technical objects and material 

artifacts as constitutive of cognition. Artifacts are part of the environment 

where some cognitive functions are delegated that would not be possible to 

perform within the biological head or body. Texts, languages, and semiotic 

systems constitute the scaffolding that allows humans to know the world and 

represent the background of our perception of the environment. 

This line of thought posits that the mind is embodied, extended, and 

distributed rather than being tied to the brain or being entirely “in the head”. 

This shift in perspective raises significant questions about the relationship 

between cognition and material culture, posing great challenges for 

philosophy, cognitive science, archeology, and anthropology. Malafouris 

(2013) proposed an interdisciplinary analytical framework to investigate how 

things have become cognitive extensions of the human body. His Material 

Engagement Theory adds materiality—the world of things, artifacts, and 

material signs—to the cognitive equation. 
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3.1.7. Cultural semiotics 

Cultural semiotics examines meaning within the framework of social and 

cultural life. It specifically focuses on the systemic and contextual 

relationships through which meaning is conferred. Lotman (1984/2005; 

1990) was the first to speak of “semiotics of culture”, focusing on the 

systematic cultural circle implicated in every text. Despite starting from 

textual semiotics, he immediately adopted a new perspective: essentially, the 

analysis of texts is subordinate to the identification of cultural processing and 

transmission on a general scale, and each text is a place where many codes 

intersect, forming new relationships and structures. For Lotman, the 

smallest functioning mechanism, the unit of semiosis, is not the language in 

isolation but the entire semiotic space of the culture in question. This space 

he calls the semiosphere: the semiotic space necessary for the existence and 

functioning of languages; in a sense, the semiosphere has a prior existence 

and is in constant interaction with languages. 

The semiosphere is marked by its heterogeneity. The languages which fill up 

the semiotic space are various, and they relate to each other along a spectrum 

which runs from complete mutual translatability to just as complete mutual 

untranslatability. Heterogeneity is defined both by the diversity of elements 

and their different functions. (Lotman, 1990, p. 125) 

Eco (2000) adopted a cultural perspective on semiotics, i.e., semiotics 

whose deep roots and meaning lie in the interrogation and analysis of 

cultural systems.  

In culture every entity can become a semiotic phenomenon. The laws of 

signification are the laws of culture. For this reason, culture allows a 

continuous process of communicative exchanges, in so far as it subsists as a 

system of systems of signification. Culture can be studied completely under 

a semiotic profile. (Eco, 1976, p. 28.) 

For Eco, meaning must be conceived as a cultural unit, always a matter of 

public and intersubjective negotiation. The semiotic universe consists not of 
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signs but of cultural units, entities that absorb and reflect the influence of the 

culture in which they are found. Signs are not the entries in a rigid system of 

content organization (a dictionary) but the nodes of a network of meanings 

that can be traversed in multiple directions according to the inferences and 

interpretative connections chosen: a semiotic universe that takes the form of 

an encyclopedia. 

 

 3.2. Theories of meaning in mathematics education 

Clarifying notions such as meaning and sense is a topic of interest in 

mathematics education and is approached from various perspectives. In this 

section, we briefly describe three semiotic theories specifically oriented 

toward mathematical knowledge: Frege’s logical-semantic theory, 

Vergnaud’s cognitive perspective, and Steinbring’s epistemological 

approach. Frege, a classic author, distinguishes between sense and reference, 

which serves as the starting point for Steinbring’s epistemological triangle, a 

model explicitly developed from a mathematics education standpoint. 

Vergnaud represents theories of meaning from a constructivist psychological 

perspective. These three theories share an interest in connecting the issue of 

the meaning of terms and expressions with the ontological problem 

regarding the nature of mathematical concepts, which is a central issue in 

OSA. In Section 3.6, we analyze some agreements and complementarities 

between these semiotic theories and OSA. 

 

3.2.1. Sense and reference in Frege 

Different triangular models have been proposed to deal with the problem 

of relationships between symbols and meanings. One such model was 

introduced by Frege (1892) in his work On Sense and Reference: 

It is natural, now, to think of there being connected with a sign (name, 

combination of words, letter), besides that to which the sign refers, which 

may be called the referent of the sign, also what I would like to call the sense 



126 Chapter 3. Ontosemiotic theory of meaning and mathematical cognition 

 

 

of the sign, wherein the mode of presentation is contained. (Frege, 1892, p. 

210) 

For instance, let a, b, and c be segments connecting the vertices of a 

triangle to the midpoints of opposite sides. The intersection point of a and b 

is the same as those of b and c (centroid). Hence, we have different 

designations for the same point, and these names (“intersection point of a 

and b” and “intersection point of b and c”) simultaneously indicate the mode 

of presentation; this is why the proposition contains effective knowledge. 

Both expressions have the same reference but differ in sense. 

To each sign corresponds a given sense and to this sense, in turn, a specific 

reference, while a reference (to an object) neither is linked to only one sign, 

nor receives a single sense. The same sense has different expressions in 

different languages, and it may happen that an expression makes sense but 

has not a reference. For example, the expression “the series that converges 

more slowly” possess a meaning but has no reference, since for each 

convergent series, another series that converges more slowly can be found. 

Therefore, by grasping a sense, one is not sure there is a reference. (Frege, 

1892, p. 87) 

Frege argued that it is necessary to distinguish between the reference and 

the sense of a sign regarding the representation associated with them; 

representation is internal for each subject. If the reference of a sign is a 

perceptible object, then its representation is an image derived from 

memories of sensory impressions and activities, both internal and external, 

that one has exercised. Representations are subjective: a representation from 

one person is not another’s. 

The sense of an expression was supposed to consist in the way in which we 

determined its reference: but now it appears that, often, there is no one 

favored way to determine the reference of an expression, but that different 

people may determine it in different ways, and even that what is taken at one 

time as an acceptable means of determining it may later be dropped as not 

agreeing with the others. If so, then what is objective about the employment 
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of an expression, what is shared by all the speakers of the language, is after 

all its reference. (Dummett, 1973, p. 102) 

Initially, the theory of sense and reference was developed for proper 

names: 

The referent of a proper name is the object itself which we designate by its 

means; the conception, which we thereby have, is wholly subjective; in 

between lies the sense, which is indeed no longer subjective like the 

conception, but is yet not the object itself. (Frege, 1892, p. 213) 

Frege further extends the theory of sense and reference to assertoric 

sentences, statements that affirm a judgment as true or false, and to common 

names or concepts. “Every declarative sentence concerned with the referents 

of its words is therefore to be regarded as a proper name, and its referent, if 

it exists, is either the true or the false” (Frege, 1892, p. 216). 

Frege distinguishes between object and concept. The notion of concept in 

logic, which is the point of view that interests Frege, is closely related to that 

of function, for which he proposes the definition, “A function of x was taken 

to be a mathematical expression containing x, a formula containing the letter 

x” (Frege, 1891, p. 138). 

Concerning the notion of an object, Frege asserts, “An object is anything 

that is not a function, so that an expression for it does not contain any empty 

place” (Frege, 1891, p. 147). 

The Frege’s logical-semantic model distinguishes whether a sign refers to 

an object or to a concept, under a certain modality or meaning (sign, sense, 

reference). This is a first step in acknowledging that a concept admits a 

plurality of possible interpretations, uses, or partial meanings. There is only 

one object/concept, but this object can be seen from different perspectives; 

for example, the centroid can be linked to the medians a, b of a triangle or to 

b and c. 

While Frege’s philosophy of mathematics is undoubtedly realist-Platonist 

in assuming that a mathematical object has its own independent existence, 
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his theory of the sense and reference of signs, words, and expressions opens 

a window to the relativism of psychological and anthropological positions. A 

word designates or refers to an object or concept, but it is always 

accompanied by a thought, sense, or specific way of seeing the object or 

concept in the context in which communication occurs. These senses are 

considered inter-subjectively and, consequently, raise the problem of 

identifying and characterizing the possible universe of senses attributable to 

the object. 

 

3.2.2. The conceptual triplet by Vergnaud 

Vergnaud (1982) considers that it is a scientific challenge to promote the 

study of learning and teaching mathematics as a specific well-defined field, 

not reducible to mathematics, psychology, linguistics, sociology, or other 

sciences. This requires the analysis of different mathematical contents in 

their specificity, and the empirical study of their teaching and learning, 

considering both the long-term growth of knowledge in children and 

adolescents and the short-term change in conceptions in the face of new 

situations they encounter. To this end, he developed the theory of conceptual 

fields in which he proposes a definition of concepts that is useful for studying 

the evolutionary development of mathematical knowledge. He believed that 

a concept cannot be reduced to its definition, at least if one is interested in its 

learning and teaching (Vergnaud, 1990, p. 133). 

Through the situations and problems resolved, a concept acquires 

meaning for the child. Vergnaud’s study of the development and functioning 

of a concept, in learning or during its use, leads him to consider it necessary 

to distinguish three planes or components, the triplet (S, I, G), as constituents 

of a concept C, where: 

S: set of situations that give meaning to the concept (reference). 

I: set of invariants on which the operability of the schemes rests 

(meaning). 
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G: set of linguistic and non-linguistic forms that symbolically represent 

the concept, its properties, situations, and processing procedures (signifier). 

In general, there is no bijection between signifier and meaning, nor 

between invariant and situation. Therefore, one cannot reduce meaning 

either to the signifier or to the situation. The notion of sense is understood as 

a relationship of the subject to situations and the signifier. “More precisely, 

the schemes evoked by the individual subject in a situation or by a signifier 

are what constitute the subject’s meaning of this situation or signifier” 

(Vergnaud, 1990, p. 158) 

For example, the sense of addition for a subject is the set of schemes that 

can be put into action to deal with the situations that the subject comes to 

confront, which involve the idea of addition; it is also the set of schemes that 

can be deployed to operate on the symbols (numeric, algebraic, graphic, or 

linguistic) that represent addition. 

Vergnaud (1982; 1990) goes beyond Frege in problematizing the 

mathematical concept by addressing the problem of learning and teaching: 

the concept itself is a complex and systemic entity formed by the interaction 

between three types of objects: systems of representation, problematic 

situations, and operative invariants. 

 

3.2.3. The epistemological triangle 

Steinbring (1997; 2006) interprets Frege’s triangle and the triangle 

proposed by Ogden and Richards (1923), adopting an epistemological 

perspective aimed at understanding the processes of interpretation, 

communication, and meaning construction that occur in mathematics 

education. The epistemological triangle he proposes includes three elements 

(Figure 3.1): the sign or symbol, the object or context of reference, and the 

concept. The latter is understood as an ideal or abstract mathematical 

concept. 
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Figure 3.1. Epistemological triangle (Steinbring, 2006, p. 135) 

Through the epistemological triangle, a semiotic (representational) 

mediation is modeled, where the links between the vertices of the 

epistemological triangle are not explicitly and invariably defined but form a 

balanced system in which they mutually support each other. In the ongoing 

development of knowledge, interpretations of sign systems and their 

accompanying reference contexts will change (Steinbring, 1997, p. 52). 

Steinbring attributes these two functions to mathematical signs: 

(1) A semiotic function: the role of the mathematical sign as “something 

which stands for something else”. 

(2) An epistemological function: the role of the mathematical sign in the 

frame of the epistemological constitution of mathematical knowledge. 

(Steinbring, 2006, p. 134) 

To understand Steinbring’s semiotic-epistemological model of 

mathematical knowledge, it is necessary to clarify the nature of the vertices 

of the triangle. It is assumed that “The true mathematical object, that is the 

mathematical concept, may not be identified with its representations” 

(Steinbring, 2006, p. 137). However, what mathematical concepts are? What 

are the objects/contexts of reference? 

The application of the epistemological triangle to the concept of 

probability (Figure 3.2) allows us to understand the characteristics of this 

theoretical model of mathematical knowledge. 



Juan D. Godino 131 

 

 

Figure 3.2. Application of the epistemological triangle to the concept of 

probability (Steinbring, 1997, p. 53) 

Various expressions are included in the sign/symbol category (fractional 

number, relative frequency, axioms). Within the category of objects/context 

of reference, problematic situations where probability is applied are 

included, such as determining whether a die is biased (ideal), collecting data 

sets to determine probability, and calculating probabilities in configurations 

of independent events. The concept category includes various meanings or 

senses of probability: classical probability, frequency-based probability, and 

axiomatic probability. 

Thus, although not explicitly mentioned, the concept of probability is 

assumed to have different meanings depending on the contexts or problem 

situations in which it intervenes, and such situations and meanings involve 

different systems of representation. The mention of axiomatic probability 

(Figure 3.2) is very vague. It possibly refers to the symbolic expression of 

axioms because the axioms themselves are not representations but 

properties of probability that link it to other mathematical objects, such as 

the union or intersection of events. 

The epistemological triangle is a model for making the invisible 

mathematical knowledge accessible with regard to its structural character, 

for describing its particularities and also for analyzing interactive processes 
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of constructing mathematical knowledge – thus invisible relations that are 

embodied in exemplary contexts and activities. (Steinbring, 2006, p. 144) 

Steinbring’s epistemological triangle implicitly suggests that the concept, 

the sign/symbols of reference, and the objects/configuration of reference 

include a variety of general structures (various constructions of probability, 

natural number, etc.). The reciprocal relationships of conceptual structures 

with systems of representation and the different contexts and situations of 

use must be considered to organize and explain the generation of 

mathematical knowledge (i.e., the epistemology of the concept). This model 

adopts a systemic perspective for the structures of concepts, systems of 

symbols and contexts. While Frege attributes multiple senses to 

mathematical concepts, Steinbring relates them to diverse symbolic systems 

and contexts. 

 

3.3. The ontosemiotic theory of meaning 

Within the OSA framework, meaning and its relationship with the notions 

of practice and object play a central role. A practice is “any action or 

manifestation (linguistic or otherwise) carried out by somebody to solve 

mathematical problems, to communicate the solution to other people, so as 

to validate and generalize that solution to other contexts and problems” 

(Godino & Batanero, 1998, p. 182). 

In our conception, it is the fact that certain types of practices are performed 

within certain institutions, which determines the progressive emergence of 

"mathematical objects" and that the "meaning" of these objects is intimately 

linked to the problems and activity carried out for their resolution, not being 

able to reduce the meaning of the object to its mere mathematical definition. 

(Godino & Batanero, 1994, p. 331) 

Although the initial OSA aimed to develop a theoretical model that 

addressed the issue of the meaning of mathematical concepts, in successive 

developments, this aim was expanded and applied to any type of object 
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involved in mathematical practices. The epistemological, cognitive, and 

instructional problems that mathematics education must address should 

first tackle the ontological problem, i.e., clarifying the nature and types of 

mathematical objects whose teaching and learning are intended. 

In a preliminary approach, meaning is what a word, symbol, or any other 

form of expression refers to and is emitted by a person in a communicative 

act with another person or with oneself in a specific context. However, with 

words and symbols, things are not only mentioned or represented but also 

performed; that is, they are involved in operative practices. With words and 

symbols, operations and calculations are performed to produce new objects. 

For example, with the numerical symbols 2, 3, and the word ‘sum’, following 

certain agreed rules, the result 5 is produced, as well as a new mathematical 

object, the proposition that 2 + 3 equals 5, which is accepted as true. 

Thus, the following question arises: what role, in addition to 

representation, does a word, symbol, or expression play in a specific 

operative practice? This is a central problem that must be addressed by a 

holistic theory of meaning that considers both referential and operational use 

to respond to the meaning of expressions, which refer to concepts (ideal, 

abstract objects) and any other type of object or do not refer to any object at 

all. 

In this section, the use of meaning in OSA and its relationship with the 

notions of practice and mathematical objects are explained. We contextualize 

the explanation with an example of a demonstration of the elementary 

arithmetic proposition 2 + 3 = 5 in Figure 3.3. We accept that practices 1) to 

7) are carried out by an epistemic subject who shares the language game and 

the form of life of people who know Peano’s axiomatic. 
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Proposition: 2+3=5 
Demonstration: 

1) The symbols, 2, 3, and 5 represent natural numbers. 

2) The natural numbers are a set of symbols satisfying Peano's axioms. In 

particular, there is a first element, 1, and a following (successor) function, 

s:N→N, injective, is defined. In such a set, the sum + is defined recursively 

as follows: n+1=s(n); n+s(m)=s(n+m). 

3) In the sequence, 2 is the successor of 1, 2=s(1)=1+1, 3 is the successor of 2, 

3=s(2)=2+1, and 5 is the successor of 4, which is the next to 3, 

5=s(4)=s(s(s(3)). 

4) Sign = indicates the equivalence of two expressions. 

5) The expression 2+3 represents the sum of the natural numbers 2 and 3. 

6) Considering the definition of the sum of natural numbers and successors, 

we obtain the following:  

2+3=2+s(2) = s(2+2)=s(2+s(1))=s(s(2+1))=s(s(3))=s(4)=5. 

7) Therefore, the expressions 2+3 and 5 are equivalent. 

 

Figure 3.3. Demonstration of the elementary arithmetic proposition 

(2+3=5) 

 

3.3.1. Practices, objects, and meanings 

In the statement of the proposition, 2 + 3 = 5, the symbols 2, 3, and 5 refer 

to the natural numbers 2, 3, and 5, respectively; + refers to the arithmetic 

operation of addition, and the symbol = means that the result of adding 2 and 

3 matches the number 5. By interpreting these symbols, we follow rules 

agreed upon in mathematical culture. Thus, if we understand the numbers 

and symbols for addition and equality in that way, we must necessarily accept 

that “two plus three equal five”. 

From a conceptualist-idealist perspective of mathematics, in the 

expression 2 + 3 = 5, besides the visible or audible material signs or objects, 

other non-visible immaterial objects, usually considered as concepts, are 

involved. In this case, these are the concepts of numbers 2, 3, and 5, addition, 
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and equality. To understand the justification for the truth of proposition 2 + 

3 = 5, it is necessary to explain what is meant by a natural number, in 

particular, the concepts of 2, 3, 5, addition, and equality, or equivalently, 

what meaning should be attributed to these concepts. 

To avoid the idealist trap of Platonism, as warned by Wittgenstein, OSA 

assumes a pragmatist interpretation of such entities when discussing 

concepts and the meaning of concepts (or any type of mathematical object). 

For this purpose, Godino and Batanero (1994, p. 341) introduced the 

following definitions of meaning: 

DEFINITION 8: The meaning of an institutional object OI is the system of 

institutional practices linked to the problem field from which OI emerges at 

a given time. 

DEFINITION 9: The meaning of a personal object Op is the system of 

personal practices that a person p carries out to solve the problem field from 

which the object Op emerges at any given time. 

The example of proposition 2 + 3 = 5 clarifies the scope of definitions 8 

and 9 and, therefore, the OSA pragmatic assumptions. The statement O: 2 + 

3 = 5 is a propositional mathematical object that requires justification within 

the specific language game of Peano’s axiomatic system. Faced with the 

problem situation of demonstrating O, the epistemic subject who solves the 

problem responds to the question, “what does O mean”? In OSA, the 

pragmatic meaning of O is the system of practices 1) to 7). The problem can 

be posed to a student who will likely provide a different response. The 

pragmatic meaning of O for students (personal meaning) refers to the system 

of operative and discursive practices performed to verify the truth of the 

proposition. 

Practices 1) to 7) (Figure 3.3) together constitute the argument that 

justifies proposition 2 + 3 = 5, in which, besides linguistic and conceptual 

entities, a procedural entity is involved: the technique of recursively applying 

the definition of the sum of natural numbers. Through discursive and 
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operative practices, rules that fix the meaning of concepts and procedures are 

evoked, concluding with normative-discursive practice 7): Therefore, 

expressions 2 + 3 and 5 are equivalent. 

In mathematical activity, concepts, propositions, and procedures can 

participate as unitary entities, described through a definition or statement 

that fixes the rule of use of such an object: for example, the definition of a 

natural number given in practice 2) of the demonstration (Figure 3.3). 

However, we know that other definitions of natural numbers can be found 

using different axiomatic systems or depending on different contexts or 

institutional frameworks in which the numbers are used. Each of these 

definitions engages different operative and discursive practices involving 

other objects and thus implies a different pragmatic meaning. 

As described in Chapter 2, the term “object” is used broadly to refer to any 

entity that intervenes in mathematical practice and can be identified as a 

unit. The use of the term object is metaphorical because mathematical 

concepts are usually conceived as an ideal or abstract entity, not as something 

tangible, like a stone, a drawing, or a manipulative. This general idea of an 

object, consistent with symbolic interactionism (Blumer, 1969; Cobb & 

Bauersfeld, 1995), is useful when considering a typology of mathematical 

objects, considering their different roles and nature in mathematical activity. 

Symbols, external material representations, and manipulatives are 

involved in school and professional mathematical activity and are considered 

mathematical objects because they are used in mathematical practices. The 

concepts of number, fraction, derivative, etc., are mathematical objects with 

a nature and function that differ from ostensive representations; they are 

non-ostensive, mental objects (when involved in personal or individual 

practices) or institutional objects (when involved in shared sociocultural 

practices). In both cases, they regulate mathematical activity, whereas their 

ostensive representations support or facilitate the performance of that 

activity. 
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Each type of object can be considered from different perspectives (see 

Figure 3.4)9. An object can be considered from a personal (individual subject) 

or institutional (social, shared) perspective and thus has a dual nature: 

mental/cognitive and cultural/epistemic. The personal-institutional duality 

applies to practices, objects, and meanings, allowing us to describe semiosis 

processes (expression-content duality) from cognitive and cultural 

perspectives. 

 

 

Figure 3.4. Objects and processes involved in mathematical practices 

(Font et al., 2013, p. 117) 

 
9 Complementary version of the ontosemiotic configuration described in Chapter 2. 
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There are no objects without practices nor practices without objects. 

Concepts, propositions, and procedures, in their unitary versions, are 

understood, as Wittgenstein proposes, as grammatical rules of the languages 

used in operative and discursive practices to describe our worlds and act 

upon the problem situations they present to us. Additionally, from OSA, 

mathematical objects are viewed from a systemic perspective, identifying and 

articulating their various partial meanings. Similarly, when semiotic analysis 

is conducted on the individual subjects’ practices when facing problems 

involving a specific object (numbers, probability, etc.), various personal 

meanings can be identified. 

 

3.3.2. Use and intentionality of practices 

In operational theories of meaning, words, symbols, and expressions do 

not necessarily refer to or stand in place of other things but are used to do 

something with them. For example, numerals are instruments for counting, 

ordering, and measuring, and statements about numbers play the role of 

rules for the use of such words. According to this, 2+3=5 is not a property 

that establishes a relation between conceptual entities, as it could happen 

with the expression “lions are carnivores”, but it is a rule about how the 

symbols 2, 3, 5, +, and = should be used; that is, whenever you have the 

expression 2+3, you can substitute it with 5, and vice versa. 

The justification of mathematical propositions is accomplished through a 

sequence of operative and discursive practices (such as those shown in Figure 

3.3) that have a determined intentionality. Each elementary practice 

performed to solve a problem, which may be intra-mathematical, such as the 

demonstration that 2+3=5 or involving an extra-mathematical context, plays 

a role in the solution process. Table 3.1 summarizes the 

operational/pragmatist use or meaning of the practices required to 

demonstrate proposition 2+3=5 (Figure 3.3). 
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Table 3.1. Use and intentionality of practices to demonstrate 2+3=5 

Sequence of elementary practices  Use / intentionality 
1) The symbols, 2, 3, and 5 represent natural 

numbers. 
To attribute meaning to symbols 
2, 3, and 5 as natural numbers. 

2) The natural numbers are a set of symbols 
satisfying Peano's axioms. In particular, 
there is a first element, 1, and a following 
(successor) function, s:N→N, injective, is 
defined. In such a set, the sum + is defined 
recursively as follows: n+1=s(n); 
n+s(m)=s(n+m) 

To evoke the rules that define 
natural numbers and their sum 
in the framework of a specific 
axiomatic theory. 

3) In the sequence, 2 is the successor of 1, 
2=s(1)=1+1, 3 is the successor of 2, 
3=s(2)=2+1, and 5 is the successor of 4, 
which is the next to 3, 5=s(4)=s(s(s(3)). 

To interpret the meanings of 
symbols 2, 3, and 5 in Peano’s 
axiomatic theory of natural 
numbers. 

4) Sign = indicates the equivalence of two 
expressions.  

To evoke the meaning of equality 
of natural numbers as the 
equivalence of two expressions. 

5) The expression 2+3 represents the sum of 
the natural numbers 2 and 3. 

To interpret the meaning of + as 
the sum of natural numbers. 

6) Considering the definition of the sum of 
natural numbers and successors, we 
obtain the following: 
2+3=2+s(2)=s(2+2)=s(2+s(1))=s(s(2+1))
=s(s(3))=s(4)=5. 

Apply the rules that define the 
following function (successor) 
and sum of natural numbers. 

7) Therefore, the expressions 2+3 and 5 are 
equivalent. 

 

Fix the new rule of use of 
numerical symbols (to state the 
truth of the proposition). 

 

3.3.3. Meaning and semiotic function 

Between symbol 2 and the concept of number 2, as well as between the 

concept of natural number and the system of operative and discursive 

practices from which this mathematical object emerges, a relationship is 

established that OSA calls a semiotic function (Section 3.1.3). The semiotic 

function is understood as the correspondence between an antecedent object 

(expression/signifier) and a consequent object (content/meaning) 

established by a subject (person or institution) according to a criterion or rule 

of correspondence. This notion is intended to include any use given to 

meaning, meaning is the content of a semiotic function. 
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Each elementary practice that constitutes the text of the demonstration of 

proposition 2+3=5 (Figure 3.3) has a function or role in the argumentative 

process, and this role can be assigned as the operational meaning of the 

practices (Table 3.1). However, in the realization of each practice and in the 

conjunction of all or part of them, a network of objects is involved (Table 3.2), 

whose identification is necessary to understand and manage teaching and 

learning processes. 

Table 3.2. Objects involved in the practices to demonstrate 2+3=5 

Sequence of elementary practices  Intervening objects 
1) The symbols, 2, 3, and 5 represent natural 

numbers. 

Languages: symbolic; natural. 
Concepts: natural numbers. 

2) The natural numbers are a set of symbols 
satisfying Peano's axioms. In particular, 
there is a first element, 1, and a following 
(successor) function, s:N→N, injective, is 
defined. In such a set, the sum + is defined 
recursively as follows: n+1=s(n); 
n+s(m)=s(n+m) 

Language: natural, symbolic. 
Concepts: natural number; set of 
symbols; injective following 
function, first element; successor; 
sum.  
Propositions: Peano's axioms. 

3) In the sequence, 2 is the successor of 1, 
2=s(1)=1+1, 3 is the successor of 2, 
3=s(2)=2+1, and 5 is the successor of 4, 
which is the next to 3, 5=s(4)=s(s(s(3)). 

Languages: natural; symbolic. 
Concepts: sequence; successor, 
sum. 
Proposition: 2 is the successor of 1; 
3, the successor of 2 and 5 is the 
successor of the successor of 3. 
Arguments: convention based on 
the properties of the following 
function. 

4) Sign = indicates the equivalence of two 
expressions.  

Languages: symbolic; natural. 
Concepts: equivalence of 
expressions; equality. 

5) The expression 2+3 represents the sum of 
the natural numbers 2 and 3. 

Languages: natural and symbolic. 
Concepts: addition of natural 
numbers. 

6) Considering the definition of the sum of 
natural numbers and successors, we 
obtain the following: 
2+3=2+s(2)=s(2+2)=s(2+s(1))=s(s(2+1))
=s(s(3))=s(4)=5. 

Languages: natural and symbolic. 
Proposition: 2+3= 5. 
Procedure: addition and successor 
operations. 
Argument: deductive, which is 
based on the definition of the sum 
of natural numbers and the 
following function. 

7) Therefore, the expressions 2+3 and 5 are 
equivalent. 

 

Languages: natural and symbolic 
Proposition: statement of practice 
7). 
Rationale: deductive sequence of 
practices 1) to 6). 
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The semiotic function can be viewed as an interpretation of the Peircean 

sign. 

A representation is that character of a thing by virtue of which, for the 

production of a certain mental effect, it may stand in place of another thing. 

The thing having this character I term a representamen, the mental effect, or 

thought, its interpretant, the thing for which it stands, its object. 

(Peirce, 1931-58, CP 1.564) 

In OSA, the Peircean interpreter is conceived as the rule (habit, norm) of 

correspondence between the representamen and the object, established by a 

person or within an institution, in the corresponding interpretative act 

(personal or institutional meanings). When, for example, in practice 1) it is 

stated that 2 refers to the “concept of natural number two” (Figure 3.3), we 

follow a convention (habit, rule) that is learned in the community of school 

mathematical practices. Between sign 2 and concept two, there is an 

interpreter that is nothing more than a cultural convention followed by the 

subject performing the interpretation. 

Furthermore, in OSA, it is assumed that every entity that participates in a 

process of semiosis, interpretation, or a language game is an object that can 

play the role of an expression (signifier), content (signified), or interpreter 

(rule that relates expression and content). The systems of operative and 

discursive practices themselves are objects that can be components of the 

semiotic function. Thus, any use that can be made of the word meaning is 

modeled. 

The pragmatist/anthropological semiotics assumed by OSA presupposes 

that the objects that are put into correspondence in semiotic functions 

(functives) are not only ostensive linguistic objects (words, symbols, 

expressions, diagrams etc.), but that concepts, propositions, procedures, 

arguments, and even problem situations can also be antecedents of semiotic 

functions. It makes sense and is necessary to ask about the meaning of the 
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concept of number, as well as the meaning of propositions, procedures, 

arguments, situations, and representations involved in numerical practices. 

The functives in the semiotic function can also be unitary or systemic entities, 

particular or general, material or immaterial, personal or institutional. Thus, 

a variety of meanings are generated that orient and support the realization of 

ontosemiotic analyses of mathematical activity at the macro and micro levels, 

both from epistemic (institutional) and cognitive (personal) perspectives 

(Font et al., 2013). 

 

3.3.4. Relativity of practices, objects, and meanings 

In OSA, mathematical practices are assumed to occur in an ecological 

background (material, biological, and social), which determines the 

institutional, personal, and contextual relativity of practices, objects, and 

meanings regarding language games and form of life (Wittgenstein, 1953). 

Therefore, a sociocultural perspective on semiosis is assumed in which the 

social, cultural, and historical dimensions of signs are emphasized. “In these 

perspectives, signs are understood not as artifacts to which an individual 

resorts to represent or present knowledge, but as artifacts of communication 

and signification” (Presmeg et al., 2018, p. 4). 

In the example described above (Figure 3.3), the context of modular 

arithmetic changes the meaning of 2+3, just as the meaning of the concept of 

natural numbers is changed by changing the axiomatics, or the set 

construction of numbers is adopted. The meaning of numbers is different in 

different communities of practice formed by different cultural groups or at 

different historical moments. 

An aim of didactic-mathematical analysis should be to characterize the 

various meanings of objects and their interrelationships, constructing a 

global meaning that serves as a reference for the analysis of mathematical 

instructional processes. This is the first level of ontosemiotic analysis of 

mathematical activity through which one becomes aware of the plurality and 
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relativity of the meanings of mathematical objects. The first level involves 

identifying, classifying, and describing the problem situations in which the 

object in question intervenes, as well as the mathematical practices through 

which answers are given to these problems. 

The social, material, and biological context (ecological background), which 

sustains and conditions mathematical activity, implies the relativity of 

practices, objects, and meanings. Both practices and objects can be viewed 

from different polarities. Such practices are relative to different institutional 

(historical-cultural) frameworks and contexts of object use. 

For education in general and mathematics education in particular, a 

holistic theory of meaning that includes the personal-institutional duality for 

meanings is needed. Both cognitive semiotics and epistemic/cultural 

semiotics are required: meanings are established between individual persons 

in discursive and operative practices; but also, between a person and the 

cultural knowledge whose learning is intended. In mathematical culture, 

terms, symbols, concepts, etc., have a crystallized, socially shared meaning, 

formed through historical cultural processes. This meaning results from 

multiple discursive and operative practices between individual subjects, 

which are mediated by different languages and artifacts. This approach is 

consistent with the cultural semiotics proposed by Radford (2006) for the 

meaning of mathematical concepts: “mathematical objects are conceptual 

forms of historically, socially, and culturally embodied, reflective, mediated 

activity”. (Radford, 2006, p. 59) 

From the perspective of education, meanings should not be reduced to 

mental or cultural objects; it is necessary to attribute them a dual personal 

and institutional nature to account for the dialectical relationship established 

between them in teaching and learning processes. 
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3.4. An ontosemiotic approach to mathematical 

cognition 

The starting point of OSA was the need to clarify the meaning of 

mathematical objects from the personal (individual cognition) and 

institutional (objective, cultural cognition) point of view (Godino & Batanero, 

1994; 1998). In other words, it has been a concern to understand the origin 

and nature of mathematical knowledge from a semiotic perspective, the role 

of signs and languages in mathematical activity, emerging objects, and the 

relationships between them. This approach belongs to cognitive semiotics 

(Zlatev, 2012; Paulucci, 2021) and cultural semiotics (Eco, 1976; Lotman, 

1990). 

 

3.4.1. Knowledge and understanding 

As seen in Godino and Batanero (1994), the anthropological and 

pragmatist theory of mathematical practices, objects, and meanings is used 

to propose a way of understanding what it means to know/understand an 

object in terms of the coupling of meanings. 

Definition 10: Meaning of an institutional object OI for a subject p from the 

perspective of institution I: It is the subsystem of personal practices associated 

with a field of problems that is considered appropriate for solving those 

problems in institution I. 

Consequently, from the same field of problems C that in an institution I have 

given rise to an object OI with meaning S(OI), a person can give rise to an 

object Op with personal meaning S(Op). The intersection of these two systems 

of practices is what, from the perspective of the institution, are considered 

correct manifestations, that is, what the person "knows" or "understands" 

about the object OI from the perspective of I. The remaining personal practices 

will be considered "erroneous" from the institutional perspective. (Godino & 

Batanero, 1994, p. 342) 
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In an ideal situation and within an institution, we say that subjects 

“understand” the meaning of the object OI—or that they have “grasped the 

meaning” of a concept—if they can recognize its properties, justify them with 

valid arguments, use the characteristic representations, relate it to other 

mathematical objects, and use this object in all the variety of prototypical 

problem situations within the corresponding institution. The understanding 

achieved by a subject is unlikely to be complete or null; rather, it 

encompasses partial aspects of various components and levels of abstraction. 

In summary, the mathematical cognition model proposed by OSA includes 

the following dimensions: 

1) Personal and institutional dimension: If we accept the pragmatic and 

relativistic conception of mathematics underlying OSA, a theory of 

mathematical understanding that is useful and effective in explaining 

teaching and learning phenomena must recognize the dialectical 

duality between the personal and institutional facets of cognition. 

Because each person is born into a family and develops into a member 

of different institutions and cultural contexts, the psychological 

processes involved in cognition, including linguistic and conceptual 

objects, are mediated by institutional meanings, that is, by problem 

situations, semiotic instruments, habits, and shared conventions. The 

notion of personal cognition of a concept derived from OSA is the 

construction or appropriation of the institutional meaning of that 

object. Therefore, understanding is no longer a mental process; it is 

now a social and interactive process. It cannot be reduced merely to a 

mental experience; rather, it involves the whole sphere of the 

individual. Understanding “is the way we are meaningfully situated in 

our world through our bodily interactions, our cultural institutions, 

our linguistic tradition and our cultural context”. (Johnson, 1987, p. 

102) 
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2) Human action and intentionality: The OSA cognition model is based 

on the notion of meaningful prototypical practice, which is defined as 

individuals’ actions in their attempts to solve a class of problem 

situations to which they recognize or attribute a purpose (a “why”). 

These practices are situated expressive forms that involve a problem 

situation, an institutional context, a person, and the semiotic 

instruments that mediate the action. Since mathematical objects are 

conceived as emerging from systems of meaningful prototypical 

practices, understanding the object (in an integral or systemic sense) 

also requires that the subject identifies a purpose in the object—an 

intentionality (Maier, 1992) as the basis of understanding. 

3) Systemic and dynamic character: Since we conceive the “systemic 

meaning of an object” as an entity composed of elements and relative 

to institutional contexts, the knowledge and understanding of a 

concept by a subject, at a time and under given circumstances, will 

imply the appropriation of the different elements that make up the 

corresponding institutional meanings. This includes justification 

through valid reasoning of propositions. Recognizing the systemic 

complexity of an object’s meaning also implies that its appropriation 

by the subject is a dynamic, progressive, and non-linear process (Pirie 

& Kieren, 1994), because of the different domains of experience and 

institutional contexts in which they participate. 

4) Practical and discursive dimensions: The practical component 

(praxis) is linked to mathematical competence and, therefore, mastery 

of problem-solving techniques. The discursive/relational component is 

connected to the idea of understanding and is formed by a system of 

rules and justifications, including arguments, definitions of concepts, 

and properties on which they are based. Both components rely on the 

use of linguistic resources and material artifacts; thus, mathematical 
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language (in its various registers) constitutes a third component, 

without which the previous ones cannot develop. Knowledge, 

understanding, and competence are closely linked and consist of 

different elements. They depend on the institution (historical-cultural 

context) from which they are developed and evaluated. 

The semiotic function construct considers the referential dimension 

characteristic of realist theories of meaning and can be related to the 

processes of understanding knowledge, which are understood primarily as 

the connection between objects. It considers the pragmatic dimension, 

meaning as use, as a system of practices, which implies incorporating the 

competency component of knowledge, i.e., knowing how to act efficiently in 

certain situations. The variety of meanings accounts for the variety of ways 

of understanding and acting of the subject involved in discursive and 

operative activity. Thus, the ontosemiotic theory of meaning fits within the 

perspectives of cognitive semiotics (Zlatev, 2012; Paolucci, 2021). The theory 

of cognition based on OSA is not limited to the interpretation of signs 

(semiotics), as it also proposes an ontology for mathematics, a furnishing of 

the world (Bunge, 2011) intertwined with ostensive and non-ostensive 

systems of signs. Personal meanings account for individual cognition 

(including beliefs and affects), while institutional meanings account for 

institutional cognition (historical-cultural knowledge). 

In OSA, cognition is essentially related to the ability to act and solve 

problems. However, this does not imply rejecting the representational 

dimension in mathematical cognition processes. Discursive practices refer to 

a world of objects that necessarily accompany operative practices, actions 

that effectively change the world and simultaneously understand it. The 

modality of personal cognition postulated by OSA is of an enactive nature 

(Lakoff & Núñez, 2000): 
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From an enactive point of view, every cognition, perception, or thought is the 

result of a living body engaging in its own environment. However, from a 

cognitive semiotics’ point of view, this environment is not a “natural” one, 

but a semiotic environment crowded with objects, norms, habits, 

institutions, and artefacts that shape our minds. (Paolucci, 2021, p. 10) 

 

3.4.2. Knowledge and beliefs 

We present below our view of the theoretical problem of characterizing the 

construct belief and its relationship with knowledge, although no consensus 

exists on this issue, as has been showed by various studies on the subject 

(Pajares, 1992; Leder et al., 2002). 

Since the belief of subject X about an object O is a mental construct, OSA 

interprets it in terms of cognitive configuration, i.e., as a system of personal 

practices (what X does and says) to solve the type of problem situations in 

which O intervenes, together with the objects and processes that accompany 

the practices. If O is a proposition, a statement that can be qualified as true 

or false and the subject can elaborate a valid justification in the 

corresponding institutional framework, then X’s belief about O is knowledge. 

Qualifying a belief as knowledge requires judgments to be true in a frame of 

reference and to be validly justified. 

Beliefs may be based on personal experience, tradition, or authority, 

whereas knowledge is a judgment whose truth or certainty is established by 

valid evidence or arguments within the mathematical community. To declare 

a judgment or assertion as knowledge, it is therefore necessary to provide a 

valid justification for its truthfulness. Examples: 

1) “Two apples plus three apples make five apples”. This statement 

expresses true empirical knowledge. If we take two apples and add three 

more, we can prove that the set formed by the apples is five apples. This is an 

empirical argumentation because the proposition involves perceptible 
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objects. The proposition is true because it corresponds to empirical reality; it 

is factual truth. 

2) "2+3 = 5". This proposition expresses true mathematical formal 

knowledge. In fact, 2 refers to the second position in the natural numerical 

series; the symbol +3 means that three more positions must be counted. This 

is a rational argumentation, a logical consequence, based on the previously 

agreed meanings of symbols 2, +, 3, and 5. The proposition is true because it 

is based on the coherence of the argumentation from the previous 

mathematical postulates and knowledge; it is a truth of reason. 

3) “Peter believes that the earth is flat”. This statement contains two 

empirical propositions. One is that “the earth is flat”, the other is that “Peter 

believes (that the earth is flat)”. The first proposition is false. By applying 

observation and scientific reasoning to analyze and evaluate information, it 

is possible to argue that this statement does not correspond to reality. Peter’s 

belief can be true if it is proven that he indeed thinks in that way; he can even 

justify his proposition using personal arguments. Judged from an 

institutional point of view (scientific community), the personal knowledge of 

Peter would be false. 

OSA assumes the need to use different theories of truth (Habermas, 2002; 

Nicolás & Frápolis, 1997), considering the diversity of mathematical and 

didactic knowledge and the different institutional contexts in which 

educational-instructional activity occurs. The theory of truth as coherence is 

relevant when dealing with formal mathematical knowledge. However, no 

single method exists to develop or justify a mathematical proposition. At 

early educational levels, learning arithmetic, for example, may require 

children to work with concrete numbers and construct knowledge of 

numbers through empirical arguments. In this case, the truth of the 

propositions is established in correspondence with reality. Likewise, the 

results of didactic experimentation involve empirical objects and processes, 

so conjectures are validated in terms of truth as correspondence with facts 
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and results. We also consider the discursive and consensual theory of truth 

(Habermas, 1997) when developing criteria for didactic suitability (Chapter 

5). The criteria are derived from OSA ontological, epistemological and 

semiotic assumptions and usually constitute shared and rationally justified 

value judgements within mathematics education. 

 

3.5. Educational mathematics as an ecology of meanings 

Toulmin (1977) introduced the expression intellectual ecology in the 

epistemology of knowledge to describe the questions of function and the 

adaptation of concepts and methods of thought to the real needs and 

demands of problematic situations. Morin (1992) considered the belief in the 

physical reality of ideas as inadequate as the denial of a kind of reality and 

objective existence to the habitat, life, customs, and organization of ideas. For 

Morin, ideas (and therefore mathematical notions), besides constituting 

instruments of knowledge, have their own characteristic existence. White 

(1983) stated that within the framework of mathematical culture, actions and 

reactions occur between different elements. "One concept reacts on others; 

ideas mix, merge, form new syntheses" (White, 1983, p. 274). 

Ecological metaphors about ideas are useful for analyzing the 

relationships between school and expert mathematics. To describe the 

processes of selection and elaboration of school mathematics, these 

relationships are often subordinate, which is why the metaphors of didactic 

transposition, elementarization, and transformation are used (Scheiner et 

al., 2022). In OSA, the metaphor of the ecology of meanings is proposed to 

describe these processes and the relationships between different types of 

mathematics (Godino & Batanero, 1998). Each mathematical object has 

different meanings, with different degrees of generality and levels of 

formalization; therefore, educational agents select and sequence appropriate 

meanings according to the context, students’ abilities and motivations. The 
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ecological metaphor reflects well the phenomena of competition, symbiosis, 

collaboration, and, in a certain sense, the trophic chains established between 

different types of mathematical knowledge (Godino, 1994). Only the 

knowledge best adapted to the given context survives or thrives. 

The ecological metaphor of school knowledge assumes multiple and 

diverse mathematics as not only a starting point (professional contexts) but 

also a point of arrival (school contexts). The progressive growth of knowledge 

throughout the curriculum can be explained more precisely as a process of 

mutation driven by educational action that transforms from simpler to more 

complex forms. This contrasts with the notion of transposition or 

transformation from more abstract to more elementary forms (Scheiner et 

al., 2022). The ecology of meanings, i.e., understanding the meanings of 

concepts systemically and pragmatically (Godino et al., 2021), more 

accurately reflects the correspondence between the different types of 

knowledge involved in educational settings. Interpreting the meanings of a 

mathematical object in terms of systems of practices facilitates the 

consideration of such systems, and consequently pragmatic meanings, as 

new objects that relate to others to form new structures. 

 

3.6. Pragmatic meanings and ontosemiotic 

configurations. An example of articulation 

One aim of didactic-mathematical analysis should be to characterize the 

diverse meanings of objects and their interrelationships, thus constructing a 

global meaning that serves as a reference for the analysis of educational-

instructional processes. This is the first level of ontosemiotic analysis of 

mathematical activity through which one notices the plurality and relativity 

of the meanings of mathematical objects. This first level involves identifying, 

classifying, and describing the problem situations in which the object in 

question intervenes, as well as the mathematical practices (operative, 
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discursive, and normative) through which these problems are answered. In 

this way, one moves from the mathematical object, which initially becomes a 

black box, a label referring to a mental, ideal, or abstract entity, to the 

practices involved in using such an object. 

Once a meaning for a mathematical object has been identified, one has a 

type of problem situation that can be concretized in a prototypical exemplar 

and the sequence of practices necessary to solve it. The identification of the 

web of interrelated objects involved in these practices is necessary to manage 

mathematical study processes and to become aware of the ontosemiotic 

complexity of mathematical activity as an explanatory factor of learning and 

teaching difficulties. The notion of ontosemiotic configuration of practices, 

objects, and processes guides this second level of didactic-mathematical 

analysis in the OSA framework. 

In this section, we exemplify the articulated use of pragmatic meanings 

and ontosemiotic configuration tools for the case of mathematical object 

proportionality following Godino et al. (2017). Figure 3.5 illustrates the 

relationship between these two theoretical tools. 

 

3.6.1. Pragmatic meanings of proportionality 

The universe of meanings of proportionality can be classified according to 

different criteria, in particular, the context or field of application and the level 

of algebraization of the mathematical practices involved. Some application 

contexts of the notions of ratio and proportion (daily life, scientific-technical, 

artistic, geometric, probabilistic, statistical, etc.) involve the participation of 

specific objects and processes from these fields in the practices of solving 

problems, as revealed by many studies on the nature and development of 

proportional reasoning (Freudenthal, 1983; Lamon, 2007; Tourniaire & 

Pulos, 1985). It is possible to delineate variants of meanings specific to some 

fields of application of proportionality (geometric, probabilistic, etc.) and, as 
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we shall see below, according to the level of algebraization of the 

mathematical activity performed to solve the problems. 

 

Figure 3.5. Articulation of pragmatic meanings and ontosemiotic 

configuration 

In solving contextualized proportionality problems, magnitudes (lengths, 

areas, volumes, speeds, densities, etc.) and their respective measures are 

involved. At a stage of the problem-solving process, the relationships 

established between the quantities (ratios, proportions) are expressed using 

the numerical values of the measures, operations are performed with the 

corresponding real numbers, and finally, the solution is interpreted in terms 

of the context. In the phase of intra-mathematical modeling, the three 
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meanings of proportionality described in this work are brought into play, 

together with the pragmatic meanings linked to the application contexts. 

These three meanings, along with the informal/qualitative ones, are neither 

exhaustive nor independent, making it possible to identify partial meanings 

within each category and mathematical practices that involve several of 

them. It is important to consider diverse meanings in the design of 

instructional processes, which should occur over an extended period 

(primary and secondary education) and in different content areas, as 

described by Wilhelmi (2017) and Burgos and Godino (2020). 

 

Arithmetic meaning 

We use the following missing value problem to illustrate the various 

systems of practices through which its solution can be approached: 

A 500-g coffee package is priced at just 5 euros. What is the price of a 

450-g package? 

Applying arithmetic procedures (multiplication, division) characterizes 

the arithmetic meaning as follows: 

1) In everyday buying and selling situations, it is usually assumed that when 

buying smaller quantities of coffee, each gram costs the same. 

2) Consequently, if double, triple, etc., the amount of product is bought, then 

double, triple, etc., the price should be paid. Similarly, if half, a third, etc., of 

the product is bought, then half, a third, etc., the price should be paid. 

3) If a 500 g package of coffee is sold for 5 euros, the price of 100 grams of coffee 

(five times less) should be one-fifth of 5 euros, that is, 1 euro. 

4) The price of 50 grams (half of 100 grams) should be half, that is, 50 cents. 

5) Thus, 450 grams of coffee should cost 4×1 + 0.50 = 4.50; that is, 4 euros and 

50 cents. 

Practice 1) has a discursive-descriptive character for the problem 

situation, while the remaining practices have a normative and operational 

character. The solution involves particular numerical values, and arithmetic 
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operations are applied to these values; therefore, according to Godino et al. 

(2014), the mathematical activity performed is level 0 of algebraization 

because no algebraic objects and processes are involved. 

 

Proto-algebraic meaning 

The proto-algebraic meaning is centered on applying the notion of 

proportion and solving an equation of the form Ax = B, as shown in the 

following sequence of practices: 

1) It is assumed that if double, triple, etc., the amount of product is bought, then 

double, triple, etc., the price should be paid. 

2) Therefore, the relationship established between the amount of the product 

bought and the price paid is directly proportional. 

3) In direct proportionality, the ratios of the corresponding quantities are equal: 

5/500 = x/450; where x is the price at which 450 grams of coffee should be 

sold. 

4) In any proportion, the cross-product equality holds: 

5) 5×450 = 500×x, 

6) Thus, x = (5×450)/500 = 4.5. 

7) Therefore, the price of the package should be 4.5 euros. 

Although solving a missing value problem based on the use of ratios and 

proportions involves an unknown and formulating an equation, the 

algebraization activity performed is of level 2 (proto-algebraic), according to 

the model by Godino et al. (2014), because the unknown is isolated in one 

member of the equation established by the proportion. 

A diagrammatic variant of this solution technique is known as the “rule of 

three”, which in a way “hides” involving ratios and proportion, potentially 

leading to a “degenerate” meaning of arithmetic proportionality. 
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Algebraic-functional meaning 

A proper algebraic meaning is characterized by applying the notion of 

linear function and using solution techniques based on the properties of 

these functions: 

𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏) , 𝑓(𝑘𝑎) = 𝑘𝑓(𝑎). 

One such technique can be applied as follows: 

1) It is assumed that if double, triple, etc., the amount of product is bought, 

then double, triple, etc., the price should be paid. The amount paid for two 

different coffee packages is equal to the price of one package that weighs the 

same as the two packages combined. 

2) Therefore, the established correspondence between the set of product 

quantities (Q) and the set of prices paid (P), 𝑓: 𝑄 → 𝑃, is linear. 

3) In every linear function f, the image of the sum of quantities is the sum of 

the images, 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏), and the image of the product of a 

quantity by a real number is the product of the image of the quantity by that 

number, 𝑓(𝑘𝑎) = 𝑘𝑓(𝑎). 

4) The coefficient k of the linear function is the proportionality coefficient in 

the case of direct proportionality relationships between magnitudes (ratio). 

5) Applying these properties to the case, we have: 

𝑓(500𝑔) = 5€;   500𝑓(1𝑔) = 5€;  𝑓(1𝑔) =
5

500
€ [A gram of coffee costs 1 cent.] 

6) 450𝑓(1𝑔) = 450 ×
5

500
 € ;   𝑓(450𝑔)  =  4,5€. 

7) Thus, the price of the 450-g package is 4.5 euros. 

The diagrammatic representations of solutions involving the notion of a 

function are presented in Figure 3.6. In these cases, the mathematical activity 

can be classified as proto-algebraic level 1. 
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Figure 3.6. Diagrammatic solutions  

Some authors (Bolea et al., 2001; Obando et al., 2014) have emphasized 

proportional reasoning as involving a linear function in a two-variable 

system. Thus, the mathematical model is a function of the form 𝑦 = 𝑘 ∙ 𝑥, 

where k is the constant ratio, which is known as the proportionality constant. 

Although it is referred to as a “linear function” in the singular, knowledge of 

the structure of a family of functions is involved because k acts as a 

parameter, representing an initial contact with level four of algebraization, 

as defined by Godino et al. (2015). 

Given the mathematical effectiveness of algebraic reasoning, it seems 

desirable from the perspective of epistemic suitability (see Chapter 5) that 

instructional processes tend to achieve the algebraic level of meaning 

required for proportional reasoning. However, it does not seem ideal, from a 

cognitive and affective perspective, to dispense with the preceding levels. 
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However, the resolution of problems involving proportionality in daily and 

professional life can be ideal through the application of procedures typical of 

arithmetic meaning. 

 

3.6.2. Ontosemiotic configurations 

In this section, we analyze the practices corresponding to the proto-

algebraic and algebraic-functional solution of the problem (cost of the coffee 

package) by applying the notion of ontosemiotic configuration. The aim is to 

identify the types of mathematical objects and processes put into play and 

therefore the knowledge involved in each case to form an expected or expert 

solution. 

Proto-algebraic configuration 

The first column of Table 3.3 includes the sequence of elementary 

practices of a possible proto-algebraic solution expected for the problem. The 

second column shows the role and intentionality of each practice in the 

sequence of practices included in column 1, and the third column indicates 

the conceptual, propositional, procedural, and argumentative objects 

involved in these practices. In this way, semiotic functions (relationship 

between expression and content), established between the ostensive objects 

of textualized practices, and the non-ostensive objects referred to by them 

(processes of signification/interpretation) are made explicit. It is therefore 

assumed that the elementary practices reported in column 1 are constituted 

by written expression in natural, numerical, and symbolic language and, 

therefore, ostensive of the actions that the epistemic subject performs to 

solve the problem. Non-ostensive elements that necessarily intervene in the 

subject's actions are referred to in the other columns. 
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Table 3.3. Ontosemiotic configuration of the proto-algebraic solution 

Sequence of elementary 
practices to solve the 
task 

Use and 
intentionality of 
practices 

Objects referred to in the practices 
(concepts, propositions, procedures...) 

1) It is assumed that if 
double, triple, etc., 
the amount of 
product is bought, 
then double, triple, 
etc., the price 
should be paid. 

Indicate that the 
conditions for the 
application of direct 
proportionality are 
fulfilled in the 
context of the 
problem. 

Concepts: multiplication; unlimited 
sequence; functional correspondence, 
magnitude, quantity, measure. 
Proposition P1: statement of practice 1.  
Argument: pragmatic convention 

2) Therefore, the 
relationship 
established 
between the 
amount of the 
product bought and 
the price paid is 
directly 
proportional. 

State that the 
relationship 
established between 
the heterogeneous 
quantities is one of 
direct 
proportionality. 

Concepts: ratio, quantity, product direct 
proportionality 
Proposition P2: the relation between both 
magnitudes is of direct proportionality. 
Argument: the conditions defining direct 
proportionality are met. 

3) In direct 
proportionality, the 
ratios of the 
corresponding 
quantities are 
equal: 5/500 = 
x/450; where x is 
the price at which 
450 grams of coffee 
should be sold. 

To represent with a 
literal symbol the 
missing value. 

Concepts: direct proportionality, equality, 
equation, ratio of quantities, unit price, 
proportion, unknown 
Proposition P3: the ratios are equal 
Argument: because the unit price is the 
same in both packages 

4) In any proportion, 
the cross-product 
equality holds: 

Relate the unknown 
with the data. 

Concepts: equality, proportion, product 
Proposition: statement of 4) 
Argument: based on a property of 
proportions 

5) 5×450 = 500×x,  Concepts: equality, ratio, equation 
Procedure: to isolate the unknown. 
Argument: arithmetical properties, 
deductive 

6) Thus, x = 
(5×450)/500 = 4.5. 

Operate with the 
unknown 

Concepts: magnitude, quantity, measure, 
unit. 
Proposition: the price of the package is 
4,5€. 
Argument: sequence of practices 1) to 5) 
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The analysis of the practices performed in this solution procedure reveals 

that they involve the use of an unknown, and to find it, a first-degree equation 

is established. As mentioned above, the activity has a proto-algebraic level 2 

character according to Godino et al. (2014). 

 

Algebraic-functional configuration 

Table 3.4 shows the sequence of practices put into play in the solution that 

we have called algebraic-functional to the problem of the price of a package 

of coffee, the intentionality of these practices, and the objects referred to in 

the practices. 

 

Table 3.4. ontosemiotic configuration of the algebraic solution 

Sequence of elementary 
practices to solve the task 

Use and 
intentionality of 
practices 

Objects referred to in the practices 
(concepts, propositions, 
procedures...) 

1) It is assumed that if double, 
triple, etc., the amount of 
product is bought, then 
double, triple, etc., the price 
should be paid. 
Additionally, the amount 
paid for two different coffee 
packages is equal to the 
price of one package that 
weighs the same as the two 
packages combined. 

Explain that the 
conditions for 
applying the linear 
function between 
sets of magnitude 
quantities in the 
context of the 
problem. 

Concepts: multiplication, 
unlimited sequence, 
proportionality, functional 
correspondence, magnitude, 
quantity. 
Proposition P1: the statement of 
practice 1). 
Argument: pragmatic convention 
 

2) Therefore, the 
correspondence established 
between the set of product 
quantities (Q) and the set of 
prices paid (P), 𝑓: 𝑄 → 𝑃, is 
linear. 

Declare that the 
relationship 
established between 
heterogeneous 
magnitudes is linear. 

Concepts: set, correspondence, 
magnitude, quantity, 
measurement, linear relationship. 
Proposition P2: The 
correspondence between sets of 
quantities is linear. 
Argument: the conditions that 
define the linear function 
according to 1) are met. 
 

3) In every linear function f, 
the image of the sum of 
quantities is the sum of the 
images, 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) +

Explain the 
definition conditions 
of linear functions in 
two ways: natural 

Concepts: sum of quantities, 
product by a scalar, original and 
image of a function, linear 
function, product. 
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𝑓(𝑏), and the image of the 
product of a quantity by a 
real number is the product 
of the image of the quantity 
by that number, 𝑓(𝑘𝑎) =
𝑘𝑓(𝑎). 

language; literal 
symbolic language. 

Procedure: natural language 
translation into symbolic. 
 

4) The coefficient k of the 
linear function is the 
proportionality coefficient 
in the case of direct 
proportionality 
relationships between 
magnitudes (ratio). 

Interpret the 
coefficient k of the 
line functions in 
terms of the context 
of the problem 
(coefficient of 
proportionality or 
both times one). 

Concepts: direct proportionality, 
magnitude, coefficient of 
proportionality. 
 

5) Applying these properties to 
the case, we have:  
𝑓(500𝑔) = 5€;   500𝑓(1𝑔) =

5€;  𝑓(1𝑔) =
5

500
€ [A gram 

of coffee costs 1 cent] 

Calculate the unit 
cost. 

Concepts: linear function; equality; 
proportionality. 
Procedures: translation from 
natural language (statement) to 
symbolic; calculation of the 
proportionality coefficient based 
on the definition conditions of a 
linear function. 
 

6) 450𝑓(1𝑔) = 450 ×
5

500
 € ;   𝑓(450𝑔)  =  4,5€. 

Calculate the 
missing value. 

Concepts: linear function, equality, 
proportionality. 
Procedure: calculation of the 
missing value based on the 
definition conditions of the linear 
function. 

7) Thus, the price of a 450-g 

package is 4.5 euros 

 

Interpret the 
numerical result as a 
solution to the 
problem. 

Proposition: package price is €4.5. 
Argument: sequence of practices 1) 
to 6). 
 

 

Since the solutions to the problem, which have been analyzed from an 

institutional point of view, are expected or expert solutions, such systems of 

practices and configurations have an epistemic character. The same 

technique can be applied to the students’ answers to obtain the 

corresponding cognitive configurations. The ostensive-non-ostensive duality 

is useful here by distinguishing between the textualized practices located in 

the first column as ostensive objects that evoke and represent the conceptual, 
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propositional, procedural, and argumentative objects identified in the third 

column. Ostensive objects also play an instrumental role, as shown in the 

second column. 

 

3.7. Concordances and complementarities between 

semiotic theories 

In this section, we analyze the concordances and complementarities 

between the OSA theory of meaning and cognition and the theories of 

meaning described in section 3.2—Frege, Vergnaud, and Steinbring—as well 

as between the Theory of Registers of Semiotic Representation (Duval, 1995; 

2006) and the OSA. 

 

3.7.1. Theories of meaning versus OSA 

The use of the terms meaning and sense by different authors and 

disciplines is linked to the notion of object and, in mathematics, to the nature 

of abstract objects. Therefore, semiotics is essentially linked to ontology, the 

different types of objects that signs refer to, and the various modalities in 

which objects can participate in communication and interpretation. The 

answers to the question of meaning by Frege, Vergnaud, and Steinbring 

substantially differ regarding the nature of the objects referred to or 

represented by signs, although all three models are triadic. Frege assumes a 

Platonic, transcendentalist position on the reference (the referred object). 

The barycenter, for example, is unique and can be represented in different 

ways, each providing a distinct meaning. In a way, Vergnaud’s and 

Steinbring’s models respond similarly to the question of what, for instance, 

the word “number” represents: it represents the (ideal, abstract) concept of 

number; but for the question of what the number means, or what the number 

is, the answer differs: a heterogeneous system formed by three components 
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(triplet): situations, invariants, representations (Vergnaud); the triplet sign, 

object, concept (Steinbring). 

In the OSA, we find significant differences in the response to the question 

of the meaning of a mathematical concept, considering that these objects 

cannot be detached from mathematical practices, assuming an 

anthropological perspective for mathematics, i.e., conceiving mathematics as 

a human activity. Additionally, objects and practices can be viewed from 

institutional and personal perspectives and systemic and unitary 

perspectives. 

When an object intervenes in a unitary manner, the answer to what its 

meaning is would be one of its possible definitions (rules that intensionally 

define the concept). When the object intervenes systemically, the answer to 

this question would be the system of operative and discursive practices in 

which the object critically intervenes, thus including one of the possible 

definitions, along with the situations, languages, properties and arguments 

involved (partial meaning). It is also necessary in the epistemological and 

didactic analysis of a mathematical object to consider the diversity of partial 

meanings an object can have and their articulation into a global meaning, as 

seen in Batanero and Díaz (2007) and Burgos et al. (2022) for probability, 

Burgos and Godino (2020) for proportionality, and Wilhelmi et al. (2007) for 

equality of real numbers. 

The ontosemiotic position advances in the progressive complexity of 

mathematical concepts by first connecting it with human activity and is 

mediated by linguistic and material artifacts involved in solving specific 

problem situations. Subsequently, it is established that each sense or partial 

meaning is linked to a specific rule (concept-definition) for using linguistic 

elements in a class of situations (contexts, phenomena) and to other 

procedural, propositional, and argumentative objects. Finally, the various 

partial meanings are organized into a holistic meaning formed by the web of 

senses and accompanying objects (Figure 3.7). 
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Figure 3.7. From the epistemological triangle to the web of onto-semiotic 

configurations 

 

The OSA also considers the use of meaning in its functional or operational 

interpretation, that is, the use of objects in various practices. For example, 

numerical symbols not only refer to the corresponding concepts but are also 

instruments for counting, numbering, ordering, and so on. As stated in 

Figure 3.7, from the ontosemiotic perspective of mathematical knowledge, it 

is useful to complement the semiotic triad (expression, content, criterion) 

with the pragmatist triad (practice, object, meaning), to articulate the 
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anthropological analysis of mathematical activity with the analysis of texts 

reflecting that activity.  

Figure 3.7 also suggests that the partial meanings of probability (intuitive, 

classical, subjective, frequentist, logical, propensity, and axiomatic) reflect 

different senses (Frege) and the composition of the concept of probability 

(Steinbring). Each partial meaning can be analyzed in terms of ontosemiotic 

configurations formed by six components (problems, languages, 

concepts/rules, propositions, procedures, and arguments), which expand 

Vergnaud’s conceptual triplet. 

 

3.7.2. Registers of semiotic representation versus OSA 

The Theory of Registers of Semiotic Representation (TRSR) (Duval, 1995; 

2006) enables the analysis of the various types of material representations 

used in performing mathematical tasks, their transformations, and their role 

in understanding mathematics. The availability and use of different semiotic 

representation systems, their transformations, and conversions are essential 

for understanding, constructing, and communicating mathematics. It is also 

assumed that the production and apprehension of material representations 

are not spontaneous and that their mastery must be planned in teaching. 

Godino et al. (2016) explored the possibilities of articulating this theoretical 

framework using the OSA ontosemiotic configuration tool. Below, we present 

a synthesis of this work. 

In an initial approach, it can be anticipated that the notion of a register of 

semiotic representation, its various types and the operations of treatment 

and conversion between registers, allow for the development of an analysis 

of linguistic elements, thus enriching OSA. Similarly, the notion of 

configuration of objects and processes can enrich the TRSR by enabling a 

detailed analysis of the knowledge involved in transformations between 

representation registers in mathematical practices (Pino-Fan et al., 2015). 

Although there are significant differences in the ontological and semiotic 
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assumptions of both theoretical frameworks, it is hypothesized that a certain 

articulation between them is possible, allowing for more detailed cognitive 

and epistemic analyses of mathematical activity and consequently 

contributing to the understanding of teaching and learning processes. 

 

Ontological and semiotic assumptions of both theoretical 

frameworks 

TRSR implicitly assumes an empiricist position regarding the nature of 

mathematical objects. This is inferred from the postulate that the use of two 

or more representations is necessary for understanding an object and that 

such an object is “the invariant of a set of phenomena or the invariant of some 

multiplicity of possible representations”. The assumed semiotics emphasizes 

the representational/referential facet, although the instrumental/ 

operational valence of symbolic inscriptions is also recognized: “The writing 

of a number represents a number and has an operative meaning linked to the 

treatments used to perform the operations. Treatments are not the same for 

decimal and fractional writing”. (Duval, 1995, p. 64) 

The OSA ontology is pragmatist-anthropological, and its semiotics is 

essentially Peircean-Wittgensteinian. Material or external representations 

have a representational valence when referring to another non-ostensive 

object, and an operational valence, as ostensive objects are used for 

mathematical work without necessarily representing another object. 

Following Peircean semiotics, the antecedent of semiotic functions can be 

non-ostensive objects. 

In TRSR, the mathematical object is seen as a “knowledge object,” as a 

cognitive entity residing in the mind of the individual subject, and an 

essential issue is the study of the cognitive operations necessary to perform 

different mathematical tasks, whether calculations, reasoning, or the use of 

a figure in a geometric proof. When a subject is unable to perform a particular 

conversion or treatment, from the TRSR perspective, it can only be said that 
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they lack knowledge of the corresponding mathematical object. Here, OSA 

complements the representational analysis of TRSR. 

Adopting the anthropological postulate for non-ostensive objects 

(concepts, propositions, procedures) allows answering questions such as: 

Why semiotic representations are necessary in mathematical activity? What 

is the relationship between a mathematical object and its various 

representations? Mathematical objects are the grammatical rules of the 

languages we use to describe our worlds, making their use (semiotic 

representations) indispensable. There can be no grammar without language. 

Furthermore, grammatical rules should not be confused with linguistic 

statements. 

 

Semiotic function versus representation 

The notion of a register of semiotic representation and its types, 

treatments and conversions between registers provides an analytical 

resource that develops and complements the primary object language 

category of the OSA. TRSR expands the language category of OSA by 

distinguishing different types and revealing the essential role of 

transformations performed between (and within) different types of 

languages, which are now considered RSR. Given the intra-discursive nature 

of mathematical objects, it is necessary to consider the web of objects 

involved in transformations performed using semiotic representations. 

The exemplar-type duality (extensive-intensive) applies to all primary 

objects, including linguistic elements. This allows us to interpret the 

relationship between “semiotic representation” and “register of semiotic 

representation” as extensive-intensive. A semiotic representation is a 

particular exemplar, and a register is a type or class of representation. 

Specific transformations must be possible following a set of rules among the 

constituent elements of the types of representation. 
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The semiotic function broadens the notion of representation (Godino & 

Font, 2010). The pragmatist/anthropological semiotics assumed by OSA 

proposes that the objects brought into correspondence in semiotic functions 

(functives) are not only ostensive linguistic objects (words, symbols, 

expressions, diagrams), but also concepts, propositions, procedures, 

arguments, and even situations that can be antecedents of semiotic functions. 

Functives can also be unitary or systemic entities, particular or general, 

material or immaterial, personal, or institutional. 

Each RSR used to represent and operate a mathematical object provides a 

specific meaning for that object. Understanding an object in its entirety 

requires the articulation of different partial meanings (or senses), which 

cannot be achieved spontaneously. Using natural language, numerical 

(decimal, fractional), algebraic, diagrams, geometric figures, Cartesian 

graphs, and tables are different RSRs, each posing specific learning 

challenges. It is not sufficient to know the correspondence rules between two 

different registers, is not sufficient for them to be mobilized and used 

appropriately. 

 

3.8. Examples of ontosemiotic analysis of mathematical 

cognition 

 

3.8.1. Natural numbers as cultural and personal objects 

The nature of natural numbers and their relationship with sets is an issue 

of interest to both mathematics and the philosophy of mathematics. 

However, numbers are also essential tools in our daily and professional lives, 

making them a crucial topic of study in schools from the earliest levels. 

It is necessary to distinguish between the practical and “informal” uses of 

numbers (answering questions such as “How many elements are there?” or 

“What position does an object occupy?”) and the “formal” uses (what 
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numbers are and how numerical systems are constructed). The latter refers 

to the foundations of mathematics as an organized body of knowledge. 

Within these two broad contexts of use (or institutional frameworks), it is 

possible to identify various historical moments in which these questions are 

addressed with different resources and approaches, involving specific 

operative and discursive practices. Retrospectively, certain invariances allow 

us to speak of the “natural number” in the singular. However, from a local 

perspective, it seems necessary to distinguish between the various natural 

numbers “handled” by primitive peoples and ancient cultures (Egyptians, 

Romans, Chinese, etc.), as well as between the numerical practices currently 

performed in preschool or primary school and those performed by 19th-

century logicist mathematicians or Hilbertian axiomatic formulations. 

We refer to Godino et al. (2011) for an analysis of the informal 

characteristics of numbers and formal semiotic systems from an institutional 

perspective. The informal semiotic systems in which natural numbers are 

used are characterized by specific problems (describing the numerosity of 

collections of things) and the use of linguistic resources, procedures, 

properties, concepts, and justifications to solve these empirical problems. 

From a formal perspective, the mathematical entities involved in cardinality 

and arithmetic calculations are analyzed structurally within the internal 

framework of mathematics. Numbers are no longer considered a means of 

expressing quantities (number of people or things) but are interpreted as 

elements of a structure characterized according to set theory, Peano’s axioms, 

or equivalent systems. The ontosemiotic analysis conducted by Godino et al. 

(2011) of the natural number, from an epistemic or institutional perspective, 

justifies recognizing the plurality of numbers and their meanings when 

interested in teaching and learning processes at various educational levels. 

The theoretical tools introduced in OSA, such as the system of practices 

and configuration of objects and processes, can be used to describe and 

understand semiotic systems formed by students’ responses to specific 
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mathematical tasks. Godino et al. (2011) illustrated this by analyzing the 

responses of a first-grade child to a counting and writing task involving 

numbers greater than 10 in the decimal numbering system. This allows 

understanding the complexity of this process and anticipating informed 

interventions to promote learning. 

 

3.8.2. Meanings of the concept of function and development of 

functional reasoning 

Godino et al. (2024) studied the diversity of meanings of the function and 

its progressive articulation, considering the levels of generality and 

formalization that emerge in the stages of historical evolution. According to 

previous research, they identified partial meanings of the function 

(operational-tabular, operational-graphic, algebraic-geometric, analytic, 

arbitrary correspondence between numerical sets, and set-theoretic) that can 

be considered part of the global reference meaning in planning and managing 

teaching and learning processes of functions. This study provides a 

complementary view to the numerous investigations that have described the 

phylogenesis of the concept of function in mathematics from a historical and 

epistemological perspective. 

The diagram in Figure 3.8 summarizes the evolution of the meanings of 

the function concept and the levels of functional reasoning. From the 

moment explicit definitions of functions appear (J. Bernoulli, Euler), a 

substantial change occurs in the ontological nature of the concept and the 

type of activity in which it participates. As occurs at the ontogenetic level, as 

proposed by theories of cognitive development (Piaget, Dubinski, Sfard), 

there is a transition from the operational, processual stage to the objectual 

stage, in which the concept becomes part of cognitive schemas that allow the 

subject to understand, make decisions, and act in similar situations.  
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Figure 3.8. Evolution of the meanings of the function concept. Levels of 

functional reasoning (Godino et al., 2024, p. 29) 

At the phylogenetic level, the function becomes part of the repertoire of 

mathematical objects, like numbers, geometric figures, and equations. 

Different types of functions have been invented to model various 

phenomena. Their specific properties (continuity, differentiability, etc.) are 

studied, allowing the definition of new functions, and they play a role in a 

new ecological niche characterized by formalization, generalization, and 

rigor. 

The historical evolution of the concept of function reflects the inherent 

tendency of mathematical work to generalize concepts and procedures to 

solve increasingly complex and general problems. This tendency arises from 

“the practical necessity of unifying, through underlying general principles, 

those aspects of numerous theories that promise to have more than transient 

interest” (Bell, 1945, p. 470). Thus, the formulation of the function in terms 

of the correspondence between the elements of sets according to arbitrary 

criteria, not necessarily through analytical expressions, responds to the need 

to account for functions that could neither be drawn nor expressed 

algebraically, such as the Dirichlet function. Another qualitative leap is the 
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use of structural algebraic language in the study of functions, fundamentally 

addressing the preservation of structures through the application of 

morphisms (functions that preserve structure). 

As Freudenthal (1983) highlighted, there is a great phenomenological 

variety in which the function object is involved, which, along with various 

forms of expression, procedures, propositions, and arguments, characterizes 

functional reasoning. Is it possible to identify a common trait that justifies 

using the same term "function" to name this variety of meanings? The 

notions of dependence, covariation, and prediction connect the first three 

meanings or uses of functions (Figure 3.8). This dependence can be 

expressed in tabular, graphical, or analytical forms; however, in all cases, 

variable elements of numerical sets are related to other numbers. The idea of 

variability and dependence has been lost in a more general and abstract set-

theoretic meaning than in previous studies, but the idea of a connection or 

correspondence between objects based on some type of rule or criterion 

persists. 

 

3.8.3. Other examples of institutional meaning reconstruction 

Batanero and Díaz (2007) applied OSA theoretical notions to analyze the 

historical emergence of probability and its different current meanings 

(intuitive, classical, frequentist, propensity, logical, subjective, and 

axiomatic). They also described mathematical activity as a chain of semiotic 

functions and used the idea of semiotic conflict to provide an alternative 

explanation for some widespread probabilistic errors. 

Font and Contreras (2008) applied the notion of semiotic function and the 

OSA mathematical ontology to analyze the processes of generalization and 

particularization in mathematics teaching and learning. Using the definition 

of a function derivative in a high school textbook as a context for reflection, 

these authors address the following issues: 
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− Delimiting the processes of particularization and generalization with 

respect to the processes of materialization and idealization. 

− Developing a typology of generalization processes. 

− Clarifying the role of the generic element in the particular-general 

relationship. 

− Studying the relationship between generalization processes and other 

mathematical processes. 

Montiel et al. (2009) applied OSA to analyze the mathematical notion of 

different coordinate systems, as well as some situations and actions of 

university students related to these coordinate systems in the context of 

multivariable calculus. The authors identify the objects that emerge from 

mathematical activity and make an initial attempt to describe an epistemic 

network for this activity. In another paper, Montiel et al. (2012) address 

different coordinate systems through the process of base change, as 

developed in the context of linear algebra, as well as the similarity 

relationship between matrices that represent the same linear transformation 

concerning different bases. 

 

3.9. Ontosemiotic approach to affective domain in 

mathematics education10 

Beltrán-Pellicer and Godino (2020) developed a model for analyzing the 

affective domain in mathematics education by applying the notions of 

practices, objects, and dualities from OSA. In their article, the authors 

address the following questions: Is an ontosemiotic approach relevant for 

studying the affective domain? Is it possible to provide new insights into 

affect in mathematics education through the OSA theoretical lens? Which 

theoretical models of affect can be incorporated and aligned with this 

 
10 The content of this section 3.9 is based on Beltrán-Pellicer and Godino (2020). 
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approach? The following sections describe the main features of the proposed 

model. 

 

3.9.1. Primary affective entities 

Following the pragmatic OSA epistemological assumptions, we inquire 

about the affective meaning of certain signs in any possible register or 

representation, which can be verbal or written expressions, observable 

behaviors, etc. This meaning should be sought in the systems of practices that 

a person engages in to solve a problem or toward a practice, object, 

mathematical process, or situation involving the study of mathematics. 

There is consensus in mathematics education research that the affective 

domain comprises three components: emotions, attitudes, and beliefs. The 

origins of this classification are traced to McLeod (1992). In this study, we 

use this ontology of affective objects, adding values, which is a construct 

included in DeBellis and Goldin's (2006). 

Affective situations 

When a student faces a problem situation, an affective situation arises that 

juxtaposes the cognitive one, incorporating personal meanings in the form of 

emotions, attitudes, beliefs, and values. For instance, mental blocks toward 

a type of problem situation, a persevering attitude that facilitates applying 

problem-solving heuristics, or a specific belief about the nature of 

mathematical objects can be involved. In fact, all problem situations that 

require active student participation are strongly affective. Once the situation 

is presented, each student’s personal beliefs come into play, whether toward 

mathematics as a subject or the context in which the situation is framed. 

However, affective situations arise not only in response to problem 

situations; teaching and learning ecosystems provide constant reference 

points for the affective domain. Thus, there are situations of production, 

communication, and individual mathematical study.  For example, in the 

class session itself, beliefs may emerge that influence the student’s attitude 
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that day without the need to propose any problem-situation. Therefore, it is 

feasible to describe an affective configuration for each of these situations, 

which includes the circumstances of each component of the affective domain: 

emotions, attitudes, beliefs, and values. Because we are interested in the 

relationships between affect and mathematical learning, we limit affective 

situations to circumstances involving mathematical content. The teacher can 

pose situations that specifically engage students’ beliefs about a specific 

mathematical object. 

Affective practices 

Affective practices are actions or manifestations that accompany any 

mathematical practice: expressions about emotions, attitudes, beliefs, or 

values related to objects. Each of these affective expressions can vary in 

intensity throughout practice or even disappear, giving rise to new 

manifestations. Much of the affective trajectory remains hidden from the 

teacher because not all affective states are expressed. Moreover, it is not 

possible for one person to observe the entire group and interpret each 

student’s small gestures or signs. However, an observation record, like a class 

diary (Porlán & Martín, 1991), helps collect data for later reflection. In 

addition, tools can be incorporated into teaching practice to gather 

information about the affective domain. For example, the “mood map of 

problems” (Gómez-Chacón, 2000), which the authors used in previous 

research (Beltrán-Pellicer, 2015; Beltrán-Pellicer & Godino, 2017). Each 

student draws pictograms from 14 possible ones (or makes marks on a 

worksheet) to express their feelings while solving a problem or task. The 14 

pictograms represent 14 emotions: curiosity, greatness, boredom, 

indifference, mental block, desperation, calm, excitement, hurry, confusion, 

brainstorming, pleasure, fun, and confidence. This map aims at a dual 

objective. On the one hand, it is a meta-affective practice where students 

become aware of their own emotional dynamics while solving a mathematical 

situation. On the other hand, the information can be collected by the teacher, 
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highlighting the affective factors that facilitate progress and reflecting on 

those that block or hinder progress. 

Intervening and emerging objects 

Although the categorization of the affective domain into emotions, 

attitudes, and beliefs is accepted by the research community, with values 

added, the meaning of these constructs remains controversial. To describe 

and catalog the affective objects that intervene or emerge in mathematical 

practices, we use the tetrahedral model proposed by DeBellis and Goldin 

(2006), where the meanings of affective constructs are described as follows 

(p. 135): 

− Emotions: Rapidly changing feelings experienced consciously, 

preconsciously, or unconsciously during mathematical (or other) 

activities. Emotions vary from mild to intense and are embedded 

locally and contextually. 

− Attitudes: Describe orientations or predispositions toward certain 

sets of emotional sensations (positive or negative) in particular 

(mathematical) contexts. This differs from the more common view 

of attitudes as predispositions toward certain behavioral patterns. 

Attitudes are moderately stable, implying an interactive balance 

between affect and cognition. 

− Beliefs: To attribute truth or external validity to a system of 

propositions or other cognitive configurations. Beliefs are typically 

very stable, cognitive, and structured, intertwined with emotions 

and attitudes that contribute to their stabilization. 

− Values: The ethical and moral components refer to deeply 

appreciated personal truths and commitments. They help motivate 

long-term decisions or establish short-term priorities. They can be 

highly structured to form value systems. 
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Given the interaction with the cognitive domain, it may be convenient to 

consider the various modes of expressing affects, such as gestures and 

ordinary language terms (Álvarez, 2012), as a category of affective objects 

that constitute the ostensible facet of affects. Emotions, attitudes, beliefs, and 

values are related to mathematical situations, practices, and primary 

mathematical objects. Therefore, it makes sense to investigate the affective 

components of proofs, procedures, and representations. Figure 3.9 

summarizes the main affective-cognitive categories. 

The characteristics of affective languages, which could be considered a 

fifth category of affective objects, expand the semiotic registers and 

representations that emerge from practices because a significant portion of 

the affective load is expressed non-verbally within a system of information 

transmission, where each element is interpreted by the different agents 

involved (teacher, students). Therefore, emotions can arise as an instant 

emotional response to a sensory stimulus, which may be mathematical (a 

problem field) or not (going to school). Although this distinction seems 

trivial, the origins of emotions are complex to interpret. 

Affective languages deserve special attention, which is reflected in the key 

position presented in Figure 3.9. Language, in its different registers, 

constitutes not only a communicative vehicle but also a tool of meaning, 

composed of signs constantly interpreted. In the affective domain, nonverbal 

communication plays a fundamental role (Knapp et al., 2013). Just as 

students’ productions, both written (also in their different registers) and 

verbal, provide indicators of the cognitive domain, a large part of affective 

information is transmitted through facial expressions, gestures, postures, 

and movements. 

The meta-study by Harris and Rosenthal (2005) shows how students 

improve in certain facets when the teacher’s nonverbal language includes 

signs of immediacy, such as gesturing while speaking, not sitting behind their 

desk, looking at the students while speaking, smiling, and using a non-



178 Chapter 3. Ontosemiotic theory of meaning and mathematical cognition 

 

 

monotonous tone. Thus, students show interest in the course and the teacher, 

pay attention, and perceive that they have learned a lot in class (Rocca, 

2004). The results of their study also revealed correlations between the 

teacher’s nonverbal language and students’ cognitive performance, although 

this is still under study (Witt et al., 2004). All these affective languages align 

with interaction patterns that can be grouped into one of the following three 

dimensions (Rompelman, 2002): the opportunity to respond in a trusting 

climate, the possibility of feedback, and consideration toward people 

(respect). Harris and Rosenthal (2005) also mentioned the difficulty of 

empirical investigation in a classroom environment because of the necessary 

apparatus to capture all the nonverbal information. 

 

 

Figure 3.9. Primary affective and cognitive categories (Beltrán-Pellicer & 

Godino, 2020, p. 7) 
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Some other authors agree with this comment. Mitchell (2013) noted that 

given the positive relationship between the teacher’s nonverbal language and 

students’ attitudes, it is important that the teacher is not only enthusiastic 

about content but should also show enthusiasm to have a positive impact on 

students’ learning. 

 

3.9.2. Contextual dualities 

Next, we analyze the four types of affective entities in DeBellis and 

Goldin’s (2006) tetrahedral model from the perspective of the five pairs of 

contextual dualities introduced in the OSA: personal-institutional, 

expression-content, ostensive-non-ostensive, intensive-extensive, and 

unitary-systemic. We consider that this analysis allows us to articulate 

aspects of the affective domain that are treated non-systematically or 

tangentially in the literature. Figure 3.10 synthesizes these dualities into a 

single diagram, which we will refer to later. 

Personal-Institutional 

Affective objects and processes are often considered psychological entities, 

referring to individuals’ almost stable mental states, traits, and dispositions. 

However, from an educational point of view, achieving affective states that 

interact positively with the cognitive domain should be of interest to the 

teacher, that is, to educational institutions. The existence of research on 

affectivity indicates that it is possible to identify phenomena, regularities, 

and shared conceptualizations that confer a certain degree of objectivity to 

affects and their influence on learning. The affective domain, therefore, has 

an institutional facet and is concretized in affective rules that condition 

teaching work. The personal-institutional distinction, for both cognitive and 

affective facets, allows us to focus on the dialectic between these dimensions, 

thus becoming aware of the various institutional conditions in which 

affective phenomena occur. 
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Figure 3.10. Contextual dualities for the affective domain (Beltrán-

Pellicer & Godino, 2020, p. 10) 

Different curricular regulations, such as the Spanish one (MEFP, 2022), 

establish guidelines from a socio-affective perspective, primarily concerning 

attitudes and values.  

The socio-affective sense integrates knowledge, skills, and attitudes to 

understand emotions, propose and achieve goals, and increase the capacity 

to make responsible and informed decisions. This aims to improve students’ 

mathematics performance, reduce negative attitudes toward it, promote 

active learning, and eradicate preconceived ideas related to gender or the 

myth of indispensable innate talent (MEFP, 2022, p.142). 

The institutional dimension is essentially static. However, these norms are 

first interpreted by the teacher, who, while planning each class, must 

incorporate the corresponding curricular guidelines and confront their own 

belief and value systems. At the second level, when the teacher effectively 

implements the sessions, emotions (instantaneous affective states) toward 
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that group of students and specific content interact with attitudes, beliefs, 

and values. This forms a system within the personal dimension (of the 

teacher), which is continually reinforced. That is, emotions arise as 

representations (ostensible or not) of attitudes, beliefs, and values. These 

latter categories are reinforced or modified by the persistence of these 

emotions over time. The same occurs with students when they interact with 

institutional norms. 

Furthermore, on the personal dimension is where other interactions occur 

between affective entities and other types of entities, such as those in the 

cognitive domain (Whitson, 1997). These interactions are processes of 

interpretation, and therefore of signification, of elements from one domain 

(e.g., epistemic or cognitive) that play the role of signs for the other domain 

(e.g., affective). 

 

Expression-content (Affective semiotic functions) 

Affective objects cannot be conceived as isolated entities; rather, they give 

rise to interpretative processes by individuals or institutions. In other words, 

they act as antecedents and consequents of semiotic functions. Goldin (2000, 

p. 211) attributes representational valence to affect as follows: “Note that the 

very notion of code suggests that something is being encoded, that affective 

configurations can signify or represent information”. This component of 

Goldin’s theory of representations finds a natural fit in OSA through the 

notion of semiotic function. 

The (pragmatic) meaning of affect can be defined as a system of affective 

practices in which affect plays a relevant role. That is, the effects or 

consequences of an affect on the realization of a mathematical practice. 

Another use of the term affective meaning can be referential when the 

expression or antecedent of a semiotic function is an affective linguistic 

expression, and the consequent or meaning is the affect it refers to. 

Therefore, one can speak of emotional, attitudinal, etc., meaning of an 
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affective expression. Thus, authors like Flavier et al. (2002) identify Peirce’s 

sign object as the student’s concern in a given situation, which opens the 

possibility of subjective judgments depending on prior experience. The 

representamen or sign, in turn, is an element of the considered situation that, 

in our case, would be each of the categories of mathematical objects. To 

complete the triadic conception of the sign, the interpretant represents the 

mobilization of knowledge during a situation. The notion of semiotic function 

is also useful as an entity that relates affective entities to each other from both 

a referential and operational perspective. It also connects affective entities 

with cognitive and epistemic entities. 

The exchange of information between representational systems, as 

mentioned by Goldin (2000, p. 211) and DeBellis and Goldin (2006, p. 133), 

can also be interpreted using the notion of a semiotic function. In this way, 

the meanings encapsulated in each representation of the affective domain 

relate, through semiotic functions, to representations of other domains such 

as verbal, visual, formal, planning, and execution systems (Goldin and Kaput, 

1996). Conversely, a function that has a visual representation (imagistic) as 

the starting domain, for example, can transfer that meaning to the arrival 

domain, evoking an affect related to the meaning encapsulated by the 

function. 

 

Ostensive - non-ostensive 

Affects are mental (or ideal) entities; that is, they are not ostensibly by 

nature (they are not directly perceptible). However, they manifest through 

concrete gestures and expressions, that is, through ostensive manifestations. 

DeBellis and Goldin (2006) studied how to infer internal entities from 

available observations and the exchange of information (interactions) 

between affective representation systems and other representational systems 

involved in problem-solving situations. 
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Since mathematical objects (concepts, procedures, propositions, and 

arguments) require linguistic elements for manifestation, language itself (in 

its various manifestations and registers) is considered within the OSA as a 

mathematical object, that is, an object that intervenes in mathematical 

practice. Identifying affective objects is even more difficult. Analogous to 

mathematical objects, their knowledge is only possible through external 

manifestations. However, meanings linked to an individual’s affective states 

often remain unconscious or preconscious, are difficult for the individual to 

verbalize, and are subject to complicated interpretation by external observers 

(DeBellis & Goldin, 2006, p. 133). Affective signs are small gestures in body 

language, changes in voice intonation, sighs, facial expressions, etc., whose 

precise meaning is, at the very least, ambiguous. However, their effectiveness 

as a communication system is evident because they provoke emotional 

reactions in other subjects who interpret these signs, often unconsciously or 

preconsciously. 

 

Extensive-intensive 

Goldin (1988) introduced the distinction between local and global affect. 

Local affect refers to changing and instantaneous affective states that appear 

during problem-solving situations, constituting an internal representation 

system at the same level as visual representation (imagistic), formal 

notations, verbal representations, and the meta-system formed by planning 

and executive control (DeBellis & Goldin, 1991, p. 29). Furthermore,  

attitudes that directly depend on belief and value systems constitute the 

global affect. Like local affect, global affect can be expressed in any type of 

situation, but its entities are not so changeable or easily modified. 

Local affect comprises emotions experienced in different 

problem situations proposed to students. Therefore, it includes 

manifestations (when emotions are externalized) or feelings (when instant 

affective entities remain internalized) of an ephemeral and particular nature 
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at a specific moment. If individuals experience the same affective states in 

similar situations, these states are reinforced, thus configuring a system 

(global affect) in which attitudes, beliefs, and even values come into play. In 

other words, it is a process of generalization, so when the teacher proposes a 

situation that evokes already lived tasks and activities, the student performs 

an action of particularization because emotions depend on their own 

attitudes and beliefs, which in turn are configured as a generalization of 

emotions. 

 

Unitary-systemic 

A characteristic affective trait of a person (e.g., a negative attitude toward 

mathematics) can be interpreted as the result (unitarization) of a sequence 

of negative affective experiences related to learning mathematics. Research 

on the origin of such an affective trait and the design of strategies for its 

change may require analyzing and decomposing this trait into partial aspects. 

Contextual dualities apply to each of the affective (and cognitive) entities in 

the model, as represented in Figure 3.10. The unitary-systemic duality arises 

when considering the different objects on which emotions, attitudes, beliefs, 

and values are directed. The interrelationship between them forms a person’s 

affective system. 

In the field of mathematics education, McLeod (1992) distinguished 

different types of beliefs: about mathematics, about the self, about 

mathematics teaching, and about the social context. The same happens with 

attitudes, being possible to distinguish between attitudes toward 

mathematics (interest, satisfaction, curiosity, etc.) as well as mathematical 

attitudes (flexibility in the choice of techniques and strategies, critical spirit, 

etc.) (Callejo, 1994; Gil et al., 2005). 

The teacher must pay attention to the unitary manifestations of belief 

systems and the attitudes that emerge from them, taking note of emotions 

and instant affective responses that favor appropriate mathematical attitudes 
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for the different types of situations that occur in the teaching-learning 

processes. 

 

3.9.3. Affectivity dynamics 

Thus far, we have presented a static view of affect and its relationships 

with cognitive and epistemic domains. The dynamics of affect must be 

investigated in instructional processes. The OSA introduced some theoretical 

notions that can help study the dynamic aspects of affect in mathematics 

education. This is the case of the notions of configuration and didactic 

trajectory, which are described in Chapter 4. A didactic configuration is any 

segment of didactic activity (teaching and learning) performed between the 

beginning and end of a task (problem situation). Therefore, it includes the 

actions of students and teachers, and the resources planned or used to 

conduct the task. The sequence of didactic configurations forms a didactic 

trajectory. In every didactic configuration, there are: a) an epistemic 

configuration (system of practices, objects, and institutional mathematical 

processes required in the task), b) an instructional configuration (system of 

teacher/student functions and instructional means used besides to the 

interaction between the different components), and c) a cognitive-affective 

configuration (system of personal mathematical practices, objects, and 

processes describing learning and the affective components that accompany 

it). 

From an instructional point of view, affect in mathematics education must 

be analyzed, planned, implemented, and evaluated, as in the rest of the 

facets. Research on the relationship between the affective domain and 

mathematics usually focuses on interactions with the cognitive domain. 

However, considering the epistemic component, classroom interaction 

patterns, resource use, and other ecological conditions that determine study 

processes in educational institutions (curriculum, social and political factors, 

etc.) also seems necessary. 



186 Chapter 3. Ontosemiotic theory of meaning and mathematical cognition 

 

 

Identifying affective trajectory and its interaction with epistemic 

configurations and the cognitive domain allows teachers to use this 

information to suggest problem-solving strategies for students (Caballero et 

al., 2017). An emotional state that may initially seem negative, such as mental 

block or despair, can be the start of an affective trajectory that catalyzes a 

cognitive sub-trajectory, leading to the use of heuristics to solve the 

corresponding problem situation. This sub-trajectory interacts again with the 

affective domain in a continuous feedback loop, favoring the emergence of 

positive emotions. 

 

3.10. Synthesis of ontosemiotic theory of meaning and 

mathematical cognition 

The aim of this chapter has been to present the theory of meaning 

elaborated from the ontological and epistemological assumptions of OSA, as 

well as the theoretical elements of mathematical cognition (personal and 

institutional) based on ontosemiotics. From this perspective, the study of 

signs must be conducted together with an analysis of the objects referred to 

by the signs and their nature and function. We have shown the sources on 

which ontosemiotics is based and its attempt to combine realist and 

operational theories about meaning when the problem is approached from 

the context of the construction and diffusion of mathematical knowledge, 

that is, the context of education. We have also started the study of the 

concordances and complementarities of OSA with other models regarding 

meaning applicable to mathematical knowledge to initiate the articulation of 

several theories.  

Table 3.5 includes a synthesis of the theory by answering the questions in 

the guide proposed by Michie et al. (2014) for theory analysis. 
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Table 3.5. Synthesis of the ontosemiotic theory of meaning and 

mathematical cognition 

Elements Description 
Summary. What is the 
theory about and what 
are its main 
propositions? 

The ontosemiotic theory of meaning and mathematical 
cognition develops a global vision of the meaning of 
mathematical objects as the basis of mathematical cognition 
from individual (personal) and social (institutional) 
perspectives. Meaning is the content of any semiotic function, 
understood as a relationship between two objects (functives), 
one functioning as an expression (signifier) and the other as 
content (signified), related according to a criterion or rule of 
correspondence (interpretant). Functives can be elements of the 
various languages used in mathematical practice and other types 
of objects of the OSA ontology (concepts, propositions, 
procedures, arguments), including the system or practices 
themselves. In this way, the theory articulates realistic 
(referential) and pragmatic (operational) assumptions about 
meaning. The semiotic function construct serves as a basis for 
defining the knowledge and understanding of mathematics in 
terms of the webs of semiotic functions that a subject (person or 
institution) can establish between the objects involved in the 
practices required for problem solving. 
 

Scope/Objective. 
What phenomena 
does the theory 
explain? 

This theory addresses the phenomena related to the processes of 
representation, interpretation, meaning, and communication in 
mathematical activity from both institutional (epistemic, 
cultural) and personal (mental, psychological) perspectives. It 
also studies from an ontosemiotic perspective (objects and 
meanings) the nature and emergence of mathematical 
knowledge, understanding, and competence. 
 

Justification. Why is 
this theory necessary 
and how does it 
improve on previous 
theories? 

It is necessary to develop a theory that articulates realistic and 
pragmatic positions of meaning in the case of mathematics, 
which serves as a basis for describing and understanding the 
processes of mathematical cognition, from the individual 
(mental) and social (institutional) points of view. An 
ontosemiotic perspective provides a necessary and effective 
point of view to address the study of mathematical cognition, as 
well as the processes of mathematical representation, 
interpretation, and communication. Existing theories in 
mathematics education are partial regarding the dilemma 
between realism and pragmatism and between individual and 
social cognition. Nor do they consider the diversity of objects 
that intervene in mathematical activity, reducing semiotics to 
the study of languages, or ostensive objects detached from the 
constructs and practices from which they emerge. 
 

Hypotheses. What 
specific hypotheses 
does the proposed 
theory propose, and 

Both the signifiers (expression) of semiotic functions and 
meanings (content) can be ostensive (material) or non-ostensive 
(construct) objects. The criteria or codes of correspondence 
between functives can be personal or cultural rules or habits. 
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how do they differ 
from other theories? 

Meaning has a public, socially shared facet and another private, 
mental, and idiosyncratic facet for each subject. 
 Mathematical knowledge includes an understanding of the web 
of objects and relationships involved in mathematical problem-
solving practices and competence in conducting them efficiently. 
Other theories contemplate partial visions of meaning and 
knowledge (they emphasize the mental or sociocultural 
component). 
 

Constructs. What 
elements constitute 
the theory? 

Constructs that make up the theory: 

− System of operational and discursive mathematical 
practices. 

− Typology of primary mathematical objects (languages, 
problems, concepts-definition, propositions, procedures, 
arguments). 

− Semiotic function: A correspondence between an antecedent 
object (expression, signifier) and another consequent object 
(content, meaning) established by a subject (person or 
institution) according to a criterion or rule of 
correspondence. 

− Pragmatic meaning of an object: The correspondence 
between an object and a system of practices in which the 
object intervenes. 

− Types of institutional and personal pragmatic meanings. 

− Individual cognition: network of personal semiotic 
functions. 

− Institutional (social) cognition: network of social/shared 
semiotic functions. 

− Ecology of meanings 
 

Relations. How are the 
elements of the theory 
related to each other? 

The types of mathematical objects and systems of practices are 
the functives of semiotic functions; that is, they function as 
expression and content. The different types of languages are 
usually the functive expression, but the remaining types of 
objects also function as antecedents of semiotic functions. For 
this reason, the ontosemiotic character of this theory is 
emphasized, and not simply as semiotics. Mathematical 
knowledge, from both social and institutional perspectives, is 
conceived and analyzed in terms of the webs of semiotic 
functions. 
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Origin. On which 
theories is it based, 
and how? 

The notion of sign function from linguistics (Hjemslev) is 
adopted and interpreted, which is complemented by Peirce’s 
notion of an interpretant for the code or rule of correspondence 
between functives. It is also based on the ontosemiotic theory of 
mathematical activity and emergent objects (Chapter 2), 
adopting the types of mathematical objects and systems of 
practices as the functives of semiotic functions. It is also based 
on semiotic theories of cognition and culture (Eco and Lotman). 
In this way, realistic semiotic positions are articulated (words, 
signs become significant because an object, a concept or a 
proposition is assigned as meaning) and pragmatist positions 
(signs become significant by the fact that they perform a certain 
function in a linguistic game, because they are used in this game 
in a certain way and for a specific purpose). 
 

Similarity. Which 
theories are most 
similar to this theory? 

The notion of semiotic function is related to Peirce’s triadic sign. 
Meaning as a system of operative and discursive practices is an 
interpretation of Peirce’s pragmatic maxim. The pragmatic 
meaning of a concept is related to Vergnaud’s conceptual triplet. 
The types of languages and their use as representations of other 
types of objects correspond to Duval’s theory of semiotic 
representation registers. 
Knowledge as a web of semiotic functions corresponds to 
relational theories of understanding (Skemp) and mathematical 
competence (know-how) in problem solving (Mason, 
Schoenfeld, ...) 
 

Complementarity. 
With which theories 
can it be 
complemented? 

Other theories can complement some aspects of the 
ontosemiotic theory of meaning and cognition. For example, 
Duval’s register theory of semiotic representation explicitly 
enriches and develops language types. Other theories of cultural 
semiotics (Lotman, Eco) and cognitive semiotics (Enactivism, 
Lakoff and Nuñez) can complement the analytical tools of 
ontosemiotics. 
 

Operationalization. 
How are the 
constructs measured 
or identified? 

The constructs of the theory are unmeasurable traits. These are 
descriptive categories of different types of objects and meanings. 
A method to delimit the various meanings of mathematical 
objects and, therefore, to reconstruct epistemological and 
cognitive reference models is the analysis of the systems of 
practices (personal and institutional) and the ontosemiotic 
configurations involved in them. 
 

Uses. What can the 
theory be used for? 

The ontosemiotic theory of meaning is used as a tool to analyze 
and understand processes of representation and interpretation 
in mathematical activity (construction and communication of 
knowledge). The reconstruction of the reference meanings of 
mathematical objects serves as the basis for the educational-
instructional design, allowing different senses or partial 
meanings to be recognized and a representative sample adapted 
to the context to be selected. This allows us to recognize the 
complexity of objects and processes involved in mathematical 
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and didactic activity and to develop an educational-instructional 
model that considers this complexity into account (Chapter 4). 
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Chapter 4 

Educational design theory in mathematics 

based on OSA 

 

 

 

Introduction 

In the educational sciences, various educational design models and 

theories have been developed for specific areas. 

An instructional-design theory is a theory that offers explicit guidance on 

how to better help people learn and develop. The kinds of learning and 

development may include cognitive, emotional, social, physical, and 

spiritual.  (Reigeluth, 1999, p. 5) 

These theories are practice-oriented and address different aspects of the 

educational process, such as the organization of content, the selection of 

teaching methods, activities sequencing, interactions between teachers and 

students, learning assessment and the use of educational technologies. 

Studies of the design and implementation of effective learning environments, 

together with basic scientific research on these processes, are addressed by 

the Learning Sciences (Sawyer, 2014), which adopts the approach of “use-

inspired basic research” (Stokes, 1997). 

In this chapter, we present the assumptions and theoretical tools 

developed in OSA to address the design, implementation, and evaluation of 

mathematics teaching and learning processes. The goal of these didactic 

activities is to ensure that students: 1) Acquire the mathematical knowledge 

and skills necessary to function in daily and professional life; 2) Develop the 

ability to reason, analyze, solve problems, and make decisions (logical and 
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critical thinking); 3) Acquire ethical and civic training to become informed, 

responsible, and committed citizens (Niss, 1996). 

The theory of educational design in mathematics presented here provides 

assumptions and constructs to describe, explain, and design the organized 

processes of teaching and learning mathematical content, considering 

contextual factors that condition and make them possible. The model is 

based on the theory of mathematical activity and emergent objects described 

in Chapter 2 and the theory of meaning and mathematical cognition 

presented in Chapter 3. Educational processes involve systems of 

mathematical practices (institutional meanings), subjects (students) whose 

commitment is the personal appropriation of these practices (personal 

meanings), the teacher or manager of the process, and specific instructional 

resources. In summary, the theory elaborated helps to describe, explain, and 

predict what teachers and students do when studying mathematical content 

in each context (scientific component of mathematics education) and what 

they should do to optimize that activity (technological component) when the 

postulates of the OSA on mathematical knowledge are assumed. 

In sections 4.1 to 4.4, we describe the constructs of the theory. First, we 

present the structure of the facets and components of an educational-

instructional process and the notion of didactic configuration as a unit of 

analysis (Section 4.1). The normative and meta-normative dimensions, 

including the construct didactic suitability as a normative aspect, are 

addressed in Section 4.2. It continues with a description of the types of 

theoretical configurations and the didactic reference model based on OSA 

(Section 4.3), followed by the dynamics of an educational process analyzed 

using the didactic trajectory tool and its types (Section 4.4). These constructs, 

together with those elaborated in the theories described in Chapters 2 and 3 

(configuration of practices, objects and processes, and types of pragmatic 

meanings), are used to analyze the activities of planning (preliminary study) 

(Section 4.5), design and a priori analysis of instructional tasks (Section 4.6), 
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implementation (Section 4.7), and retrospective analysis (Section 4.8). These 

analyses are exemplified through their application to prospective teachers’ 

statistical training experiences (Godino et al., 2014). The concordances and 

complementarities of the OSA-based instructional design theory with related 

theoretical perspectives are discussed in Section 4.9. A synthesis of the 

theory is presented in Section 4.10. 

 

4.1. Structure model of an educational-instructional 

process 

We are interested in developing theoretical tools to understand the 

complexity of factors that intervene in the teaching and learning processes of 

mathematics, including the processes of information acquisition, knowledge 

appropriation, and specific skills, as well as the personal, social, and 

emotional development of students through mathematics study. This 

understanding forms the foundation for the planning, implementation, and 

evaluation of educational-instructional processes. The broad educational 

perspective that we assume, which includes the acquisition of specific 

knowledge and skills (instruction), but aspires to the integral development of 

the individual, leads us to develop a complex model for the structure of 

educational-instructional processes, as reflected in Figure 4.1. 

An educational-instructional process comprises six interconnected facets: 

epistemic (institutional meanings, processes and relationships), ecological 

(interdisciplinary connections, curriculum, ...), interactional (teacher, 

teacher functions; student, student functions), mediational (material 

resources, study support, ...), cognitive (personal meanings, processes and 

relationships), and affective (emotions, attitudes, beliefs, ...). In each facet, 

we can identify a set of components, sub-components, and specific elements 

of the content (algebra, geometry, etc.), which are sequenced in time, 

accounting for the dynamics of educational-instructional processes. 



204 Chapter 4. Educational design theory in mathematics based on OSA 

 

 

Therefore, we have a model with four levels of analysis and interactions 

between various facets and components. 

 

Figure 4.1. Structure model of an educational-instructional process 

(Godino et al., 2021, p. 10, modified version) 

 

As a unit of analysis that considers and articulates the diversity of aspects 

that intervene in an educational-instructional process, we have introduced 

the didactic configuration construct, which consists of any segment of 

mathematical and didactic activity included between the beginning and the 

end of the resolution of a situation-problem or task. Each segment includes 
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both the actions of the students and teachers as well as the material, 

epistemic, and cognitive means (prior knowledge and skills) used to address 

the task. The task can be solved in a short time (a few minutes) or be a longer 

project that requires a longer period, giving rise to micro, macro, or meso 

didactic configurations. Figure 4.2 summarizes the structure of a didactic 

configuration.  

 

Figure 4.2. Components and dynamics of a didactic configuration 

(Godino, 2014, p. 31). 

In a didactic configuration, we can differentiate three components: a) an 

epistemic configuration (system of institutional mathematical practices, 

objects and processes required in the task), b) an instructional configuration 

(system of teaching functions, learners and educational media used, as well 

as their interactions), and c) a cognitive-affective configuration (system of 
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personal mathematical practices, objects and processes that describe 

learning and the affective components that accompany it). 

The ontosemiotic theory of mathematical activity described in Chapter 2 

serves as a basis for proposing a model for analyzing epistemic configurations 

that are designed and implemented in an educational-instructional process. 

These are the types of states or moments related to the management of 

instructional content: problematization, representation/communication, 

definition, enunciation, algorithmization, argumentation, interpretation/ 

signification, instrumentation, generalization/particularization. 

The instructional configuration includes the teacher’s roles or functions, 

for which we propose the following categorization (Godino et al., 2006): 

− P1: Planning: design of the process and selection of the contents and 

meanings to be studied (construction of the intended meaning and the 

intended epistemic trajectory). 

− P2: Motivation: creating a climate of affectivity, respect, and 

encouragement for individual and cooperative work in the 

instructional process. 

− P3: Assignment of tasks: direction and control of the study process, 

time allocation, adaptation of tasks; orientation and stimulation of the 

student's functions. 

− P4: Regulation: setting rules (definitions, statements, justifications, 

problem solving, exemplifications), recall and interpretation of prior 

knowledge necessary for the progression of the study, and readaptation 

of the planning. 

− P5: Evaluation: observation and assessment of the state of learning 

achieved at critical moments (initial, final, and during the process) and 

resolution of individual difficulties observed. 
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− P6: Research: reflection on and analysis of the development of the 

process to introduce changes in future implementations and articulate 

moments and parts of the study process. 

The following relationship constitutes an inventory of potential student 

roles in the instructional configuration: 

− A1: Acceptance of educational commitment, adoption of a positive 

attitude toward study, and cooperation with peers. 

− A2: Exploration, inquiry, seeking conjecture, and ways of answering 

the questions posed. 

− A3: Recalling, interpreting, and following rules (concepts and 

propositions) and the meaning of linguistic elements in each situation. 

− A4: Formulation of solutions to problems or tasks proposed, either to 

the teacher, to the whole class, or within a group. 

− A5: Argumentation and justification of conjectures (to the teacher or 

classmates). 

− A6: Receive information about how to perform, describe, name, and 

validate. 

− A7: Demanding information: states where learners ask for information 

from teachers or other peers (e.g., when they do not understand the 

meaning of the language used or do not remember necessary prior 

knowledge). 

− A8: Drill: performance of routine tasks to master specific techniques. 

− A9: Assessment: states where the learner performs assessment tests 

proposed by the teacher or self-assessment. 

The types of teacher and student actions listed above are types of didactic 

practices, i.e., classes or categories of actions (operative and discursive) that 

they perform jointly to address the study of the intended content — be it the 

resolution of a type of problem and the mathematical objects involved, or the 
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development of specific skills. These practices occur in an ecological context 

(material, biological, social) that supports and conditions them. 

 

4.2. Normative dimension11 

Like any social activity, education is explicitly and implicitly normative. 

From the most general level of curricular guidelines, often set by official 

decrees, to the behaviors of courtesy and mutual respect between teachers 

and students, teaching and learning processes are governed by norms, 

conventions, habits, customs, and traditions. All these normative elements 

constitute what Godino et al. (2009) call the “normative dimension of study 

processes”. This influence “from the shadows” means that norms are rarely 

questioned, which seriously conditions initiatives aimed at improving the 

processes of teaching and learning mathematics: without changing the rules, 

it is not possible to modify the processes governed by them. Consequently, a 

priority undertaking should be the study of this “normative dimension” to, 

on the one hand, be able to describe more precisely the functioning of 

educational-instructional processes and, on the other hand, influence aspects 

of the normative dimension (modifying them if necessary) to facilitate the 

improvement of these processes. 

The topic of norms has been the subject of research in mathematics 

education, mainly by authors who base their work on symbolic 

interactionism (Blumer, 1969), and have introduced notions such as 

interaction patterns, social and socio-mathematic norms (Cobb & 

Bauersfeld, 1995; Yackel & Cobb, 1996). Brousseau (1988; 1997) developed 

the notion of didactic contract as a key element of the Theory of Didactic 

Situations in Mathematics (TSDM). In all these cases, it is a matter of 

considering the norms, habits, and conventions, generally implicit, that 

 
11 The content of this section is based on the articles by Godino et al. (2009) and 

D’Amore and Godino (2007). 
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regulate the functioning of the mathematics classroom and condition to a 

greater or lesser extent the knowledge that students construct. The focus of 

this study has been mainly on the interactions between teachers and students 

when studying specific mathematical topics. 

The OSA framework, and especially the model of the structure of an 

educational-instructional process (Figure 4.1), provides constructs that allow 

us to classify the web of social and mathematical norms on which the 

teaching and learning of mathematics are supported and conditioned, as 

shown in Figure 4.3. 

 

 

Figure 4.3. Normative dimension. Types of norms (D’Amore et al., 2007, 

p. 10) 

The adopted global perspective classifies norms in two complementary 

directions: 

1) Timing of intervention: Curricular design, planning, implementation, 

or evaluation. Norms manifest not only during teacher-students 
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interactions (implementation) but also in planning, evaluation, and 

the curricular design phase, where reference meanings are configured, 

guiding and conditioning the intended, implemented, and evaluated 

meanings. 

2) Aspects of the study process addressed by the norm: Epistemic, 

ecological, interactional, mediational, cognitive, and affective. This 

allows a focus on regulatory norms: 

− The teacher’s work with respect to mathematical knowledge 

(understood as a system of institutional practices). 

− Relationship with the environment (sociocultural, political, labor, 

etc.) where the instructional process occurs (ecological aspect). 

− Use of technological and temporal resources (mediational aspect). 

− Teacher-student and student-student interactions. 

− Students’ work related to mathematical knowledge (assumed as a 

system of personal practices). 

− The affectivity of the individuals involved in the study process. 

 Norms can also be classified by their origin (administration, society, 

school, classroom, discipline) and type and degree of coercion (social, 

disciplinary), as indicated in Figure 4.3. Below, we describe some 

characteristics of norms linked to each aspect of mathematics 

instruction processes. 

 

4.2.1. Epistemic norms 

In mathematics classes, a basic commitment is established: teaching and 

learning mathematics. Epistemic norms determine the possible 

mathematical activities in a given educational process. They regulate 

mathematical content, the types of situations suitable for learning, and the 

representations used for various contents. In OSA terminology, epistemic 
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norms determine epistemic configurations and the mathematical practices 

that enable them. 

Additionally, each component of the epistemic configuration is related to 

meta-epistemic norms (usually considered socio-mathematical norms). For 

instance, students must answer questions such as, “What is a problem?”, 

“When is a problem solved?” and “What rules should be followed to solve it?” 

Similarly, regarding the argument component, students must understand 

what an argument is in mathematics and when it is considered valid. 

The system of didactic suitability criteria in the various aspects and 

components of an educational process, based on OSA assumptions and tools, 

defines what can be considered “good mathematics,” “good teaching,” and 

“good learning,” thus characterizing a “meta-reference contract” that can be 

used to evaluate the norms effectively supporting and conditioning the 

implemented processes. 

 

4.2.2. Ecological norms 

Identifying ecological norms involves gathering information about the 

social, political, and economic environment of the school, as this influences 

the types of mathematical practices conducted in the classroom. Society 

charges the school with educating its citizens, committing them to their 

community, ensuring the adoption of democratic values, guaranteeing 

everyone’s rights, and fostering civic duties. The educational institution 

provides initial training to competent professionals for their future 

professional practice. Therefore, when making decisions about educational 

process goals, it is essential to consider the broad social sectors not directly 

related to the educational situation but affected by it: society as a whole, 

which will be served by the new professionals. 

The ecological aspect of the normative dimension relates to the content to 

be taught because the intended meanings specified in the curricular 

guidelines aim to contribute to students’ socioprofessional formation. 
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Adhering to programs is another requirement for teachers because students’ 

achievement in learning constitutes the starting point for subsequent studies. 

The obligation to ensure a certain level of knowledge and to inform society 

about it underlies the mathematics teacher’s duty to conduct summative 

evaluations that inform families and society about students’ achievement of 

mathematical levels. 

 

4.2.3. Interaction norms 

The interaction modes between a teacher and students are subject to rules, 

habits, traditions, commitments, and agreements intended to achieve 

teaching and learning objective. The interactional aspect of the normative 

dimension is a system of norms that regulates interactions among people 

involved in mathematics study processes. Effective realization of a study 

process may involve changes in interactions from initially planned 

modalities, depending on the assumed educational paradigm. In a social 

constructivist model, the teacher’s key role is to find good situations and 

create an environment in which students construct knowledge cooperatively 

with their peers. In an expository teaching model, the teacher’s role is to 

present the content, and the student’s role is to retain it. 

 

4.2.4. Mediational norms 

Teaching and learning rely on technical means (books, computers, etc.) 

and are distributed over time, which is also a resource. Diverse rules that 

govern the instructional process condition the use of both types of means. 

This system of rules related to the use of technical and temporal means 

constitutes the mediational aspect of the normative dimension. 

Schools must have classrooms, physical spaces where groups of students 

meet with a teacher; today, schools must also have blackboards, chalkboards, 

erasers, computers, projection screens, and interactive whiteboards. At some 

levels, teachers must have specific manipulative materials and software 
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available; students often need printed or digital study materials. The 

appropriate use of all these resources is subject to specific technical rules that 

teachers must follow. 

Time is a scarce resource; its management is primarily the teacher's 

responsibility although some study time is the student’s responsibility. 

Official norms almost rigidly regulate class duration, as is the total time 

allocated for developing each course’s study program development. 

 

4.2.5. Cognitive norms 

In OSA, teaching involves students’ participation in the community of 

practices that support institutional meanings, and learning ultimately entails 

students’ appropriation of these meanings. Cognitive norms regulate the 

personal domain (as opposed to institutional) within mathematics 

instructional processes. Among other aspects, this normative facet 

establishes that students must learn and that the institution must ensure: 

- Students must possess the necessary prior knowledge. 

- They will be taught within their zone of proximal development. 

- The institution will adapt to students’ diversity. 

 

4.2.6. Affective norms 

Another dimension to consider in mathematics instructional processes is 

affectivity, motivation, emotions, and beliefs. Students must be motivated, 

have a positive attitude, and not have math phobia. The focus often shifts to 

the teacher, who “must” motivate students; choose “attractive” content and 

creating an affective classroom climate conducive to learning. These are 

general clauses in the affective aspect of the normative dimension that do not 

indicate the types of teaching actions that may be available to mathematics 

teachers. An affective rule would be that the teacher must seek or invent rich 

mathematical situations that belong to the students’ short- and medium-

term interest fields. 
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4.2.7. Meta-normative dimension 

In developing the didactic contract, Chevallard (1988, p. 58) identified a 

structure that remains unchanged through changes and breaks in the 

didactic progression, “it is the set of clauses that manage, in a given field, any 

adherence to a contract, ensuring its effectiveness, regardless of particular 

contents”. Chevallard called this set of defining clauses a meta-contract. 

D’Amore et al. (2007) extended the idea of the meta-contract by introducing 

a meta-normative dimension that refers to any reflection, expectation, or 

evaluation of the norms involved in educational processes. For example, 

“students' learning must be assessed” is a general pedagogical norm. 

“Students must not cheat on exams” is a metanorm. Given the existence of 

epistemic, cognitive, and instructional norms, meta-epistemic, 

metacognitive, and meta-instructional norms can also be identified. 

As previously mentioned, epistemic norms regulate mathematical 

content, learning situations, representations, definitions, propositions, 

procedures, and arguments. Thus, epistemic configurations regulating 

mathematical practices within specific institutional frameworks must be 

considered. Each component of the epistemic configuration is related to 

meta-epistemic norms (usually considered socio-mathematical norms). 

Consequently, epistemic configurations are associated with a system of 

metanorms that can be socially shared (meta-epistemic configuration) or 

personal to the students involved in the corresponding learning processes 

(meta-cognitive configuration). Figure 4.4 illustrates these three blocks of 

the meta-normative dimension with examples of metanorms. 

The teacher expects students to rely on a prior epistemic configuration to 

perform mathematical practices that yield an emerging epistemic 

configuration; this realization will be regulated by the meta-epistemic 

configuration (which, as mentioned, coexists with others over time). To this 

end, the teacher implements an instructional configuration regulated by a 
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meta-instructional configuration. Moreover, the teacher intends for students 

to personalize epistemic configurations into personal configurations, meta-

epistemic configurations into mathematical metacognition, and instructional 

configurations into didactic metacognition. 

 

Figure 4.4. Meta-normative dimension (D’Amore et al., 2007, p. 13) 

 

The constitution of these “meta” configurations (meta-epistemic, meta-

instructional, and meta-cognitive) often emerges from implicit processes 

rather than explicit ones and is based on certain habits or ways of acting. For 
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example, a teacher’s habit of including keywords such as “add” or “sum” in 

the statement of problems solved by addition can elicit knowledge that forms 

part of the metacognitive configuration of the members of the institution: 

problems involving addition incorporate the keyword “add” in their 

statement. 

 

4.2.8. Didactic suitability criteria 

The notion of didactic suitability has been introduced in the OSA as a tool 

for transitioning from descriptive-explanatory didactics to normative 

didactics, that is, one oriented toward effective classroom interventions. 

The didactical suitability of an instructional process is the degree to which 

such a process (or a part of it) meets certain characteristics that qualify it as 

optimal or adequate for achieving the adaptation between the students’ 

personal meanings (learning) and the intended or implemented institutional 

meanings (teaching), considering the circumstances and available resources 

(environment). These institutional meanings are also representative of the 

global reference meaning. (Godino et al., 2023, p. 4) 

It is assumed that in social and educational sciences, it is possible to 

formulate suitability criteria in the form of value judgments, “one should do 

this and not that,” in circumstances where such value judgments have a social 

character, and it is possible to provide a foundation for their formulation. 

They entail rationality and thus can be subject to scientific scrutiny (Bunge, 

1999; Rugina, 1998). 

The theory of didactic suitability—which will be developed in Chapter 5—

contributes to the study of the normative dimension by: 1) Structuring 

categories (facets, components) of the system of norms or criteria for 

designing, implementing, and evaluating educational experiences; 2) 

Explicitly stating suitability criteria with different levels of generality for the 

various facets and components. These criteria are based on explicit 

theoretical assumptions about mathematical knowledge, its teaching, and 



Juan D. Godino 217 

 

learning (those assumed by the OSA), which generally align with those 

proposed by other theories. 

The universe of suitability criteria can be hierarchically categorized, 

distinguishing between general criteria (linked to each of the six facets of an 

educational-instructional process), partial criteria (associated with the 

different components of each facet), and specific criteria (related to 

particular aspects of mathematical content). For example, specific criteria for 

teaching proportionality include providing students with opportunities to 

distinguish between multiplicative and additive situations and avoiding 

algorithmic memorizing of the rule of three. Suitability norms, therefore, can, 

in some cases, take the form of principles, such as those formulated in general 

terms for the facets or, in others, be interpreted as rules, for example, those 

related to the learning of specific contents. A suitability norm with a clear 

rule-like character could be, “the instructional process should avoid the 

transmission of erroneous knowledge”. In Chapter 5, the system of suitability 

criteria for the different facets and components of an instructional process 

(Figure 4.1) is described to guide the design, implementation, and evaluation 

of such processes. 

An educational process at its various levels—micro (a lesson), meso (a 

topic), macro (program)—can be characterized by identifying the system of 

norms that regulate it. The community that designs, implements, and 

evaluates an educational process follows a system of norms, both explicit and 

implicit, through which it strives to optimize its development, that is, to 

achieve the best possible learning and teaching. Therefore, such a system of 

norms constitutes a system of didactic suitability criteria, which depends on 

the assumptions and values assumed about the learning and teaching of the 

intended content. Each teacher, community, and theoretical approach has its 

own system of didactic suitability criteria. Thus, the curricular guidelines of 

a country regulate what mathematics to teach, what means to use, and how 

to evaluate at each educational level. There is no doubt that these norms are 
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promulgated with the positive intention of optimizing teaching and learning 

processes. Each country or region has its curricular norms, which may largely 

coincide, although there can also be differences, considering some 

preferences, specific needs, or contextual restrictions (economic resources, 

etc.). Each teacher or group of teachers designs educational processes, 

concretizes curricular designs and adapts them to the group of students and 

available means. They also organize and manage the class in a particular way 

based on their beliefs, knowledge, and value system. All this is done with the 

“best intention” of enhancing student learning. 

The system of didactic suitability criteria based on OSA can be used to 

design educational processes and assess effectively implemented processes. 

If the design is based on other principles, the didactic suitability criteria are 

used as metanorms (reflection, evaluation) of the norms followed by other 

educational designs. For this evaluative purpose, it is necessary to convert 

the system of criteria (norms) into another system of rubrics (indicators) to 

measure the degree of compliance with the norms. 

 

4.3. Reference didactic configurations. OSA didactic model 

The analysis of didactic configurations implemented in an educational-

instructional process and of those that can potentially be designed for their 

implementation can be facilitated if some theoretical models are used as 

references. In this section, we describe four theoretical configurations that 

can play this role and are designated as magisterial, adidactic, personal, and 

dialogic configurations (Godino et al., 2006). 

The Theory of Didactic Situations in Mathematics (TSDM) (Brousseau, 

1997) proposes an optimal way of organizing the work of the teacher and the 

students regarding intended mathematical knowledge in relation to students’ 

learning. The sequence of adidactic situations of action, formulation, 

validation, and the didactic situation of institutionalization specify the 

student’s roles in interaction with the environment (which includes the 



Juan D. Godino 219 

 

teacher, intended knowledge, and specific material and cognitive resources) 

and can be interpreted as a theoretical didactic configuration. However, we 

know that this is not the only type of didactic configuration that can be and 

is in fact implemented. In the proposed TSDM framework, it is not claimed 

that all mathematical knowledge can and should be studied in this way. 

We all have in mind a traditional or classical way of teaching mathematics 

based on magisterial presentation, followed by exercises of applying the 

presented knowledge. The discursive component of the meaning of 

mathematical objects (definitions, statements, demonstrations) is presented 

first, and it is left to the students themselves to make sense of the discourse 

through examples, exercises, and applications. This is a topogenetic decision: 

“first, I, the teacher, give you the general rules, then you apply them”. In fact, 

in this type of didactic configuration, moments of exploration, formulation, 

and validation are not necessarily suppressed but remain under the student’s 

responsibility or are brought into play in isolated moments of evaluation. 

An intermediate variant, which we call dialogic, can be defined between 

the types of configurations described (which we will designate as adidactic 

and magisterial, respectively), respecting the moment of exploration but with 

the teacher basically assuming formulation and validation. 

Institutionalization (regulation) occurs through a contextualized dialog 

between the teacher and the students, who have had the opportunity to take 

on the task, become familiar with it, and possibly outline some solution 

technique. 

Another basic type of didactic configuration occurs when the student 

resolves the problem-situation (or the performance of a task) without direct 

intervention from the teacher. In practice, this occurs when students solve 

exercises proposed by the teacher or are included in textbooks and can solve 

them. This is a type of didactic configuration in which self-study is essentially 

predominant. In Figure 4.4, the four vertices of a square represent the four 

types of theoretical didactic configurations described. The empirical didactic 
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configurations that occur in the sample trajectories can be represented by a 

point inside the square and are close to these theoretical configurations. 

Throughout a mathematical instructional process, empirical configurations 

oscillate around these theoretical types. 

 

Figure 4.4. Theoretical didactic configurations (Godino et al., 2006, p. 

69) 

These theoretical types of didactic configurations can be considered 

patterns of didactic interaction, i.e., regularities in the modes of interaction 

in the development of educational-instructional processes. 

 

OSA didactic model 

In OSA, various types of didactic configurations that promote learning are 

assumed, depending on the types of knowledge sought, the initial state of 

knowledge of the subjects, context, and circumstances of the educational-

instructional process. Inquiry-based (adidactic-constructivist), 

collaborative, and transmissive (magisterial) didactic configurations can 
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occur sequentially, although without a rigid pre-established order (Figure 

4.5). 

When learning new and complex content, the transmission of information 

at specific times by a teacher or student leader within work teams can be 

crucial. Such transmission can be meaningful when students participate in 

activities and work collaboratively. The didactic configuration tool helps us 

understand the dynamics and complexity of the interactions between the 

content, teacher, learners, and environment. Learning can be optimized 

through a mixed model that articulates the transmission of information, 

inquiry and collaboration and is managed through didactic suitability criteria 

interpreted and adapted to the context by the teacher. 

In the moments or phases of a student’s first encounter with a specific 

meaning of a mathematical content or object, it is considered that a dialogic-

collaborative configuration can optimize learning. In this type of 

configuration, the teacher and students work together to solve problems that 

bring the object into play in a critical manner; the first encounter should 

therefore be supported by expert intervention from the teacher. 

The teaching-learning process could thus achieve greater epistemic and 

ecological suitability. When the rules and circumstances of application that 

characterize the object of learning are understood, one can tend toward 

higher levels of cognitive and affective suitability by proposing to deepen the 

study of the object (exercise and application situations) through didactic 

configurations that progressively and in a controlled manner attribute 

greater autonomy to the student (Figure 4.5). 
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Figure 4.5. Didactic model based on OSA (Godino & Burgos, 2020, p. 97) 

 

Some didactic theories, such as the Theory of Objectification (Radford, 

2006; 2014), argue that a collaborative model—joint work of teachers and 

students—is preferable to a constructivist or traditional teacher-centered 

alternative. The didactic model proposed by OSA is more open by assuming 

that learning optimization can be achieved through the ideal articulation of 

different types of didactic configurations. This mixed didactic model 

articulates the theoretical frameworks of learning and teaching mathematics 

that Sfard and Cobb (2014) call acquisitionism and participationism. The 

first framework comprises approaches that present mathematics as pre-

established structures and procedures and consider learning to be acquired 

by the student. The acquired entities may be called knowledge, schemas, or 

conceptions, and the acquisition process may be passive, by mere 

transmission, or active, through the learner’s constructive efforts. The second 
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framework describes mathematics as a form of human activity that has 

evolved historically, rather than as something acquired; thus, learning 

mathematics is the process of becoming a participant in this type of activity. 

Sfard (1998) presented acquisition and participation as metaphors for 

learning and teaching that should be seen as complementary. This 

complementarity is consubstantial in the mixed didactic model based on OSA 

because, on the one hand, it is based on an ontological, semiotic, and 

epistemological model of mathematics in which mathematics is conceived 

both as a human activity and as a system of cultural objects. The 

appropriation (acquisition) of these cultural artifacts is an essential objective 

of educational-instructional activities. On the other hand, it is assumed that 

mathematical objects emerge from the activity of people in their interactions 

with the environment and through communication with other people. 

Therefore, it is justified that dialog, collaboration, and participation in 

communities of practice are key aspects of learning and teaching. 

 

4.4. Dynamics of an educational-instructional process 

An educational-instructional process takes place over time and consists of 

successive tasks, which are solved interactively by the students and teachers 

and supported by the available material, epistemic and cognitive resources. 

That is, it occurs through the sequencing of different didactic configurations 

(Figure 4.6).  

It is natural to model the temporal distribution of functions and 

components using stochastic processes, considering such functions and 

components as their possible states. The stochastic character derives from 

the diversity and complexity of the nondeterministic factors involved in 

educational processes. Even if planning has been careful, there are always 

random elements that produce changes in each trajectory, given the need to 

adapt the planned teaching to the characteristics and requirements of the 

students and the context. 
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Figure 4.6. Didactic trajectory (Godino et al., 2008, p. 13) 

 

In each implementation of the instructional process (each experience of 

teaching a mathematical content), a series of possible states occurs. This 

means that a sample trajectory of the process is produced, describing a 

particular sequence of functions or components that occur over time. We 

distinguish five types of sample subtrajectories: 

1) Epistemic subtrajectory: The distribution over time of the components 

of the implemented institutional meaning (problems, language, 

definitions, procedures, properties, arguments) in a certain order. 

2) Ecological subtrajectory: The distribution over time of elements 

related to the ecological context in which the process develops 

(interdisciplinary connections, curriculum, etc.). 

3) Instructional subtrajectory: Composed of three partial subtrajectories: 

− Teacher: The tasks and actions carried out by the teacher throughout 

the instructional process. 

− Learner: Actions performed by students (one for each student). 

− Mediational: Technological resources such as books, notes, 

manipulatives, software, etc. 
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4) Cognitive subtrajectories: Chronogenesis of students’ personal 

meanings (learning). 

5) Affective subtrajectories: The temporal distribution of affective states 

(attitudes, values, beliefs) of each student in relation to the 

mathematical objects and study process followed. 

The construct of didactic trajectory refers to the articulation of the five 

described partial subtrajectories. When observing an educational process, 

the sequences in time of possible states constitute empirical sample 

trajectories. 

 

4.4.1. Epistemic subtrajectory 

The epistemic analysis of an instructional process involves its 

decomposition into units of analysis to characterize the type of mathematical 

activity that is effectively implemented. This requires identifying 

mathematical objects, their relationships and groupings, and the ecological 

relationships established among them. To support this, the notions of 

epistemic (or mathematical) configuration, epistemic trajectory, and 

potential states of these trajectories are introduced. The epistemic trajectory 

represents the time distribution of the mathematical objects in the 

instructional process. We distinguish six possible states within it according 

to the type of entity—and mathematical process—being studied at each 

moment: 

− E1: Situational: A certain type of problem is stated. 

− E2: Procedural: The development or study of a method to solve 

problems is addressed. 

− E3: Linguistics: notations and graphical representations, etc., are 

introduced. 

− E4: Conceptual: Definitions of the objects are developed or 

interpreted. 
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− E5: Propositional: The properties are stated and interpreted. 

− E6: Argumentative: Adopted actions or stated properties are 

justified. 

These states occur throughout the instructional process related to a 

mathematical topic or content. The classification of mathematical entities 

into the categories we have defined is not absolute because, as functional 

entities, it depends on the chosen level of analysis and the language games in 

which they are generated. Thus, the identification of trajectory states can be 

considered subjective. However, if two people participate in the same 

language game and adopt the same perspective, they will progressively agree 

on the categorization of a certain unit of analysis. Analysis of an epistemic 

trajectory allows for the effective characterization of its institutional meaning 

and ontosemiotic complexity. To perform the analysis, its development  is 

divided into units of analysis according to the different problem situations 

(or tasks) proposed. We call epistemic configuration the system of objects 

and semiotic functions established among them when solving a problem. 

Therefore, it is a segment of the epistemic trajectory. 

Epistemic analysis will characterize epistemic configurations, their 

sequencing, and articulation. This study examines the chronogenesis of 

mathematical knowledge in schools and its ontosemiotic complexity. Within 

each configuration, additional elementary units for analysis are defined 

according to trajectory states and are called epistemic units. Over time, a 

collection of problem situations is posed and solved around which epistemic 

configurations are constructed. The sequence of these configurations 

ultimately constitutes the “system of mathematical practices” that 

establishes the implemented institutional meaning of the object under study. 

 

4.4.2. Instructional subtrajectory 

The instructional subtrajectory comprises the sequencing over time of the 

teacher and learner roles listed in Section 4.2 and the temporal distribution 
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of the resources used. Various means or resources can be used as study aids 

in the instructional process. This includes means of presenting information 

in class (interactive whiteboard, etc.), calculation and graphing devices 

(calculators, computers), manipulative materials, etc. The use of these 

resources (type, modality, sequencing, articulation with other elements of the 

process, etc.) should be the focus of attention in both teaching practice and 

didactic research. The notion of instructional subtrajectory serves as a tool 

for analyzing the potential and effectively implemented uses of instructional 

resources and their consequences for learning. 

 

4.4.3. Cognitive subtrajectory 

In OSA, the notion of personal meaning is introduced to designate 

students’ knowledge. These meanings are conceived, like institutional 

meanings, as “systems of operative and discursive practices” that students 

can employ for certain types of problems. Personal meanings are 

progressively constructed throughout the instructional process, starting with 

initial meanings and progressing to final (achieved or learned) meanings. 

These personal meanings, evaluated at a given moment, constitute the 

students’ cognitive configurations, i.e., the state of their mathematical 

knowledge and skills. The notion of cognitive trajectory refers to the 

chronogenesis of a personal system of practices, which can be modeled as a 

stochastic process. The chronogenesis of personal meanings is a dimension 

of the study process that cannot be characterized by simply recording the 

class development audio visually because it is relative to each learner and  

occurs both in and outside the classroom. It will be necessary to examine 

“class notes”, complete initial and final questionnaires and assessment tests, 

conduct interviews, and so forth. The teacher’s interactions with students 

while they solve tasks in class and during the segments when this activity 

occurs allow partial access to the progressive construction of students’ 
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knowledge and skills and to make decisions about the epistemic and 

instructional subtrajectories. 

 

4.4.4. Affective subtrajectory 

Other conditioning factors of the educational-instructional process are 

affective states (interest, personal commitment, feelings of self-esteem, 

aversion, etc.). The “devolution” process introduced by the Theory of Didactic 

Situations in Mathematics (Brousseau, 1997) responds to the need for 

students to assume as their own the problem-situations proposed by the 

teacher as a means of constructing mathematical knowledge. Feedback is a 

component of emotional trajectories. Although it is important to consider 

students’ affective trajectory in any instructional process, it can be crucial in 

processes involving groups of students with special educational needs 

(students with disabilities, immigrant students with difficulties, etc.). 

 

4.4.5. Complexity of didactic interactions 

The relationships between teaching and learning are not linear but cyclical 

and complex (Figure 4.5). In moments of inquiry, students interact with the 

epistemic configuration without the teacher’s intervention (or with minimal 

influence). This interaction conditions the teacher’s interventions, which 

should be anticipated in the instructional configuration, perhaps not entirely 

in content but in their nature, necessity, and usefulness. The cognitive 

trajectory produces examples, meanings, arguments, etc., that condition the 

instructional process and, consequently, influence the epistemic and 

instructional configurations, enabling or restricting learning. 

To conduct a comprehensive didactic analysis and explain the dynamics of 

the development of educational-instructional processes, it is necessary to add 

the normative dimension (see Section 4.2) to the six-facet structural model 

(Figure 4.1). This dimension refers to the web of norms and metanorms that 

condition and support process development. It goes beyond the descriptive 
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aspect of understanding what happens and provides explanations of why 

things happen. To analyze the effects of norms as support and constraints of 

the development of an instructional process, it is useful to introduce the 

construct of normative trajectory, which is formed by the sequence of 

temporal moments in which these norms are established or modified. 

 

4.5. Preliminary analysis: Reconstruction of reference meanings 

In research oriented to educational design or didactic engineering 

(Artigue, 2011; Godino et al., 2014), four phases or stages are considered 

(Figure 4.7):  

− Preliminary study (foundations) of the process in the epistemic-

ecological, cognitive-affective and instructional facets.  

− Planning or designing the didactic trajectory. Selecting problems, 

sequencing, and a priori analysis of them with indication of the 

students’ expected behaviors and teacher’s planning-controlled 

interventions.  

− Implementation of the didactic trajectory. Observation of the 

interactions between people and resources and evaluation of the 

learning achieved. 

− Evaluation or retrospective analysis, which is followed by a comparison 

between what was foreseen in the design and what was observed in the 

implementation. It also reflects on the norms that condition the 

instructional process and on didactic suitability. 

The distinction between the six facets in each phase helps systematically 

analyze the factors involved in each phase. The arrows in the diagram 

indicate the cyclical nature of the educational process and the interaction 

between its different stages. 
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Figure 4.7. Phases and facets of educational-instructional processes. 

 

In this section, we describe theoretical tools for the preliminary analysis 

(or grounding) of designs based on OSA. Selection of mathematical content 

for teaching and learning occurs. This selection also implies its 

transformation or preparation (Scheiner et al., 2022) to the corresponding 

educational level and context, resulting in the curriculum as well as specific 

lessons and resources for different educational levels. Individual subjects, 

teams (teachers, authors of books, and other study aids), or curricular agents 

performed this work. They are therefore part of communities among whose 

members there is a division of labor: general curricular guidelines are 

provided by agents appointed by the educational authorities; teachers design 

lessons, supported using didactic resources developed by authors and 

publishers, taking into account the school’s planning and departmental 

agreements. Planning work occurs in various environments or ecological 

niches that support and condition its realization. Time, economic means, 

educational policies, etc., are conditioning factors for curricular planning and 

lesson design. 

Planning instruments vary according to the different educational theories 

on which they are based. The types of personal and institutional meanings 

proposed by the OSA (Figure 4.8) provide criteria for curriculum, lesson, and 

assessment processes. 

 



Juan D. Godino 231 

 

 

Figure 4.8. Institutional and personal meanings of mathematical objects 

(Godino et al., 2008, p. 6). 

Learning is conceived in terms of students’ appropriation of institutional 

meaning through their participation in the mathematical practices required 

for problem solving. Teaching considers students’ initial meanings so that 

progressive coupling of meanings occurs. The construct semiotic conflict 

helps identify aspects and moments in which mismatches occur during 

meaning coupling. This describes any disparity or discordance between the 

meanings attributed to an expression by two individuals (persons or 

institutions). If the disparity occurs between institutional meanings, we 

speak of epistemic semiotic conflicts, whereas, if the disparity occurs between 

practices that form the personal meaning of the same subject, we designate 

them as cognitive semiotic conflicts. When a disparity occurs between the 

practices (discursive and operative) of two different subjects in 
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communicative interaction (for example, student-student or student-

teacher), we will speak of interactional (semiotic) conflicts. 

The study of the processes of didactic transposition, transformation, and 

adaptation of mathematical contents to be studied at an educational level or 

a specific educational process is carried out in OSA by means of the metaphor 

of the ecology of meanings (Chapter 3). Interpreting the meanings of a 

mathematical object in terms of systems of practices facilitates the 

consideration of these systems, and consequently, of pragmatic meanings, as 

new objects, without dismissing the view of mathematics as an activity. It is 

the mathematical activity that must be transformed; the mathematical 

practices that a student performs from the first level of education are based 

on types of problems and resources that are very different from the level of 

abstraction that characterizes professional mathematical work. Recognizing 

different levels or degrees of generality and formalization in mathematical 

activity (Chapter 2) is fundamental to address the problem of its 

reproduction in learning environments. 

Teaching planning must consider the specificity of knowledge, which leads 

to exploring partial meanings and their progressive articulation in a global or 

holistic meaning that serves as a reference model in instructional design. The 

curricular design of mathematical content at different educational levels 

requires considering the diversity of meanings, progressive articulation, and 

degrees of generality and formalization.  

 

4.5.1. Application example of preliminary analysis tools12 

This section exemplifies the use of preliminary analysis tools based on 

OSA in a case study of mathematics training of prospective elementary school 

teachers (Rivas, 2014; Godino et al., 2014), specifically in the design, 

 
12 Examples of the application of instructional design tools based on OSA were more 

extensively developed in the Rivas (2014)’ s doctoral thesis and in Godino et al. 

(2014). 
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implementation, and evaluation of the topic of introduction to statistics and 

probability. Formative experiences were conducted under usual conditions 

in a subject focused on laying the mathematical foundation for teaching with 

limited time.  

A preliminary analysis of meaning is a step in the design and 

implementation of a formative experience (Godino et al., 2014). In statistics 

education, a particularly relevant type of problem is data analysis projects, in 

which students are involved in the resolution of a case study intended to 

make sense of the operative and discursive practices of statistics and the 

objects involved. Instead of introducing decontextualized concepts and 

techniques or applying them only to typical problems difficult to find in real 

life, the different phases of a statistical investigation are presented: statement 

of a problem, decision on the data to be collected, data collection and 

analysis, and drawing conclusions on the problem posed (Batanero et al. 

2011, p. 15). 

In the training experience described (Godino et al., 2014), to select data 

analysis projects on which to base the study of statistics and to contemplate 

the results of previous research, the text by Batanero (2001) and the 

statistical reasoning model proposed by Wild and Pfannkuch (1999) were 

considered. Likewise, the recommendations of various authors on the 

teaching of statistics based on the use of projects (Batanero et al., 2011; 

Batanero & Díaz, 2011; Nolan & Speed, 1999), some curricular proposals 

(Franklin et al., 2005), and the systematization of previous research on 

cognitive and instructional aspects of the subject (Batanero, 2001; Díaz et al., 

2008) were considered. 

 

4.6. Design and a priori task analysis 

Rivas (2014) and Godino et al. (2014) described the components of the 

general design of the thematic unit developed in the instructional process. 

These components include the following items:  
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- Statistics and its uses. 

- Population, sample, and statistical variables. 

- Tables and graphs. 

- Measures of central tendency and dispersion. 

- Random phenomena. 

- Concept of probability and different approaches to it. 

- Statistics as cultural knowledge. 

To develop these contents, the study process is structured around the 

following three projects: 

1) Typical student (4.5 hours, 3 sessions): collection, representation, and 

interpretation of data on the characteristics of the students in the class to 

describe a representative student profile. 

2) Throwing two dice (3 hours, 2 sessions): focused on the study of basic 

probabilistic notions. 

3) Effectiveness of sports training (1.5 hours, 1 session): focused on the 

study of basic statistical notions for comparing frequency distributions. 

The following items complement these three projects:  

a) Using a textbook (Batanero & Godino 2003) 

b) List of the solved exercises as supplementary material. 

c) A virtual teaching board used as an information repository and 

asynchronous communication space between students and between 

students and the teacher. 

The students’ personal meaning achieved was evaluated through the 

resolution of a problem situation that required the application of the 

statistical and probabilistic notions and procedures studied in the class 

sessions. The evaluation considered attendance and participation in the 

practical class sessions and the quality of reports submitted to the 

corresponding team workbooks. 

As an example, we present the design of the project “Typical student” 

(adapted from Batanero, 2001). Although the project might seem “artificial” 
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(there is no real need to choose a typical subject from a group), it has several 

advantages from the perspective of the training process of prospective school 

teachers: ease of data collection in class, the possibility of including other 

statistical variables (height, arm span, etc.). Moreover, it is a project directly 

applicable to primary education, allowing the study of different types of 

statistical variables (nominal, ordinal, discrete, and continuous quantitative) 

to be contextualized and to motivate the emergence of basic statistical 

notions and techniques. 

 

4.6.1. A priori analysis of a data analysis project 

This project involves collecting data from the class on the variables: 

gender, intensity of sports practice, number of siblings, weight, and amount 

of money in one’s pocket at a given time. The following initial questions are 

proposed to motivate the use of central tendency and dispersion statistics, as 

well as the comparison of frequency distributions: What are the 

characteristics of a typical or representative student in the class? How 

representative is this student of the class? Are there differences between boys 

and girls in terms of each of these characteristics? 

An analysis of the statistical practices to be implemented to answer the 

questions and the configuration of the objects and processes involved is 

included, distinguishing between those that can be assumed to be known by 

the students and those that constitute new learning objectives. Additionally, 

some conjectures about potential conflicts in project development, based on 

previous research and teaching experience, are made. 

Type of problem and statistical practices 

The project is open-ended because it raises questions that can be 

interpreted in various ways. As in most statistical projects, it does not suggest 

the direct application of a statistical technique, especially regarding the 

representativeness of a typical student. The aim is to motivate the process of 

reducing statistical data, identifying variables, their values, and frequencies 
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to construct the corresponding frequency distribution. Subsequently, the 

distribution must be described using measures of central tendency, 

dispersion, and shape to select an ideal value that “represents” the dataset. 

Determining the differences in statistical summaries between the two 

subsamples (boys and girls) motivates the comparison of frequency 

distributions; in a more advanced course, the significance of the differences 

between averages and dispersions could be analyzed through inference. It 

also motivates a graphical comparison (e.g., using side-by-side diagrams) of 

pairs of distributions. 

The statement of this problem situation can be generalized in various 

ways, as shown in Batanero and Díaz (2011, pp. 73-95). In this case, it is 

expected that students will follow the following statistical practices: 

− Construct frequency distributions of the five variables, identifying the 

variables and their respective values, recounting the absolute 

frequencies of each value, and representing these results in a properly 

labeled tabular layout. 

− Calculate averages (mode, median, and mean, discriminating their use 

according to the type of variable and the shape of the distribution). 

Assess the representativeness of the averages depending on the 

existence of skewness or outliers. 

− Calculate extreme values (maximum, minimum) and measures of 

dispersion (range, quartiles, interquartile range, standard deviation), 

discriminating their use according to the type of variable and shape of 

distribution. 

− Numerically (averages and dispersions) and graphically (side-by-side 

diagrams) compare the frequency distributions of the two subsamples 

(boys and girls). 

− Assess the relative importance of differences between summary 

statistics of frequency distributions in subsamples. 
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It is expected that the tabular, numerical, and graphical reduction of 

statistical data has been previously studied by most students, so questions 1) 

and 2) would be considered the application of prior knowledge. Emergent 

objects and processes that would be included in the expanded content 

knowledge for trainee teachers should be highlighted: 

− The ideal nature of averages (they do not have to correspond to a data 

point) and their use as representatives of a dataset (sample or 

population). 

− Comparison of frequency distributions; qualitative assessment of 

differences between averages and dispersions. 

The implementation of these statistical practices involves a complex 

configuration of mathematical objects and processes, the essential elements 

of which are indicated below. 

Linguistic elements 

It is very likely that the teacher will need to share with the class the 

intended institutional meaning of linguistic expressions such as: 

“characteristics of a typical or representative student of the class”, “how 

representative is this student of the class”, “differences between boys and 

girls”, etc. It can be assumed that students are familiar with most linguistic 

terms and expressions specific to descriptive statistics (absolute frequency, 

frequency table, mode, mean, median, maximum, minimum, range, bar 

chart, histogram). However, considering previous research (Díaz et al., 

2008), difficulties in labeling frequency tables, side-by-side bar charts, and 

box plots can be anticipated. Additionally, students unfamiliar with 

spreadsheets will have difficulties representing a collection of data arranged 

in columns, statistical variables, and the specific functional language of 

spreadsheets (data set, calculation rule, result). 

Conceptual elements 
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The following concepts of descriptive statistics are often poorly studied 

and recognized by students but are essential for understanding the system of 

operative and discursive practices of statistics: 

− Statistical data (trait or contextualized information), statistical 

individual; data collection (sample, population). 

− Statistical variable (trait of statistical individuals that can take different 

values in a data collection). 

− Variability of the trait among individuals: values. 

− Qualitative statistical variable: categories. 

− Quantitative statistical variables: minimum, maximum, range. 

The resolution of the requested tasks requires the application of concepts 

that students may be familiar with: 

− Absolute and relative frequencies; frequency distribution; averages 

(mode, median, mean); extreme values (minimum, maximum); and 

dispersion (range; variance, standard deviation). 

− Bar and pie charts. 

Students may be less familiar with —and thus, they can emerge as 

emergent objects from the practices required— with the following items: 

− Frequency histogram (intervals and class marks, criteria for their 

selection). 

− Side-by-side bar charts and histograms; interpretation and use. 

− Skewness of a frequency distribution, positive and negative skewness; 

its relation to the choice of the average used to represent the data. 

− Percentiles, percentile ranges, interquartile ranges, box plot. 

− Qualitative assessment of differences in means and dispersions. 

Properties 

These properties are necessary for project progress, and some of them are 

implicitly used: 
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− Averages represent data collection because they indicate trends or 

central positions of the corresponding frequency distributions. 

− The mode is the only average that can be used if the statistical variable 

is a qualitative attribute; it may not be a unique value. 

− The median is more representative than the mean when the 

distribution is skewed; both statistics coincide when the distribution is 

symmetrical. 

Procedures 

The elaboration of frequency tables, calculation of mode, mean, 

maximum, minimum, and range, and construction of charts are procedures 

that students either recall or find easy to master. The calculation of median, 

development of frequency tables grouped into intervals, and construction of 

box plots and histograms require special attention. Similarly, calculation of 

percentiles, interquartile range, and standard deviation. 

Arguments 

Students are expected to justify their answers to the posed questions by 

developing deductive arguments such as: “Considering the definitions and 

properties of the averages, the typical subject is a girl who does little sport, 

has 2.5 siblings, weighs 60 kg, and has 6 € in her pocket” (these are the 

median values as the distributions are skewed). “Choosing a girl for the 

variable, gender, is representative because 68% are girls (mode), while boys 

are infrequent”. 

Processes 

A process of idealization that requires special attention leads to the 

concept of a typical or representative subject that does not correspond to a 

variable value. Thus, the median number of siblings was 2.5, which obviously 

does not correspond to any possible value for the variable. The procedures 

and properties applied to answer the questions posed in the given specific 

situation have a general character that the teacher must emphasize. The 

calculation of the median, determination of percentiles, and representation 



240 Chapter 4. Educational design theory in mathematics based on OSA 

 

 

of histograms should conclude with a statement of general rules applicable 

to other data analysis situations. 

 

4.7. Instructional implementation 

The implementation of instruction is an activity performed jointly by a 

teacher and a group of students so that the students learn mathematical 

knowledge that has been previously adapted to the context during the 

planning activity. Within the study community (classroom, school), a 

division of labor occurs; teachers and students have different roles that must 

be articulated following a system of rules (didactic contract), using specific 

physical, conceptual, and procedural artifacts. The implementation of 

instruction occurs in specific environments under specific conditions 

(students’ abilities and disposition, time available, means, etc.). The diversity 

of aspects to be considered makes the optimization of the process have a local 

character and requires the teacher’s specific knowledge and skills as well as 

students’ interest and perseverance. 

The complexity of implementation has led to the development of various 

theories on what tools to use in each circumstance, what types of interactions 

to conduct, or what rules to follow to articulate the roles of the teacher and 

students in the most suitable way possible. The notions of didactic 

configuration and trajectory (Section 4.4) allow for detailed analyses of: a) 

the progressive deployment of the institutional meanings implemented; b) 

learning and its dependence on the interaction formats that actually take 

place; and c) the use of resources and time allocated. In this analysis, the 

focus is on the following descriptions:  

− Content that was effectively dealt with.  

− Patterns of teacher- students interaction.  

− Recognition of the cognitive and interactional conflicts and how they 

are addressed by the teacher and students.  
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We refer to Godino et al. (2014), who describe the implementation of the 

“Typical student” project, whose a priori analysis we conducted in Section 

4.6. The description includes transcript segments corresponding to a sample 

of significant didactic facts (SDFs). The notion of SDH is the criterion for 

delimiting didactic configurations, which can be linked to problems, 

subproblems, or other epistemic, cognitive, or instructional components that 

characterize the study process. SDHs provide local indicators of didactic 

suitability in some aspects of the study process. An SDH can contribute to the 

development of a study process, block its evolution, or limit the functioning 

of the didactic system. The “meaningfulness” of a fact does not refer then 

exclusively to its suitability for the development of meanings for students but 

to its importance for understanding the study process itself. 

 

4.8. Retrospective analysis 

The evaluation or retrospective analysis of the educational process 

consists of contrasting what was foreseen in the design and what was 

observed in the implementation to identify possible improvements. Godino 

et al. (2014) described this phase of the design in the case of the “Typical 

student” project, comparing the significant didactic facts observed with a 

priori analysis, followed by an assessment of the didactic suitability and the 

identification of possible improvements. The detailed analysis of the 

development of the other two data analysis projects used in formative 

experience (throwing two dice and effective sports training) can be found in 

the doctoral thesis of Hernán Rivas (2014). 

In summary, a comparison of the design with SDHs shows that the objects 

and processes foreseen in the design have been put into play. From a 

cognitive perspective, most of the foreseen conflicts and others have 

manifested. From an instructional point of view, it has been found that the 

students have been “excessively guided” by the teacher; they have had “little 

autonomy” to provide answers by themselves to the questions posed. This 
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was the teacher’s decision due to frequent blocking of students and limited 

time to teach the content. It has been revealed that it is quite illusory to 

pretend that students, in their first encounter with the subject, mobilize the 

concepts of frequency tables, measures of central tendency, and dispersion 

to compare two frequency distributions from the instructions given in the 

project. 

The reference elements for assessing the epistemic suitability of the 

implemented process should correspond to the institutional meaning 

intended by the teacher. On the other hand, to assess the epistemic suitability 

of the planning, it is necessary to investigate the elements of the meaning of 

elementary data analysis in texts and research related to its study at similar 

educational levels. The elements of reference for the remaining dimensions 

or facets (ecological, cognitive, affective, interactional, mediational) should 

be investigated in the texts and publications of didactic research on these 

aspects. 

 

4.9. Theoretical perspectives related to OSA 

educational design theory 

In this section, we describe other theoretical perspectives related to the 

problems addressed by the OSA-based design theory described in this 

chapter. We consider it of interest to analyze the dilemma between 

constructivist and objectivist positions in the field of education, which allows 

us to situate and understand the mixed didactic model that we propose. We 

then present the general characteristics of design-based research, within 

which the theory is included. Specific theories that include a design 

component elaborated in mathematics education, such as the Theory of 

Didactic Situations in Mathematics (Brousseau, 1997), the Theory of Didactic 

Moments (Chevallard, 1999), and Realistic Mathematics Education 

(Freudenthal, 1991), will be described and compared with OSA in Chapter 7. 
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4.9.1. The dilemma of constructivism versus objectivism13 

Various forms of constructivism share, among other assumptions, the idea 

that learning is an active process, that knowledge is constructed rather than 

innate or passively absorbed, and that for effective learning to occur, students 

need to be presented with significant, open-ended, and challenging problems 

(Ernest, 1994; Fox, 2001). 

The arguments that human beings are active agents constructing knowledge 

by themselves have made people believe that instructional activities should 

encourage learners to construct knowledge through their own participations. 

This constructivist view plays an important role in science teaching and 

learning and has become a dominant teaching paradigm. (Zhang, 2016, p. 

897) 

Ideas for inquiry-based teaching and learning in mathematics and 

sciences have played a significant role in the curricular orientations of 

various countries, in projects, research centers, and reform initiatives. Linn 

et al. (2003) defined inquiry-based science learning as follows: 

We define inquiry as engaging students in the intentional process of 

diagnosing problems, criticizing experiments, distinguishing alternatives, 

planning investigations, revising views, researching conjectures, searching 

for information, constructing models, debating with peers, communicating 

to diverse audiences, and forming coherent arguments. (Linn et al., 2003, p. 

518) 

In pedagogical models that assume constructivist principles, the role of 

the teacher is to create a learning environment in which students can interact 

autonomously. This means that the teacher must carefully select learning 

tasks and ensure that the student has the cognitive and material resources 

required to engage in problem-solving. Additionally, the teacher must create 

 
13 The content of this section is based on the articles by Godino et al. (2019) and 

Godino and Burgos (2020). 
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cognitive scaffolding, an “architecture of choices”, that supports and 

promotes the construction of knowledge by the students themselves. In a 

sense, it involves implementing a “libertarian paternalistic” pedagogy in the 

sense of Thaler and Sunstein (2008), based on “nudge” type interventions. 

A nudge, as we will use this term, is any aspect of the architecture of choice 

that modifies the people’s behaviour in a predictable manner without 

prohibiting any option or significantly changing their economic incentives. 

(Thaler & Sunstein, 2008, p. 6) 

In mathematical learning, the use of problem situations (applications to 

daily life, other fields of knowledge, or problems internal to the discipline 

itself) is considered essential for students to make sense of the conceptual 

structures that shape mathematics as a cultural reality. These problems 

constitute the starting point of mathematical practice; therefore, problem-

solving activity, its formulation, communication, and justification are 

considered key to developing the ability to tackle non-routine problems. This 

is the main objective of the tradition known as problem-solving (Schoenfeld, 

1992), which focuses on identifying heuristics and metacognitive strategies. 

It is also the goal of other theoretical models, such as the Theory of Didactical 

Situations in Mathematics (Brousseau, 1997) and Realistic Mathematics 

Education (Freudenthal, 1973; 1991). 

However, there are positions opposed to constructivism, such as those of 

Mayer (2004) and Kirschner et al. (2006), among others, who justify through 

various studies the greater effectiveness of instructional models in which the 

teacher and the transmission of knowledge play a predominant role. These 

positions are related either to objectivist philosophical theories (Jonassen, 

1991) or to empirical research over the last half-century on direct instruction 

or lesson-based pedagogy (Boghossian, 2006). Sweller et al. (2007) found 

that minimal guidance during instruction was significantly less effective and 

efficient than specifically designed guidance to support the cognitive 

processing necessary for learning. These authors claim that, in general, the 
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effects of unguided discovery tasks are limited compared to enhanced 

discovery tasks. Opportunities for constructive learning may not arise when 

students are left without guidance. 

Perhaps the findings of these meta-analyses can help steer the debate away 

from issues of unguided discovery toward a fruitful discussion and empirical 

research on how to best implement cognitive scaffolding, how to provide 

classroom feedback, how to create worked examples for various content 

areas, and when to provide direct forms of instruction during learning 

(Alfieri et al., 2011, p.13). 

Cognitive reasons can be provided to favor a didactic model based on the 

transmission of knowledge (objectivism) over models based on autonomous 

construction (constructivism). Kirschner et al. (2006) noted that 

constructivist positions, through minimally guided instruction, contradict 

the architecture of human cognition and impose a heavy cognitive load that 

hinders learning. Other reasons for rejecting constructivist positions come 

from cultural psychology. 

Accounts of cognitive development have often portrayed children as 

independent scientists who gather first-hand data and form theories about 

the natural world. I argue that this metaphor is inappropriate for children’s 

cultural learning. In that domain, children are better seen as anthropologists 

who attend to, engage with, and learn from members of their culture. 

(Harris, 2012, p. 259) 

The metaphor of the child as a natural scientist is useful for describing how 

children make sense of the universal regularities of the natural world, which 

they can observe for themselves, regardless of their cultural environment. 

However, the metaphor is misleading when used to explain cognitive 

development comprehensively and globally. Children are born into cultural 

worlds that mediate their encounters with physical and biological worlds. To 

access this cultural world, children require a socially oriented mode of 

learning (learning through participant observation). “The mastery of 

normative regularities requires cultural learning”. (Harris, 2012, p. 269) 
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The debate between direct teaching, linked to objectivist positions on 

mathematical and scientific knowledge that advocate a central role for 

teachers in guiding learning and minimally guided teaching, usually referred 

to as constructivist teaching models, is not clearly resolved in the research 

literature. Advocates of problem-based and inquiry-based learning focus on 

the amount of guidance and the situations in which such guidance is 

provided. They believe that guidance given includes extensive support and 

immersion in real-life situations helps students make sense of scientific 

content. 

Zhang (2016) asserted that the tension between these two positions lies 

not in whether one favors presenting more or less guidance or support to 

students but between explicitly presenting solutions to learners or letting 

them discover them. “For proponents of direct instruction, the explicit 

presentation of solutions and the demonstration of the process to achieve the 

solutions are essential guidance” (Zhang, 2016, p. 908). Expecting students 

to discover, explore, and find the solutions according to “inquiry-based 

education” eliminates the need to present solutions. In constructivist 

positions, even if some degree of information transmission from teacher to 

student is admitted, it is still essential to hide part of the content. For direct 

instruction proponents who adopt cognitive load theory with an emphasis on 

worked examples, providing solutions is essential. For example, in the field 

of proportional reasoning development, Bentley and Yates (2017) used the 

“worked examples” didactic model to present the unit reduction strategy, i.e., 

helping students adopt a step-by-step analysis of missing-value problems by 

first easily recognizing a unit and then using it to solve the problem. In their 

research, they reported positive results when applying this didactic strategy 

to students with high and low socioeconomic status. 

In OSA, a new variable is introduced into the debate surrounding these 

models. This involves recognizing the ontosemiotic complexity of 

mathematical and scientific knowledge, which must be considered in 
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instructional processes designed to optimize student learning. By assuming 

anthropological, semiotic, and pragmatist assumptions about mathematical 

(or scientific) knowledge, it can be concluded that an essential part of the 

knowledge that students must learn are conceptual, propositional, and 

procedural rules agreed upon within the community of mathematical (or 

scientific) practices. To solve the problems constituting the educational 

objective and develop mathematical reasoning skills, students start from 

prior knowledge, which centrally includes rules that must be available to 

understand and tackle the task. Expecting students to discover these rules 

can be an excessive challenge for most students. Considering the 

ontosemiotic complexity of mathematical knowledge and recognizing the 

central role of problem-solving as the raison d’être of content, this leads to 

the assumptions of a mixed educational-instructional model that is 

presented as a solution to the dilemma between inquiry and transmission 

(Figure 4.5).  

 

4.9.2. Design-based research 

To bridge the gap between theoretical research and teaching practice, 

“design-based research” (DBR) (Brown, 1992; Kelly et al., 2008) was 

developed. DBR comprises a family of methodological approaches aimed at 

studying context-specific learning. These approaches utilize instructional 

design and systematic research on instructional strategies and tools to 

achieve interdependence. It is understood that the research includes not only 

the design phase but also classroom experimentation and the evaluation of 

results. In mathematics education, DBR is conducted by applying different 

foundational theories to the design and interpretation of results. Artigue 

(2015) describes the methodology of didactic engineering as a type of DBR, 

based on the Theory of Didactic Situations, the Anthropological Theory of 

Didactics, and other theories. Didactic engineering (DE) (Artigue, 1989; 

2011) is usually presented with a dual facet: as a “research methodology” and 
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as a set of means or resources for teaching specific topics, developed 

considering research results. “Didactical engineering thus emerged as a 

research and development methodology based on classroom realizations in 

form of sequences of lessons, informed by theory and putting to the test 

theoretical ideas”. (Artigue, 2015, p. 469) 

Godino et al. (2013) analyzed the characteristics of DBR and DE and 

concluded that since DE can be based on different theoretical frameworks, 

DE and instructional design describe the same type of didactic research. 

Instructional design or didactic engineering research, regardless of the 

underlying theory, addresses questions such as: What learning outcomes are 

obtained if a specific educational intervention is conducted in a given 

context? This corresponds to the predictive scheme: If X, then Y. Because 

these studies were conducted in real educational contexts, they considered 

the richness and complexity of factors that condition teaching practices. 

Consequently, the resources developed and the knowledge obtained from 

these studies can solve practical problems that are usually related to what 

mathematics is taught and how. However, since the knowledge provided by 

this type of research is predictive, it cannot derive the evaluations and norms 

of action required for efficient practice intervention. Bridging the gap 

between scientific knowledge and teaching practice requires developing 

theories that explicitly state the system of axiological principles and 

evaluative and normative criteria for efficient educational action derived 

from theoretical and applied research. The Theory of Didactical Suitability, 

described in Chapter 5, provides this interface in the OSA. 

The instructional model assumed in OSA is based on the principles of 

cultural/discursive psychology (Lerman, 2001), which attributes a key role 

to the “zone of proximal development” (Vygotsky, 1934). Contrary to 

constructivist models, student autonomy in learning is the result of this 

process and not a prerequisite. However, given the central role that the 

anthropological perspective of knowledge plays in solving problems and the 
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activity involved in solving them, the search, selection, and adaptation of 

good problem situations and the involvement of students in their resolution 

are also principles of meaningful mathematical instruction. This assumption 

leads to a mixed instructional model in which the construction and 

transmission of knowledge are articulated dialectically (Godino & Burgos, 

2020; Godino et al., 2020) and is summarized in the following principles: 

− Learning enables students to apply appropriate institutional 

meanings and objects to solve specific problems and develop as 

individuals. 

− The study of students’ personal meanings is an essential component 

of educational problems because the appropriation of intended 

institutional meanings is conditioned by students’ initial personal 

meanings. 

The institutional meanings ultimately implemented in an instructional 

process may differ from the intended and reference meanings because of 

constraints imposed by students’ cognitive abilities, available resources, and 

the social and educational context. However, the meanings of intended and 

implemented institutional objects in educational contexts are expected to 

represent a representative sample of the overall reference meaning.  

 

4.10. Synthesis of the theory of instructional design in 

mathematics based on OSA 

In Table 1, we present a synthesis of the characteristics of the Ontosemiotic 

Theory of Educational Design in Mathematics, following Michie et al. (2014) 

on elements for the description of theories in the field of social and behavioral 

sciences.  
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Table 4.1. Synthesis of the theory of educational design based on OSA 

Elements Description 

Summary. What is 

the theory about and 

what are its main 

propositions? 

The Onto-Semiotic Theory of Educational Design in Mathematics 

provides assumptions and theoretical tools for designing teaching 

and learning processes in mathematics based on the onto-semiotic 

theory of mathematical activity and emergent objects, as well as 

the onto-semiotic theory of meaning and mathematical cognition 

proposed by the OSA (Chapters 2 and 3). This theory includes a 

model of the structure and dynamics of educational processes that 

considers the various facets and components that characterize 

these processes. It proposes a model of categories of norms and 

metanorms, including criteria of didactical suitability, that allows 

for explaining didactical phenomena and provides guidelines for 

optimizing educational processes. The constructs of didactical 

configuration and trajectory enable detailed analyses (descriptive 

and explanatory) of the design and implementation of educational 

processes. Complemented by the postulate of the onto-semiotic 

complexity of content and the construct of didactical suitability, 

these analyses allow for the development of a mixed didactical 

model that resolves the dilemma between constructivist (inquiry-

based) and objectivist (transmissive) models to optimize 

mathematical learning. 

 

Scope/Objective. 

What phenomena 

does the theory 

explain? 

The goal of the theory of educational design is to understand the 

processes of teaching and learning mathematics, the facets, 

components, and interactions involved in design, implementation, 

and evaluation, and to construct a system of criteria based on OSA 

and didactical research results to optimize the development of 

these processes. Therefore, it includes assumptions and tools for 

the scientific (descriptive, explanatory, and predictive) component 

as well as for the technological (prescriptive) component of 

mathematics education. 

 

Justification. Why is 

this theory necessary 

and how does it 

improve on previous 

theories? 

This theory emerges from the consideration that existing 

educational design theories—even those specific to mathematics—

are not based on explicit models regarding the specific nature of 

mathematical knowledge. The onto-semiotic theory of 

mathematical activity allows for awareness of the onto-semiotic 

complexity of teaching contents and provides tools for preliminary 

analysis of the meanings of mathematical objects. This includes an 

a priori analysis of tasks, identification of significant didactical 

facts, and criteria for optimizing the epistemic and cognitive 

trajectories of educational processes in mathematics. 
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Hypotheses. What 
specific hypotheses 
does the proposed 
theory propose, and 
how do they differ 
from other theories? 

This theory postulates that the design of educational processes 
should be grounded in specific theories about the nature of the 
content being designed. In the case of mathematics, the theory of 
educational design in mathematics assumes the ontological, 
semiotic, and epistemological postulates of the OSA regarding 
mathematical activity, as well as the processes and emergent 
objects thereof. It posits that during students’ initial encounters 
with new content, collaborative didactical configurations optimize 
didactical suitability by considering the onto-semiotic complexity 
of the content under study. Student autonomy emerges from 
didactic activities and is not a prerequisite, as constructivist 
theories postulate. 

. 

Constructs. What 

elements constitute 

the theory? 

The theory includes the following constructs: 

− Facets, components, subcomponents, and elements of an 
educational process. 

− Normative dimension, meta-normative dimension, and 
suitability criteria. 

− Didactical configuration and epistemic, ecological, 
instructional (interactional, mediational), normative, and 
cognitive-affective subconfigurations. 

− Didactical trajectory and epistemic-ecological, instructional, 
normative, and cognitive-affective subtrajectories. 

− Institutional and personal meanings. Ecology and complexity 
of meanings. 

− Semiotic conflicts (epistemic, cognitive, instructional). 

− Reference didactical configurations. Didactical model based 
on OSA. 

− Didactical suitability. Criteria and indicators. 

Relations. How are 

the elements of the 

theory related to 

each other? 

The model of structure of an educational process forms the basis 

for the systematic analysis of the design, implementation, and 

evaluation, allowing for the categorization of types of 

configurations, didactical trajectories, norms, and metanorms. 

Institutional and personal meanings, pragmatically understood 

according to OSA, enable the study of the reconstruction and 

ecological adaptation of meanings in educational contexts during 

the planning phase of teaching. The identification of semiotic 

conflicts provides explanations and criteria for studying classroom 

interactions. The construct of didactical suitability, in its various 

facets and components, offers criteria for decision-making during 

planning and implementation phases and suitability indicators for 

evaluation. The construct of the onto-semiotic complexity of 

meanings and reference didactical configurations forms the basis 

of the mixed inquiry-transmissive didactical model based on OSA. 
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Origin. On which 

theories is it based, 

and how? 

The theory of educational design is based on the onto-semiotic 

theory of mathematical activity and emergent objects by adopting 

the types of objects and mathematical processes proposed by this 

theory as components and elements of the epistemic and cognitive 

facets of educational processes in mathematics. The postulate of 

institutional and personal relativity of the meaning of 

mathematical objects in relation to institutional frameworks and 

contexts of use connects the theory of educational design with 

historical-cultural theories in mathematics education, as well as 

situated cognition theories. 

 

Similarity. Which 

theories are most 

similar to this 

theory? 

The OSA-based theory of educational design has connections with 

didactical engineering (Artigue), based on the Theory of Didactic 

Situations in Mathematics (Brousseau), as well as the Theory of 

Didactical Moments and its development in the Theory of Study 

and Research Paths (Chevallard). There are also concordances 

with Realistic Mathematics Education (Freudenthal). The onto-

semiotic assumptions about mathematical knowledge and the 

specific constructs underlying the theory extend the types of 

analyses that can be conducted, explanations of didactical 

phenomena, and especially the mixed inquiry-transmissive 

didactical model based on OSA. The system of didactical 

suitability criteria explicates and expands those derived from the 

abovementioned theories. 

 

Complementarity. 

With which theories 

can it be 

complemented? 

OSA aspires to develop a comprehensive theoretical system to 

address the ontological, semiotic, epistemological, educational-

instructional problems involved in the teaching and learning 

processes of mathematics by applying a theoretical hybridization 

strategy. It can be complemented by curricular theories that 

explicitly address the development of affective and ecological 

facets of educational-instructional processes, such as critical and 

inclusive mathematics education (the role of mathematics in 

society, social justice, equity). 

 

Operationalization. 

How are the 

constructs measured 

or identified? 

The constructs of the theory are unmeasurable or gradable traits, 

except for didactical suitability. These are descriptive categories of 

the various aspects of an educational process that are understood 

as multidimensional or multifaceted constructs. Sections 4.1–4.8 

describe the constructs that configure this theory. 
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Uses. What can the 

theory be used for? 

The OSA-based theory of educational design can be used to plan, 

implement, and evaluate educational processes in mathematics at 

the micro (lessons), meso (topics), and macro (programs) levels. 

It can also serve as an instrument for describing, explaining, and 

evaluating educational processes designed from other theoretical 

perspectives, helping to identify aspects that can be improved. 

Therefore, it is a resource for design research and teachers’ 

reflection on their own practice. 
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Chapter 5 

Theory of didactic suitability based on OSA 

 

 

 

Introduction 

 The evaluation of educational and instructional planning and 

implementation processes involves teachers and other stakeholders 

interested in the overall assessment and learning of students. Thus, various 

national and international bodies are interested in the results of student 

learning and the factors that determine them and apply standardized tests 

that often condition the curricula implemented. The object/subject of this 

evaluative activity is the educational-instructional process, thus involving its 

various facets and interactions. At the local level, i.e., within the classroom, 

evaluative activities are conducted to gather information and make 

instructional decisions. The desired outcome is information about the 

learning achieved by the students (summative evaluation) or the 

development of the instructional process at the local level (formative 

evaluation). 

At the macro level, i.e., in external summative assessment, various 

professional communities are involved in the required tasks (design of 

instruments, implementation, analysis and interpretation of results, etc.). At 

the local level, assessment is also a community activity that involves not only 

teachers and students but also schools and families. The ecological 

environment in which the activity occurs is conditioned and supported by 

rules that regulate periodicity, forms, procedures, and tools. Macro-level 

learning assessment processes require creating objective measurement 
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instruments that allow comparisons between groups, schools, and countries 

to make macro-level decisions. This assessment reduces complexity by 

eliminating contextual details that may be essential from an educational 

perspective. From this, the following general dilemma arises regarding 

assessment in mathematics education: “How can we assess the essential 

components of mathematical knowledge, understanding, thinking, 

creativity, problem solving, and general ability without seriously distorting 

them” (Niss, 1993, p. 27).  

 In this chapter, we develop the notion of didactic suitability as mentioned 

in Chapter 4 as an element of the normative dimension, i.e. as the system of 

criteria that implicitly or explicitly guides the aim of optimizing educational-

instructional processes. This theoretical tool can be used in the planning and 

implementation phases, but particularly in the phase of retrospective 

analysis or evaluation of learning, identifying conditioning factors in the 

development of the educational process, and improvements. Suitability is 

closely related to the quality of instruction and the instruments used for 

measuring learning, although it focuses on the local optimization of 

mathematics education processes. It focuses on recognizing the complexity 

of the facets and components that condition these processes and on 

developing criteria or guidelines to help teachers, who must make final 

decisions about the relative weight of the criteria in each circumstance, to act. 

In Section 5.1, we describe the notion of instructional quality by quoting 

various studies that developed the construct and the instruments for its 

measurement. We justify the usefulness of providing an extended view of 

quality using a qualitative approach, as proposed by didactic suitability. In 

Section 5.2, we present how we conceptualize didactic suitability, its 

definition, and the structure of its facets and components. We speak of a 

theory of didactic suitability based on OSA (TDS-OSA) by considering that 

both the definition of suitability and the system of criteria developed in 

Section 5.3 are based on the assumptions and constructs of the theories of 
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mathematical activity, emergent objects, and meaning that constitute OSA 

(Chapters 2 and 3), as well as the theory of instructional design described in 

Chapter 4. In principle, every theory used in mathematics education, 

including every teacher, has its own theory of didactic suitability. The 

suitability criteria listed in the various tables of Section 5.3 apply to any 

mathematical content. However, from didactic research on specific contents, 

suitability criteria are derived at a more detailed level that must be observed 

to optimize the corresponding educational processes. In Section 5.4, we 

include a system of suitability criteria for the study of proportionality, while 

in Section 5.5, we present an example of applying TDS-OSA in an experience 

of teaching proportionality to secondary school students. Analyzing the 

consistencies and complementarities between OSA-based suitability criteria 

and other theories used in mathematics education is the aim of Section 5.6. 

We conclude the chapter by answering the questions proposed by Michie et 

al. (2014) as a synthesis of a theory in the social and behavioral sciences. 

 

5.1. Quality of instruction and its measurement14 

Various educational studies have been interested in developing 

instruments for observing and measuring the quality of instruction, either 

through generic or content-specific characteristics, or a combination of both. 

Charalambous and Praetorius (2018) quote, among others, the Elementary 

Mathematics Classroom Observation Form (Thompson & Davis, 2014), 

Instructional Quality Assessment (IQA, Matsumura et al. 2008), 

Mathematical Quality of Instruction (MQI, Hill et al., 2011), and 

Mathematics-Scan (M-Scan, Walkowiak et al., 2014) projects. Most of these 

papers seek to provide valid and reliable information for educational 

 
14 The content of sections 5.1 to 5.3 is based on the paper by Godino, J. D., Batanero, C. & Burgos, 

M. (2023). Theory of didactical suitability: An enlarged view of the quality of mathematics 

instruction. EURASIA Journal of Mathematics, Science and Technology Education, 19(6), em2270. 
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authorities to make decisions on reform plans, accreditation, and teacher 

selection processes. 

A distinctive feature of instructional quality studies is the observation of 

samples of classes, schools, teachers, and students’ productions to 

statistically relate certain teaching variables to learning. Protocols for 

observing classes and student work were constructed, and explicit criteria for 

assigning scores were established by external evaluators (Boston, 2012; Hill 

et al., 2011). Recommendations for improving instruction at the school or 

district level are provided. 

Instruments for measuring the quality of instruction usually assess aspects 

of educational practices empirically associated with students’ learning. 

Instrument feasibility and technical quality are sought to ensure reliable use 

when assigning scores to classroom observations and student productions. 

These measurement requirements may reduce the generalizability of the 

results because important aspects of instruction (e.g. misconceptions about 

mathematics or the role assigned to mathematical processes) are not 

captured.  

 Although assessment of a few well-chosen aspects of instruction may 

provide useful information for improving instruction, a comprehensive 

instrument can help realize the complexity of educational processes and 

identify significant variables. Optimizing teaching and learning processes 

often requires prioritizing some principles and neglecting others, depending 

on the context and circumstances of learners. It is necessary to develop 

instruments to systematically analyze the different facets and components of 

the educational-instructional process that teachers can use to reflect on their 

practice and make informed decisions to progressively improve it.  

In the OSA-based Theory of Didactic Suitability (TDS-OSA), as described 

in this chapter, we attempt to complement the efforts of quantitative quality 

measurement with a qualitative approach, which focuses on teachers’ 

initiative and responsibility to decide on their own teaching practices. This 
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reflective activity must be supported by specific instruments to reveal the 

complexity of the processes and the difficulty of balancing sometimes 

conflicting teaching principles. The results of this work have implications for 

research on teacher education, particularly for teachers’ reflection and 

decision-making about practice (Karsenty & Arcavi, 2017; Tzur, 2001). 

 

5.2. Conceptualizing didactic suitability 

In OSA, we developed two tools to support the evaluation of educational-

instructional processes:  

1) The structure model described in Section 4.1 (Chapter 4) for which 

we distinguish six facets and their respective interactions: 

epistemic, ecological, mediational, interactional, cognitive, and 

affective. For each facet we differentiate various components and 

sub-components (Figure 4.1). 

2) The theory of didactic suitability in which we suggest, in addition to 

the construct of didactic suitability, a system of criteria—principles 

or norms—to optimize educational instructional processes in their 

different facets and components. The criteria formulation described 

in Section 5.3 is based on the OSA assumptions and constructs, 

although, as explained in that section, the criteria are usually shared 

by other theories, curricular orientations, and schools of thought.  

 

5.2.1. Definition and structure of didactic suitability 

In Godino et al. (2006), we considered the didactic suitability of an 

instructional process as we faced the challenge of moving from the analysis 

and description of processes to didactic engineering, understood as a 

discipline that guides the design, implementation, and evaluation of 

mathematics teaching and learning. Specifically, we asked ourselves, “What 

criteria can we derive for the suitability of didactic configurations and 

trajectories from the ontological-semiotic approach to mathematical 
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cognition?” In this study, we consider that the overall suitability of a didactic 

configuration and trajectory must be assessed by considering various facets 

or dimensions. For teaching and learning configurations, we assessed 

suitability by considering the possibilities of identifying conflicts and 

negotiating meanings.  

This theoretical tool has been widely used in various research works, as 

described by Malet et al. (2021), and we can see its progressive refinement 

and changes in the formulation of suitability criteria and indicators (Breda et 

al., 2018; Godino, 2013). In Godino et al. (2023) we propose the following 

conceptualization of didactic suitability: 

The didactic suitability of an instructional process is defined as the degree to 

which that process (or a part) meets certain characteristics that allow it to be 

qualified as optimal or adequate to achieve the fit between the personal 

meanings achieved by learners (learning) and the intended or implemented 

institutional meanings (teaching), taking into account the circumstances and 

resources available (environment). These institutional meanings are also 

representative of the global meaning of reference. (Godino et al., 2023, p. 4) 

 This statement describes the conditions for an instructional process to be 

suitable, which is initially linked to the optimization or adequacy of the 

coupling between teaching and learning and the implementation of rich 

mathematics, considering the multiple factors involved in these processes. 

From this, it is possible to state an overall criterion (principle) for didactical 

suitability: 

One should ensure that students learn the mathematics intended to be 

taught, with such mathematics representing the overall meaning of the same 

and considering personal, contextual and temporal circumstances.  

This formulation incorporates the social values of mathematics education, 

such as avoiding school failure and efficient use of resources. Instructional 

suitability is a gradable trait of educational processes that involves the 

coherent articulation of six partial aspects of suitability related to its facets 
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and components (Figure 5.1). Section 5.3 provides a detailed description of 

the sub-criteria for facets and components.   

 

Figure 5.1. Didactic suitability. General facets and criteria (Godino, 2013, 

p. 116) 

 We assume that in the social and educational sciences, it is possible to 

develop suitability criteria as value judgements if such judgements have a 

social character and it is possible to substantiate their formulation. Such 

judgments involve rationality and can therefore be subject to scientific 

scrutiny (Bunge, 1999; Lacey, 1999; Rugina, 1998). 

The partial-suitability criteria for each facet can be refined using the 

components provided by various OSA tools. Thus, for example, epistemic 

suitability refers to the degree to which the institutional meanings of the 

content and the configurations of objects and processes implemented 

represent the overall meaning of reference, considering the contextual and 
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personal circumstances of the subjects involved. Cognitive suitability refers 

to the degree to which the learning objectives are cognitively challenging and 

achievable for the learners, and the personal meanings achieved are 

consistent with the planned institutional meanings, considering their 

personal and contextual circumstances. Joint optimization of partial 

suitability may be conflicting in specific contexts and circumstances:  

this leads, first, to treating suitability criteria jointly (and not as independent 

criteria as is often done in quality) and, second, to questioning or relativizing 

the validity of a given criterion in a specific context, which leads to giving 

different relative weights to each criterion depending on the context. In this 

way, the relative weight of each partial suitability criterion no longer depends 

only on external factors (the existence of prior community consensus) but, 

to a greater extent, on internal factors (the conflict that the suitability 

criterion generates with the context and other criteria) (Breda et al., 2018, p. 

265). 

The second level for suitability analysis (Figure 4.1, Chapter 4) is 

determined by the components of each facet (in varying quantities), some of 

which apply to any discipline, while others are specific to mathematics. For 

the epistemic and cognitive facets, it is possible and convenient to propose a 

Level III analysis that distinguishes sub-components determined by the 

elements that characterize mathematical knowledge according to OSA. When 

the educational-instructional process under analysis refers to specific 

content, for example, probability, we can define a Level IV of analysis in the 

epistemic and cognitive facets, considering specific features of teaching and 

learning of this content (Beltrán-Pellicer et al., 2018). 

The actions and resources used in the epistemic, ecological, interactional, 

and mediational facets are intended for students’ learning, in which both 

cognitive and affective aspects are contemplated. There are complex 

interactions between the different facets as educational-instructional 

processes happen within recursive and open social systems in which 
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interactions between elements rely on interpretation and negotiation of 

meanings, as well as on a complex web of interwoven values. 

Social systems are often semiotic systems in the sense that interactions 

between elements are not based on physical strength but on meaning and 

interpretation. In these terms, education can be characterized as an open 

recursive semiotic system. It is a semiotic system because the exchanges 

between teachers and learners do not involve physical force but meaning. 

The system functions recursively because teachers and learners act on the 

basis of their interpretations and understandings. Educational systems are 

generally open because they interact with their environment (albeit under 

conditions of reduced complexity). (Biesta, 2010, p. 497)  

In TDS-OSA, the axiological principles and criteria for optimizing teaching 

and learning assumed by the research community are explicit and structured, 

incorporating some of their own derived from ontosemiotic assumptions 

about mathematical knowledge. This theory provides an expanded vision of 

the quality of mathematics instruction studies (Charalambous & Praetorius, 

2018), emphasizing an interpretative approach to the web of values at stake 

in mathematics teaching and learning processes. The complexity associated 

with optimizing such processes becomes obvious because it is necessary to 

achieve a balance in implementing principles related to different facets and 

components, which have a strong local component. The teacher should 

manage this axiological balance by weighing the relative importance of each 

aspect according to the circumstances and context.  

 Fulfillment of the suitability criteria is associated with several empirical 

indicators. For example, it is assumed that students’ mathematical 

understanding and competence stem from the use of different 

representations and their transformation and conversion. An instructional 

process should ensure that students have opportunities to use different 

representation, transformation, and processing systems. The suitability of a 

specific instructional process is based on the observation of empirical 
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indicators of the use of representational systems. The criterion is a norm 

(sometimes used as a principle, in other cases, as a rule) that should be 

followed to achieve high suitability for an instructional process; the indicator 

is the observable manifestation of the application of the criterion; criteria are 

grouped or categorized according to facets and components.  

 

5.2.2. A broader view of suitability 

Didactic suitability criteria are heuristic principles that synthesize the 

results of mathematics education research. Various theories share most of 

them, as outlined in Godino (2013) and Godino (2021). They are offered as 

tools to support the educational professional’s individual or collaborative 

enquiry, which must interpret and adapt the global and specific criteria for 

each component of the instructional process to their particular 

circumstances and weigh their relative relevance.  

The notion of suitability can be applied not only to didactic activities but 

also to any human activity, thus establishing a link between scientific-

technological research and reflective practice. This helps in decision-making 

regarding addressing the triple dialectic between the Aims, Values and 

Means, which lies on the reflective practitioner. Value judgments can be 

rationally analyzed, compared, and articulated. All human activities, 

including mathematics, incorporate principles of efficiency; therefore, 

didactic suitability can be extended, e.g., to mathematical or economic 

suitability.  

With this overview, a Theory of Suitable Activity will be a system of value 

judgements—one should do this and not that—on how to perform an activity 

in the best possible way, considering the specific context and circumstances. 

These theories may be implicit or explicit, personal or social, spontaneous, 

or based on basic or applied research, as well as on the reflective practice of 

the actors involved. For didactic activities (teaching and learning), each 
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teacher will have his/her own “theory of what can be best” depending on their 

personal knowledge, beliefs, and values. 

 

5.3. System of didactic suitability criteria 

In this section, we describe the general suitability criteria for the different 

facets, justifying their rationality in the OSA assumptions and their 

consistency with other general or specific educational theories of 

mathematics education. The complete system of didactic suitability criteria 

for the facets and components configures the instrument Guide for the 

Analysis of the Didactic Suitability of Mathematical Instruction Processes 

(GADS-MIP), which is formed by the set of tables included in this section.  

The suitability criteria should be understood as principles to be followed 

to ensure that the instructional process is suitable for each facet, considering 

its components. In previous studies (Godino, 2013; Breda et al., 2018), 

suitability indicators were developed for these components and understood 

as features that should be observed in a suitable instructional process. To 

assign a greater or lesser degree of suitability, it is necessary to develop 

rubrics with rules for assigning numerical values to the degree of compliance 

with each indicator. This quantitative orientation in the assessment of 

suitability has not been developed in the TDS-OSA because the main prior 

use of the GADS-MIP instrument has been for professional teacher 

development and not for comparing and ranking lessons or teachers’ quality.  

 

5.3.1. Epistemic facet 

For TDS-OSA, it is essential to assess the quality of the content being taught 

and learned so that the epistemic facet has a prominent place in analysis 

levels I, II, and III (Figure 4.1, Chapter 4), demonstrating the complexity of 

measuring the quality of institutional mathematical knowledge. In Table 

5.1A, we describe the general criteria for epistemic suitability and its 

components. 



272 Chapter 5. Theory of didactic suitability based on OSA 

 

 

 

 

Table 5.1A. Suitability criteria for the epistemic facet and its components 

General criterion of 
the epistemic facet 

Component-specific criteria according to the 
components 

 
The partial 
institutional meanings 
of the content and the 
configurations of 
objects and processes 
linked to each 
meaning, implemented 
throughout the 
instructional process, 
should be articulated, 
representative of the 
reference global 
meaning. and consider 
the contextual and 
personal circumstances 
of the subjects 
involved. 

Meaning 

− Select the partial meanings whose study is adapted to the 
contextual and students’ personal circumstances, 
contextualizing them with understandable problem-
situations. 

− Consider a representative sample of the primary objects 
involved in the mathematical activity (situations, 
languages, concepts, properties, procedures, and 
arguments) that are involved in the partial meanings of the 
content. 

Relations (Connections) 

− Relate the partial meanings to each other and to the objects 
involved in the corresponding practices, as well as to the 
content of other topics that the student already knows. 

Processes 

− Consider the diversity of processes from which the objects 
involved in mathematical practices emerge 
(problematization, representation, definition, 
generalization, modeling, ...). 

 

 The implemented mathematical content must meet specific requirements 

to ensure epistemic suitability for the instructional process. It must include 

rich, optimal, or adequate mathematics, according to the students’ contextual 

and personal circumstances (ecological and cognitive facet). The 

ontosemiotic model of mathematical knowledge provides elements for 

characterizing such mathematics for different components and 

subcomponents of the epistemic facet (Chapter 2). A specific instructional 

process occurs in a particular environment and is performed over a limited 

time interval; therefore, it is inevitable that some partial meanings of the 

object in question and the configurations of objects and processes associated 
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with the meanings are selected. Nevertheless, globally (throughout 

education), the set of meanings must be representative15. 

With this formulation of the epistemic suitability general criterion, there 

is no single but diverse “good mathematics”, since for each content different 

“correct” meanings can be identified, which vary in generality, formalization, 

and the objects and processes involved16. The optimization of learning is to 

be local, i.e., adapted to the context, subjects, and circumstances.  

For high epistemic suitability of the instructional process, the task design 

should have the characteristics stated in Table 5.1B. Considering the 

anthropological view of mathematics assumed in the OSA, i.e., mathematics 

as an activity of people and as a system of cultural objects emerging from it, 

problem solving is fundamental to the instructional processes. This is 

reflected in the general criterion and in the criteria linked to the components: 

meanings (contextualization through situations-problems understandable to 

students), relationships or connections between meanings, objects 

(situations-problems), and processes (problematization). 

 

Table 5.1B. Suitability criteria for Level III subcomponents of the epistemic facet 

Subcomponents Specific criteria 

Problem-situations − Present a representative and articulated sample of 
contextualization, exercise, application situations, and 
problem generation (problematization). 

Languages − Use a representative sample of different modes of 
mathematical expression (verbal, graphic, 
symbolic...), translations, and conversions between 
them. 

Rules (concepts, 
propositions, 
procedures) 

− Propose definitions and procedures that are clear, 
correct, and adapted to the educational level to which 
they are addressed. 

 
15 The requirement that the meanings, objects, and processes implemented should represent the 

intended institutional meaning implies that there should be no mathematical errors in the teacher’s 

planning and presentations. For this reason, “absence of errors” in the epistemic facet is not included 

as a Level II component, as some models do, e.g., MQI (Hill et al., 2011) and Breda et al., (2018). 

The absence of epistemic conflicts is considered a criterion related to the definitions, propositions, 

and procedures (Level III) sub-components. 
16 Examples of the reconstruction of the global meaning of some mathematical objects are described 

in Batanero and Díaz (2007), Burgos and Godino (2020), Wilhelmi et al. (2007), among other works. 
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− Correct presentation of the fundamental statements 
and procedures of the topic for the given educational 
level. 

− Propose situations in which students must generate or 
negotiate definitions, propositions, or procedures. 

Arguments − Propose definitions and procedures that are clear, 
correct and adapted to the educational level to which 
they are addressed. 

− Correctly present the fundamental statements and 
procedures of the topic for the given educational level. 

− Propose situations where students have to generate or 
negotiate definitions, propositions, and procedures. 

 

 The epistemic suitability criteria (Tables 5.1A and 5.1B) are consistent 

with the principles assumed by the Theory of Didactic Situations in 

Mathematics (TDSM) (Brousseau, 2002) and the Realistic Mathematics 

Education (RME) (Van den Heuvel-Panhuizen & Wijers, 2005), based on 

Freudenthal’s (1983; 1991) didactic phenomenology. These theories and 

curricular proposals (such as NCTM, 2000) propose the use of problem 

situations to contextualize mathematical ideas and generate them from the 

resolution, communication, and generalization of solutions. The activity and 

reality principles of RME support the consideration of epistemic suitability 

criteria. For Freudenthal, there is no mathematics without mathematization: 

it is “all organizing activity of the mathematician, whether it involves 

mathematical contents and expressions, or more naïve, intuitive, or lived 

experiences, expressed in everyday language” (Freudenthal, 1991, p. 31). This 

activity applies to solving environmental problems or reorganizing 

mathematical knowledge. 

Thus, the selection and adaptation of problem situations are central to 

achieving high epistemic suitability. However, although problem situations 

are a central element, high epistemic suitability also requires attention to the 

various representations or means of expression (which is consistent with the 

work of Duval, 1995), definitions, procedures, propositions, and their 

associated arguments. Such tasks should provide students with a variety of 
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ways to approach them, involve a variety of representations and require 

students to conjecture, interpret, and justify solutions (Hanna and Villiers, 

2012). All these processes characterizing rich mathematics must be 

relativized to context, subject, local, and temporal circumstances. 

Attention should also be paid to the connections between different parts 

of the mathematical content and the various types of objects and processes. 

Mathematics is an integrated field of study; “in a coherent curriculum, 

mathematical ideas are related and build on each other” (NCTM, 2000, p.14). 

This position is consistent with the “Principle of interconnectedness” of the 

RME: Mathematical content blocks (numeracy and calculus, algebra, 

geometry, ...) cannot be treated as separate entities. Problem situations 

should include interrelated mathematical content. Problem solving in rich 

contexts often requires the application of various mathematical tools and 

knowledge.  

 

5.3.2. Ecological facet 

Ecological suitability is the degree to which an educational action to learn 

mathematics is suitable for the environment in which it is used. By 

environment, we mean everything that conditions teaching and learning 

outside the classroom: society, schools, pedagogy, mathematics education. 

The instructional process occurs in an educational context that fixes goals 

and values for educating citizens and professionals. These aims and values 

are interpreted and specified within the educational project of the school or 

department that coordinates the actions of teachers. The teacher does not 

work in isolation in the classroom but is part of a community of study and 

inquiry that provides useful knowledge about good mathematical and 

didactic practices that should be observed. In Table 5.2., we describe the 

general ecological suitability criteria and the criteria for the respective 

components.  
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Table 5.2. Suitability criteria for the ecological facet and its components 

General criterion for the 
ecological facet 

Specific criteria according to the components 

 
The educational-
instructional process 
should agree with the 
educational project of the 
center and society, 
considering the 
conditioning factors of the 
setting in which it is 
developed and 
innovations based on 
educational research. 

Interdisciplinary and intra-disciplinary connections 

− Relate the contents with other intra- and 
interdisciplinary contents. 

. 
Curriculum 

− Propose a progressive and articulated study of the 
various partial meanings of mathematical contents at 
different educational levels by graduating the 
generality and formalization with which these 
meanings are approached. 

Openness to innovation 

− Implement innovations that are based on research and 
best practices recognized.  

− Integrating the use of new technologies (calculators, 
computers, ICT, etc.) in the educational project. 

Socioprofessional and cultural adaptation 

− Ensure that the educational-instructional process as a 
whole contributes to the students’ socio-professional 
growth. 

Education in civic values 

− Include in the design and implementation of the 
educational-instructional process the education of 
students on democratic values and critical thinking. 

Family setting 
- Stimulate and support, to the extent possible, the 

student’s learning outside school and his/her 
development as a person.  

 

 Critical mathematics education (Skovsmose, 2012) provides ideas for 

making citizens an active part of a democratic society. Beyond individual 

mathematical learning, it is necessary to reflect on the collective 

consequences of such learning in contemporary society. At school, 

mathematical practices can exert an enormous influence in two completely 

opposite ways: mathematics, reduced to mere routine calculations, can 

reinforce passive and complacent attitudes, and mathematics in its broadest 

sense can develop critical and alternative thinking. 
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Components of the ecological facet include the connections between 

various content blocks and disciplinary areas, which influence mathematical 

content richness and are also related to epistemic suitability. Other aspects 

of a cross-cutting nature are also considered, whose implementation is the 

responsibility not only of the teacher but also of other actors. Such is the case 

of the curriculum, which should consider the results of mathematics 

education research, consider the social and professional training of students, 

and value education. As research evidence shows, the family environment is 

also mentioned as a learning determinant, although “in most cases, however, 

it is not desirable to remove children from their families simply to improve 

their chances of educational success at some point in time” (Biesta, 2010, p. 

501). This observation reveals the complexity of achieving an axiological 

balance in educational-instructional processes.  

 

5.3.3. Mediational facet 

This facet includes different resources that condition and support 

mathematics teaching and learning. In addition to concrete materials and 

technological tools, such as calculators and computers, study aids (textbooks, 

activity books, educational videos, ...), the number of students assigned to the 

teacher, the timetable in which lessons occur, classroom material conditions, 

and the total time allocated to study and its distribution are also included. 

Table 5.3 sets out the general criterion for mediational suitability and specific 

criteria for its components. 

Table 5.3. Criteria of suitability for the mediational facet and its 

components 

General criterion of the 
mediational facet 

Component-specific criteria 

 

 

Material resources (Concrete, virtual, and symbolic)  

− Distinguish mathematical objects (regulative, non-
ostensive) from their respective concrete, visual or 
symbolic representations in mathematical and didactic 
practices. 
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Adequate resources 
should be available for 
the optimal 
development of 
teaching and learning 
processes. 

− Articulate the use of configurations of objects and 
processes based on alphanumeric representations with 
those based on concrete representations to 
progressively enhance the processes of generalization, 
calculation, and mathematical proof. 

Study aides (textbooks, exercise books, educational videos, 
…) 

− Make critical and reflective use of curricular materials 
(textbooks or activity worksheets in physical or virtual 
format, etc.) or educational videos, deciding when and 
how to use them to support the study process. 

Number of students, schedule, and classroom conditions 

− Optimize the number of students to provide 
personalized attention. 

− Adapt the classroom and the distribution of students to 
facilitate interactions. 

− Provide a schedule of class sessions that promotes 
student attention and commitment. 

Time (collective teaching/tutoring; learning time) 

− Appropriate time (face-to-face and non-face-to-face) 
for the intended teaching. 

− Adequate time should be assigned to the most 
important contents and those that are difficult to 
understand.  

 

In recent decades, there has been a broad consensus in mathematics 

education on the use of manipulative materials and virtual resources to 

support teaching and learning, as they “concretize and visualize” 

mathematical concepts. “Technology is essential in the learning and teaching 

of mathematics. It can positively influence what is taught and, in turn, 

increase student learning” (NCTM, 2000, p. 24). This professional 

organization also considers calculators and other technological tools, such as 

algebraic calculus systems, dynamic geometry software, applets, 

spreadsheets, and interactive presentation devices, to be vital components of 

high-quality mathematics education.  

Other studies (e.g. McNeil and Jarvin, 2007; Uttal et al., 1997) take a more 

critical approach to manipulative use. Uttal et al. (1997) asserted that a sharp 

distinction between concrete and symbolic forms of mathematical expression 

is not useful. There is no guarantee that students will make the connections 

between manipulative and more traditional mathematical expressions 
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because the manipulative should represent something different, i.e. it is also 

a symbol.  

A concrete manipulative may be interesting to children, but it alone is not 

enough to advance their knowledge of mathematics or concepts. To learn 

mathematics from manipulatives, children must perceive and understand 

the relationships between manipulatives and other forms of mathematical 

expression. (Uttal et al., 1997, p. 38) 

In OSA, as we have already mentioned, the relationships between material 

representations and visualizations (ostensive objects) of mathematical 

concepts, propositions, and procedures are complex because these have a 

regulative nature (non-ostensive objects) and should not be confused with 

their representations (Godino et al., 2007; Font et al., 2013). For example, 

the rational number “one-third” can be referred to in mathematical practice 

by the symbolic expression 1/3. It can also be represented by a pie chart in 

which the unit disk is divided into three equal parts, and one portion, which 

is one-third of the unit, is set aside. However, any fraction equal to 1/3 also 

represents the rational one-third. Progress in mathematical understanding 

therefore requires distinguishing the mathematical object from its ostensive 

representations (whether visual or manipulative), which materialize the 

mathematical object in iconic or indexical ways.  

We must also recognize the different efficiency of symbolic 

representations compared to iconic and indexical representations for 

calculation, generalization, and demonstration processes. Mathematical 

activity is usually performed with the support of means of expression and 

calculation whose nature may be tangible or manipulative (abacus, geo-

plane, ...), visual-diagrammatic (Cartesian graphs, probabilistic simulators, 

...), or alphanumeric symbolic. Any of these means of expression is 

dialectically related to non-ostensive mathematical objects that regulate the 

development of operative and discursive mathematical practices and provide 

answers to problem situations.  
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From these ontosemiotic considerations, a specific criterion for the 

suitability of using material resources in mathematical instruction is 

postulated: 

Mathematical objects (regulative, non-ostensive) should be distinguished 

from their respective concrete, visual, or symbolic representations in 

mathematical and didactic practice. 

We must remember the dialectic between the configurations of objects and 

processes based on the use of manipulative-visual resources and the 

analytical configurations grounded on symbolic representations. Synergistic 

relations are established between these two types of configurations, which 

are intertwined in mathematical practices. Configurations based on concrete 

and visual representations play a key role not only in school mathematics but 

also in the generation of conjectures, induction, and explanation, while 

analytical configurations are essential in generalization, calculation, and 

justification processes. This leads to another specific criterion of mediational 

suitability:  

Using configurations of objects and processes based on alphanumeric 

representations should be articulated with those based on concrete 

representations to progressively enhance the processes of generalization, 

calculation, and mathematical proof. 

 Bartolini and Martignone (2020) distinguished concrete from virtual 

manipulation. The former are physical artifacts that students can manipulate 

to offer tangible experiences in school mathematics activities, while the latter 

are digitally manipulated to offer visual experiences. However, alphanumeric 

symbols, which are part of the language category of the epistemic facet, are 

also “manipulated”, they are objects of processing and conversion between 

different registers (Duval, 2006). The articulation of the use of these means 

of symbolic expression with material resources, as pointed out by Uttal et al. 

(1997), leads us to consider the usefulness of distinguishing three sub-

components in the category of material resources: concrete, virtual, and 
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symbolic manipulative. For the three types of resources, there is a wide 

variety of devices or artifacts depending on the mathematical content to be 

addressed: arithmetic (abacus, rulers, fraction wall, ...), geometry (geoboard, 

GeoGebra, ...), statistics (simulators, graphics, ...), and algebra (algebraic 

balance, ...). These devices are used for Level IV analysis of the material 

resources component of the mediational facet. 

 

5.3.4. Interactional facet 

 Although there is a debate between knowledge-transmitting and 

knowledge-constructing models (as we show in Chapter 4), the outcome is 

currently weighted in favor of the latter.  

The constructivist learning framework provides a foundation for 

mathematics reforms in K-12. Many prospective teachers across the United 

States are being trained to believe that this is how students learn best. 

(Andrew, 2007, p. 157) 

This preference for learner-centered learning models is evident in the 

curricular orientations of various countries, which adopt constructivist or 

socio-constructivist theoretical frameworks, as observed in the NCTM: 

Students learn more and better when they take control of their learning by 

defining goals and monitoring their progress. When challenged with 

appropriately chosen tasks, students gain confidence in their ability to tackle 

difficult problems, desire to work things out for themselves, show flexibility 

in exploring mathematical ideas and trying alternative solution paths, and a 

willingness to persevere. (NCTM, 2000, p. 20) 

Likewise, educational research attributes much importance to discourse, 

dialog and conversation in the classroom:  

The nature of mathematical discourse is central to classroom practice. If we 

seriously accept that teachers need opportunities to learn from their practice, 

the development of mathematical conversations enables teachers to 

continuously learn from their students. Mathematical conversations that 

focus on students’ ideas can provide teachers with a window on students’ 
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thinking in ways that individual student work does not. (Franke et al., 2007, 

p. 237) 

These trends justify the TDS-OSA following general criterion of 

interactional suitability: 

Interaction patterns should allow identification of potential semiotic 

conflicts, putting in place adequate means for their resolution, favoring 

progressive autonomy in learning and the development of students’ 

communicative competences. 

Table 5.4 includes the suitability criteria linked to the interactions between 

the teacher and the students and among the students themselves. 

Considering socioconstructivist learning principles, the presence of 

moments in which students take responsibility for learning is positively 

valued. However, when becoming aware of the ontosemiotic complexity of 

mathematical knowledge, in TDS-OSA, this constructivist principle is 

qualified in the sense marked by the following specific interactional criterion 

(Godino et al., 2020): 

The modes of teacher-student interaction should be adapted by considering 

the moments of the study process, applying a dialogic-collaborative format 

in the moments of the first encounter with the content, and attributing 

autonomy to the student in the moments of exercise and application. 

Table 5.4. Suitability criteria for the interactional facet and its components 

General criterion for the 
interactional facet 

Component-specific criteria 

 

Interaction patterns 
should help identify 
potential semiotic 
conflicts, provide 
adequate means for 
their resolution, favor 
progressive autonomy 
in learning, and 
develop students’ 

Teacher-students’ interactions 

− Adapt the interaction modes considering the moments 
of the study process, applying a dialogic-collaborative 
format in the first encounter with the content and 
attributing autonomy to the student in exercise and 
application. 

− Make an adequate presentation of the topic (clear and 
well-organized presentation, not speaking too fast, 
emphasizing the key concepts of the topic, etc.). 

− Recognize and resolving student conflicts (appropriate 
questions and answers are asked, etc.). 

− Seek consensus based on the best argument. 
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communicative 
competences.  

− Use rhetorical and argumentative devices to engage and 
capture the students’ attention. 

− Facilitate the inclusion of students in the dynamics of 
the class. 

− Encourage participation and active engagement of all 
students. 

Interactions among students 

− Encourage dialog and communication among students. 

− Enhance group inclusion and avoiding exclusion. 
Autonomy 

− Provide times when students take responsibility for the 
study (pose questions and present solutions; explore 
examples and counterexamples to investigate and 
conjecture; use a variety of tools to reason, make 
connections, solve problems, and communicate).  

Formative assessment 

− Systematically observe students’ cognitive progress and 
use the information obtained to make decisions about 
instruction development.  

 

Accepting the autonomy principle in learning is an essential feature of 

Brousseau’s (2002) Theory of Didactic Situations, in which situations of 

action, communication, and validation are conceived as adidactic moments 

of study processes, i.e. situations in which learners are protagonists in the 

construction of the intended knowledge. Likewise, Realistic Mathematics 

Education (RME) assumes a principle of interaction, according to which 

mathematics teaching is considered a social activity. Interactions between 

students and between students and teachers can lead each student to reflect 

on the input of others and thus reach higher levels of understanding. Rather 

than recipients of ready-made mathematics, students are active participants 

in the teaching-learning process, where they develop tools and 

understanding and share their experiences with others. Explicit negotiation, 

intervention, discussion, cooperation and evaluation are essential in 

constructive learning in which the learner’s informal approaches are a 

platform for achieving formal methods. In this interactive instruction, 

learners are encouraged to explain, justify, agree, and disagree, question 

alternatives, and reflect (Van den Heuvel-Panhuizen & Wijers, 2005, p. 290). 
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A fundamental principle of Freudenthal (1991) is that students should be 

given a “guided opportunity” to “reinvent” mathematics. In RME, this 

implies that both teachers and educational programs play a fundamental role 

in how students acquire knowledge. They direct the learning process, but not 

in a fixed way, by demonstrating what students must learn. This contradicts 

the activity principle (Van den Heuvel-Panhuizen & Wijers, 2005) and leads 

to false perceptions. Students require space and tools to construct their 

mathematical knowledge. To achieve this goal, teachers must provide 

students with a learning environment in which the construction process can 

emerge. 

Deciding on the progression of the study, both by teachers and students, 

requires the implementation of observation and survey procedures for a 

formative evaluation of learning. Deciding on the progression of the study, 

both by teachers and students, requires the implementation of observation 

and survey procedures for a formative evaluation of learning. 

 

5.3.5. Cognitive facet 

OSA assumes that learning involves students’ appropriation of the planned 

institutional meanings, which presupposes their recognition of and interrelation 

with the objects involved in the mathematical practices that determine the 

meanings. Progressive coupling between students’ initial personal meanings and 

planned or effectively implemented institutional meanings is achieved through 

their participation in the community of practice generated in the classroom. In 

Table 5.5A, we include the general criterion of cognitive suitability and specific 

criteria for its components. 

Table 5.5A. Suitability criteria for the cognitive facet and its components 

General criterion of 
the cognitive facet 

Component-specific criteria 

Learning 
objectives should 

Personal meanings 

− Promote understanding of problem situations, 
representations, concepts, and properties. 
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present students 
with both 
personal and 
contextual 
challenges. 
Students’ 
personal 
meanings should 
be consistent 
with the planned 
institutional 
meanings. The 
assessment of 
learning should 
serve to improve 
the instructional 
process. 

− Develop communicative, procedural, and argumentative 
competence. 

Processes 

−  Promote the development of students’ competence to 
implement content-specific mathematical processes 
(modeling, generalization, problem posing and solving, 
proof, representation, ...) and metacognitive processes 
(reflection on one’s own mathematical thought processes). 

Relations (Connections) 

− Promote relational learning so that students can understand 
and relate to different meanings in the teaching process and 
the objects involved. 

Previous knowledge 

− Consider the previous knowledge that students must address 
when studying the intended content. 

Individual differences 

−  Support students’ learning by considering individual 
differences in prior knowledge, learning styles, and levels of 
understanding and competence. 

Learning assessment 

− Regular checking of learning progress to facilitate 
improvement (formative assessment).  

 

Cognitive suitability is attributed to the instructional process as a gradable 

trait linked to achievement of learning objectives that demand attainable effort. 

This trait is consistent with rich mathematics and  can be adapted to personal and 

contextual circumstances. The general criterion of cognitive suitability is inspired 

by the concept of the zone of proximal development (Vygotsky, 1934), in which 

learning objectives should involve the development of valuable mathematical 

knowledge and skills requiring attainable effort with the support of the teacher and 

peers, considering individual prior knowledge and abilities, and the principle of 

equity (NCTM, 2000). This model assumes relational learning and an 

understanding of institutional meanings. The assessment of the learning achieved 

should account for the students’ personal characteristics and the different levels of 

understanding and competence they can attain. Table 5.5B describes specific 

criteria for the Level III sub-components of the cognitive facet. 
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Table 5.5B. Suitability criteria for the Level III subcomponents of the cognitive 

facet 

Subcomponents Specific criteria 

Situational 
understanding 

− Promote and evaluate the correct resolution of problem 
situations and learning tasks that pose an achievable 
challenge for students. 

Communicative 
competence 

− Promote and assess communicative competence in different 
modes of correct mathematical expression. 

Conceptual and 
propositional 
understanding; 
Procedural 
competence 

− Promote and assess conceptual and propositional 
understanding. 

− Promote and assess correct procedural competence. 

Argumentative 
competence 

− Promote and evaluate argumentative competence. 

 

 Three of the six mathematics education principles described by NCTM 

(2000) are related to cognitive suitability. The principle of equity states, 

“Excellence in mathematics education requires equity, high expectations and 

strong support for all students” (p. 16). It requires reasonable and 

appropriate accommodations and inclusion of motivating content to 

promote access and achievement for all students. The learning principle 

assumes that “Students should learn mathematics by understanding it, 

actively constructing new knowledge from their prior knowledge and 

experiences” (p. 16). Likewise, the assessment principle states that, 

“Assessment should support relevant mathematics learning and provide 

useful information to both teachers and students” (p. 16). 

 

5.3.6. Affective facet 

The resolution of any mathematical problem involves an affective 

situation for the subject that brings into play not only his/her knowledge to 

solve it but also mobilizes emotions, attitudes, beliefs, and values that 

condition his/her response. Affective processes are psychological entities 

that describe varying degrees of mental states, traits, or dispositions toward 
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a subject’s actions. However, from the didactic point of view, the achievement 

of affective states that interact positively with the cognitive domain must be 

considered by educational authorities and teachers (Gómez-Chacón, 2000), 

whose work is conditioned by institutional norms of affective nature. 

 The affective suitability of the process is based on students’ degree of 

involvement, interest, motivation, self-esteem, and willingness. Beliefs in 

mathematics and its study also influence learning and therefore need to be 

acknowledged. In Table 5.6, we describe the general criterion of affective 

suitability and specific criteria for the different components of this facet, 

which are not unique to mathematics instruction (i.e., they have a general 

character). These criteria are consistent with principles assumed by various 

studies on the interactions between cognitive and affective domains in 

mathematical learning (Beltrán-Pellicer & Godino, 2020; Gómez-Chacón, 

2000; McLeod, 1992). 

Table 5.6. Suitability criteria for the affective facet and its components 

General criterion for the 
affective facet 

Component-specific criteria 

 

 

 The instructional 
process should achieve 
the highest possible 
degree of student 
involvement (interest, 
motivation, self-
esteem) and should 
consider students’ 
beliefs about 
mathematics and its 
learning. 

Emotions 

− Design situations to identify and discuss emotions to 
avoid rejection, phobia, or fear of mathematics. 

− Highligh the esthetic and precision qualities of 
mathematics. 

Attitudes 

− Promote that students assume responsibility for 
learning and attempt to complete tasks with 
perseverance, both of which require personal inquiry as 
well as the reception and retention of knowledge. 

− Favor argumentation in situations of equality; the 
argument is valued in itself and not by the person who 
voices it. 

Beliefs 

− Identify students’ beliefs about mathematics and its 
teaching that may condition learning and consider 
them in the instructional process. 

Values-identity 

− Promote self-esteem so that students feel capable of 
contributing conjectures and solutions to the problems 
they face, relying on mathematical arguments to 
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convince others of the validity of their assertions, thus 
building a positive mathematical identity. 

Interests and needs 

− Propose tasks that are of interest to the students and 
are within their reach. 

− Propose situations that allow the assessment of the 
usefulness of mathematics in daily and professional 
life. 

 

5.3.7. Interactions between facets 

 In the preceding sections, we have described the suitability criteria for the 

six facets involved in an instructional process. As shown in Figure 4.1 

(Chapter 4), these facets are not independent; in fact, there are interactions 

between them. For instance, the use of a technological resource can help to 

tackle certain types of problems and the corresponding configurations of 

objects and processes, leading to new forms of representation, 

argumentation, and generalization. The forms of interaction between 

teachers and students, interest, motivation, and ultimately learning can also 

be affected.  

Godino (2013, p. 127) includes some suitability criteria related to 

interactions between facets, which are described in terms of indicators. For 

example, an indicator of suitability in the interaction between epistemic and 

ecological facets states that “The curriculum proposes the study of problems 

in various fields such as schools, everyday life and work”. This indicator can 

be described using the following criteria: “The curriculum should propose the 

study of problems ....”, which implies a value attributable to a varying extent 

to the instructional process: that the curriculum proposes the study of 

problems in a variety of fields is valued as a positive trait. The same approach 

can be adopted with the remaining indicators of interactions between facets. 

 

Table 5.7. Components and indicators of the interaction between suitability facets 

Components Indicators 
Epistemic- 
ecological 

- The curriculum proposes the study of problems in a varied 
domains such as schools, everyday life, and work. 
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Epistemic-
cognitive-
affective 
 

- The content of the study (phenomena explored in the different 
areas, developing and justifying conjectures) makes sense for 
students with different levels and grades. 

- Students are confident in their abilities to tackle difficult problems 
and maintain perseverance when tasks are complex. 

- Students are encouraged to reflect on their reasoning during 
problem-solving processes to apply and adapt strategies developed 
in other problems and contexts. 

- Tasks selected by teachers for assessment are representative of the 
learning intended. 

Epistemic-
cognitive 
mediational 

- The use of technological resources induces positive changes in 
teaching content, modes of interaction, motivation, and student 
learning. 

Cognitive-
affective- 
interactional 

- Explanations given by students include mathematical and rational 
arguments, not just descriptions of procedures.  

- Include motivating content with reasonable and appropriate 
adaptations that promote access and achievement for all learners. 

Ecological- 
instructional 
(teachers’ role 
and education) 

- The teacher is caring and dedicated to his or her students. 

- The teacher has a deep knowledge and understanding of the 
mathematics that he/she teaches and uses this knowledge flexibly 
in his/her teaching tasks. 

- The teacher has ample opportunities and support to increase and 
frequently update his/her didactical-mathematical knowledge. 

 

Inclusive mathematics education (Gervasoni & Peter-Koop, 2020; Ross, 

2019) requires accounting for the interactions between various facets and 

components. Interactions among cognitive and affective facets (individual 

differences in students’ knowledge, skills, attitudes, beliefs), ecological facet 

(values education, socio-professional development), and mediational and 

interactional facets (use of diverse resources, collaborative work). It also 

requires bearing in mind the epistemic facet to select diverse situations and 

representations that are mathematically relevant and allow students of 

different motivations and abilities to engage in meaningful learning of 

mathematics. 

The NCTM (2000) calls for attention to the connections between 

cognitive-affective and instructional issues: “Effective mathematics teaching 

requires knowing and understanding what students know and need to learn 



290 Chapter 5. Theory of didactic suitability based on OSA 

 

 

about mathematics; and then motivating and supporting them to learn it 

well” (p. 17). The adoption of the interaction principle in RME implies that 

teaching the whole class plays an important role. This does not mean that the 

whole class is carried together and that every student follows the same path 

and achieves the same developmental level at the same time. In contrast, in 

RME, children are considered individuals, each following an individual 

learning path. This view of learning often leads to advocating the division of 

classes into small groups of students who each follow their own learning. 

However, in RME, there is a strong preference for keeping the class as an 

organizational unit and adapting education to students’ different abilities. 

This can be achieved by providing students with problems that can be solved 

according to different levels of understanding. 

The use of models in RME relates to mediational, epistemic 

(representational, phenomenological), cognitive, and instructional issues. It 

is argued that models serve as a key tool to bridge the gap between informal, 

context-related, and formal mathematics. First, students develop strategies 

that are closely related to their context. Later, some aspects of the context 

situation can be generalized, meaning that the context becomes a model that 

can support solutions to other related problems. Finally, the models allow 

students to gain more formal mathematical knowledge. To fulfill the bridging 

function between formal and informal levels, models must move from a 

“model of” a particular situation to a “model for” all equivalent situations 

(Van den Heuvel-Panhuizen & Wijers, 2005, p. 289).  

The RME reality principle links epistemic and cognitive aspects. The 

overall aim is to ensure that students can use their mathematical knowledge 

and tools to solve real problems. This principle is not only recognizable at the 

end of the learning process; in mathematics applications, reality is also 

considered a source of learning mathematics. A real context refers to both 

problematic situations in everyday life and real situations for learners. Just 

as mathematics emerged from the mathematization of reality, learning 
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should also have originated from this reality. Instead of starting with certain 

abstractions or definitions to be applied later, one should start with rich 

contexts that require mathematical organization or contexts that can be 

mathematized (Freudenthal, 1968).  

The time devoted to teaching and learning and its management by the 

teacher and students determine the components of the didactic suitability of 

a study process. This factor has been included as another resource in the 

mediational facet, together with technological resources. However, time also 

interacts with various other aspects. Table 5.8 includes indicators of time 

suitability in relation to epistemic, cognitive, instructional, and ecological 

facets.  

Table 5.8: Temporal suitability components and indicators 

Components Indicators 

Temporal-epistemic - The content and its various meanings are distributed 
rationally over the allotted study time. 

Temporal-cognitive - Learning objectives consider the developmental stages 
of learners’ evolutionary development. 

Temporal-instructional - Instructional time management considers the various 
moments required to develop different types of learning 
(exploration, formulation, communication, validation, 
institutionalization, exercise, evaluation). 

Temporal-ecological - The time assigned to the study process in the 
curriculum design is adequate to allow learning of the 
programed content. 

 

The NCTM (2000) curriculum principle relates the epistemic facet 

(inclusion of relevant mathematics and set of activities), connection, and 

articulation between the different levels: “A curriculum is more than a set of 

activities. It must be coherent, focused on relevant mathematics, and well-

articulated across the different levels” (p. 15). Also, the RME includes a 

principle related to learning levels. Learning mathematics means students 

move through different understanding levels: from the ability to invent 

informal solutions related to the context, to creating different levels of 

shortcuts and schematizations, to acquiring a knowledge of underlying 
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principles and discerning broader relationships. The condition for reaching 

the next level is the ability to reflect on the activities performed. An 

interaction can prompt this reflection. 

5.4. Suitability criteria for specific contents 

The set of tables 5.1 to 5.7 (Section 5.3) constitute the GADS-MIP guide for 

analyzing and assessing the suitability of educational-instructional processes 

for any mathematics content. Its application in particular experiences 

involves specific mathematical topics for which multiple research results 

exist. These findings provide knowledge that can be interpreted as specific 

suitability criteria for teaching and learning the content under investigation. 

To a certain extent, having a system of suitability criteria for the different 

facets and components (Tables 5.1 to 5.7) does not avoid the effort of carefully 

reviewing the mathematics education literature, to complete generic 

suitability criteria with others specific to each content. Castillo et al. (2022) 

developed an example of suitability criteria for proportionality. Although 

their study was focused on producing a guide for the analysis of textbook 

lessons, which can be interpreted as study processes planned by the authors, 

the criteria systems can serve to analyze other processes. Beltrán-Pellicer et 

al. (2018) developed specific indicators of didactic suitability for probability. 

They also describe their use by a teacher as a tool for reflecting on the 

experience of teaching probability in secondary education. 
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5.5. Application example of didactic suitability theory. 

Reflecting on an experience of teaching proportionality17 

In this section, we present an example of the use of didactic suitability, as 

described by Aroza et al. (2016). This is a teaching experience conducted 

during the practical phase of a master’s degree in initial secondary 

mathematics teacher training.  

 

5.5.1. Describing the teaching experience 

The didactic unit was taught to a group of first-year secondary school 

pupils (12-13-year-olds). It was a group of 30 pupils, comprising 8 girls and 

22 boys, with a high proportion of immigrant students (40%, 9 different 

nationalities of origin), which implied a certain heterogeneity and cultural 

diversity. It was difficult to maintain a suitable atmosphere, and it was 

necessary to draw their attention often. More than half of the students had 

negative attitudes toward study and mathematics, partly because of the 

curricular mismatch that 17 of them had carried over from primary school, 

with many difficulties in understanding basic mathematical and procedural 

concepts. The remaining students exhibited motivation and interest in the 

subject. 

The study process followed the orientation and content proposed in the 

textbook (Colera & Gaztelu, 2010) used at the school. Following the textbook, 

the didactic unit was taught in 11 sessions, where, besides explanations 

(theoretical notions), tasks were solved. The last session was reserved for an 

evaluation test to assess the students’ level of understanding and learning in 

solving the different types of proportionality and percentage tasks. The 

textbook authors emphasized a view of mathematics as rules or algorithms 

 
17 The content of this section is based on the paper, Aroza, C. J., Godino, J. D. y Beltrán-Pellicer, P. 

(2016). Iniciación a la innovación e investigación educativa mediante el análisis de la idoneidad 

didáctica de una experiencia de enseñanza sobre proporcionalidad. Aires, 6(1), 1-29. 
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to be followed, illustrated with examples of how to interpret such rules, 

followed by procedural exercises for mastering their application.  

Sessions usually began by correcting the homework that the students were 

given at home and providing a reminder of what had been studied in the 

previous session. In addition, during the explanation, questions were asked 

about the content that the students had already acquired so that they could 

maintain their level of attention and follow the explanation. To develop the 

theoretical explanations, some task examples contextualized in real-life 

situations were then performed, and special attention was paid to the errors 

and difficulties that could arise. It was necessary to emphasize the key 

procedures and notations used, trying to justify them as much as possible. In 

this task-solving phase, students were encouraged to participate in class 

through frequent questions and trips to the blackboard to maintain their 

attention levels. The order and contents of the textbook were always 

followed, using it as a script so that students could easily access the subject 

matter, although sometimes examples and tasks that were not in the textbook 

were provided.  

Regarding their way of working in class, students individually performed 

some tasks related to the explanation given earlier. However, the students 

could discuss their doubts with their classmates, while the teacher tried to 

resolve other doubts for the remaining students in a personalized way. Later 

on, or in subsequent sessions, the teacher usually corrected the tasks on the 

blackboard. Sometimes, the students themselves indicated the necessary 

steps, and the teacher wrote them on the blackboard; on sporadic occasions, 

the students went to the blackboard to solve the tasks. During the task 

corrections, the aim was to place great emphasis on the errors made so that 

students would not commit them in future situations. 

At the end of the didactic unit, the students were examined using a written 

assessment test to determine whether they had learned the content and 

achieved the proposed objectives. The test, which was passed by only 57% of 
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the students, comprised 10 tasks. Aroza et al. (2016) described the types of 

tasks and explanations in textbooks, the applied learning assessment test, 

and the main errors made by students. 

 

5.5.2. Didactic-mathematical knowledge of proportionality and 

percentages 

The aim of the training process described by Aroza et al. (2016) was to 

assist prospective teachers in carrying out an analysis of the didactic 

suitability of the teaching process implemented and to identify proposals for 

informed change. The didactic suitability criteria proposed in Godino (2013) 

were used, complemented with criteria derived from a compilation and 

synthesis of the main research and innovations related to the teaching and 

learning of proportionality and percentages. With the help of the teacher 

educator, the didactic-mathematical knowledge of proportionality was 

identified, synthesized, and classified according to epistemic, ecological, 

mediational, interactional, cognitive, and affective facets. 

 

5.5.3. Assessment of didactic suitability and proposals for change 

The application of didactic suitability leads to the following questions:  

1) What is the degree of didactic suitability of the teaching-learning 

process in relation to proportionality and percentages, as experienced 

by the participants during the teaching practice period in the first year 

of secondary education? 

2) What changes could be made in the design and implementation of the 

study process to increase its didactic suitability?  

Below, we summarize the analysis and assessment of the report described 

by Aroza et al. (2016).  

1) Epistemic and ecological facets 

The study process followed the contents and orientations proposed in the 

textbook (Colera & Gaztelu, 2010), which was used for the 1st year of 
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secondary school at the institute where teaching practices were 

conducted. In this textbook, throughout the teaching unit, only an 

“arithmetic” approach to proportionality is proposed, with no geometric or 

algebraic development, even preceded by some activities of an intuitive and 

qualitative nature. The proportionality concept, from this arithmetical 

approach, is basically reduced to the transmission of an algorithm (the rule 

of three), which needs to be known how to apply and operate in each case. To 

develop this method, the textbook reduced the concept of “proportion” to a 

new name for two equivalent fractions and that of “ratio” to a new name for 

the fraction, with no other treatment or task to help the learner develop 

proportional reasoning through reflection. From the perspective of 

structuring content, this algorithm should not have been introduced until the 

learner had mastery of other, more intuitive testing and solving methods. Its 

content is basically procedural, making the “rule of three” the only method of 

solving proportionality problems, focusing the pupil on a purely mechanical 

approach, devoid of concepts, reasoning, and reflection on whether the 

problems are proportionality problems.  

However, due to the contexts in which the concepts are dealt with and 

particularly the tasks proposed throughout the development of the didactic 

unit, the study of some other intra-disciplinary content such as rational 

numbers, the equivalence of fractions, decimal numbers, and the decimal 

metric system was enriched; other interdisciplinary content such as physics, 

chemistry, and economics served to recognize and apply properties of 

proportionality and percentages. All this contributed to the students’ socio-

cultural and vocational training, with the part of the book dealing with 

percentages standing out in this respect. 

Regarding the series of tasks in the textbook and proposed to the students, 

they provide a representative sample for exercising and applying the 

intended content, although activities in which the students have to formulate 
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their own proportionality and percentage problems as recommended by the 

indicators of epistemic suitability are omitted.  

The mathematical language used was appropriate for the first level of 

secondary education, although, both in the tasks and in the conceptual 

developments, there was a poor typology of mathematical expressions and 

representations, with only symbolic and numerical language used as tables 

of values. The reason for this is the lack of geometrical and algebraic 

approaches to proportionality, which mainly use graphic language (linear 

function) and manipulative language (construction of similar figures) in their 

development.  

From an ecological perspective, proportionality is introduced in the book 

through examples, which lead to defining when there is direct or inverse 

proportionality between two magnitudes, although fundamental conceptual 

definitions such as “ratio”, “proportion” and “constant of proportionality”, 

which are not mentioned in some sections of the book and are included as 

key concepts in the curricular orientations for this level of education, are 

missing.  

Because of the above reasons, the epistemic and ecological suitability of 

the teaching process was low. 

2) Cognitive and affective facets 

One major error and difficulty detected in some pupils in the two 

assessment instruments applied was their inability to distinguish between 

direct and inverse proportionality or between proportional and non-

proportional situations. The textbook devoted very little content to this issue, 

and it would have been desirable to devote more time and even more 

emphasis to it, giving greater importance to proportionality from a 

qualitative approach and then moving on to the quantitative aspect. 

 Regarding the temporal sequencing of the curricular content, it was 

sufficiently justified (supported by what was previously stated in the section 

on the epistemic facet) to delay the study of proportionality and percentages 
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in the school teaching program, placing teaching units related to the 

similarity of figures and linear functions before it to support the different 

treatments required by the subject. 

 From the arithmetic approach to proportionality proposed in the 

textbook, the prior knowledge required to study proportionality and 

percentages are fractions and their equivalence, solving basic arithmetic 

problems, operations with decimal numbers, and relations between fractions 

and decimal numbers. All the content was taught in previous units according 

to the school’s didactic program. However, the results obtained in the two 

evaluations performed (correction of class tasks and formative assessment) 

were clearly unsatisfactory, although proportionality and percentages were 

taught at an accessible level of difficulty in accordance with that of the first 

year of secondary school. Many students experienced serious difficulties and 

errors when operating with decimal numbers and fractions, and an initial 

session should have been devoted to reviewing this prior knowledge.  

One positive aspect of the textbook is that, in the homework section, all 

the tasks were marked with a triangle code, according to their difficulty level, 

which simplified the curricular adaptation when proposing reinforcement 

tasks for some pupils and extension tasks for others. As a result, it was easier 

for all students in the class to achieve the intended learning of the didactic 

unit, starting from their own personal level of knowledge. 

To assess the students’ rate and level of learning of the content taught, two 

assessment instruments were used: the collection and correction of a 

representative set of tasks halfway through the unit and a formative 

assessment test at the end of the unit. These two instruments considered 

different levels of acquisition of the intended learning and, once corrected, 

were distributed among the students so that they could check and revise 

where they had made mistakes. In addition, with the evaluation instrument 

applied halfway through the didactic unit, the aim was to detect where the 

most common difficulties and errors had occurred to adapt and redirect the 
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teaching, placing more emphasis on the key concepts and procedures 

involved.  

The content and series of tasks proposed in the textbook were familiar with 

the context. This fact greatly enriched the teaching proposal, not only in the 

attentional and motivational aspects, since the students valued the 

usefulness of this part of mathematics in their lives, but also because it 

facilitated their understanding when receiving instructions on how to deal 

with problems.  

The dynamic developed throughout the sessions aimed to systematize and 

encourage students to work consistently: pay attention to the teacher’s 

explanations, start working on assigned tasks in class, and finish their 

homework at home. Performing the tasks in pairs and socializing their 

corrections throughout the class sessions, with frequent questions and 

sporadic trips to the blackboard, contributed to boosting pupils’ self-esteem 

when facing proportionality problems. All the students always showed a very 

positive attitude toward this type of work strategy, encouraging their 

participation in the tasks. 

Because of the above reasons, the cognitive-affective suitability of the 

implemented process was medium to low. 

3) Interactional and mediational facets 

The modes of classroom interaction in the teaching experience responded 

to a traditional model: the teacher first explained concepts and procedures, 

exemplifying them in everyday contexts to make them clearer and 

emphasizing the key contents, and then the students performed various tasks 

related to what had been taught. It would have been desirable to introduce 

some changes in the teaching process, aimed at students raising questions 

and presenting solutions; exploring examples and counter-examples to 

investigate and conjecture; and using a wider variety of tools to reason, argue, 

make connections, solve difficulties and communicate them.  
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There were a few moments when students were granted autonomy, except 

for individual work on homework assignments. When working on homework 

assignments in class, students could consult in pairs with their desk partners, 

which encouraged dialog, argumentation, and communication between 

them. The same was true of some students’ sporadic trips to the blackboard 

during the task-solving phase or of questions addressed to the students 

during the teacher’s explanation phase. These teaching practices not only 

helped to engage and capture students’ attention and motivation but also 

facilitated their inclusion in the classroom dynamics.  

In this teaching experience, only the resources available to the students in 

the classroom were used: a blackboard, projector, textbook, and calculator. 

No manipulative or other technological resources were used because they 

were not considered necessary to support the teaching and learning of the 

planned content. 

Regarding the time component of instructional suitability, there was little 

use of the sessions devoted to developing the most important conceptual and 

procedural content of proportionality and percentages in the four approaches 

(intuitive, geometric, arithmetic, and algebraic).  

The number of students (30) and their distribution were ideal, but the 

schedule for mathematics classes was not adequate. Of the five hours of 

lessons per week, three were held in the morning before break, but the 

remaining two hours were held at the end of the morning and on the last day 

of the week. This practice did not encourage adequate levels of student 

attention and motivation in class, making it difficult for students to manage 

their behaviors during their working hours. Improving the interactional and 

mediational suitability of the process would lead us to include activities and 

tasks that use manipulative materials and computer resources (Godino 

& Batanero, 2003), which can constitute novel and useful tools to achieve the 

intended learning. We conclude that applying the didactic suitability criteria 
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helps systematize didactic knowledge and its application to the reflection and 

progressive improvement of teaching practice. 

 

5.6. Concordances and complementarities with other 

theories18 

In Godino (2021), we began comparing the didactic principles of the 

Theory of Didactic Situations in Mathematics (TDSM, Brousseau), the 

Anthropological Theory of Didactic (ATD, Chevallard), the Realistic 

Mathematics Education (RME, Freudenthal), and the suitability criteria 

based on OSA. The following is a synthesis of the results of this comparison. 

We consider it relevant to interpret some didactic principles of TSDM, ATD, 

and RME as suitability criteria by applying the facets and components of 

didactic suitability proposed by OSA. This makes it possible to identify some 

consistencies and complementarities between these theoretical frameworks. 

However, we recognize that the analysis conducted here is limited, given its 

complexity; its extension and deepening should be the subject of further 

work.  

 

5.6.1. Epistemic facet 

The four theories are consistent in attributing a central role to problem 

situations (questions, tasks) to achieve high epistemic suitability in 

instructional processes. Characterizing the fundamental situations of the 

different subjects included in the school mathematics curriculum is a priority 

aim of the TDSM. The notion of the ATD study and research pathway fixes 

the attention on searching for generative questions in mathematical 

praxeologies that constitute the purpose of an educational project.  

 
18 The content of this section is based on the paper, Godino, J. D. (2021). De la ingeniería a la 

idoneidad didáctica en educación matemática. Revemop, e202129, 1-26, 2021.  
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Likewise, the RME principles of activity and reality can be interpreted as 

indicators of epistemic suitability. The RME proposes as a heuristic for the 

design of situations that give meaning to mathematical objects (concepts, 

procedures, etc.) the didactic phenomenology, comprising the search in the 

history and epistemology of mathematics for types of phenomena of real life 

or internal to mathematics itself that are organized by such objects and 

considered by Freudhental as mental objects. “On the assumption that 

mathematics has arisen as a result of solving practical problems, we can 

assume that current applications encompass the phenomena that originally 

had to be organized”. (Gravemeijer, 2020, p. 226) 

The main distinction between OSA and ATD is the proposed level of 

disaggregation for mathematical praxeologies. The notion of a system of 

practices (operative and discursive) linked to resolving a certain type of 

problem-situation in which the intervention of a certain mathematical object 

is decisive for its realization is central to OSA and can be assimilated to the 

notion of praxeology in ATD (Godino et al., 2006). However, while the 

structure of a praxeology is analyzed by distinguishing the quatern <task, 

technique, technology, theory> OSA considers a more explicit detail of the 

various objects and processes involved in mathematical activity. The notion 

of configuration of primary objects (problems, languages, concepts-

definitions, procedures, propositions and arguments) and the processes of 

representation, definition, enunciation, argumentation, generalization, 

among others, allow for a level of analysis complementary to that of 

praxeology. Consequently, the application of the notion of configuration of 

objects and processes introduces explicit criteria of epistemic suitability, 

referring to linguistic elements (representations, their conversions and 

treatments) and to the respective processes of representation and 

communication (duly contemplated in the TDSM with the adidactic 

situations of formulation/communication).  
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The ATD notions of technology and theory in OSA are replaced and broken 

down by the notion of “configuration of objects and processes”, which leads 

to the formulation of suitability criteria for the management of different types 

of objects (concepts, propositions, procedure). In ATD, the procedural 

component (work of the technique) is explicitly recognized as the key to the 

construction of knowledge, which remains diffuse in TDSM. TDSM, ATD, 

and TDS-OSA are consistent in attributing a central role to 

argumentative/validating objects and corresponding validation/justification 

processes (validation situations, technological-theoretical moment). 

Attention should also be paid to the connections between the different parts 

of the mathematical content and the articulation of the various partial 

meanings of the objects under study (Wilhelmi et al., 2007; Godino et al., 

2011). Mathematics is an integrated field of study. This position is consistent 

with the “Principle of interconnectedness” of MRE. Blocks of mathematical 

content (numeracy and calculus, algebra, geometry, ...) cannot be treated as 

separate entities. Problem situations should include interrelated 

mathematical content. In addition, solving rich context problems often 

means that several mathematical tools and understandings are required to 

be applied (duly covered in TDSM with adidactic 

formulation/communication situations). 

 

5.6.2. Cognitive facet 

The cognitive dimension is accounted for in ATD through the notion of 

“personal relation to the object” and in TDSM with the distinction between 

knowledge and knowing. The emphasis on the institutional dimension of 

knowledge (ATD) and didactic situations (TDSM) has meant that the focus 

of didactic analysis is on mathematical knowledge (its organization and 

ecology) and the mathematics classroom as an institution or community. 

However, in Chevallard (2009), we found a reference to what can be 
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described as the need to consider the subject’s prior knowledge for the 

development of an activity or project:  

Given a project of activity in which a given institution or person intends to be 

involved, what is the praxeological equipment that is considered indispensable or 

simply useful in the conception and realization of that project? (Chevallard, 2009, 

p. 29) 

 

In OSA, we postulate a dialectical relationship between institutional and 

personal so that alongside the configurations of objects and processes in the 

epistemic (institutional) sense, the corresponding cognitive configurations 

are introduced, with elements similar to those of epistemic 

configurations. Accordingly, cognitive suitability criteria related to learning 

are formulated. The various modes of assessment should indicate that 

learners achieve appropriation of the intended knowledge (including 

different levels of understanding and competence): conceptual and 

propositional understanding; communicative and argumentative 

competence; procedural understanding or competence; and metacognitive 

competence. 

The principle of levels in RME is related to the cognitive facet proposed 

by TDS-OSA. It underlines that learning mathematics involves learners going 

through several levels of understanding: from informal solutions related to 

the context, through the creation of several levels of shortcuts and schemata, 

to the acquisition of knowledge about how concepts and strategies are 

related. 

 

5.6.3. Affective facet  

The TDSM notion of devolution can be interpreted as a component of the 

affective facet. The RME principles of activity and reality incorporate aspects 

related to the affective dimension of learning. It is recommended that 

learners actively engage in mathematics learning by practicing it themselves. 
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The students explicitly valued the use of realistic situations, and the informal 

solutions they developed in their efforts to find solutions to these situations 

were considered. 

The four theoretical models considered should adopt or develop explicit 

models on components and suitability indicators related to the conglomerate 

of affective notions (interests, attitudes, emotions, beliefs), since they 

interact with the cognitive facet and condition learning. Beltrán-Pellicer and 

Godino (2020) developed a model of analysis of the affective domain in 

mathematics education from OSA. 

 

5.6.4. Interactional facet 

Both the TDSM (with the types of situations it proposes) and the ATD (six 

moments of the study process) provide criteria for the suitability of the 

modes of interaction between teacher and students. In the case of RME, the 

principle of interactivity recognizes that learning mathematics is not only an 

individual activity but also a social activity. Therefore, RME favors whole-

class discussions and group work, which gives students the opportunity to 

share their strategies and inventions with one another. Likewise, the 

principle of guidance implies that teachers should play a proactive role in 

students’ learning (Freudenthal’s guided reinvention). 

All four theories are consistent with the socio-constructivist assumptions 

of learning: an instructional process with high interactional suitability 

contemplates moments in which students take responsibility for the study 

(raise questions and present solutions; explore examples and 

counterexamples to investigate and conjecture; use a variety of tools to 

reason, make connections, solve problems and communicate them). In the 

case of TDS-OSA, it is considered that in the moments of institutionalization, 

the teacher should make an adequate presentation of the topic, recognize and 

resolve students’ conflicts, favor consensus based on the best argument and 

use various rhetorical and argumentative resources to involve and capture 
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students’ attention. However, these moments of institutionalization can 

occur at any point in the instructional process: the moment of students’ first 

encounter with new type of problem or content, or the moment students 

remember forgotten content (Godino & Burgos, 2020). 

 

5.6.5. Mediational facet 

The notion of milieu, which is understood as the “antagonistic” context or 

environment that a subject experiences to win the “game” of learning, is 

central to TDSM. It is a complex and rich notion that includes elements of 

diverse nature, prior knowledge, the teacher’s actions, and the material 

means used to pose the problem and to explore possible solutions. In ATD, 

the milieu is not assumed to be given at the beginning with the didactic 

system (teacher, students, question), as in TDSM; the didactic system 

produces and organizes the milieu with which, dialectically, the answer to the 

question is generated. The mediational facet introduced in TDS-OSA 

considers only material or technological resources (artifacts) that can 

intervene in the intended mathematical practice and are therefore a 

component of the milieu of TDSM.  

Using technological resources is not explicitly mentioned in the six RME 

principles; it is implicit in the reality principle and in the use of models in the 

level principle. From the RME perspective, Drijvers (2020) considered that 

the correspondence with the use of digital technology is not obvious. Guided 

reinvention may be challenged by the rigid nature of tools, and the 

phenomena that form the starting point of mathematics learning may change 

in a technology-rich classroom. In terms of didactic phenomenology, he 

concluded that phenomena could change in a technology-rich classroom. The 

digital environment itself can be a significant phenomenon for learners. 
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5.6.6. Ecological facet 

ATD grants a central role to the identification of restrictions and 

conditioning (levels of co-determination) when implementing didactic 

organizations, as well as in the articulation of different mathematical 

praxeologies. It is proposed to avoid the study of specific and isolated 

praxeologies. These are the suitability components described by the OSA as 

part of the ecological facet, which is implicit in the TDSM. In the case of RME, 

the principles of reality and interweaving include aspects of the ecological 

facet, connection with real-life situations, and integration between different 

content blocks. The TDS-OSA proposes considering, besides the connections 

between different mathematical contents/topics/praxeologies, and the 

interdisciplinary connections, the following ecological components: 

− Adaptation to the curriculum. 

− Openness toward didactic innovation.  

− Socioprofessional and cultural adaptation; and 

− Education in values.  

 

5.7. Synthesis of didactic suitability theory based on OSA 

In Table 5.11, we include a synthesis of the elements that characterize the 

theory of didactic suitability based on OSA, responding to the questions 

proposed by Michie et al. (2014) as a description of a theory in the field of 

social and behavioral sciences. 

Table 5.11. Synthesis of TDS-OSA 

Elements Description 
Summary. What is the 
theory about and what 
are its main 
propositions? 

 Develops a system of criteria for the local optimization of the 
design, implementation, and evaluation of educational-
instructional processes in mathematics, based on the 
assumptions and constructs of OSA. The suitability criteria are 
value judgements about the preferred didactic actions that 
should be performed in the different facets and components that 
structure educational processes (epistemic, ecological, 
mediational, interactional, cognitive and affective) to optimize 
mathematical learning, considering personal circumstances and 
educational context. 
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Scope/Objective. What 
phenomena does the 
theory explain? 

The aim is to optimize educational-instructional processes in 
mathematics by helping to design and implement good 
mathematics, select resources, and devise didactic strategies to 
optimize learning. It is not an explanatory theory; rather, it 
develops a system of criteria (rules or principles) on preferred 
actions to optimize mathematics teaching and learning 
processes. The criteria were based on the assumptions of OSA 
mathematics. Agreements with similar criteria based on other 
theories of mathematics education were also identified.  
 

Justification. Why is 
this theory necessary 
and how does it 
improve on previous 
theories? 

When, in addition to a scientific component (descriptive, 
explanatory, predictive), mathematics education has a 
technological component (prescriptive), guidelines need to be 
developed to indicate the types of actions that should be 
implemented to improve educational processes. These criteria 
must be based on research results and should be the rational 
consequences of the assumed theoretical assumptions. The 
TDS-OSA provides an expanded vision of theoretical models for 
the quality of mathematics instruction by considering 
contextual circumstances when developing suitability criteria 
and considering them as weightable principles and not as 
general rules of action. 
 

Hypotheses. What 
specific hypotheses 
does the proposed 
theory propose, and 
how do they differ 
from other theories? 

Optimizing suitability requires weighting the criteria for the 
different facets and components according to the circumstances 
of the context (subjects, resources, educational purposes) while 
considering the interactions between the facets. The 
optimization is local, where the teacher weights the relative 
importance of the suitability criteria according to context and 
subject. Other theories on the quality of instruction attribute a 
more essentialist character to the standards and attend to or give 
priority to certain aspects of the educational process. 
 

Constructs. What 
elements constitute 
the theory? 

−  Didactic suitability is a gradable feature of educational-
instructional processes. It uses the notions of personal and 
institutional meaning that are understood within the OSA 
framework, as well as the structural model of the facets and 
components of an educational-instructional process. The 
suitability criteria can be general, referring to each facet or 
partial and relating to components and sub-components. They 
are understood as principles that can be weighed according to 
context and not as general rules of action. 

−  
Relations. How are the 
elements of the theory 
related to each other? 

The suitability criteria are developed considering the OSA 
constructs and postulates of mathematical activity and meaning. 
As a whole, they are structured using the facets, components, 
and subcomponents of an educational-instructional process. 
 

Origin. On which 
theories is it based, 
and how? 

This is based on the assumption of the scientific and 
technological nature of mathematics education, which leads to 
the need to seek criteria to optimize didactic activities. Although 
any educational theory, including each teacher, has its own 
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criteria for suitability, the TDS-OSA is based on the postulates 
and constructs of the theory of mathematical activity and 
emergent objects (Chapter 2), the theory of meaning and 
mathematical cognition (Chapter 3), and the theory of 
educational design based on the OSA (Chapter 4). 
 

Similarity. Which 
theories are most 
similar to this theory? 

This theory is related to different theoretical models of 
mathematics instruction quality. 

Complementarity. 
With which theories 
can it be 
complemented? 

The TDS-OSA is open to the refinement of criteria and the 
incorporation of new criteria from theories of instructional 
quality and other theoretical models of mathematics education 
consistent with the assumptions of the OSA. The suitability 
criteria for the study of specific content must be supported by 
the results of didactic research. 
 

Operationalization. 
How are the constructs 
measured or 
identified? 

Didactic suitability is a gradable feature of educational-
instructional processes; it can be high or low. The criteria are 
expressed as value judgments such as “this should be done.” The 
system of suitability criteria for the different aspects and 
components provides a guide for systematic reflection on 
teaching practices. However, a system of rubrics with observable 
indicators that allows objective measurement of the degree of 
compliance with the criteria. 
 

Uses. What can the 
theory be used for? 

The TDS-OSA provides a guide for designing locally suitable 
(optimal) instructional processes in mathematics to achieve the 
planned educational purposes. It helps to become aware of the 
complexity of achieving a balanced balance between the 
different facets involved (epistemic, ecological, mediational, 
interactional, cognitive and affective). The guide can also be 
used to evaluate the design and implementation of instructional 
processes and to help identify aspects that can be improved. 
Therefore, it is a resource for mathematics teachers to reflect on 
their own practice.  
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Chapter 6 

Theory of teacher professional 

development based on the OSA 

 

 

 

Introduction 

In Chapter 5, the Theory of Didactic Suitability was developed based on 

the Onto-Semiotic Approach (TDS-OSA), providing an expanded view of 

theories regarding the quality of mathematics instruction. In this theory, we 

identify a system of criteria (standards, principles, or norms) that should be 

met by educational-instructional processes in mathematics to optimize 

school mathematics, teaching, and learning locally. Since the teacher is the 

main agent in the design, implementation, and evaluation of these processes, 

we must address the following questions: a) What knowledge and 

competencies should teachers possess to perform their teaching duties 

optimally? b) What characteristics should ideal programs for mathematics 

teacher training have? c) What knowledge and competencies should 

mathematics teacher educators possess to perform their training duties 

optimally? 

In this chapter, we address these issues by developing a theory of 

professional development for mathematics teachers based on the 

assumptions of the OSA (Professional Development Theory based on the 

Onto-Semiotic Approach, PDT-OSA). This theory includes the following: 

1) A system of knowledge and competencies that teachers should possess 

for the design, implementation, and evaluation of suitable educational-
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instructional processes in mathematics (Teacher DMKC Model; 

Godino et al., 2017). 

2) A system of criteria or standards for the characteristics of an ideal 

mathematics teacher training program that equips teachers to design, 

implement, and evaluate educational-instructional processes in 

mathematics with high didactic suitability. 

3) A system of knowledge and competencies that mathematics teacher 

educators should possess to design, implement, and evaluate suitable 

training processes (Educator DMKC Model). 

The Teacher DMKC Model is based on the TDS-OSA, meaning that the 

knowledge and competencies teachers should possess are dependent on the 

characteristics that educational-instructional processes in mathematics 

should possess. Conversely, the Educator DMKC Model depends on the 

characteristics of the mathematics didactic training process. It is necessary 

to start from the system of suitability criteria for educational-instructional 

processes in mathematics (Chapter 5) and interpret what knowledge is 

required. This involves clarifying what constitutes an effective mathematics 

instruction program and identifying what is needed to achieve it. 

In the PDT-OSA, we address the characterization of mathematics teacher 

educators’ work, thus extending both the TDS-OSA and the DMKC Model. 

To this end, we must identify the suitability criteria for training processes in 

mathematics didactics and infer the knowledge and competencies of teacher 

educators, which will include those related to mathematics instruction and 

the didactic-mathematical education of teachers. 

The scope or objective of the PDT-OSA aligns, in the case of mathematics 

education, with the research problem that seeks to “build the foundations of 

a pedagogy of teacher education in the form of fundamental principles for 

teacher education programs and practices” (Korthagen et al., 2006, p. 1022). 

Thus, we articulate two lines of research in the field of mathematics teacher 

education: one that focuses on developing categories of knowledge and 
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competencies and the other that identifies efficiency principles for teacher 

training programs. 

In Section 6.1, the conceptualization of professional development and a 

synthesis of the background on systems of categories of mathematics teacher 

knowledge and efficient professional development programs are included. 

The structure of the facets and components of an educational-instructional 

process proposed in Chapter 4 (Figure 4.1) serves as the basis for structuring 

the system of didactic suitability criteria and the knowledge and 

competencies of teachers and educators. In Section 6.2, we expand this 

structuring by identifying the phases of foundation, planning, 

implementation, and evaluation, as well as various activities in the teacher 

training processes. In Section 6.3, we interpret the system of didactic 

suitability criteria for educational-instructional processes developed in 

Chapter 5 in terms of suitability criteria for teacher education processes, 

understanding that teachers must acquire training that enables them to 

design, implement, and evaluate mathematics instruction processes that 

optimize didactic suitability. This professional task implies that mathematics 

teachers should acquire the knowledge and competencies described in 

Section 6.4. The relationship we establish between didactic suitability criteria 

and didactic-mathematical knowledge, based on the facets, components, 

subcomponents, and elements of an educational-instructional process 

(Chapter 4), allows us to refine and expand the previously developed model 

of teacher knowledge (Godino, 2009; Pino-Fan & Godino, 2015). In Section 

6.5, we extend the use of the suitability criteria, which were applied in 

Chapter 5 to mathematics instruction processes, to teacher education 

processes, which allows us to develop a system of knowledge and 

competencies for mathematics teacher educators (Section 6.6) and a guide 

for analyzing the suitability of training processes (Section 6.7). To 

demonstrate the use of the PDT-OSA, in Section 6.8, we describe an example 

of research on teacher education. Concordances and complementarities with 
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other theories and models of professional development are included in 

Section 6.9. Finally, in Section 6.10, we address the questions posed by 

Michie et al. (2014) to summarize social and behavioral theories concerning 

the theory presented in this chapter. 

 

6.1. Teacher professional development: 

Conceptualization and background 

Research on mathematics teacher education has grown substantially over 

the last 20 years, as evidenced by articles published in the Journal of 

Mathematics Teacher Education, the Handbooks of Mathematics Teacher 

Education (Chapman, 2020; Wood, 2008), and the ICMI Study on the topic 

(Ball & Even, 2008). The knowledge required by teacher educators has 

received limited but increasing attention in recent years, driven by the 

interest of many countries in improving teacher quality and enhancing 

performance in international mathematics assessment tests (Beswick & 

Goos, 2018). Among the research topics in this field, Goos and Beswick 

(2021) highlighted the following: 

− The nature of the expertise (knowledge, competencies, specialization) 

of mathematics teacher educators. 

− Learning and development as a mathematics teacher educator. 

− Methodological challenges in researching expertise, learning, and 

development of mathematics teacher educators. 

Teacher Professional Development (TPD) is studied and presented in the 

relevant literature in various ways (Bautista & Ortega-Ruiz, 2015). However, 

central to such efforts is the consensus that professional development 

involves teachers acquiring relevant content, learning to learn, and applying 

their knowledge to benefit student learning. 

Teacher professional learning is a complex process that requires the 

cognitive and emotional involvement of teachers individually and 
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collectively, the capacity and willingness to examine where each one stands 

in terms of convictions and beliefs, and the perusal and enactment of 

appropriate alternatives for improvement or change. (Avalos, 2011, p. 10) 

In the TPD literature, training programs are considered effective when an 

explicit relationship between the program, the improvement of teaching 

practice, and student learning exist (Desimone & Pak, 2017). Effective 

professional development involves structured professional learning that 

changes teachers’ practices and improves student learning (Darling-

Hammond et al., 2017). 

Documents on standards for mathematics teacher education, such as 

NCTM (2014) and AMTE (2017), have proposed systems of criteria and 

indicators regarding the specific knowledge, skills, and dispositions of a good 

mathematics teacher, as well as the characteristics of an effective teacher 

education program. Therefore, they reflect models of the mathematical and 

didactic knowledge that mathematics teachers should possess and the 

professional knowledge of teacher educators. 

 

6.1.1. Mathematics teachers’ and teacher educators’ knowledge 

Various publications have proposed principles and standards to achieve 

quality mathematics teaching (NCTM, 2000; 2014), as well as standards for 

developing effective mathematics teacher education programs (AMTE, 2017; 

Beisiegel et al., 2018; Desimone & Garet, 2015; Rasch et al., 2020). As a result 

of these studies, we found various systems of categories of mathematics 

teacher knowledge (Ball, Thames et al., 2008; Carrillo et al., 2018; Godino et 

al., 2017; Rowland et al., 2005) and mathematics teacher educator 

knowledge (Castro-Superfine et al., 2020; Escudero-Ávila et al., 2021; Leikin 

et al., 2018), as well as lists of principles or quality criteria for mathematics 

instruction and the effectiveness of teacher education programs (Bostic et al., 

2021; Charalambous & Praetorius, 2018). 
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However, the theoretical foundation and rationale of such categorization 

systems are usually not explicit, confusing, or diverse, and very generic 

knowledge categories or domains have been proposed (Godino, 2009). 

“There is room for increasingly detailed research on the specific knowledge 

that Mathematics Teacher Educators (MTEs) employ in the various facets of 

their work” (Beswick & Goos, 2018, p. 425). It would be useful to move from 

models of teacher knowledge categories to systems of principles grounded in 

teaching practice. In mathematics education, the categories of mathematical 

and didactic knowledge and instructional models should be grounded in a 

prior model that explicates the nature of mathematical activity and the 

objects and relationships involved in it, i.e., an epistemological, ontological 

and semiotic reference model. The learning and teaching model, along with 

its principles and quality standards, should be coherent with and supported 

by this reference model. 

 

6.1.2. Characteristics of effective professional development 

programs 

Heck et al. (2019) noted a considerable body of literature, with some 

empirical support, that outline guiding principles for the design and 

implementation of effective professional development. Their work focuses on 

six elements commonly cited in the literature: (1) duration, (2) content focus, 

(3) coherence, (4) active/practice-based learning, (5) collective participation, 

and (6) expert facilitation. 

AMTE (2017) proposed standards and indicators for mathematics 

teachers’ knowledge, skills, and dispositions, as well as the characteristics of 

an effective professional development program. Park et al. (2018) defined 

professional development as any activity aimed at (a) developing teachers’ 

knowledge, skills, and experience and, (b) preparing teachers to improve 

their pedagogical performance in current or future school roles. 
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The TRU (Teaching for Robust Understanding) framework (Schoenfeld, 

2013; 2018) emphasizes experiences that determine student learning. This 

framework is a tool for designing and implementing professional 

development activities. It is rooted in principles of student-centered 

instruction and distinguishes five dimensions of instructional processes: 

mathematical content, cognitive demand, equitable access to content, 

agency, ownership and identity, and formative assessment. In this way, the 

types of instruction that make students knowledgeable, flexible, resourceful, 

and problem-solvers are characterized. 

In their Learning Mathematics for Teaching project, Hill et al. (2008) 

developed an instrument to more effectively measure the quality of 

mathematics instruction, believing that a good measurement tool would 

enable teacher educators to improve teaching and learning. Hill et al. (2011) 

proposed a conceptual framework to specify and assess the mathematical 

characteristics of classroom work. This project introduced the MQI 

(Mathematical Quality of Instruction) construct, accompanied by a detailed 

coding guide for evaluating various criteria. By “mathematical quality of 

instruction”, Hill et al. defined the mathematical content available to 

students during instruction (p. 30). The MQI framework includes six 

constructs and their corresponding scales: richness and development of 

mathematics, response to students, connection of classroom practice with 

mathematics, language, equity, and mathematical errors. This line of 

research derives the MKT (Mathematical Knowledge for Teaching) model 

(Ball, Thames et al., 2008) of categories of mathematics teacher knowledge. 

Another line of research in mathematics teacher education promotes 

reflective practice (Schön, 1983; Tzur, 2001), whether as future teachers, 

practicing teachers, or teacher educators. The goal is to train reflective 

professionals (Llinares & Krainer, 2006) as a strategy to improve 

mathematics teaching and learning. This reflection on different aspects and 

moments of practice can be guided (Nolan, 2008) not only by educators in 
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the case of prospective teachers but also through conceptual tools that draw 

attention to critical aspects of practice. These guides provide a structure for 

holistic (Klein, 2008), articulated (Ash & Clayton, 2004), guided (Husu et al., 

2008), and critical (Harrison et al., 2005) reflection. 

Reflection and research on practice have also been proposed for teacher 

educators, involving learning about certain content or pedagogical aspects, 

such as discourse and problem-solving (Chapman, 2009). Developing a 

professional vision of mathematical learning and teaching experience is 

proposed through “professional teacher noticing” (Dindyal et al., 2021; 

Mason, 2002), a line of research that has gained considerable attention 

(König et al., 2022; Schack et al., 2017). Various theoretical lenses and 

methodological strategies have been developed to promote this skill 

(Fernández & Choy, 2019), such as framing theory (Scheiner, 2023), 

hypothetical learning trajectories (Simon, 1995; Simon & Tzur, 2004), and 

professional discussions based on Lesson Study (Lee & Choy, 2017). 

 

6.2. Structure of teacher education processes 

In the OSA, the educational-instructional process is the unit of analysis in 

mathematics education activity19, and it is understood as the articulation of 

two partial activities: teaching and learning of mathematical content, 

dispositions, and skills. In teacher education, the unit of analysis comprises 

formative processes related to the content and skills of mathematics 

didactics, where teaching and learning converge. For a detailed analysis of 

educational-instructional processes, we distinguish the phases of 

 
19 We understand the notion of activity in the sense proposed by the Cultural 

Historical Theory of Activity (CHAT) in its second and third generation version 

(Engënstrom, 1987). Activity is the unit of analysis whose structure is given by six 

elements: subject, object, instruments, community, rules, and division of labor. We 

consider that the structure of an educational-instructional process distinguishing 

phases, facets, and components allows for more detailed and explanatory analyses 

than those provided by the CHAT. 
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Foundation, Planning, Implementation, and Evaluation (Figure 6.1), which 

are partial activities of the overall mathematics education activity and phases 

in their temporal development. In each phase, it is necessary to distinguish 

six facets: epistemic, ecological, mediational, interactional, cognitive, and 

affective (Chapter 4). 

 

Figure 6.1. Phases and facets of educational-instructional processes 

Figure 4.1 (Chapter 4) describes the components, subcomponents, and 

elements proposed by the OSA for analyzing these six facets. The same 

structure applies to teacher education processes. In this case, the knowledge, 

skills, and dispositions involved in mathematical instruction processes 

should form part of the epistemic facet (institutional knowledge) of the 

training process. The teacher educator must also consider the knowledge, 

skills, and dispositions of the other facets of the training process, which aim 

at teaching and learning of didactic-mathematical content. 

The components and subcomponents of the epistemic and cognitive facets 

included in Figure 4.1 (Chapter 4) are derived from the onto-semiotic 

configuration in its epistemic version (institutional meanings) and cognitive 

version (personal meanings), and from the types of mathematical objects and 

processes involved. Level IV of analysis (Elements) describes the different 

blocks of mathematical content (arithmetic, geometry, algebra, statistics, 

etc.) on which research in mathematics education has produced knowledge 

and resources that should be considered by teachers and educators. 

If the instructional process concerns mathematics, the structure presented 

in Figure 4.1 (Chapter 4) applies to the knowledge the teacher employs about 
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the mathematics to be taught and other involved facets. Therefore, a model 

that develops other related models, such as the MKT (Ball, Thames et al., 

2008) and DMK (Pino-Fan & Godino, 2015; Godino et al., 2017), is proposed. 

The focus of this chapter is the teacher education process in mathematics, 

which involves training activities and teacher learning (Figure 6.2). The 

optimal development is closely related to mathematics instructional 

processes. In Figure 6.2, Activity 1 (teacher education) involves the educator 

designing programs and training actions for TPD. Activity 2 (teacher 

learning) involves the teacher learning to teach mathematics. Activity 3 

(teaching mathematics) involves the teacher conducting instructional 

processes in mathematical content, thus involving Activity 4 of mathematical 

learning, aimed at achieving students’ mathematical understanding and 

competence. 

As shown in Figure 6.2, Process I on mathematical instruction (teaching 

and learning activities in mathematics) is nested within Process II on 

mathematics didactics. Both constitute the focus of teachers’ professional 

learning. The didactic suitability criteria (Chapter 5) for Process I (Figure 

6.2) of teaching and learning mathematics will be interpreted in terms of the 

mathematical-didactic knowledge and competencies of the mathematics 

teacher (Teacher DMKC model). Teacher educators should consider these 

professional knowledge and competencies when designing and 

implementing training programs (Process II). Furthermore, how teachers 

learn, the affectivity involved, resources, and interaction patterns between 

educators and teachers should also be considered in the design and 

evaluation of such programs. Consequently, we will develop a model of 

knowledge and competencies for teacher educators (Educator DMKC 

model), which includes the Teacher DMKC model but also incorporates 

specific knowledge and competencies that promote teacher learning (i.e., the 

teacher as a student of mathematics didactics). 
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Figure 6.2. Activities involved in the training process 

 

6.3. Didactic-mathematical knowledge and 

competencies in mathematics instruction 

As previously indicated, the system of suitability criteria formulated in 

Chapter 5 can be used to categorize the teacher’s didactic-mathematical 

knowledge, guiding its identification and formulation according to facets, 

components, subcomponents, and elements of specific content, under the 

educational-instructional design theory presented in Chapter 4. 
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In this section, we describe the knowledge system derived from the TDS-

OSA for the process of mathematical instruction. In doing so, we expanded 

and revised the previous model of didactic-mathematical knowledge (DMK) 

(Godino, 2009; Pino-Fan & Godino, 2015). The training process should 

ensure that mathematics teachers acquire the knowledge and competencies 

that enable them to underpin, design, implement, and evaluate mathematical 

instruction processes with high didactic suitability. This implies competence 

to weigh the partial suitability criteria of epistemic (content), ecological 

(context), mediational (resources), interactional (interactions), cognitive 

(learning), and affective (students' emotions, beliefs, values) dimensions, 

considering the circumstances that condition mathematical instruction 

processes. This didactic dimension must be complemented with knowledge 

related to the normative and meta-normative dimensions (Chapter 4). 

In the following sections, we identify the knowledge related to different 

facets and components. The justifications, which are based on the coherence 

with the assumptions of the OSA and the concordances (consensus) with 

other theories provided in Chapter 5 for the suitability criteria, serve as the 

foundation for the formulated knowledge. 

 

6.3.1. Knowledge of characteristics of mathematical content 

(epistemic and ecological facets) 

Based on the model of mathematical activity proposed by the OSA, the 

TPD program should equip teachers to ensure that the mathematics they 

teach (epistemic and ecological facets) possess the characteristics stated in 

Table 6.1. 
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Table 6.1. Knowledge of characteristics of mathematical content (epistemic 

and ecological facets) 

Facet criteria Specific criteria by component 

Epistemic facet: 

The formative process 
promotes teachers’ adoption of 
an anthropological view of 
mathematics, i.e., as a human 
activity focused on solving 
problems from which 
mathematical objects emerge 
and give meaning. Teachers 
recognize various partial 
meanings, objects, and 
processes and develop 
instruction with varying 
degrees of generality and 
formalization. 

 

 

Meanings and mathematical objects 

− Consider the various partial meanings of the 
content and primary objects involved in each 
(situations, languages, concepts and properties, 
procedures, and arguments) and select those that 
are better adapted to the contextual and personal 
circumstances of the subjects involved. 

Problem situations: 

− Select and adapt mathematical problems/tasks that 
give meaning to mathematical knowledge and 
distinguish situations of contextualization, exercise, 
application, and problem generation. 

Languages: 

− Recognize the central role of mathematical 
languages (representations) and their types, 
transformations, and conversions in building and 
communicating mathematical knowledge. 

− Manage (know and use) different modes of 
mathematical expression and how they are related, 
recognizing their relevance according to the 
educational level. 

Rules (concepts, propositions, procedures) 

− Understand mathematics as an interconnected 
system of rules (concepts, procedures, and 
properties). 

− Select and correctly present definitions, 
propositions, and procedures adapted to the 
educational level. 

Arguments: 

− Recognize the central role of argumentation in 
building mathematical knowledge and diversity of 
proof methods. 

− Elaborate correct explanations, proofs, and 
demonstrations appropriate to the educational 
level. 

Relations (connections) 

− The partial meanings studied should be related to 
each other. The objects involved in the 
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corresponding practices and other subjects that the 
student is familiar with are also related. 

Processes 

− Considering the diversity of processes from which 
the objects involved in mathematical practices 
emerge (problematization, representation, 
definition, generalization, modeling, etc.). 

Ecological facet:  

The formative process 
promotes teachers’ knowledge, 
skills, and disposition so that 
the mathematical instruction 
they design and implement 
corresponds to the educational 
project of the center and 
society. This process also 
considers the framework of the 
environment in which it occurs 
and innovations based on 
didactic research. 

Intra- and interdisciplinary connections 

− Relate the content with other intra- and 
interdisciplinary content. 

Curriculum 

− Follow mathematics curriculum guidelines and 
their rationale. 

Openness to didactic innovation 

− Introduce innovations based on research and 
recognize best practices. 

− Integrate the use of new technologies (calculators, 
computers, ICT, etc.) in the educational project. 

Socio-professional and cultural adaptation 

− Ensure that the educational-instructional process 
contributes to the socio-professional education of 
students. 

Education in civic values 

− Include in the design and implementation of the 
educational-instructional process the education of 
students on democratic values and critical thinking. 

Family setting 

− The process stimulates and supports students’ 
learning outside school and their individual 
development as a person. 

 

The mathematical content that the teacher implements in the classroom 

must meet certain characteristics to optimize the development of the 

instructional process; mathematics must be rich, optimal, or adequate, 

according to the contextual (ecological facet) and personal circumstances of 

the students (cognitive facet). A specific instructional process occurs in a 

particular environment and is typically conducted over a bounded time 
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interval. It is therefore inevitable that the teacher knows how to select some 

partial meanings of the object in question and the configurations of the 

associated objects and processes associated with them, but globally 

(throughout education), the set of meanings must represent the one 

previously established as a reference. 

The teacher must know how to mobilize diverse representations of 

mathematical objects, solve tasks through different procedures, link 

mathematical objects of the educational level in which he/she teaches and of 

previous and subsequent levels, understand and mobilize the diversity of 

partial meanings for the same mathematical object, provide diverse 

justifications and arguments and identify the knowledge put into play in 

resolving problems.  

The ecological facet of didactic-mathematical knowledge refers to 

knowledge about the mathematics curriculum of the educational level in 

which the study of the mathematical object is envisaged, its relations with 

other curricula and the relations that such curriculum has with the social, 

political and economic aspects that support and condition the teaching and 

learning process. The aspects covered within this facet of knowledge include 

Shulman’s (1987, p. 8) proposals on curricular knowledge, knowledge of 

educational contexts and of the aims, purposes, and values of education, and 

Grossman’s (1990, p. 9) knowledge of the horizontal and vertical curriculum 

for a subject and knowledge of the context. 

 

6.3.2. Knowledge of the characteristics of mediational and 

interactional facets  

The TPD program should provide opportunities for learning the 

knowledge and competencies listed in Table 6.2 regarding the mediational 

and interactional facets of the instructional processes that teachers design, 

implement, and evaluate. The mediational facet includes various resources 

that condition and support the teaching and learning of mathematics. In 
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addition to concrete and technological material resources, such as calculators 

and computers, study aids (textbooks, activity notebooks, educational videos, 

...), the number of students assigned to the teacher, the timetable in which 

classes occur, the material conditions of the classroom, as well as the total 

time assigned to study and its distribution are also considered. As can be 

seen, linking the interactional and mediational facets develops and enriches 

the notion of “content knowledge and teaching” raised by Ball et al. (2008, p. 

401). 

 

Table 6.2. Knowledge of the characteristics of interactional and mediational 

facets of mathematical instructional processes 

Facet criteria Specific criteria 

Interactional facet: 

The formative process fosters 
patterns of interaction that 
help identify potential 
semiotic conflicts, select 
appropriate means to resolve 
them, promote progressive 
autonomy in learning, and 
develop students’ 
communicative competence. 

Teacher-students’ interactions 

− Adapt the interaction between teachers and 
learners to the moments of the learning process 
using a dialogic collaborative format in the first 
encounter with the content and grant autonomy to 
the learner during the moments of practice and 
application. 

− Make an adequate presentation of the topic (clear 
and well-organized presentation, do not speak too 
fast, emphasize the key concepts of the topic, etc.). 

− Recognize and resolve student conflicts (ask 
questions and provide appropriate answers, etc.). 

− Seek consensus based on the best argument. 

− Use rhetorical and argumentative devices to 
engage and capture students' attention. 

− Facilitate the inclusion of students in the 
dynamics of the class. 

− Encourage participation and active engagement of 
all students. 

Interactions among students 

− Encourage dialog and communication among 
students. 

− Enhance group inclusion and avoid exclusion. 

Autonomy 

− Provide times when students take responsibility 
for the study (pose questions and present 
solutions; explore examples and counterexamples 
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to investigate and conjecture; use a variety of tools 
to reason, make connections, solve problems, and 
communicate). 

Formative assessment 

− Systematically observe students’ cognitive 
progress and use the information obtained to 
decide on instructional development. 

Mediational facet:  

The formative process fosters 
teachers’ knowledge, skills, and 
disposition to use appropriate 
material and time resources to 
develop mathematics teaching 
and learning processes. 

 

Material resources (concrete, virtual and 
symbolic)  

− Distinguish mathematical objects (regulative, 
non-ostensive) from their respective concrete, 
visual, or symbolic representations in 
mathematical and didactic practices. 

− Articulate alphanumeric and concrete 
representations of objects and processes to 
improve generalizability, calculation, and 
mathematical proof. 

Study aids (textbooks, workbooks, educational 
videos, ...) 

− Make critical and reflective use of curricular 
materials or other educational resources 
(textbooks or activity workbooks in physical or 
virtual format, educational videos, etc.), deciding 
when and how to use them to support the 
instructional process. 

Number of students and classroom conditions 

− Optimize as much as possible the number of 
students to provide personalized attention. 

− Adapt classroom and student distribution as much 
as possible to facilitate interactions. 

− Ensure a class session schedule that favors 
students’ attention and commitment. 

Time (collective teaching/tutoring; learning time) 

− Provide adequate time (face-to-face and non-face-
to-face) for teaching. 

− Provide sufficient time for important and 
challenging content. 

 

The interactional facet involves the knowledge necessary to foresee, 

implement, and evaluate sequences of interactions between agents that 

participate in the teaching and learning process, oriented to the fixation and 

negotiation of meaning (learning) of students. These interactions are not 
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only established between teachers and students but also between students 

and resources and between teachers, resources, and students. The 

mediational facet includes the teacher’s knowledge that he/she must use and 

evaluate the relevance of the use of technological materials and resources to 

enhance the learning of a specific mathematical object, as well as the time 

allocated to the different learning actions and processes.  

 

6.3.3. Knowledge of student learning characteristics (cognitive 

and affective facets)  

The TPD program should provide opportunities for learning the 

knowledge and competencies listed in Table 6.3 regarding the cognitive and 

affective facets of the instructional processes they design, implement, and 

assess.  

 

Table 6.3. Knowledge about the characteristics of students’ mathematical 

learning (cognitive and affective facets). 

Facet criteria Specific criteria by component 

Cognitive facet: 

The formative process 
advances teachers’ 
knowledge, skills, and 
dispositions in such a 
way that learning goals 
are achievable cognitive 
challenges for students 
given their personal and 
contextual 
circumstances, that the 
personal meanings 
achieved by students are 
consistent with planned 
institutional meanings, 
and that assessment of 
learning serves to 
improve the instructional 
process.  

Personal meanings (learning) 

− Promote understanding of situations-problems, 
representations, concepts, and properties. 

− Develop communication, procedural, and argumentative 
skills. 

Relations (connections) 

− Promote relational learning to help students understand 
and relate to different meanings and objects in the 
teaching process. 

Processes 

− Promote the development of students’ competence to 
implement content-specific mathematical (modeling, 
generalization, problem posing and solving, proof, 
representation, ...) and metacognitive processes 
(reflection on own mathematical thinking). 

Previous knowledge 
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− Consider students’ previous knowledge when studying 
the intended content. 

Individual differences 

− Support students’ learning by recognizing differences in 
prior knowledge, learning styles, and levels of 
understanding and proficiency. 

Learning assessment 

− Regularly checking learning progress to make 
instructional decisions regarding improvement 
(formative assessment). 

Affective facet:  

The formative process 
promotes teachers’ 
knowledge, skills, and 
disposition for 
implementing 
mathematics instruction 
to achieve the highest 
possible level of student 
engagement (interest, 
motivation, self-esteem), 
considering their beliefs 
about mathematics and 
their learning. 

  

  

Emotions 

− Plan situations to identify and discuss emotions to avoid 
rejection, phobia, or fear of mathematics. 

− Highlight the aesthetic and precision qualities of 
mathematics. 

Attitudes 

− Promote students’ responsibility for learning by 
attempting to complete tasks with perseverance, both of 
which require personal inquiry and the reception and 
retention of knowledge. 

− To favor argumentation in situations of equality; the 
argument is valued in itself and not by who says it. 

Beliefs 

− Identify and deal with students’ beliefs about 
mathematics and its teaching that may condition learning 
and the instructional process. 

Values-identity 

− Promote self-esteem so that students feel capable of 
contributing to conjectures and solutions to problems by 
relying on mathematical arguments to convince others of 
the validity of their assertions, thus building a positive 
mathematical identity. 

Interests and needs 

− Propose tasks that interest students and are within their 
reach. 

− Propose situations that highlight the usefulness of 
mathematics in daily and professional life. 
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Progressive coupling between students’ initial personal and institutional 

meanings is achieved through their participation in the community of 

practices generated in the classroom. The cognitive and affective facets, as 

defined in the OSA, together provide a better approach and understanding of 

the knowledge that mathematics teachers should have about the 

characteristics and aspects related to students’ ways of thinking, knowing, 

acting, and feeling regarding their mathematical activities. The cognitive 

facet, on the one hand, provides teachers with the necessary knowledge to 

“reflect and evaluate” the proximity or degree of alignment between personal 

meanings (students’ knowledge) with institutional meanings (knowledge 

from a historical-cultural point of view). For this purpose, the teacher must 

be able to foresee (during planning or design) and address (during 

implementation), based on the students’ productions or expected 

productions, possible responses to a problem, misconceptions, conflicts, or 

errors that arise in the solution, and links (mathematically correct or not) 

between the mathematical object studied and other mathematical objects 

required to solve the problem. 

The affective facet attends to the knowledge necessary to understand and 

manage students’ moods, aspects that motivate them or not to solve 

problems, and so forth. It is knowledge that helps teachers describe students’ 

experiences and sensations within a specific class or with a specific 

mathematical problem at a specific educational level, considering aspects 

linked to the ecological facet. 

These two facets (cognitive and affective) integrate and expand the ideas 

of Shulman (1987, p. 8) —knowledge about students and their 

characteristics—, Schoenfeld and Kilpatrick (2008) —about knowing 

students as thinking and learning individuals—, Grossman (1990, p. 8) —

about understanding students, their conceptions, and misconceptions of 

particular topics—, and Hill et al. (2008, p. 375) —about content knowledge 

and students. 
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6.3.4. Extended DMK Model 

Figure 6.3 summarizes the categories of didactic-mathematical knowledge 

required for the design, implementation, and evaluation of educational 

instruction processes in mathematics that teachers should optimize and are 

classified according to their facets and components. At the bottom of Figure 

6.3, we also include information on two categories of teacher knowledge 

related to the mathematical dimension: the mathematical knowledge per se 

that the teacher must possess. As explained in Pino-Fan and Godino (2015), 

common content knowledge is the knowledge about a specific mathematical 

object (for example, the derivative) that suffices to solve the problems or 

tasks proposed in the mathematics curriculum (or study plans) and in 

textbooks at a certain educational level (for example, high school). This type 

of knowledge is shared between the teacher and students. Extended content 

knowledge is the knowledge the teacher must have about the mathematical 

notions being studied at a moment (for example, the derivative) and those 

that are further ahead in the curriculum (for example, the integral in high 

school or the fundamental theorem of calculus and differential equations in 

university). Extended content knowledge provides the teacher with a 

mathematical foundation to present new mathematical challenges in the 

classroom, link the mathematical object being studied with other 

mathematical notions, and guide students toward studying subsequent 

mathematical notions related to the object of study. 

The version of the DMK presented in this section develops the version 

included in Godino (2009) and Pino-Fan and Godino (2015) in several 

aspects. We retain the six facets, but we reorganize their components, mainly 

those corresponding to the epistemic and cognitive facets, according to the 

model of the structure of an educational-instructional process elaborated in 

Chapter 4. In addition, we include descriptions of general knowledge for each 

facet, which is specific to different components. We consider that the 
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mathematical dimension of the teacher’s knowledge (Pino-Fan & Godino, 

2015) is included within the epistemic facet by considering that the teacher’s 

mathematical education should have a specialized orientation for teaching. 

 

 

Figure 6.3. Facets and components of teacher knowledge (Godino et al., 

2016, p. 292). 

 

6.3.5. Model of didactic-mathematical competencies 

Teachers must develop not only the knowledge necessary to understand 

teaching and learning processes but also competencies, i.e., skills and 

disposition to perform the required actions. In previous sections, we have 

used the structure of educational processes and the concept of didactic 

suitability to reformulate the DMK model of didactic-mathematical 

knowledge. The OSA provides various tools that help not only analyze and 

understand educational-instructional processes but also intervene in the 

design, planning, and evaluation activities. One aim of training processes 
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should be for teachers to develop competencies when using these tools. This 

involves developing the general competency of didactic design and 

intervention, composed of the five sub-competencies described below, 

following the work of Godino et al. (2017). 

Competency in analyzing global meanings 

This competency is required when the teacher addresses the following 

questions: 

− What are the meanings of the mathematical objects involved in 

studying the intended content? 

− How are they interconnected? 

In the preliminary phase of the instructional design process, meanings are 

pragmatically understood as systems of practices aimed at constructing a 

reference model that delineates the types of problems addressed and the 

operative and discursive practices required for their resolution. Suppose that 

fractions are being studied. The teacher must be able to characterize both 

institutional practices (different institutional meanings of fractions, such as 

ratio, part-whole, etc.), considering the various contexts where such 

problems are presented and the student’s expected personal practices 

(personal meanings that students may acquire about fractions). 

Knowledge of the notion “systems of operative and discursive 

mathematical practices, and their various types” (Godino et al., 2007, p. 129) 

corresponds to a competency in analyzing global meanings. The focus is on 

identifying problem situations that provide partial meanings or senses for the 

objects or mathematical topics under study and the operative and discursive 

practices that must be employed in their resolution. For instance, find 

situations that give sense to the different meanings of fractions. 

 

Competency in the ontosemiotic analysis of mathematical practices 

Resolving mathematical tasks involves and emerges from a network of 

objects that make the corresponding practices possible. Students must 
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explicitly recognize these objects to progress in knowledge construction. The 

teacher’s identification of the objects and processes involved in mathematical 

practices is a competency that will enable them to understand the 

progression of learning, manage necessary institutionalization processes, 

and evaluate students’ mathematical competencies. This involves answering 

the following questions: 

− What are the configurations of objects and mathematical processes 

involved in the practices that constitute the various meanings of the 

intended content? (epistemic configurations). 

− What are the configurations of objects and processes employed by 

students when solving problems? (cognitive configurations). 

Mathematics teachers must know and understand the concept of the 

configuration of objects and processes and be able to competently use it in 

didactic design processes. This relates to competency in the ontosemiotic 

analysis of mathematical practices used in instructional tasks. 

 

Competency in analyzing and managing didactic configurations 

The mathematics teacher must understand the notion of didactic 

configuration (Chapter 4), which is introduced as a tool for analyzing 

personal and material interactions in mathematical study processes. This 

means knowing didactic configurations that can be implemented and their 

effects on student learning. They must have the competency to use these 

configurations appropriately when implementing instructional designs (i.e., 

the skills to manage didactic configurations). They should be able to address 

the teaching problem of how to teach specific content, concretized in the 

OSA: 

− What types of interactions between people and resources are 

implemented in instructional processes and what consequences do 

they have for learning? 
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− How can interactions be managed to optimize learning? 

Competency in normative analysis 

The various phases of the didactic design process are supported and 

dependent on a complex network of norms of different origins and natures 

(Godino et al., 2009) and meta-norms (D’Amore et al., 2007), whose explicit 

recognition is necessary to understand the development of mathematical 

study processes and guide them toward optimal levels of suitability. For 

example, when studying fractions, norms regarding their notation or 

graphical representation appear. There are also non-mathematical norms, 

such as the time dedicated to the fraction topic, the textbook students use, 

and the dates when evaluations are conducted. The mathematics teacher 

must know, understand, and value the normative dimension and use it 

competently, making it necessary to design training actions for its 

instrumental use. This involves developing competence in the normative 

analysis of mathematical study processes to answer the following questions: 

− What norms condition the development of instructional processes? 

− Who, how, and when are the norms established? 

− Which norms can be changed to optimize mathematical learning? 

Competency in analyzing and assessing didactic suitability 

The professional questions mentioned above involve a microscopic view 

of teaching practice, i.e., performing detailed analyses of problem-solving or 

specific teaching and learning activities. In OSA, the notion of didactic 

suitability was introduced, guiding the macroscopic analysis of mathematical 

study processes. Given a specific topic in a certain educational context, for 

example, the study of quadratic equations in secondary education, the notion 

of didactic suitability leads to questions such as the following: 

− What is the degree of didactic suitability of the implemented teaching-

learning process on quadratic equations? 
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− What changes should be made in the design and implementation of the 

study process to increase its didactic suitability in the next 

experimentation cycle? 

To elaborate a well-founded judgment on the didactic suitability of a 

mathematical study process, it is essential to reconstruct the didactic 

reference meanings of the corresponding topic. This requires a systematic 

review of research and innovations in mathematics education concerning 

epistemic, ecological, cognitive, affective, interactional, and mediational 

aspects. This leads to the following preliminary question: 

− What are the didactic-mathematical knowledge results from previous 

research and innovations in teaching and learning quadratic 

equations? 

Didactic suitability has been introduced as a support tool for global 

reflection on didactic practice, its assessment, and progressive improvement. 

The mathematics teacher must know, understand, and value this tool and 

acquire the competency to use it appropriately. This is the competency in 

analyzing the didactic suitability of mathematical study processes. 

General competency in didactic analysis and intervention 

The competencies described above are sub-competencies of a broader one, 

specific to the mathematics teacher, which is didactic analysis and 

intervention, as represented in Figure 6.5. The articulation of didactic 

competencies and knowledge is naturally accomplished in the OSA. 

Mathematical and didactic practices are actions oriented toward solving a 

problem or performing a task (they are not mere behaviors or actions). These 

practices can be discursive-declarative, indicating the possession of 

knowledge, or operative-procedural, indicating capacity or competency. Both 

types are interwoven; thus, efficient execution of operative practices involves 

activating declarative knowledge, which refers to the description of the 

instruments used or previously obtained results that need to be activated. 

Likewise, understanding declarative knowledge requires engaging in 
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situations that provide the rationale for such knowledge and being involved 

(disposition for action) in its efficient resolution (Figure 6.4). 

Including the competencies described in this section in the model of 

didactic-mathematical knowledge gives rise to the model of didactic-

mathematical knowledge and competencies of mathematics teachers 

(Godino et al., 2017) (Teacher DMKC Model). 

  

 

Figure 6.4. Components of didactic analysis and intervention competence 

(Godino et al., 2016, p. 295) 

 

6.3.6. Edumat-Teacher books and the DMKC-Teacher model 

The systems of knowledge categories that mathematics teachers should 

possess to promote learning serve as containers for classifying knowledge 

according to various criteria, but they do not specify what this knowledge 

entails for different content areas (arithmetic, geometry, etc.). The Edumat-

Teachers books (Godino et al., 2004a; 2004b) complement these theoretical 

models by effectively developing mathematical and didactic knowledge for 
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designing programs and training activities in mathematics (for primary 

school mathematics teachers) and in mathematics education (for teacher 

educators). We analyze the characteristics of these books from the 

perspective of the DMCK model. 

 

Mathematics for teachers: Common and expanded content 

knowledge 

The book Mathematics for Teachers (Godino et al., 2004a) is a resource 

that includes the knowledge that teachers should possess to design 

mathematical instruction processes at various levels of primary education. It 

defines what can be considered “appropriate mathematics” for both primary 

school students (common knowledge) and teachers responsible for their 

education (expanded knowledge). Let us examine the characteristics of the 

instructional mathematics processes proposed in the text for different facets 

of the DMKC model. 

Epistemic and ecological facets 

The text includes the various blocks of curricular content appropriate for 

primary education: number systems; proportionality; geometry; 

magnitudes; stochastics; algebraic reasoning. The number systems block is 

the most extensive, comprising six chapters (Natural Numbers; Numeration 

Systems; Addition and Subtraction; Multiplication and Division; Fractions 

and Rational Numbers; Decimal Numbers and Expressions; Positive and 

Negative Numbers). Geometry is covered in three chapters (Geometric 

Figures; Geometric Transformations. Symmetry and Similarity; Spatial 

Orientation). Magnitudes include one chapter on the concept of magnitude 

and its measurement and another on geometric magnitudes. The stochastics 

block is grouped into two chapters (Statistics; Probability), while 

proportionality and algebraic reasoning are each developed in one chapter. 

Each chapter includes two sections: 
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A: Professional contextualization. This section presents a collection of 

problems and exercises extracted from primary education textbooks. The 

teacher trainees are asked to solve these problems, analyze the concepts and 

procedures and develop other related problems. These tasks share a 

problem-solving-focused vision of mathematics with teacher trainees to 

develop problem formulation and analytical competence. 

B: Mathematical knowledge. Mathematics is understood as both a 

problem-solving activity and a system of related objects (knowledge). 

Therefore, each chapter describes the relevant knowledge. Each lesson 

includes introductory examples that motivate the content and a final section 

called the Mathematics Workshop, where complementary problems are 

proposed for resolution. 

For the network of conceptual objects that characterize each content, 

various meanings (intuitive and formal), definitions, properties, procedures 

with their justifications, and the use of various representation systems are 

studied. For example, the study of numbers begins in early childhood 

education and progresses through successive levels of complexity in primary 

and secondary education. This progression gives teachers a broad view of the 

various meanings and their increasing generality and formalization, enabling 

them to design well-founded learning trajectories for different levels of 

primary education. 

Interactional and mediational facets 

The model of teaching and learning mathematics proposed implicitly in 

the book Mathematics for Teachers (i.e., the modes of teacher-student-

content interaction), both for children and for teachers, is made explicit in 

the monograph Fundamentals of Teaching and Learning Mathematics 

(Godino, Batanero, & Font, 2003). While not disregarding constructivist 

approaches to mathematics education, it is necessary to recognize the 

teachers’ crucial roles in organizing, directing, and promoting student 

learning. Meaningful mathematical instruction should play a key role in 
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social interaction, cooperation, teacher discourse, communication, and 

subject interaction in problem situations. To achieve meaningful 

mathematical learning, a trainee teacher must understand the complexity of 

the teaching task. It is necessary to design and manage various types of 

didactic situations, implement diverse interaction patterns, and consider the 

often-implicit norms that regulate and condition teaching and learning. 

Regarding the use of resources or media for teaching and learning 

(mediational facet), teachers must have a favorable attitude toward using 

manipulative materials as elements of didactic situations. It is necessary to 

adopt a critical stance toward the indiscriminate use of such resources. We 

argue that manipulative materials (whether tangible or graphic-textual) can 

serve as bridges between reality and mathematical objects, but precautions 

must be taken to avoid blind empiricism and sterile formalism. 

Cognitive and affective facets 

The mathematical learning processes proposed in the textbook 

Mathematics for Teachers aim to build students’ prior knowledge and 

develop the new knowledge and competencies required for teaching primary 

education. The first section of each chapter, A) Professional 

Contextualization, aims to evoke knowledge specific to primary education 

(common content knowledge) and simultaneously motivate (affective facet) 

the study by relating it to the exercise of the profession. The mathematics 

studied is closely related to the teacher’s professional needs. Content 

included in each chapter ensures an understanding of the types of 

mathematical situations specific to primary education, as well as 

comprehension of concepts and propositions and development of 

procedural, argumentative, and communicative competencies involved in 

solving problem situations. 

The process of studying mathematics proposed for trainee teachers, 

supported using the books Mathematics for Teachers and Fundamentals of 

Teaching and Learning Mathematics, exhibits suitable characteristics 
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(Godino et al., 2023) in various facets, so that the didactic model they 

experience in their training process can be transferred to the primary 

education levels they must design and implement. 

 

6.4. Criteria for the suitability of teacher education and learning 

activities 

We have elaborated on the model of the structure of an educational-

instructional process included in Figure 4.1 (Chapter 4) considering the 

teaching and learning of mathematical content. However, it also applies to 

other contents, in particular to didactic-mathematical competencies and 

knowledge, the learning of which is the object/motive of teacher professional 

development activities.  

We then develop criteria for the suitability of formative processes. In 

Section 6.6, these criteria are interpreted in terms of knowledge and 

competencies for educators, thus giving rise to the DMKC-Educator model. 

The general criterion for the suitability of educational processes is expressed 

in the following terms: 

The formative process should ensure that mathematics teachers acquire the 

knowledge and competencies to substantiate, design, implement, and 

evaluate educational-instructional processes of mathematics with high 

didactic suitability (epistemic and cognitive facets). In addition, the 

teacher must have and use appropriate training resources, implement 

interaction patterns that optimize teacher learning, and consider the 

affective and ecological factors involved. 

The epistemic facet of the formative process (Process II, Figure 6.2) is 

constituted by the system of knowledge and competencies of the DMKC-

Teacher model, referring to mathematical instruction processes, which are 

the object of the teaching activity. The didactic suitability criteria of Chapter 

5 are interpreted as the epistemic suitability criteria for the formative 

process. We then elaborate on the suitability criteria of the remaining facets. 
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6.4.1. Criteria for the interactional, mediational, and ecological 

facets of formative processes 

The partial suitability criteria for the interactional, mediational, and 

ecological facets of the didactic-mathematical teacher education process are 

presented in Table 6.4. We also express specific criteria for the components 

of the respective facets. 

 

Table 6.4. Criteria for interactional, mediational, and ecological facets of the 

formative process. 

Facet criteria Specific criteria 

Interactional facet  

The didactic 
configurations and 
trajectories of the 
formative process help 
identify potential semiotic 
conflicts in learning 
content and provide 
appropriate resolution 
means. 

The formative process should include the following aspects: 

a) Consider the role of different interaction patterns in 
mathematical learning (dialectic between student 
autonomy and institutionalization). 

b) Apply strategies for the formative evaluation of teachers’ 
learning. 

c) Identify and solve conflicts of meaning and learning 
difficulties related to classroom interaction. 

d) Develop communicative competencies and autonomous 
work of teachers. 

Mediational facet  

The formative process 
manages adequate 
material and temporal 
resources to implement 
the formative tasks. 

  

The formative process should include the following aspects:  

a) Acknowledge the role of manipulative and computer 
resources in mathematical and didactic-mathematical 
learning, including their possibilities and limitations. 

b) Provide adequate teaching time for different training 
tasks. 

c) Integrate the use of information and communication 
technologies and material resources in the formative 
tasks. 

Ecological facet 

The formative process 
should be in line with the 
educational project of the 
center and society, 
considering the 
conditioning factors of the 
environment in which it is 
developed and innovations 

The formative process should include the following aspects: 

a) Curricular guidelines for teacher professional 
development and their rationale. 

b) Results of research on teacher education. 
c) The search for, selection, and adaptation of good 

practices that involve the real context and 
interdisciplinarity of teacher education and the use of 
technology. 
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based on educational 
research. 

d) Conditioning factors and restrictions of the social 
environment in the teaching and learning of mathematics 
and its didactics (economic, political, cultural factors). 

e) Teachers’ democratic values and critical thinking. 

 

Using manipulative and computer resources in a relevant and timely 

manner for the learning of specific mathematical topics is a component of 

specialized content knowledge and is therefore part of the teacher’s learning 

expectations. Computers and audio-visual resources are appropriate for the 

presentation of cases related to teaching practices and their retrospective 

analyses. Likewise, the resources available for virtual communication 

(forums and virtual platforms) should also be used.  

Given the extent of the didactic-mathematical knowledge related to the 

different blocks of content and specific topics, it is likely that there will not 

be enough time for a systematic study of them during the teaching time 

assigned to the subject. This will lead to the selection of some thematic units 

whose planning and didactic analysis will be performed in the time available; 

such units must have prototypical characteristics, i.e., they must represent 

the set of topics to be studied. The content and formative activities revolve 

around the professional development of mathematics teachers by 

considering and integrating the contributions of the remaining subjects in 

the curriculum and disciplinary areas. 

Ecological suitability refers to the degree to which the professional 

development program is adequate within the environment in which it is 

developed, i.e., the socio-professional context and the curricula or programs 

established by the educational authority. In the formative process, the 

planning of training activities should be adapted to these guidelines. In 

addition, the results of research on teacher education should be considered 

in the different dimensions involved (characterization of the didactic-

mathematical knowledge and competencies required by teachers for the 
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exercise of their profession, difficulties and limitations in their acquisition, 

proposals for intervention with teachers, etc.). 

 

6.4.2. Criteria for the cognitive and affective facets of the training 

process  

The partial suitability criteria for the cognitive and affective facets of the 

didactic-mathematical teacher education process are presented in Table 6.5. 

 

Table 6.5. Criteria for characteristics of the didactic-mathematical learning 

of teachers 

Facet criteria Specific criteria by component 

Cognitive facet: 

The learning objectives 
of mathematical 
content per se and 
specialized didactic-
mathematical 
knowledge ensure that 
teachers acquire the 
necessary 
competencies for 
planning, 
implementing, and 
evaluating 
mathematical 
instructional processes 
with high didactic 
suitability. 

Personal meanings  

The formative process should include the following aspects: 

a) Promote an anthropological vision of mathematics that 
acknowledges the diversity of meanings and configurations 
of objects and processes.  

b) Recognize the implications of this vision for the 
management of interaction patterns and the use of didactic 
resources. 

Relations (connections) 

The learning of mathematical and didactic-mathematical 
knowledge should be relational so that teachers can understand 
and relate to the different meanings and objects included in the 
teaching process. 

Processes 

The formative process should include the following aspects: 

a) Promote the teacher’s competence in implementing 
mathematical processes specific to the mathematical 
content (modeling, generalization, problem-solving or 
problem posing, proof, representation ...) and 
metacognitive (reflection on one's own mathematical 
thinking processes). 

b) Promote the teacher’s competency in planning, 
implementing, and evaluating mathematical instruction 
processes. 

Previous knowledge 
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The formative process considers teachers’ prior mathematical 
content and specialised (didactic-mathematical) knowledge. 

Individual differences 

The formative process bears in mind teachers’ differences and 
learning styles in relation to mathematical content and 
specialized (didactic-mathematical) knowledge. 

Assessment of teacher learning 

Apply evaluation instruments (observation scripts, interviews, 
questionnaires, essay tests, portfolios) to evaluate teachers’ 
levels of conceptual and propositional comprehension, 
communicative, argumentative, and metacognitive competence, 
and procedural fluency in mathematical and specialized 
knowledge. 

Affective facet: 

The educator needs to 
achieve the teacher's 
highest possible 
involvement (interest, 
motivation, self-
esteem, willingness) in 
the formative process 
and consider the 
teacher’s beliefs and 
values regarding 
mathematics and its 
teaching. 

The formative process should include the following aspects: 

a) Search for, select, and adapt tasks/situations that pertain to 
the teachers’ fields of interest and are applicable in daily and 
professional life. 

b) Organize and manage classroom interactions that promote 
self-esteem, participation, perseverance, and responsibility 
in the study of all participants. 

c) To evaluate teachers’ beliefs and values about mathematics 
and its teaching by reflecting on them and their possible 
evolution. 

 

 The main indicator of cognitive suitability of the formative process is the 

effective achievement of learning expectations on the mathematical and 

didactic-mathematical content of the teachers, for whose formative and 

summative evaluation the educator should apply the system of methods and 

techniques usual in educational research (written tests, questionnaires, 

observation and interview scripts, portfolios). 

An adequate theory-practice connection and the selection of real 

situations that teachers may encounter in their future professional practice 

to analyze and reflect upon will be indicators of affective suitability, as they 

will help to foster the interest, motivation and commitment of teachers in 

training. Special consideration will be given to the component of teachers’ 
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beliefs and values about mathematics and its teaching, a component that 

several authors have included within the affective dimension (DeBellis & 

Goldin, 2006; Goldin, 2000; Philipp, 2007). 

 

6.5. System of knowledge and competencies of 

mathematics teacher educators 

In Section 6.4., we have identified a system of criteria for the suitability of 

mathematics teacher education processes, i.e., of the teaching and learning 

processes of mathematics didactics (Process II of Figure 6.2). Since these 

processes are designed, implemented, and evaluated by the teacher educator, 

it is necessary to investigate the system of knowledge and competencies of 

the teacher educator required to perform the activities that constitute process 

II (Figure 6.2). The criteria system can be interpreted in terms of knowledge 

and competencies. 

 

6.5.1. The DMKC-Educator model 

The DMKC teacher model constitutes the epistemic facet of the DMKC 

educator model, i.e., the educator should possess the mathematical and 

didactical-mathematical knowledge and competences of the mathematics 

teacher; otherwise, we would be in a situation of “teaching what one does not 

know”, which does not seem pertinent. The educator should possess the 

knowledge and competences to base, design, implement, and evaluate 

suitable formative processes in mathematics didactics. This involves 

weighing the partial criteria of suitability (epistemic, ecological, mediational, 

interactional, cognitive, and affective) considering the circumstances that 

condition professional teacher development in mathematics.  

Figure 6.5 presents the elements of the DMKC educator model and its 

relationships with the DMKC teacher model. 
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Figure 6.5. Teacher educator knowledge and competency model 

 

6.5.2. Edumat-Teacher books and the DMKC-Educator model 

The Didactic of Mathematics for Teachers (Godino et al., 2004b) is a 

resource that develops the knowledge of mathematics didactics that 

educators should consider when designing teacher education processes. This 

book includes seven blocks of didactic content. The first monograph, 

previously published as Foundations of mathematics teaching and learning 

for teachers (Godino, Batanero, & Font, 2003), is constituted by four 

chapters: Educational perspective of mathematics; Teaching and learning of 

mathematics; Mathematical curriculum for primary education; and 

Resources for the study of mathematics. Each of these chapters includes 

three sections: Professional contextualization; Didactic knowledge; Didactic 

seminar. The book also includes a list of complementary bibliographical 

references. 
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In this monograph, we offer an overview of mathematics education. We 

attempt to create a space for reflection and study on mathematics as an object 

of teaching and learning and on the conceptual and methodological tools that 

the didactics of mathematics generate as a field of research. The six principles 

of the NCTM (2000) —equity, curriculum, teaching, learning, assessment, 

and technology— describe crucial issues that, although not specific to school 

mathematics, are deeply interconnected with mathematics programs. They 

must be considered in the development of curriculum proposals, the 

selection of materials, the planning of instructional units, the design of 

assessments, instructional decisions in classrooms, and the establishment of 

support programs for teachers’ professional development. 

Each chapter of the monograph is structured into three sections. In the 

first section, which we call Contextualization, we propose an initial situation 

of collective reflection and discussion of an aspect of the topic. In the second 

section of Knowledge Development, we present the main positions and 

information, as well as a collection of activities and tasks inserted in the text 

that can serve as introductory situations for the different sections or as a 

complement to and evaluation of the study. The third section of the Didactic 

Seminar includes a collection of “problems of didactics of mathematics” that 

extend the reflection and analysis of the knowledge proposed on each topic. 

 

Didactics of mathematical content blocks. Specialized knowledge 

of content 

The Didactics of mathematics for teachers (Godino et al., 2004) includes, 

besides the monograph Fundamentals of teaching and learning 

mathematics, six other blocks of didactic content that refer to specific 

didactic-mathematical knowledge of the mathematical content blocks: 

number systems; proportionality; geometry; magnitudes; stochastics; 

algebraic reasoning. Each chapter includes the following sections:  
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Curricular orientations; Cognitive development and progression in 

learning; Conflicts in learning; Assessment instruments; Situations 

and resources; Didactic workshop (Analysis of school texts, Design of 

didactic units; Analysis of answers to evaluation tasks). 

These sections contemplate didactic-mathematical knowledge, which 

includes aspects of mathematical cognition of specific contents (cognitive 

development, learning conflicts, assessment instruments), ecological 

(curricular orientations), mediational (situations and resources). The 

Didactics Workshop addresses aspects of the mediational and interactional 

facet of mathematics teacher–educator knowledge by indicating how to 

contextualize didactic-mathematical knowledge. 

The Edumat-Teachers’ books are valuable resources for mathematics 

teachers and teacher educators, considering the different facets involved in 

the educational-instructional processes of mathematics and didactics of 

mathematics. A new development of this project is yet to be addressed. The 

monograph Foundations of mathematics teaching and learning will be 

extended by presenting the didactic analysis tools provided by the theoretical 

framework of OSA. Likewise, the remaining monographs will update the 

results of the didactic research and include specific workshops so that 

teachers can use these tools in their reflection on their teaching practices.  

 

6.6. Guidelines for analyzing the didactic suitability of TPD 

processes 

In this chapter, we have addressed the problem of identifying and 

structuring a system of principles or criteria for the design of education 

processes suitable for the professional development of mathematics teachers. 

The ideal development of Process I (mathematics instruction) (Figure 6.2) 

requires the teacher to apply the suitability criteria presented in Chapter 5 

(Tables 5.1A-B, 5.2, 5.3, 5.4, 5.5A-B and 5.6, 5.7 and 5.8). This set of tables 

constitutes a Didactic Suitability Analysis Guide for mathematics teachers 



354 Chapter 6. Theory of teacher professional development based on the OSA 

 

 

(DSAG-Teacher). Supplementing Tables 6.4 and 6.5 of this chapter provide 

a support instrument for the analysis and reflection on the didactic suitability 

of teacher educators’ education processes. We refer to this instrument as the 

DSAG-Educator. 

Teacher educators should have and deploy a system of specific knowledge 

and competencies to manage (design, implement and evaluate) mathematics 

teacher education processes. The category system of suitability criteria that 

forms the DSAG-Educator instrument distinguishes facets, components, 

subcomponents, and content elements for the two related processes 

(mathematics instruction and didactic-mathematics education). Hence, it 

can be interpreted as a system of categories of knowledge and competencies 

for teacher educators. Each criterion, general or partial, is associated with or 

can be considered a category of specific teacher–educator knowledge and 

competencies. 

The DSAG-Educator instrument is a resource for reflection on the design, 

implementation, and evaluation phases of educational and training 

experiences. In the design phase, the aim is to anticipate and plan a suitable 

instructional process that can be adapted to the different facets and 

components of the given context. During implementation, the guide helps 

identify critical points in interaction patterns and to recognize semiotic 

conflicts related to interpreting tasks and discourse in the classroom, as well 

as trainee teachers’ prior knowledge and attitudes. In the evaluation phase, 

it helps to identify weaknesses observed in the design and implementation of 

facets, components, and interactions, as well as possible improvements in 

future interventions. 

With the DSAG-Educator instrument, we have interpreted, extended, and 

applied the concept of didactic suitability, which was first created for 

mathematical instructional processes (Godino, 2013; Godino et al., 2023). 

We apply the suitability construct to an activity whose subject is the educator 
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of teachers and whose aim is to develop professional knowledge 

(mathematics, its teaching and learning) among teachers. 

The rationale underlying the general and specific criteria of the different 

facets and components are the anthropological and pragmatist assumptions 

of OSA and their implications in educational-instructional processes. In 

principle, each theory, school of thought, or even teacher educator has its 

own system of suitability criteria for improving teacher education, although 

these criteria are often not specified. This opens a field of inquiry for 

identifying commonalities and complementarities among different models 

and moving toward a unified model. 

 

6.7. Research example performed using theoretical tools 

We include in this section a synthesis of the article by Godino et al. (2018) 

in which we applied tools from the DMKC-Teacher model to the analysis of 

professional knowledge in the design and management of a class on the 

similarity of triangles. We performed a retrospective analysis of formative 

action with prospective secondary mathematics teachers who were presented 

with a videotaped class episode on triangle similarity and asked to conduct a 

didactic analysis. The instructions given to prospective teachers were to 

describe, explain, and evaluate the mathematical content put into play; the 

roles of the teacher and students; the use of instructional resources; and the 

recognition of norms as explanatory factors of behaviors. This type of 

training action indicates the need for and usefulness of specific theoretical 

tools that can help teachers systematically reflect on teaching practices and 

make justified decisions about future teaching tasks. 

 

6.7.1. Description of formative actions 

This activity has its origins in a set of activities of initiation to research in 

mathematics education, which were proposed by Godino and Neto (2013). 

This was implemented as part of formative actions in the framework of a 
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master’s course for educating secondary mathematics teachers and consists 

of three phases: 

Phase 1: Text commentary 

Reading and discussion of a document on the characteristics of an ideal 

mathematics classroom, taken from the NCTM curriculum guidelines (2000, 

p. 3): A vision of school mathematics. The aim was to first elaborate on the 

ideal characteristics of a mathematics class. Work is done in small groups 

using a reflection guide with a motivating focus to discuss previous ideas, 

beliefs, and conceptions that prospective teachers have about mathematics 

and the complex processes of its teaching and learning. The phase closes with 

a reflection on the need to know and be competent in using specific tools that 

allow the teacher to systematically evaluate his/her practice; it is not only 

about describing and explaining what is happening in that ideal class, but 

also about reflecting on what aspects could be improved. 

Phase 2: Implementation 

It is proposed to watch a fragment of a videotaped secondary school 

mathematics class in which it is possible to observe 9 minutes of a class 

taught in Mexico. The video shows a first stage inside the classroom, where 

students work in groups solving problems related to the calculation of 

inaccessible heights, followed by the sharing of tasks; in the second stage, 

students perform fieldwork in the schoolyard, solving problems related to the 

calculation of heights of real objects (trees, poles, ...) from the measurement 

of their shadows. In Table 1, we included the transcript of the video to 

facilitate the analysis of the participants’ answers. 

 

Table 1. Transcription of the dialogs produced in the episode (videotape 

available at http://www.youtube.com/watch?v=60s_0Ya2-d8). 

 1T Good afternoon, everyone. 

2Ss Good afternoon. 

3T Look, today we will work on a new task. We are in the module: shape, space, and 

measurement, focusing on geometric shapes and the subtopic (emphasizes) of 

http://www.youtube.com/watch?v=60s_0Ya2-d8
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similarity. 

4T We will work in the usual way, as always, as we have been doing. 

5T Professor Martín Eduardo is here to document the classes we conduct and how 

we work. So, please work as you normally would. 

6T We have completed this task today. 

DISTRIBUTION OF TASKS [00:52] 

7T Now, you can turn over your paper and read the task. 

READING OF TASKS [01:07] 

8T Alright, young people. Have you read the task? 

9T Can anyone tell me what we should be doing with this task? 

10T Mr. Legarre. 

11S Based on the drawing provided, calculate the height. 

12T Very good. What do the rest of you think? All clear? 

13Ss Yes 

VERBALIZATION [01:49] 

14T Calculate tree height in a drawing. 

15T Are we all clear? 

16Ss Yes. 

17T Go ahead. The tree height is calculated using the information provided. 

18T Now. Now. Look. 

USE OF ICT [02:18] 

19T On the board, on the projector, we already see the problem we are solving. 

20T Use the knowledge acquired in the previous instructions, because there, you 

calculated the values of the measures of some triangles with their homologous 

sides. 

21T You also determined the proportionality value. 

DIDACTIC SITUATIONS [02:52] 

STUDENTS SPEAKING SPANISH [03:18] 

22T Is it clear? 

STUDENTS SPEAKING NAHUATL DIALECT [ ] 

23T You have two approaches. When solving a problem, a single method. You can 
also use another method to verify that you are correct. 
The most accurate method should be "this" (the teacher points to the student’s 

paper). 

24T Lo más correcto es que sea “esto” (el profesor señala el folio del alumno).  

SHARING RESULTS [03:44] 

25S The answer to the question is 5.23 (She explains the procedure they followed by 

writing the calculation on the board). 

26S Thus, we employ a rule of three, where X = 5.23. 

27T You obtained the same result for both methods. Excellent. 

28T The height of the tree was 5.23 m. 

29 (The class goes out to work in the schoolyard). 

30T “This,” times “this,” divided by “this” gives the height of the post. (The teacher 

explains some students and writes in their notebook). 

31S Ah! 

32T You will now do the same. With the meter in hand, you can find a small tree and 

measure its shadow. 
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SUPPLEMENTARY ACTIVITIES [06:41] 

33 We should present evidence to school supervision of the current work on 

secondary education reform. We would appreciate it if you could briefly comment 

on what you are doing and tell us what grade this group is in, what task they are 

working on, and what part of mathematics is being covered at this time. 

34T This group here is 3ºA. 

35T We are working on the similarity of triangles. Some exercises outlined in the 

reform focus on similarity. Therefore, we address some related problems. 

36T We went out to the field to make it more practical, so the students have concrete 

evidence of what it means to calculate the heights of some trees/posts, which are 

very difficult to measure from below. 

37T With the similarity of triangles, this problem can be solved. 

38T They measure the shadow of some objects and, based on this, determine the 

height. 

39E Thank you very much, teacher. These are the tasks currently being developed 

under reform. Are we looking at any specific task? 

39T Certainly, similarity of triangle. 

 

After viewing the class episode, the prospective teachers are given the 

reflection task presented in Chart 2, and they work in groups. 

 

Chart 2. Didactic reflection task. (Giacomone et al., 2018, p. 9) 

In the following link, we can find a video of a mathematics class: 
http://www.youtube.com/watch?v=60s_0Ya2-d8. After watching the video and working 
in teams, prepare a report addressing the following questions: 
 
1. Description: What happens? 
   a. What mathematical content is being studied? 
   b. What meanings characterize the studied content? 
   c. What is the context and educational level of the class? 
   d. What does the teacher do? 
   e. What do students do in this class? 
   f. What resources are used? 
   g. What prior knowledge must the students possess to tackle this task? 
   h. What learning difficulties/conflicts do learners manifest? 
   i. What norms (regulations, habits, customs) enable and condition class development? 
 
2. Explanation: Why did it happen? 
   a. Why is that content being studied? 
   b. Why was a realistic problem used to study the content? 
   c. Why did the teacher behave in the way he did? 
   d. Why do students behave the way they do? 
 
3. Evaluation: What could be improved? 
Provide a reasoned judgment on the observed teaching in the following aspects and 
indicate some changes that could be introduced to improve it: 
   a. Epistemic (mathematical content studied) 

http://www.youtube.com/watch?v=60s_0Ya2-d8
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   b. Ecological (relations with other topics, curriculum) 
   c. Cognitive (prior knowledge, learning, etc.) 
   d. Affective (interest, motivation, etc.) 
   e. Interactional (modes of interaction between teacher and students) 
   f. Mediational (resources used) 
 
4. Limitations of the available information: 
   What additional information would be necessary to make the analysis more precise and 
well-founded? 

Phase 3: Introduction of the reflection tool 

Reading and discussion of the article: Indicators of Didactic Suitability in 

Teaching and Learning Processes of Mathematics (Godino, 2013). In this 

phase, the article previously read by the students is discussed. This document 

presents the notion of didactic suitability and its indicators and highlights 

the concordances between the selected criteria and those proposed by 

various authors and theoretical frameworks. 

 

6.7.2. Analysis of the knowledge and competencies of the teacher 

managing the video-recorded class 

Although the video segment only provides a glimpse of a small part of the 

class session, the experience with prospective teachers provoked an initial 

reflection on the dimensions of a mathematical study process and enabled 

the identification of some didactic-mathematical knowledge. In the following 

sections, we include possible interventions that instructors can make during 

the discussion phase of the responses given by prospective teachers to the 

questions posed in the task instructions. We also indicate the OSA theoretical 

tools to facilitate a more systematic analysis of the corresponding facets. The 

mastery of these tools should be the subject of the design of other formative 

interventions. 

We begin with a section that describes the need to conduct a preliminary 

study of the problem situation to reconstruct the global meaning of 

proportionality, serving as a reference for the remaining analyses. For this 

purpose, the results of research on the meanings of proportionality 

(epistemic facet), learning processes (cognitive facet), and instructional 
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resources (interactional and mediational facets) are considered. The position 

of the topic in the curriculum and its connections with other topics and 

disciplinary areas (ecological facet) should also be considered. In this 

example, we include only partial information about the epistemic facet 

(institutional meanings of proportionality). 

Preliminary Study: Reconstruction of the reference meaning of 

proportionality 

In the described episode, the students solve the following task: “If the 

length of the shadow of a tree is 12 m and that of a post of 1.5 m is 2.25 m, 

what is the height of the tree?” The solution involves an arithmetic meaning 

of proportionality based on establishing the equality of ratios: 

12

2,25
=

𝑥

1,5
 

Alternatively, the constant of proportionality can be found using the 

following unit reduction procedure (algebraic-functional meaning): 

 

In both cases, it is necessary to ensure that the conditions for applying a 

version of Thales’ Theorem (Font et al., 2017) are satisfied. Therefore, a 

geometric meaning of proportionality is involved (Figure 6.6). 

 

Figure 6.6. Graphical and symbolic representations 
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If the solution is justified by applying the “similarity of triangles”, it will be 

necessary to justify that the triangles formed by the objects and their 

respective shadows are indeed similar. This requires showing that both 

triangles can be put into “Thales’ position”, justifying the proportionality of 

the corresponding segments. 

Due to the mechanical use of algorithms and rules, it is possible to solve a 

proportionality problem without guaranteeing that proportional reasoning 

will occur. The widespread use of algorithms, such as the rule of three, often 

leads students to apply them to problems that are not proportional. This may 

produce in students the “illusion of linearity” (assuming that relationships 

between variables are linear when they are not). 

Conducting a preliminary study of the content is a way to reflect on the 

different meanings and connections among them. Thus, the mathematical 

problem studied in the episode is a potential situation that could contribute 

to discussions with prospective teachers about the necessity of recognizing 

that mathematical objects have diverse meanings (see Chapter 3). 

Description 

Items a and b of the Guide (Chart 2) draw students’ attention to the 

content being studied in the episode. A detailed content analysis is required 

to understand the learning difficulties (item h) and the prior knowledge 

required (item g). It is not sufficient to mention that the episode studies “the 

similarity of triangles” or “proportionality.” 

Analysis of mathematical objects and processes 

In the transcript, we find this fragment of dialog: 

- 9T: Can anyone tell me what we are supposed to do in this task? 

- 11S: Based on the drawing provided, calculate the height. 

- 17T: Go ahead. The tree height is calculated using the information 

provided. 
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The task involves calculating the inaccessible height of a tree by applying 

the proportionality of the homologous sides in similar triangles, as previously 

studied. Note that this is an application exercise. 

- 20T: Use the knowledge gained from previous tasks, where the values 

of the measures of some triangles with their homologous sides. 

- 21T: Have you also determined the proportionality value. 

In solving the task, prior concepts are used: height of an object; triangles; 

homologous sides; proportionality; procedure: rule of three; proposition: the 

answer to the problem is 5.23; arithmetic calculations with/without a 

calculator; concepts of decimal numbers; units of measurement; and 

measuring with a graduated ruler or tape measure. 

It can be observed that the application of the similarity of triangles is not 

problematized, nor are there moments requiring justification of solutions 

and procedures (imprecise measurement of shadows); that is: why is it 

possible to solve the task using the rule of three (for example)? Why is it 

possible to apply Thales’ theorem? 

Because of the sun’s distance, the rays are parallel; therefore, Thales’ 

theorem can be applied; the triangles formed by the tree and its shadow, and 

the post and its shadow can be placed under Thales’ position. 

Analysis of didactic processes 

Items d (What does the teacher do?), e (What does the student do?), and f 

(What resources are used?) aim to initiate reflection on interaction processes 

in the classroom. Students are expected to make observations such as: In the 

observed class, the teacher gives instructions; distributes material; asks what 

should be done according to the task; authorizes the use of calculators and 

indicates the use of knowledge worked on in previous classes; asks, monitors, 

and provides feedback on students’ work; and directs the sharing of 

solutions. In the second part of the video, the teacher helps students apply 

classroom-learned procedures to calculate the heights of trees and other real 

objects. The students in the classroom: read the task; recall solutions to 
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previous tasks related to the similarity of triangles; apply that knowledge to 

the task (calculate the height of a tree represented on paper); and practice 

applying the rule of three. In fieldwork: measure shadows; work in teams. 

Instructional resources used in the teaching/learning process include a 

learning guide; notebooks; paper, pencil, calculator; elements of the 

environment (trees, shadows); a graduated ruler, meter, and foot for 

measuring shadows; and a blackboard and projector. 

It is necessary to discuss with students the delicate issue of articulating 

different modes of interaction in the classroom: individual, team, and teacher 

roles as manager and transmitter of knowledge. Ultimately, adopting a 

critical attitude toward traditional didactic models centered on the teacher, 

as well as toward naïve constructivist models centered on the student (see 

Chapter 4). Systematic reflection on the processes of interaction and 

mediation in the classroom requires the application of specific analytical 

tools, such as the notion of didactic configuration (Chapter 4). 

 

6.7.3. Explanation. Analysis of norms and metanorms 

Questions a, b, c, and d in section 2) of the Guide (Explanation) are 

proposed to provoke reflection on the network of norms that condition and 

support the development of teaching and learning processes. The 

development of the episode was guided by the Reform (curricular guidelines 

of the SEP of Mexico): working in teams to solve problems should be 

encouraged; this form of work has become a class habit that establishes the 

way of working. Regarding teacher-student interaction modes, a situation 

(written task) is proposed for each student; students are grouped around 

tables; first, they work individually but with the freedom to consult and 

exchange ideas and solutions; solutions are shared. Students consult the 

teacher; the teacher explains the task development. 
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Systematic reflection on norms that condition and support the teaching 

and learning processes of mathematics can be undertaken within the DMKC 

model using the normative dimension tool (see Chapter 4). 

 

6.7.4. Assessment. Analyzing didactic suitability 

Question 3) posed in the Guide (Chart 2), “what could be improved?” is 

broken down considering the six facets proposed in the Theory of Didactic 

Suitability (see Chapter 5). The system of criteria and empirical indicators 

identified in each facet constitutes a guide for systematic analysis and 

reflection that provides knowledge for the progressive improvement of 

teaching and learning processes. The didactic suitability tool applied to the 

episode case assists in the formulation of the following evaluative judgments. 

a) Epistemic (mathematical content studied) 

− Apply Thales’ theorem to justify the similarity of triangles and to 

accept the proportional relationship between the lengths of 

homologous sides. 

− Encourage students to develop conjectures rather than applying 

previously practiced procedure. 

− Justifying the validity and equivalence of the procedures. 

− Lack of precision in the language and the referred concepts: “value 

of measures of some triangles with their homologous sides” (20T). 

− Avoid solving tasks by applying the three rules mechanically. 

− Employing a functional approach to solving proportionality 

problems. 

− Discuss the problem of measurement precision and acquire the 

necessary skills for accurate length measurement. 

The analysis of the episode reveals the need for teachers to recognize the 

key role that argumentation, validation, institutionalization, and 

generalization (modeling approach using the linear function of the studied 
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phenomenon) play in achieving high epistemic suitability in the teaching and 

learning process. Additionally, it recognizes mathematical connections: 

proportionality and linear function; Thales’ theorem and the similarity of 

triangles. 

b) Ecological (relations with other topics, curriculum) 

− The content corresponds to the topics required in the curriculum 

and contributes to students’ mathematical education. 

− Emphasizing the connections between topics (similarity of 

triangles, Thales’ theorem, proportionality, and linear function). 

− From a mathematical perspective, the task allows the 

implementation of significant and relevant mathematical practices 

(knowledge and competencies): geometric proportionality; linear 

function; similarity of triangles; calculation of inaccessible heights 

and distances. 

− It is a practical topic that can be used in everyday life (realistic 

context). 

− There is no evidence of stimulating critical thinking. 

c) Cognitive (prior knowledge, learning, etc.) 

− The aim is to apply previously learned calculation rules; calculation 

of a term of a proportion knowing the other three. The intended 

content is within students’ reach and poses an accessible challenge. 

− No information is available on whether students know Thales’ 

theorem. 

− No curricular adaptations are required. 

− Students can answer the task using two methods (it is not seen in 

the video fragment what those two methods might be). 

− The degree of achieved learning cannot be showed even though 

learning is primarily procedural. 
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− The team and dialogical work format indicates moments of 

formative evaluation. 

d) Affective (emotions, attitudes, beliefs, etc.) 

− This task shows the utility of mathematics in everyday life. Students 

appear interested in the task. 

− Teaching could be accompanied by a historical contextualization of 

the content in Ancient Greece and Egypt. 

− A problem with the legend told by Plutarch, in which Thales applied 

his theorem to calculate Giza's height pyramids could be proposed. 

− No argument is observed although teamwork is clear. 

− The quality of precision in mathematical work is not highlighted 

(imprecise measurements). 

e) Interactional (modes of interaction between teacher and students) 

− Although students share solutions, moments of solution 

justification and institutionalization by the teacher are lacking. 

− Students have a certain degree of autonomy in solving calculation 

and measurement tasks but not in communicating and discussing 

results. 

− Moments of formative evaluation by the teacher were observed. 

f) Mediational (resources used) 

− Calculators are used for the rule of three calculations. 

− Given that the teacher has access to a computer and projector, they 

can present illustrative situations and other methods of estimating 

inaccessible distances. Tape measures were not applied. Students 

measure distances with a graduated ruler and with steps, which can 

also be used to discuss different instruments and units of 

measurement. 

Examples of applying the didactic suitability tool, complementary to the 

one presented in this section, include Aroza et al. (2016), Beltrán-Pellicer and 
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Godino (2017), Breda et al. (2017), Castro et al. (2014), and Posadas and 

Godino (2017). 

 

6.7.5. Limitations of the available information and final 

reflections 

To make the analysis of the knowledge involved in the classroom episode 

more precise and substantiated, additional information is necessary. 

Specifically: 

− Worksheets from sessions in which the notion of the similarity of 

triangles and its relationship with Thales’ theorem were 

introduced. 

− Complete recording/transcription of the class to verify whether 

there were indeed moments of validation and institutionalization. 

− Observation of the teacher’s role in monitoring the work of different 

teams (identification of conflicts and ways of resolving them; 

formative evaluation). 

− Moments of individualized summative evaluation to access the 

learning achieved. 

The activity described in this formative experience should be considered 

as a first encounter for trainee teachers, allowing them to develop prior ideas 

about the facets and components involved in the complex reality of a 

mathematics class. It also serves as a contribution to the teacher educator, as 

it highlights the need for specific theoretical tools to support systematic 

reflection on these facets and components. These tools should be the subjects 

of study in new situations that focus on each of the mentioned tools. 

Various studies have been conducted in initial and ongoing training 

contexts, designing and implementing training cycles for teachers or 

prospective teachers to develop the competencies of this model and learn the 

corresponding knowledge (e.g., Pochulu et al., 2016; Rubio, 2012; Seckel, 
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2016). In these cases, training cycles are often conducted in workshop format 

and designed as learning environments, so that: 1) participants engage 

actively through the analysis of classroom episodes; 2) the types of analysis 

proposed by the model emerge from the collective discussion within the 

larger group. 

 

6.8. Concordances and complementarities with other 

theories 

In Pino-Fan and Godino (2015), we analyzed the concordances and 

complementarities between the Didactic-Mathematical Knowledge (DMK) 

model and other knowledge models proposed by various authors: PCK 

(Shulman, 1987), MKT (Ball et al., 2008), KQ (Knowledge Quartet, Rowland 

et al., 2005), among others. In this section, we present other theories and 

models regarding the characteristics that mathematics teacher education 

programs should possess. 

AMTE (2017) proposed a system of standards and indicators on specific 

knowledge, skills, and dispositions that a good mathematics teacher should 

possess and the characteristics that an education program for these teachers 

should meet. Regarding knowledge, they proposed four standards: 

C1. Knowledge of mathematics for teaching. 

C2. Pedagogical knowledge and practices for teaching mathematics. 

C3. Students as learners of mathematics; and 

C4. Social contexts of teaching and learning mathematics. 

Regarding training program characteristics, AMTE (2017) proposed five 

standards: 

P1. Partnerships (cooperation between all program stakeholders). 

P2. Opportunities to learn mathematics (with emphasis on understanding 

the essential ideas of mathematics for teaching). 
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P3. Opportunities to learn how to teach mathematics (integration of 

mathematics, instructional practices, knowledge of students as learners, and 

social contexts). 

P4. Opportunities for learning in the clinical setting (own and others’ 

teaching). 

P5. Recruitment and retention of teacher candidates (representative of 

diverse communities). 

Park et al. (2018) defined TPD as any activity intended to (1) develop 

teachers’ knowledge, skills, and expertise and (2) prepare teachers to 

improve their educational performance in current or future school roles. 

These authors, drawing from various publications (Beisiegel et al., 2018; 

Desimone and Garet, 2015), propose the following nine characteristics that 

efficient mathematics education programs should possess: 

1) Focus on content: Develop well-organized content and pedagogical 

knowledge of the discipline and how students learn that content. 

2) Active learning: Mathematics teachers should actively engage in 

meaningful discussions about instructional goals, student tasks, 

instructional strategies, student thinking, and practice. 

3) Promote consistency: Align with teachers’ professional development 

goals and district, state, and national standards and assessments. 

4) Duration: The duration must be sufficient, including the duration of 

the activity and contact hours. 

5) Collective participants: Involve groups of teachers from the same 

school, grade level, or subject area to build an interactive learning 

community. 

6) Teacher outcomes: Assessment tools that can be used to measure the 

extent of teacher knowledge, skills, and changes in instructional 

practice. 

7) Research-based models: The rationale for understanding the 

relationships among research-based models that involve student 



370 Chapter 6. Theory of teacher professional development based on the OSA 

 

 

thinking, new strategies, theories of teaching and learning, and 

instructional practices. 

8) Student-provided data: This considers students’ prior knowledge of 

mathematics. Understanding how students think helps teachers obtain 

information about effective instructional approaches for them; and 

9) Promote changes in teachers’ beliefs and attitudes about mathematics 

teaching to improve classroom practices. 

In relation to these models, we question whether it is possible and 

advisable to structure, substantiate, and expand the list of these principles to 

produce a more comprehensive and detailed tool that provides efficient 

support in the development of TPD programs and specific actions. The 

application of OSA categories and methodological tools allows us to provide 

an affirmative answer to this question, which is concretized in the 

development of the theory presented in this chapter. 

 

6.9. Synthesis of the teacher professional development 

theory based on OSA 

In Table 6.6, we include a summary of the theory of teacher professional 

development based on OSA, responding to the questions proposed by Michie 

et al. (2014) as descriptors of a theory in the field of social and behavioral 

sciences. 

 

 

 

 

 

Juan
Texto escrito a máquina
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Table 6.6. Synthesis of the theory of teacher professional development 

based on OSA 

Elements Description 

Summary. What is 

the theory about, 

and what are its 

main propositions? 

Develop a model of didactic-mathematical knowledge and 

competencies for teachers to optimize mathematics education and 

instruction processes. Additionally, a system of principles or 

criteria for evaluating the suitability of mathematics teacher 

education programs and actions related to mathematics didactics. 

This should consider the structure of processes and activities, such 

as foundation, design, planning, and evaluation. The system of 

suitability criteria is formulated in terms of value judgements, i.e., 

actions that should be taken to optimize the teaching and learning 

process of mathematics (teacher) and the training process in the 

didactics of mathematics (educator). The systems of suitability 

criteria underpin the respective knowledge and competency 

models for teachers and educators. 

 

Scope/Objective. 

What phenomena 

does the theory 

explain? 

The objective is to optimize mathematics teacher education by 

developing a guide for analyzing the suitability of education 

programs for teacher educators. The developed system of 

suitability criteria and categories of knowledge and competencies, 

both for teachers and educators, aids in designing, implementing, 

and evaluating educational instructional processes in mathematics 

and the didactics of mathematics. 

 

Justification. Why 

is this theory 

necessary and how 

does it improve on 

previous theories? 

In mathematics teacher education, various theoretical models have 

proposed systems of knowledge categories that teachers should 

possess to facilitate student learning exist. In addition, there are 

other models with principles that efficient training programs 

should fulfill. However, these models are often partial, are not 

explicitly grounded, or lack the required details. This theory 

addresses these deficiencies. 

 

Hypotheses. What 

specific hypotheses 

does the proposed 

theory propose, and 

how do they differ 

from other 

theories? 

It is assumed that the foundation, design, implementation, and 

evaluation of mathematics teacher education processes are 

complex and require consideration of various facets, components, 

and their interactions. It is possible and necessary to identify 

criteria (principles) that aid in the optimal development of 

education processes, based on explicit theories of didactic-

mathematical knowledge and research results on these processes. 

 

Constructs. What 

elements constitute 

the theory? 

− Model of phases and structure of an educational-instructional 
process in mathematics, distinguishing epistemic, ecological, 
mediational, interactional, cognitive, and affective facets in 
each of the foundation, design, implementation, and 
evaluation phases. 

− Model of phases and facets of an educational-instructional 
process in the didactics of mathematics. 
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− System of suitability criteria for mathematical instruction 
activity. 

− System of categories of mathematical and didactic-
mathematical knowledge and competencies for mathematics 
teachers. 

− System of suitability criteria for teacher education and learning 
activities. 

− System of categories of didactic-mathematical knowledge and 

competencies for teacher educators. 

 

Relations. How are 

the elements of the 

theory related to 

each other? 

The structural and phase model of an educational-instructional 

process is used to elaborate and organize a system of suitability 

criteria for mathematical instruction activities developed by 

teachers and training activities of teacher educators. The suitability 

criteria systems determine the categories of knowledge and 

competencies for mathematics teachers and teacher educators. 

 

Origin. On which 

theories is it based, 

and how? 

This theory is based on ontosemiotic theories of mathematical 

activity, meaning, mathematical cognition, and educational design 

theory in mathematics based on OSA. The components and sub-

components of the epistemic and cognitive facets correspond to the 

categories of objects, processes, and meanings proposed in the 

cited theories. The suitability criteria for educational programs are 

based on the theory of didactic suitability. 

 

Similarity. Which 

theories are most 

similar to this 

theory? 

This theory relates to theories of mathematical instruction quality 

and proposes categories of teacher knowledge and efficiency 

principles for educational programs. Identifying the concordances 

and complementarities between this theory and other theories is a 

topic that requires further research. 

 

Complementarity. 

With which theories 

can it be 

complemented? 

The identification of concordances and complementarities 

between this theory and other theories is a research topic. 

Operationalization. 

How are the 

constructs 

measured or 

identified? 

The suitability criteria for mathematical instruction processes and 

teacher education activities are value judgments that can be graded 

to ensure compliance with specific processes. Systems of rubrics 

with observable indicators of compliance with the suitability 

criteria and efficiency principles of the programs are pending 

development. 

 

Uses. What can the 

theory be used for? 

This theory is used for the design, implementation, and evaluation 

of mathematics teacher education programs and actions. The 

developed system of categories of didactic-mathematical 

knowledge and competencies and the suitability criteria for 

education programs can be used to describe and understand the 

activities of educators and mathematics teachers and identify 

potential improvements. 
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Chapter 7  

The OSA theoretical system 

 

 

 

Introduction 

In this chapter, we demonstrate the relevance of considering OSA as a 

theoretical system by analyzing the interrelationships between the partial 

theories described in the previous chapters and the need and usefulness of 

elaborating this system to address the complexity of mathematics education 

problems. Although it is possible to investigate partial problems related to 

epistemic, cognitive, etc. aspects, we need to consider the interrelationships 

between the different facets. Therefore, the development of an integrative 

theoretical framework that underpins the design of mathematics 

educational-instructional processes and the education of teachers in specific 

theories of mathematical meaning and cognition is relevant for research and 

practice in mathematics education. 

 In Section 7.1, we present an overview of the theoretical tools that 

compose OSA and their interconnections. Synthesis of the dilemmas between 

various paradigms or approaches to mathematics education research that 

motivate the construction of OSA is included in Section 7.2. Section 7.3 

outlines our approach to research problems in OSA and describes the 

features of the corresponding methodological approach. In Section 7.4, we 

summarize a research example in which most theoretical OSA tools are used. 

In Section 7.5, we explore the OSA’s concordances and complementarities 

with six other theoretical frameworks: didactic situation theory, 

anthropological theory, realist mathematics education, APOS theory, 

objectification theory, and the ethnomathematical program. Section 7.6 
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describes the scope of OSA applications and dissemination included in the 

web repository: http://enfoqueontosemiotico.ugr.es. Finally, in Section 7.7, 

we present a synthesis of OSA’s philosophical postulates and, in Section 7.8, 

an overall summary of OSA in response to questions by Michie et al. (2014). 

 

7.1. Connecting the OSA theoretical tools 

The OSA aims to build a system of conceptual and methodological tools 

that enable for macro- and micro-level analyses of the epistemic, ecological, 

instructional, cognitive, and affective dimensions and interactions involved 

in teaching and learning mathematics processes. The general notion of a 

mathematical object, its types and relationships with mathematical practices, 

the different polarities from which it can be considered, and the concept of 

semiotic function configure an ontosemiotic approach—an ontological and 

semiotic model—to mathematical knowledge that enriches, complements, 

and articulates the partial ontologies that characterize other theoretical 

models in mathematics education. 

The theoretical models described in chapters 2 to 6, together with their 

interconnections shown in Figure 7.1, allow us to consider OSA as an 

inclusive, open, and dynamic theoretical system. This system stems from 

reflection on different theoretical frameworks in mathematics education and 

from conducting multiple empirical investigations in research projects and 

doctoral programs (Godino, 2022). It considers the different dimensions and 

analysis levels required by research on educational-instructional processes 

in different contexts and provides tools for comprehensive didactic analysis 

that substantiates the teaching and learning processes of mathematics, 

according to its various dimensions and phases.  

The pair <system of practices, configuration of objects and processes> is 

original to OSA and is key to conducting an a priori analysis of the 

mathematical knowledge involved in problem solving at both the macro-level 

(emergence and articulation of partial meanings of the object) and micro-
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level (identification of the network of objects and processes involved in 

mathematical practices). These a priori analyses are essential to design, 

implement, and evaluate educational-instructional processes because they 

allow the informed selection of meanings whose appropriation by students is 

proposed as an educational aim. In addition, they allow the elaboration of the 

epistemic trajectories involved in resolving learning tasks and the 

anticipation of expected cognitive trajectories.  

 

Figure 7.1. OSA tools and connections 
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OSA assumes a complex research paradigm based on a holistic and 

systemic approach (Cohen et al., 2007) because it considers that it is 

necessary to address epistemological and ontological problems specific to 

basic research, oriented toward understanding phenomena, and 

instructional design problems (focused on the solution of practical problems 

of teaching and learning). It also engages with teacher education, recognizing 

its fundamental role in implementing effective changes in mathematics 

education through action research and reflective practice.  

To bridge the gap between scientific-technological research and reflective 

practice, we developed the Theory of Didactic Suitability (OSA module), 

which addresses the axiological problem of identifying and structuring action 

values and norms to optimize educational processes. This theory lays the 

foundation for a research program aimed at identifying the value judgements 

involved in each facet and component of an educational-instructional process 

and at comparing and articulating the criteria proposed by different 

theoretical frameworks. 

 

7.2. Mathematics education dilemmas and conflicts 

addressed by OSA 

In OSA, we conceive mathematics education as a complex social system 

that involves activities related to the educational-instructional processes of 

grounding, design/planning, implementation, evaluation, and teacher 

professional development. Likewise, we consider mathematics education 

theories as activity systems (Godino et al., 2024) in the context of the Cultural 

Historical Activity Theory (CHAT) (Engeström, 1987; Roth and Lee, 2007), 

which provides answers to questions that are the object/motive of partial 

activities. The proposed CHAT structure of activity systems allows us to 

consider the historical-cultural and community dimensions of theories and 

the ecological regulatory context in which they seek to provide tool-mediated 
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answers to the questions that constitute their raison d’être. The notion of 

contradiction, which includes dilemmas, tensions, or conflicts between 

different elements of an activity (Núñez, 2009) or related activities, helps 

explain the reasons for changing systems and identify unresolved 

contradictions that need to be addressed in new developments. 

The application of CHAT to the entire analysis of mathematics education 

and the theories developed within it can help understand new aspects of its 

organization and development. This modeling of mathematics education 

enables us to structure the OSA theoretical system based on the five partial 

activities and highlight the relationships between its ontological and semiotic 

assumptions about mathematical activity and the educational-instructional 

model that is consistent with these assumptions. Using the triangular model 

for activity systems extends the perspective of theories to the historical-

cultural (community) context and the ecological (regulatory) niche in which 

they develop. Likewise, the idea of contradiction or dilemma between the 

components of a system or between two or more activity systems allows us to 

reinterpret the reasons behind the emergence of some OSA tools and 

assumptions (Godino et al., 2024). 

In Figure 7.2, we indicate some dilemmas raised in the analysis of 

mathematics education theories that are addressed by the OSA partial 

theories. Specifically, there are tensions between theories that emphasize the 

epistemic or cognitive facet—mathematics seen as a problem-solving activity 

or a system of cultural objects, or between student-centered (constructivism) 

and teacher-centered (objectivism) didactic models. These dilemmas in the 

foundations of mathematics education - revealed by comparing theories such 

as TDSM (Brousseau) and ATD (Chevallard) with TCC (Vergnaud) and TRRS 

(Duval) - encouraged the introduction into OSA of the dialectic between 

institutional and personal dimensions, attributed to mathematical practices, 

meanings, and objects. 
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Figure 7.2. Dilemmas, conflicts, and interdependencies among activity 

systems (Godino et al., 2024) 

Besides to the above dilemmas, there is a tension between referential 

(realist) and operational (pragmatic) theories of meaning. In realist theories, 

linguistic expressions are related to certain entities (objects, attributes, 

facts). In pragmatic theories, the meaning of linguistic expressions depends 

on the context in which they are used; similarly, the meaning of abstract 

objects must be inferred from their use. This dilemma is addressed in OSA 

by considering systems of practices as objects to which conceptual terms and 

expressions refer, together with the notion of semiotic function (Godino et 

al., 2021): the system of practices is the consequent object or meaning of 

conceptual terms or symbolizations, which participate as antecedents or 

signifiers of a semiotic function. The dual pragmatist-referential vision of 
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meanings enables the combined conception of mathematics as a problem-

solving activity with the vision of mathematics as a system of cultural objects, 

considering the abstract object as the unitary regulative entity of this activity 

(Chapter 2). 

OSA addresses the dilemma between pedagogical theories that propose 

student-centered (constructivism) or teacher-centered (objectivism) didactic 

models. By acknowledging the complexity of objects and processes involved 

in mathematical activity and postulating the regulative nature of 

mathematical concepts, propositions, and procedures (Font et al., 2013), the 

optimization of didactic appropriateness requires the application of a mixed 

model that dialectically articulates the interactions between the teacher, 

learner, and content. The dialogic-collaborative didactic model in the 

student’s first encounter with new content (Chapter 4) is an instrument in 

the implementation activity, derived from the solution of the dilemma 

discussed in the foundational activity.  

Some didactic theories, such as the Theory of Objectification (Radford, 

2014), advocate the application of a collaborative model, in which teachers 

and students work together, as preferable to constructivist or traditional 

teacher-centered alternatives. The educational-instructional model 

proposed by OSA is more inclusive, assuming that learning optimization can 

be achieved through appropriate articulation of different types of didactic 

configurations. 

Didactic suitability helps clarify and weigh the role of standardized 

external evaluations by describing the complexity of facets and components 

to be considered and the difficult balance of principles and values to be 

reconciled to optimize educational-instructional processes. Both summative 

and formative evaluations performed by the teacher are essential to 

determine the relative importance of each aspect in relation to the context 

and circumstances of the participants.  
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Regarding the dilemmas facing teacher education, Figure 7.2 indicates the 

diversity and partiality of teacher professional development theories; we can 

add the tension between the understanding and mastery of knowledge about 

teaching and learning and the development of professional competences, i.e. 

effective action on practice. The model of mathematical didactical knowledge 

and competences (CCDM, Chapter 6) coherently articulates the development 

of teachers’ knowledge of the various facets and components involved in 

mathematical instruction and professional competence. 

 

7.3. Research problems and methods from OSA 

perspective20 

Research in mathematics education has evolved in response to changes in 

predominant theoretical frameworks, including experimental psychology, 

constructivism, and sociocultural approaches. During the 1990s, the focus of 

mathematics education research shifted largely from cognitive to social: from 

theories that focus on individual thinking processes to "theories that see 

meaning, thinking, and reasoning as products of social activity" (Lerman, 

2000, p. 23). These trends have produced biases and partialities in 

mathematics education research topics. Inglis and Foster (2018) conclude 

that "mathematics education would benefit from greater interaction between 

research in experimental psychology and sociocultural research" (p. 494).  

We approach research problems by assuming particular principles and 

methods specific to the theoretical frameworks from the 

problems formulated and the results interpreted. Therefore, it is necessary to 

reflect on the choice and implications of the conceptual model employed 

(even if tacitly). As Schoenfeld put: "For example, which phenomena are not 

considered in this perspective, which are given significant importance, and 

how can these theoretical biases shape the interpretation of the situation?” 

 
20 The content of this section is mainly based on Godino et al. (2021). 
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In this section, we illustrate how the OSA toolkit enables researchers to 

develop research questions that address cognitive and sociocultural 

dimensions as well as the scientific, theoretical, and technological practical 

components of educational research. The basic unit of didactic analysis for 

OSA is the educational-instructional process in mathematics (student 

learning) or mathematics education (teacher training). In both cases, six 

facets and their interactions are relevant: epistemic, ecological, mediational, 

interactional, cognitive, and affective (Figure 7.1). These facets are used as 

main categories to classify the focus of didactic analysis and intervention 

while still considering the overall scope of the educational phenomenon. 

 

7.3.1. Classification of research problems 

A first criterion to classify the problems is the mathematical content that is 

the focus of the research, i.e. Arithmetic, Geometry, Measurement, Algebra, 

Statistics, Calculus, etc. The educational level (early childhood education, 

primary, secondary, university, teacher training, etc.) to which the 

instructional process concerns is another criterion for organizing the 

research questions. In addition to content and educational level, the focus of 

the research may be one or more of the following categories: 

−  Epistemic: investigates the mathematical content itself and the 

different forms in which this content can be introduced (more or less 

formal, almost complete) in mathematical activity.  

−  Ecological: This approach focuses on the relationships of 

mathematical content with other disciplines and the curricular, socio-

professional, political, and economic factors that condition 

mathematics instruction processes. 

−  Mediational: Analysis of resources (technological, material and 

temporal) to enhance student learning.  
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−  Interactional: Study of teacher and student roles in task management, 

identification and resolution of learning conflicts, and types of 

interactions that can be established in the classroom.  

−  Cognitive: This study investigates how students learn, reason, and 

understand mathematics, their problem-solving strategies, the 

difficulties or semiotic conflicts they exhibit in the instructional 

process, and how their learning progresses. 

−  Affective: This approach focuses on students’ affective, emotional, and 

attitudinal aspects in relation to mathematical objects and the 

instructional process being implemented. 

 The didactic analysis of teacher training processes must remember the six 

aforementioned facets, which in this case refer to didactic-mathematical 

knowledge, the development of professional competences, and the study of 

their conditioning factors (Chapter 6).  

The classification of research problems according to their focus can be 

complemented with the following typology, which is characterized by its 

intentionality or purpose: 

− Descriptive of meanings, processes, and factors (What is ...? How is 

...?). 

− Explanatory of teaching and learning processes and the effects of 

intervening factors (Why ...? What changes?). 

− Predictive or of implementing actions to achieve an aim (e.g., how to 

design or motivate ...? What will happen if I change ...?). 

− Evaluative of the appropriateness of an instructional process or any of 

its components (To what extent is it suitable...?). 

In addition, research is distinguishable in terms of scope, depending on 

whether it is a case study, a sample (which can be probabilistic or not), or a 

census (Cohen et al., 2007). Figure 7.3 summarizes the proposed criteria for 

classifying research problems. 
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Figure 7.3. Classification of research problems 

We can define specific problems by fixing mathematical content, a facet, a 

purpose, and a generality or breadth; however, problems can also be defined 

by encompassing several of these categories or different contents. The 

analytical process of developing research problems should not ignore the 

global nature of the facets, components, and variables involved in 

mathematical instruction to ensure its importance and relevance. Thus, we 

highlight instructional design research (Kelly et al., 2014) as a type of 

research that considers the interactions between different facets and 

components. This research has a predictive purpose; that is, it responds to 

the scheme “If we apply treatment X in a set of circumstances, then we get 

results Y”. In principle, this research is closer to teaching practice issues and 

needs because it considers the different facets and components involved in 
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instructional processes. The assumption underlying the conduct of 

experiments is that similar results are obtained under conditions like those 

of the experiment. This potential generality of results can occur not only in 

quantitative studies but also in rich and dense anthropological descriptions, 

typical of the human sciences, where implementing all the requirements of 

experimental or quasi-experimental research is difficult (Schoenfeld, 2007). 

 

7.3.2. Methodological approach 

There is a strong interest in using qualitative research methods in 

mathematics education and other social sciences, although this does not 

imply that quantitative methods should be neglected when seeking more 

broadly generalizable results. There is a growing recognition of the 

complexity of the problems addressed in the social sciences and the need to 

adopt a pragmatist perspective regarding the use of mixed methodologies. 

This perspective allows us to understand educational activities in the context 

in which they occur while providing generalizable recommendations to 

support educational decision-making (Hart et al., 2009). This pragmatist 

perspective accepts a wide variety of methods to address complex research 

questions. Qualitative and quantitative methods can be applied in the same 

research project with careful planning and recognition of the potential 

contribution of each approach (Johnson & Onwuegbuzie, 2004). It is 

important to be aware of the interconnectedness of the question statement 

and methods with the theoretical framework principles and conceptual tools 

within which the research project is framed. "Methodologies are part of the 

theoretical frameworks used in the research, and therefore deeply connected 

to the theory’s principles and paradigmatic issues" (Bikner-Ahsbahs et al., 

2015, p. 533). 

Ontosemiotic analysis as a technique for determining meanings 
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The epistemological question, i.e., the description of how mathematical 

knowledge emerges and develops from an institutional point of view, is 

investigated in the OSA according to the following methodological principle: 

The institutional genesis of mathematical knowledge is investigated through 

the following: 1) the identification and categorization of the situations-

problems that require a response in which the object intervenes; this 

sometimes also requires a historical study; 2) the description of the 

sequences of practices that are put into play in the resolution (Godino et al., 

2019, p. 39). 

To study the nature of mathematical objects and their knowledge, we apply 

the ontosemiotic configuration tool of practices, objects, and processes in its 

dual versions, epistemic (institutional meanings) and cognitive (personal 

meanings). The ontosemiotic analysis — i.e., the characterization of the 

systems of practices, the objects involved in these practices, and the semiotic 

functions they establish — provides an answer to the ontological and 

semiotic-cognitive problems of mathematics education, permitting the 

description of institutional and personal knowledge (Chapters 2 and 3). At a 

microscopic level, it allows us to identify the meanings put into play in a 

specific mathematical activity, for example, the use of terms and expressions. 

At a more general or macroscopic level, it helps to describe the semiotic 

structure of a complex mathematical organization implemented in a 

particular study process or by a student when working with a task or 

throughout an instructional process (Burgos et al., 2021; Font & Contreras, 

2008). 

At both levels, ontosemiotic analysis helps identify discordances or 

disparities between the meanings attributed to the expressions of two 

subjects (persons or institutions) in didactic interactions. These semiotic 

conflicts can explain, at least partially, learners’ potential or actual difficulties 

in the instructional process and identify the limitations of mathematical 

competences and understandings involved. The information obtained from 
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this analysis is necessary to approach the design and implementation of the 

instructional process using rigorous criteria and to determine the materials 

and time resources. 

Methodological tools for analyzing educational-instructional problems 

To address the educational-instructional problem, i.e., the inquiry into 

teaching and learning, how they relate together, and the identification of the 

conditioning factors determining their optimization, OSA has developed 

several specific methodological tools, in particular the notion of didactic 

configuration (Chapter 4). There are three components in every didactic 

configuration: a) an epistemic configuration (system of institutional 

mathematical practices, objects and processes required in the task), b) an 

instructional configuration (system of teaching roles, learners and 

instructional media used and their interactions) and c) a cognitive-affective 

configuration (system of personal mathematical practices, objects and 

processes describing learning and the associated affective components). The 

sequence of didactic configurations (didactic trajectory) accounts for the 

articulation of different configurations and their evolution over time. 

For identifying conditioning factors in instructional processes, OSA 

offers the normative dimension tool. This approach considers the norms, 

habits, and conventions, generally implicit, that regulate the operation of 

mathematics classrooms and condition, to a varying degree, the knowledge 

that students construct. Regarding the optimization of instructional 

processes, a didactical suitability methodological tool was developed 

(Chapter 5).  

In Godino et al. (2014), we find the application of the OSA’s various 

theoretical notions to address the overall educational-instructional problem 

through an interpretation of the didactic engineering methodology, which is 

understood in a generalized sense, as described in Godino et al. (2013). 

Methodology to assess mathematical knowledge 



Juan D. Godino 395 

 

Wheeler (1993) posed the evaluation problem of mathematical knowledge 

from an epistemological dimension:  

If we need to assess students’ mathematical knowledge for multiple 

purposes, the first question to be addressed concerns the nature of the 

knowledge itself. The reason given by this author is as follows: "How can we 

assess what we do not know? one purpose?" (Wheeler, 1993, p. 87).  

In OSA, this problem corresponds to the characterization of meanings. 

Specifically, one purpose of the epistemology of mathematical knowledge 

proposed by OSA is to provide criteria for the elaboration of a theory of its 

evaluation, which previously needs to adopt or elaborate a theory about its 

nature, variety, and structure. 

The determination of personal knowledge necessarily requires inference 

processes based on the sets of practices observed in the evaluation situation, 

whose validity and reliability must be guaranteed. The complexity of this 

process is deduced from the fact that not only are there interrelationships 

between knowledge referring to different mathematical objects but also that, 

even for a given mathematical object, a subject’s knowledge about it cannot 

be reduced to a dichotomous state (knows or does not know) or a 

unidimensional degree or percentage. This makes it difficult to apply 

classical psychometric theories of domain mastery or latent trait (Snow & 

Lohman, 1991; Webb, 1992). 

The observable character of social practices allows appropriate 

phenomenological and epistemological studies to determine the associated 

problem field and institutional meanings for an object embodied in the 

corresponding epistemic configurations. Analysis of the didactic variables of 

the problem field provides a criterion for structuring the population of 

possible tasks from which a representative sample can be drawn if the 

content validity of the assessment instrument is to be guaranteed. These two 

elements provide initial reference points for designing relevant situations to 

assess personal knowledge and to design appropriate didactic engineering. 
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7.4. OSA as a theoretical framework for research 

 Each theory in the OSA makes it possible to address specific research 

questions on partial aspects relevant to mathematics education. However, 

the approach and solution to substantive problems in teaching and learning 

mathematical content when involving various factors requires a systematic 

articulation of the different theories within the OSA.  

As an example of the use of the OSA theoretical system to design, 

implement, and evaluate teaching and learning processes of specific 

mathematical content, in this section, we describe the questions of a research 

project on teacher education. This example was a doctoral thesis by Verón 

(2023) entitled "Ontosemiotic model of the concept of differential. 

Implications for mathematics teacher education". 

The author is a mathematics teacher at the Instituto Superior de 

Formación Docente in Argentina, teaching a Seminar on Didactics of 

Mathematics in the fourth year of the Secondary Education Teacher Training 

Course in Mathematics. Prospective mathematics teachers (PMT) take 

courses in Mathematical Analysis in their curriculum and must be trained to 

teach the fundamentals of infinitesimal calculus to high school and university 

students. From his teaching experience, the author knows that the concept of 

differential calculus is difficult for students. At the beginning of his training 

as a researcher, he decided to investigate how he should train prospective 

teachers so that they can teach the concept of differential well. Before 

addressing an actual educational-instructional problem, it is necessary to 

problematize the nature of mathematical activity, emerging objects, and their 

meanings (Verón & Giacomone, 2021):  

− What is the concept of differential? (ontological problem) 

− What different meanings are referred to as differential? (semiotic 

problem) 
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To answer these questions, historical and epistemological works on 

infinitesimal calculus have been studied, with a focus on the concept of 

differential. In this way, the author attempts to identify the types of intra-

mathematical and extra-mathematical problems in whose solution the 

differential object intervenes, that is, to answer the following questions: 

− Which types of problems and systems of operational and discursive 

practices solve these problems in which the concept of differential 

occurs? 

− What are the various pragmatic meanings of the differential, what 

elements allow them to be distinguished in terms of generality and 

formalization, and how are they articulated? 

It is also necessary to analyze mathematical cognition to characterize the 

types of personal meanings of students regarding the differential through a 

study of the mathematics education bibliography, answering the following 

question:  

− What types of personal meanings (knowledge, incorrect conceptions) 

do Calculus students possess regarding the differential? 

With the information provided by answering these questions, the 

educational-instructional problem of developing students’ mathematical and 

didactic-mathematical knowledge of the differential object is approached in 

a grounded manner. Having fixed the subjects and educational context, in 

this case, prospective secondary school mathematics teachers who have 

already studied differential in mathematics courses, the problem of 

developing mathematical knowledge, specialized didactic-mathematical 

knowledge and competences concerning analysis and didactic intervention is 

faced. It is therefore necessary to address issues related to didactic design for 

learning both mathematical and didactic-mathematical content. 
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− Which partial meanings of the differential should be selected so that 

the PMTs can deepen their common and extended knowledge of this 

object and its relationships to other content?  

− Which problems can be selected to generate partial meanings and 

determine their relationships? 

− What kind of didactical configurations are suitable for studying 

selected partial meanings and the specialized didactical-mathematical 

knowledge of differential concepts?  

Next, it is necessary to raise questions related to the development of 

PMTs' analysis and didactic intervention competences. It is necessary for 

PMTs to become familiar with the OSA’s tools for analyzing mathematical 

and didactic activities so that they can select problems, identify meanings, 

and reconstruct the configurations of mathematical practices, objects, and 

processes. 

− What training actions are necessary and possible to implement as part 

of a training program to develop prospective teachers’ knowledge and 

competence in the ontosemiotic analysis of mathematical activities 

involved in using differentials?  

− What aspects and criteria should teachers consider when optimizing 

the teaching and learning processes of the differential concept?  

− What kind of training actions are necessary and possible to implement 

in a training program to develop the prospective teachers’ knowledge 

and competent use of didactical suitability and to systematically reflect 

on the process of studying the differential?  

 In the different chapters of his thesis, Verón describes the a priori 

analysis, design, and implementation of educational tasks related to the 

concept of differential, adapted to the context and the temporal and 

technological resources available, and raises questions related to the 

evaluation of that experience (Verón et al., 2024): 
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−  What is the degree of didactic suitability of the training process 

regarding the global meaning of the concept of differential, which is 

implemented in the initial training of mathematics teachers? 

−  What changes should be made in the design and implementation of 

the training process to increase its didactic suitability for future 

application in mathematics teachers’ initial training?  

 

7.5. Concordances and complementarities with other 

theories 

In this section, we identify the concordances and complementarities of 

OSA with other theoretical frameworks that address the educational-

instructional design issues. These are the Theory of Didactic Situations in 

Mathematics (TDSM, Brousseau), the Anthropological Theory of Didactics 

(ATD, Chevallard), Realistic Mathematics Theory (RME, Freudenthal), 

APOS Theory (Dubinsky), Cultural Theory of Objectification (TO, Radford), 

and the Ethnomathematics Program (D'Ambrosio). For each of these 

theories, we identify the assumptions and constructs that characterize them 

in the facets indicated in Figure 7.1 and the concordances and 

complementarities with those proposed by the OSA. 

  

7.5.1. Theory of didactic situations  

 

Main theoretical elements 

Epistemic and ecological facets 

In the TDSM framework, the knowledge to be taught has a cultural 

existence pre-existing and, to some extent, independent of the people and 

institutions interested in its construction and communication. Mathematical 

knowledge is a special form of institutionalized knowledge that is usually 

recorded in an axiomatic form that depersonalizes and decontextualizes it. 
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"This knowledge, whose text already exists, is not a direct production of the 

teacher, it is a cultural object, quoted or recited" (Brousseau, 1986, p. 73). 

Brousseau uses the term "knowledge" in connection with the qualifier 

"formal knowledge", "erudite knowledge", "theoretical knowledge", 

"practical knowledge", which indicates that it is interpreted as something 

external or institutional, as an element of reference for teaching and learning. 

Didactic transposition accounts for the adaptations of this knowledge to be 

studied in the school context. 

In TDSM, meaningful mathematics learning is a fundamental objective. 

The meaning of mathematical knowledge is defined - not only by the set of 

situations in which this knowledge is achieved as mathematical theory 

(semantics in Carnap's sense), not only by the set of situations in which the 

subject has found this knowledge as a solution, but also by the set of 

conceptions, previous choices he rejects, errors he avoids, economies he 

provides, formulations he takes up, etc. (Brousseau, 1983, p. 170). 

Affective and cognitive facets  

Among the notions used in TDSM to refer to the " subject's knowledge", 

we find the use of "representation" in the sense of internal representation; 

sometimes Brousseau uses the expression "implicit models" for such 

knowledge and representations. He interprets implicit models as "forms of 

knowledge" that neither function completely independently nor in a fully 

integrated manner to control the subject's interactions. The notion of model 

is central to describing computational procedures, formulation results, and 

learners’ knowledge when confronted with a situation. Thus, he defined: 

− Action model: The calculation procedure produces either a strategy 

(valid for all cases) or a tactic (specific for some concrete cases). 

− Explicit model: Result of a formulation situation that can be developed 

using known or new signs and rules. 

− Implicit model: Simplified representation of sufficient knowledge to 

characterize observed behavior in a situation. 
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The TDSM respects the contributions of psychology when studying the 

construction of knowledge by a subject. Knowledge evolves according to 

complex processes. Explaining these evolutions solely through effective 

interactions with the environment is certainly a mistake because very early 

children can internalize the situations that interest them and operate with 

their "internal representations", which are important mental experiences. In 

this way, they solve problems of assimilation (increasing already acquired 

schemas by adding new facts) or accommodation (reorganization of schemas 

to learn new questions or to resolve contradictions). For the learner to 

"construct" knowledge, it is necessary for them to take a personal interest in 

solving problems posed in a didactic situation. In this case, it is said that the 

situation has been returned to the learner. "Devolution is the act by which 

the teacher makes the learner accept responsibility for an (adidactic) learning 

situation or problem and accepts the consequences of this transfer of 

responsibility" (Brousseau, 2002, p.230). The expectation is that through 

interaction with an appropriate medium, learners will progressively 

construct knowledge collectively, rejecting or adapting their initial strategies 

if necessary.  

Instructional facet 

In this facet, we find the Piagetian constructivist postulate and constructs 

such as the didactic contract, types of didactic situations, didactic obstacles, 

and didactic phenomena. The central aim of the TDSM is to investigate the 

conditions that teaching should meet to provide meaning to the 

mathematical knowledge that is the learning objective. Its basic hypothesis 

is that the knowledge constructed or used in each situation is defined by its 

constraints. Thus, by creating certain artificial restrictions, the teacher can 

encourage students to construct a particular type of knowledge. This 

hypothesis is certainly closer to constructivism than to approaches derived 

from the Vygostskian notion of the zone of proximal development 

(Sierpinska & Lerman, 1996).  
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A basic construct of the TDSM is the didactic situation defined as the set 

of explicit and implicit relationships established between a learner or a group 

of learners, some environment (including instruments or materials), and the 

teacher for enabling learners to learn—that is, to reconstruct—some 

knowledge. The situations are knowledge-specific. The learning theory 

assumed by the TDSM is constructivist because it is interested in 

determining how subjects construct and communicate mathematical 

knowledge in problem solving. Problems should be selected in such a way 

that they optimize the learning adaptive dimension and students’ autonomy.  

The pupil's intellectual work must, at some points, be comparable to a 

mathematician's scientific work. To know mathematics is not only to learn 

definitions and theorems, to recognize when to use and apply them; we know 

that doing mathematics involves dealing with problems (...) A good 

reproduction by the pupil of a scientific activity requires him to intervene, to 

formulate, to test, to construct models, languages, concepts, theories, to 

exchange them with others, to recognize those which conform to the culture, 

to take those which are useful to him, etc. (Brousseau, 2002, p. 22).  

In the TDSM, the artificial genesis of a mathematical concept results from 

a sequence of the following types of situations or states of a didactic contract:  

− Action-focused situations in which students first attempt to solve a 

problem proposed by the teacher.  

− Communication-focused situations in which students communicate 

the results of their work with other students and the teacher.  

− Validation-focused situations in which theoretical rather than 

empirical arguments are used.  

− Institutionalization situations, in which the results of the negotiations 

and conventions of the previous phases are summarized, with a focus on 

“important” facts, procedures, ideas, and official terminology.  

From the institutionalization phase onwards, the meaning of terms is 

no longer an object of negotiation but of correction, regarding to definitions, 
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notations, theorems, and accepted procedures. Within each of these 

situations, there is a didactic component, i.e. a space and time where the 

management of the situation falls entirely on the students. This is considered 

the most important part because, in fact, the aim of teaching is what 

Brousseau calls the return of the problem to students.  

OSA interpretation 

We believe that the progress made by the theory of situations in genetically 

connecting mathematical knowledge to problem-situations is fundamental; 

however, we believe that the analysis of the constituents of knowledge is 

insufficient because situations are not the only constituents of the same. In 

the TDSM, even if implicit, proposals are found to progress in the controlled 

decomposition of knowledge. Although there are situations of action that 

provide the occasion for developing and applying mathematical techniques 

to solve problems, situations of formulation-communication in which 

linguistic instruments intervene essentially, and situations of validation in 

which validating objects (argumentations or demonstrations) intervene, 

concepts and theorems are essential constituents of the discursive 

component of knowledge, both in their personal (conceptions, concepts and 

theorems in action) and institutional (mathematical concepts and theorems) 

versions.  

The TDSM is an experimental epistemology of mathematics, a theory 

about the characteristics that teaching-learning situations must allow 

students to reconstruct and reinvent mathematical knowledge autonomously 

by solving problems, especially those chosen by the teacher. The fundamental 

epistemological assumption is that knowledge emerges from problem-

solving activities from both professional and educational perspectives. This 

postulate is fully shared with OSA. However, in the TDSM, the ingredients of 

this activity—the diversity of objects involved—, are not modeled, except for 

the problem component, the resolution of which gives meaning to 

knowledge. The mathematical world furniture in the TDSM is excessively 
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austere from the OSA perspective. The ontology and semiotics of 

mathematics, from both professional mathematical culture and educational 

mathematics perspectives, are limited, which have consequences for 

modeling the subject's cognition and for the design, implementation, and 

evaluation of educational-instructional processes. 

 We interpret the characteristics that TDSM attributes to the meaning or 

sense of knowledge in terms of the pragmatic meaning of an object proposed 

by OSA, as a system of operative and discursive practices in which that 

knowledge (object, knowledge) participates relevantly to respond to a class 

of problems. Absent in the TDSM is the explicit recognition of the plurality 

of meanings of an object (knowledge), its relativity to the institutional 

framework, the subject, and the contexts of use. From our perspective, the 

TDSM and the research methodology described as didactic engineering are 

not conceived as an "instructional theory", but constitute an experimental 

epistemology for the didactics of mathematics. Likewise, they incorporate or 

assume a constructivist-Piagetian theory for mathematical learning and a 

positivist-experimental approach to the didactics of mathematics, whose aim 

must be to discover didactic phenomena and construct teaching situations 

that necessarily produce the intended learning.  

 

7.5.2. Anthropological theory in didactics of mathematics 

 

Main theoretical elements 

Epistemic and ecological facets 

The Anthropological Theory in Didactics of Mathematics (ATD) that 

Chevallard and collaborators have developed (Chevallard, 1992; 1997; 1999) 

provides basic elements of an epistemology of mathematics, which broaden 

and deepen the theory of knowledge that serves as the basis for the TDSM. 

The notions of mathematical praxeology and institutional and personal 

relation to the object are useful extensions of the TDSM concepts of 
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knowledge and knowing. This is Chevallard’s (1999, p. 229) definition of 

praxeology:  

Around a type of task T, in principle, a triplet is found formed by at least one 

technique, τ, by a technology of τ, θ, and by a theory of θ, Θ. The total, 

indicated by [T/τ/θ/Θ], constitutes a punctual praxeology, where this last 

qualifier means that it is a praxeology relative to a single task, T. Such a 

praxeology—or praxeological organization—is thus constituted by a 

practical-technical block, [T/τ], and by a technological-theoretical block 

[θ/Θ]. 

Techniques are described as ways to perform tasks. A technique is not 

necessarily algorithmic or quasi-algorithmic; it is used only in rare cases. 

Both TDSM and ATD share the view of mathematics as a human activity, 

oriented toward resolving certain types of tasks or problem questions, as with 

OSA. In ATD, doing mathematics comprises activating a mathematical 

organization, i.e., solving certain types of problems with certain types of 

techniques (the know-how) in an intelligible, justified, and reasoned way 

(through the corresponding knowledge). The ATD highlight questions often 

co-disciplinary in which various praxeological systems are involved. The tool 

scale of co-determination levels helps to focus attention on the different types 

of constraints to which didactic action is subject, from the level of civilization 

to the level of the specific mathematical subject addressed (Chevallard, 

2019). 

Cognitive and affective facets 

ATD describes the cognitive dimension in terms of the personal 

relationship to the object, which includes all the other concepts proposed by 

psychology (conception, intuition, schema, internal representation, etc.).  

An object exists as soon as person X or an institution I recognizes this object 

as an existent (for him/her). More precisely, object O will be said to exist for 

X (resp., for I) if there is an object, which I represent by R (X, O) [resp., 

R(O)], which I call personal relation from X to O (resp., institutional relation 

from I to O). (Chevallard, 1992, p. 9)  
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This notion has not been developed by postulating the prior and 

determinants of the characterization of mathematical praxeologies and the 

study of institutional relations. In fact, local praxeology constitutes the 

minimum unit of analysis of didactic processes (Bosch & Gascón, 2005). 

There is no question of structures or mental models in this notion, but an 

attitude (rapport), a "relation to" and a "functioning with" regarding what an 

institution defines as knowledge; it is known or not, only in relation to the 

opinion of an institution, not in an absolute sense (Arsac, 1992). Therefore, 

the psychology of learning or knowledge studies is not of interest, but rather 

the anthropological analyses of institutions. 

Instructional facet 

 The Theory of Didactic Moments, complemented by the Research and 

Study Path (RSP), extends and qualifies the types of adidactic situations 

proposed in the TDSM and provides criteria for designing and managing 

instructional processes. The aim of a teaching-learning process can be 

formulated in terms of the components of the mathematical organizations 

(mathematical praxeologies) that are to be reconstructed: what types of 

problems should one be able to solve, with what types of techniques, based 

on what descriptive and justifying elements, in what theoretical framework, 

etc.  

ATD proposes a model for studying mathematics in terms of didactic 

moments (Chevallard, 1997). The essential types of didactic moments in 

studying a mathematical organization are: the first encounter moment, 

exploratory; technique work, technological-theoretical; institutionalization; 

and evaluation. The instructional design component of ATD was reinforced 

by introducing the notion of RSP and the changes in the educational 

paradigm that it entails (Chevallard, 2009).  

This involves placing the "questioning of the world" as the starting point 

for didactic action, i.e. starting from questions (situations-problems) central 

to mathematics or multidisciplinary, instead of starting with knowledge, 
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considered as "works or monuments" that are "visited". Instead of students 

encountering the mathematical works of the program through a multiplicity 

of study and enquiry activities, each of which starts from a different question 

and mobilizes different "auxiliary" works, an investigation is made into how 

to achieve a strong degree of integration, deriving a whole set of questions Qi 

from a "parent" question Q*. "In this way, the Q* question requires an 

enquiry, which takes the form of a certain path of study and research" 

(Chevallard, 2009, p. 26).  

A key issue here is the generativity of the starting Q* question, which should 

allow the generation of derived questions that broaden the range of 

praxeologies involved and, thus, can be studied. The design of RSPs must be 

such that, (1) they have a broad mathematical orientation and are not focused 

on an isolated and specific concept or topic; (2) the program of a course can 

be studied through a finite number of "big questions": an RSP appears as a 

true "discovery tour", as a "program of study and research".  

OSA interpretation 

  From the OSA perspective, ATD theoretical approaches have some 

limitations in supporting research in mathematics education. We highlight 

the following points:  

- The epistemological and anti-psychological emphasis, by which the 

psychological explanation of some didactic phenomena is not granted 

space, limits the use of the anthropological perspective in the study of 

educational-instructional processes.  

- The desire to redirect everything toward the institution without valuing 

and studying the individual is limited. In our opinion, the complex 

phenomenon of mathematics learning is not entirely explicable in 

terms of adherence to a particular institution.  

- ATD offers powerful theoretical tools to study mathematical 

organizations, their ecological relationships, and the institutional 

constraints that condition their evolution and development. However, 
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the subject-institution identification prevents it from accounting for 

the conditions under which learning occurs.  

The level of analysis of mathematical organizations allowed by the ATD in 

terms of quartet tasks, techniques, technologies, and theories does not 

deepen the ontosemiotic complexity of these organizations. Making explicit 

the system of conceptual, propositional, and argumentative rules in the 

technological-theoretical block proposed by OSA enables us to recognize the 

complexity of representation and interpretation processes and the capacities 

necessary for students to understand and follow these rules. Didactic 

research should focus not only on the ecology of mathematical organizations 

but also on their accompanying cognitive-affective phenomena, which may 

explain learning difficulties and enable identification of the didactic 

resources necessary for their achievement.  

 

7.5.3. Realistic mathematics education 

 Realistic Mathematics Education (RME) is largely based on Freudenthal’s 

(1973; 1983; 1991) reflections on mathematics and its learning. Although it 

initially emerged in the Netherlands at the IOWO and developed at the 

Freudenthal Institute (Utrecht University), RME has expanded to other 

countries around the world (Phan et al., 2022). It is presented as an 

innovative theory of instruction specific to mathematics, with one distinctive 

feature being that it gives a prominent position in the learning process to the 

use of "realistic" situations. These situations serve as a source to start the 

development of mathematical concepts, tools, and procedures and as a 

context in which learners can, at a later stage, apply their mathematical 

knowledge, which then gradually becomes more formal and general and less 

context-specific (Van den Heuvel-Panhuizen & Drijvers, 2014, p. 521). 

Main theoretical elements 

Epistemic and ecological facets 
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 Freudenthal considered mathematics as a human activity that should not 

be learned as a closed system but as a mathematization of reality. 

Mathematicizing is not only axiomatizing, formalizing, and schematizing but 

also every organizing activity of the mathematician, which can refer to 

mathematical content or expression, even realized in the most naïve, 

intuitive, or lived experience and expressed in everyday language. 

Freudenthal (1983) proposed mathematical concepts, structures, and 

ideas to organize phenomena in both the real world and mathematics. By 

using geometrical figures, such as triangles, parallelograms, rhombuses, or 

squares, the world of the phenomena of shapes is organized; numbers 

organize the phenomena of quantity. At a higher level, the geometrical figure 

phenomenon is organized by geometrical constructions and demonstrations; 

the decimal system organizes the number phenomenon.  

The phenomenology of a mathematical concept, structure, or idea means, 

in Freudenthal’s terminology, to describe this construct (noumenon) in 

relation to the phenomena that it permits organizing. If, in this relation 

between noumenon (construct) and phenomenon (phenomenon), the 

didactic element is emphasized, i.e., if attention is paid to how such a relation 

is acquired in a teaching-learning process, one speaks of the didactic 

phenomenology of this noumenon. 

A related element of the ecological facet of mathematical knowledge is the 

interweaving principle (Van den Heuvel-Panhuizen, 1996), where 

mathematical content domains, such as number, geometry, measurement, 

and data processing, are assumed not to be isolated chapters of the 

curriculum but are strongly integrated. Students are offered problems in 

which they can use various mathematical tools and knowledge. This principle 

also applies to domains. For example, in the domain of number sense, mental 

arithmetic, estimation, and algorithms are taught in close connection. 

Cognitive and affective facets 
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For Freudenthal, a mathematical concept (number, group, etc.) is a 

cultural object fixed by decontextualized and depersonalized definitions and 

properties. He proposes that learning should occur through resolving 

problems belonging to the subject’s sphere of “reality”, rather than through a 

more or less formal “acquisition of the concept”, understood in mathematical 

culture Through phenomenology, the subject does not acquire the concept 

but forms a mental object through which he interprets and understands the 

phenomena for which the mathematical object (number, function) is a means 

of organization.  

Leibniz and John Bernoulli used the word "function" for something that was 

no more than a mental object, and only with the first appearance of a symbol 

letter for a function in the works of D’Alembert and Euler the way was paved 

for the concept of function. The distance between a mental object and 

concept depends on the subject matter, but even more on the individual and 

his/her particular situation (Freudenthal, 1991, p. 19). 

 He rejects concept concretizations as a learning tool, seeing them as 

usually false or too rough to reflect the essential features of concepts, even if, 

by a variety of "concrete materials", one wishes to capture more than one 

facet. Didactically, this means putting the cart before the horse: teaching 

abstractions by making them concrete. What a didactic phenomenology can 

do is to take the opposite approach: beginning with the phenomena that need 

to be organized and teaching the student to manipulate those organizing 

tools from that starting point. In the didactic phenomenology of length, 

numbers, etc., phenomena organized by length, number, etc., are shown as 

widely as possible. To teach groups, instead of starting with the group 

concept and seeking materials that make that concept concrete, one should 

first seek phenomena that could compel the student to constitute the mental 

object that is mathematically formulated by the group concept. If, at a given 

age, such phenomena are not available to students, one abandons the futile 

attempt to inculcate the group concept. For this opposite approach, 
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Freudenthal avoids talking of concept acquisition. Instead, he speaks of the 

constitution of mental objects, which, in his view, precedes concept 

acquisition and can be highly effective even if concept acquisition does not 

follow.  

The level principle, which underlines that learning mathematics involves 

learners going through several levels of understanding, is assumed: from 

informal solutions related to the context through the creation of several levels 

of shortcuts and schematizations to the acquisition of knowledge about how 

concepts and strategies are related.  

Instructional facet 

The instructional component of MRE is reflected in the principles of 

activity, reality, interactivity, and orientation (Van den Heuvel-Panhuizen, 

1996): 

−  Activity principle: Students should be active participants in the 

learning process. It also emphasizes that mathematics can be best learned by 

doing mathematics, which is strongly reflected in Freudenthal’s 

interpretation of mathematics as a human activity and his idea of 

mathematization. 

− Reality principle: This principle expresses the importance of 

developing students’ ability to apply mathematics in solving "real life" 

problems. This means that mathematics education should start from 

problem situations that are meaningful to students, which gives them the 

opportunity to attribute meaning to the mathematical constructions they 

develop while solving the problems. Instead of starting with the teaching of 

abstractions or definitions that will be applied later, in RME teaching starts 

with problems in rich contexts that require mathematical organization or, in 

other words, that can be mathematised and put learners on track of informal 

context-related solution strategies as a first step in the learning process. 

− Principle of interactivity: Learning mathematics is not only an 

individual activity but also a social activity. Whole-class discussions and 
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group work are encouraged, giving students the opportunity to share their 

strategies and inventions with others. In this way, students can acquire ideas 

to improve their strategies. The interaction also provokes reflection, which 

enables students to reach higher levels of understanding. 

− Guiding principle: This refers to the "guided reinvention" of 

mathematics. Teachers should play a proactive role in students’ learning, and 

educational programs should contain scenarios that can function as levers to 

improve students’ understanding. Teaching and learning programs must be 

based on long-term, coherent teaching-learning trajectories. 

OSA interpretation 

 The consideration of mathematics as a human activity and its central role 

in in resolving internal or external problems, including those of everyday life, 

is consistent with anthropological approaches to the philosophy of 

mathematics and the OSA. The MRE assumes that mathematical concepts 

and structures serve to organize phenomena, both of the real world and 

mathematics itself; thus, we can infer that mathematics, in addition to being 

an activity, is a system of objects with a reality external to the subject. This is 

another concordance with the ontological presuppositions of OSA. However, 

in MRE, we do not find a clear and explicit position on the nature and 

diversity of mathematical objects and the attribution of multiple meanings. 

We understand institutional mathematics is conceived in the MRE in a 

formal, abstract, axiomatic, decontextualized, and depersonalized manner, 

stripped of any sensory connotation. For OSA, there also exist applied 

mathematics and school mathematics that do not have these characteristics 

and can serve as a reference to guide educational-instructional processes. 

The relations of mathematics to the real world and its emergence from 

problem solving, mediated by material and linguistic artifacts, form a basic 

postulate of OSA’s holistic, pluralistic, and ecological vision, which is 

consistent with the RME’s principle of entanglement. Freudenthal’s 

phenomenological analyses of mathematical concepts and structures are 
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undoubtedly rich, but the ontosemiotic configuration tool of practices, 

objects, and processes can complement them and help to understand 

learning conflicts.  

 According to Freudenthal, learning should be oriented toward the 

constitution of mental objects and not toward the acquisition of concepts. We 

can infer that he assumed a notion of mathematical concepts as cultural, 

abstract, formal, and decontextualized objects, while the mental object 

reflects the cognitive state of the subject when approaching the resolution of 

realistic problems. He believed that the constitution of mental objects must 

be established before the acquisition of concepts. These distinctions can be 

related to the personal and institutional duality of OSA practices, objects, and 

processes. The constructs of cognitive and epistemic configuration can help 

describe the processes of the constitution of (personal) mental objects and 

their relation to institutional ones, which have diverse meanings, not only the 

formal ones emphasized by Freudenthal. 

The MRE level principle in mathematical learning recognizes that 

students go through different levels of understanding mathematical objects. 

This is consistent with the recognition of a diversity of institutional meanings 

with varying degrees of formalization. These factors are considered in the 

design of educational-instructional processes and thus in students’ learning. 

The RME principles of activity, reality, and interactivity in the design of 

instructional processes are compatible with the OSA ontosemiotic model. 

The principle of guidance or guided reinvention, in which a proactive role for 

the teacher in learning is recognized, is also acceptable in the first 

approximation. However, configuration and didactic trajectory tools, 

supported by the ontosemiotic model of mathematical knowledge, provide 

elements of detailed analysis of teaching and learning activities. The 

recognition of the ontosemiotic complexity of learning objects leads to the 

proposal that the students’ first encounter with a new object may require the 

implementation of a different type of didactic configuration than in the case 
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of exercise or application moments (Chapter 4). Likewise, the OSA’s 

anthropological and conventionalist assumptions about regulative 

mathematical objects (definitions, propositions, procedures) qualify the 

constructivist assumptions of learning, such as the idea of students’ 

reinvention of knowledge. 

 

7.5.4. APOS theory 

 APOS (acronym for Action, Process, Object, and Schema) is a theory with a 

cognitive orientation toward mathematics education problems that proposes 

models to investigate the types of mental constructions a student may engage 

in while learning mathematical concepts (Arnon et al., 2014). This serves as 

an evaluative framework because individuals are observed in problem 

situations in which the researcher attempts to describe their understanding 

level and the mental structures involved in their learning of the concept. It 

also provides tools for designing pedagogical activities and environments 

that promote learning development through a social approach, considering 

that learning is fostered by cooperative patterns of interaction. Dubinsky 

(1984) introduced the primary ideas, although the acronym APOS was 

introduced in Cottrill et al. (1996). 

Main theoretical elements 

Cognitive and affective facets 

The basic principle of APOS theory is that an individual’s understanding 

of a mathematical topic develops through reflection on problems and their 

solutions in a social context and through the construction of specific mental 

structures organized in schemas to be used for solving new situations. 

Starting from the concept of reflective abstraction, "attempts to elaborate a 

theoretical framework that can be used to describe any mathematical concept 

together with its acquisition" (Dubinsky, 1991, p. 97). Reflective abstraction 

is the construction of mental objects and actions on such objects. In the 

development of logical-mathematical thinking, five types of actions are 
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distinguished: internalization, coordination, encapsulation, generalization, 

and reversal.  

 The notion of schema was adopted and interpreted as a coherent 

collection of objects and processes. "A subject’s tendency to invoke a schema 

in order to understand, deal with, organize, or make sense of a given problem 

situation is his or her knowledge of a particular mathematical concept" 

(Dubinsky, 1991, p. 103). Schemes exist for situations involving numbers, 

arithmetic, functions, propositions, quantifiers, and proofs by induction. 

These schemas must be interrelated in a large, complex organization. One 

aim of APOS is to isolate small portions of this complex structure and provide 

explicit descriptions of possible relationships among schemas. This 

description of the relations between schemas concerning a concept is the 

genetic decomposition of the concept. This is a description of the specific 

mental constructs that learners bring into play when developing their 

understanding of a mathematical concept. 

Instructional facet 

 APOS has developed a mathematics teaching model based on previously 

developed cognition theory, which it has termed the ACE (Activities, 

Classroom discussions, Exercises) cycle, comprising of three components: 

(A) Activities; (C) Classroom discussions; and (E) Exercises (Arnon et al., 

2014). APOS has also developed a curriculum/instructional design research 

model that can be related to didactic engineering or didactic design research. 

The model distinguishes three interrelated components: theoretical analysis, 

instructional design and implementation, and data collection and analysis. 

The research begins with a theoretical analysis of the mathematical concept 

cognition under consideration, leading to a preliminary genetic 

decomposition of the concept. This provides a basis for designing activities 

that encourage the mental constructs required for analysis. Various 

pedagogical strategies, such as cooperative learning, small group problem 

solving, and lectures, can be very effective in helping students learn 
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mathematics. Finally, data collection and analysis are conducted using 

APOS’s theoretical lens on mathematical cognition. The analysis focuses on 

whether students made the intended mental constructions and on revising 

their initial genetic decomposition and activities in the case of a negative 

response, starting a new cycle of research (Arnon et al., 2014).  

OSA interpretation 

 Although a mentalistic language is used, the information used to 

elaborate a genetic decomposition of the concept (GCD) is constituted by the 

subjects’ operational and discursive practices (manifestations, behaviors), 

either an ideal epistemic subject (concretized in the researcher elaborating 

some expected solutions to the tasks) or concrete subjects presented with the 

tasks. Through the analysis of the subjects’ responses, the conclusion can be 

that the CDF was inadequate, leading to its re-elaboration and re-

experimentation. APOS assumes a conceptualist view of mathematics and a 

mentalist/cognitivist view of mathematical learning. However, its starting 

point is the Piagetian theory in which the subject's problem-solving activity 

is key to the genesis of knowledge. Reflective abstraction and the 

mechanisms of assimilation and accommodation are the basis of the model.  

 APOS’s cognitivist view of mathematical concepts can be enriched with 

the historical-cultural, institutional approach. This perspective leads us to 

recognize that each concept has different partial meanings articulated to 

varying degrees of formalization and generality, and that each partial 

meaning entails a variety of the object, the learning of which must be the 

focus of attention. The DGC of, for example, the concept of function, 

derivative, fraction, etc. should be performed for each variety of such objects. 

In addition, each meaning entails a configuration of specific practices, 

processes, objects, and schemas, which must be constructed and articulated. 

In other words, OSA provides a more complex view of the nature of 

mathematical knowledge, understanding, and competence, requiring the 

identification of networks of referential and operational semiotic functions, 
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where APOS observes actions, processes, objects, and schemas associated 

with a concept.  

 The ontological and semiotic problematization of mathematical concepts 

from an institutional, i.e. cultural-historical perspective, is at the foundation 

of OSA. Mathematical cognition, from a personal point of view, corresponds 

to institutional cognition. From the perspective of educational-instructional 

design, the ontosemiotic model, as a first step, leads to the reconstruction of 

a reference meaning in which various partial meanings or senses of the 

intended content and associated ontosemiotic configurations are articulated. 

These tools broaden the perspective of the genetic decomposition of 

concepts.  

 

7.5.5. Objectivation theory 

Radford (2008; 2014) developed the Theory of Objectification (TO), 

which was inspired by anthropological and cultural-historical schools of 

knowledge. It is supported by non-rationalist epistemology and ontology that 

gives rise to an anthropological conception of thinking and to an essentially 

social conception of learning. This model assumes the following two 

principles:  

1. Psychological dimension must be an object of study in mathematics 

education.  

2. The meanings that circulate in the classroom cannot be confined to the 

interactive dimensions that occur in the classroom, but must be 

conceptualized within their cultural-historical dimensions. Learning is 

viewed as a social activity rooted in a preceding cultural tradition.  

Main theoretical elements 

Epistemic and ecological facets 

The mathematical knowledge and learning epistemological principles 

that characterize TO are consistent with those assumed by sociocultural 

approaches. Radford (2018, p. 4066-7) formulates them as follows:  
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p1: knowledge is historically generated during the individuals' mathematical 

activity.  

p2: the production of knowledge does not respond to adaptive piloting but is 

embedded in cultural ways of thinking that are imbricated with a symbolic 

and material reality that provides the basis for interpreting, understanding 

and transforming the individual's world and the concepts and ideas that they 

form 

He introduces mathematical objects as constructs of ontological order, 

defined as fixed patterns of reflexive activity embedded in the constantly 

changing world of social practice mediated by artifacts. This implies a 

departure from Platonist and realist ontologies and their corresponding 

conceptions of mathematical objects as eternal objects that precede the 

individual's activity. It also introduces a semiotic-cognitive construct of 

objectification or subjective awareness of cultural objects. Learning is 

defined as the social process of objectification of external patterns of action 

fixed in culture that constitute mathematical objects.  

Affective and cognitive facets 

It accepts a non-mentalistic concept of thought. Thinking is, above all, an 

active reflection on the world mediated by artifacts, the body (through 

perception, gestures, movements, etc.), language, signs, etc. Knowing as a 

process ('knowing') is awareness in the course of a social, emotional, and 

sensitive process; it is a process mediated by material culture (signs, artifacts, 

language, etc.), the senses, and the body (through gestures, kinesthetic 

actions, etc.). The subject participating in objectification is a concrete subject 

and not the abstract epistemic subject of other theories (such as Piaget's and 

the Theory of Didactic Situations). It is a subject that feels, enjoys, and 

suffers. Radford defined the objectification process as follows:  

Subjectification consists of processes through which subjects take positions 

in cultural practices and become unique historical cultural subjects. 

Subjectification is the historical process through which the self is created 

(Radford, 2014, p. 142).  
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The subject is constituted as such through his or her actions, reflections, 

joys, and sufferings. However, the actions through which the subject is 

constituted are immersed in cultural and historical forms of action and 

relation to others.  

Instructional facet 

Learning is an activity through which individuals relate not only to the 

world of cultural objects (subject-object plane) but also to other individuals 

(subject-subject plane or plane of interaction) and acquire human experience 

in the common pursuit of the goal and the social use of signs and artifacts 

(Leontiev, 1993). Teaching and learning not only produce knowledge; they 

also produce subjectivities. As a result, we should try to understand the 

production of knowledge and subjectivities in the classroom and promote 

forms of pedagogical action that can lead to meaningful teaching and 

learning. Meaningful learning and teaching refer to pedagogical actions that 

involve:  

(1) A deep understanding of mathematical concepts.  

(2) The creation of a political and social space within which reflective, 

caring, and responsible subjectivities can develop.  

The essential principle of objectification theory in the educational-

instructional dimension is the idea of labor in the sense of Hegel, Marx, 

Leont'ev, and dialectical materialism. It is through labor or work that 

individuals continually develop and transform themselves, encountering 

systems of ideas of culture: scientific, legal, artistic, etc. systems of ideas. It 

is also through work that we discover cultural ways of being. In this 

framework, teaching and learning are not two separate processes, but rather 

a joint labor in the Hegelian sense. They are not two separate activities, one 

performed by a teacher who guides the learner and the other by a learner who 

does things by himself and for himself; they are a single, inseparable activity.  

This theory adopts the Hegelian sense of objectification: something that is 

there and appears before the subject and is consequently presented as 
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phenomenological theory. Objectification is the social, corporeal, and 

symbolically mediated process of becoming aware of and critically discerning 

historically and culturally constituted forms of expression, action, and 

reflection (Radford, 2014, p. 141). 

OSA interpretation 

The epistemological model proposed by OSA is broadly consistent with 

that of TO. Both theories share similar anthropological assumptions about 

mathematical activity and emerging sociocultural processes and products. 

OSA, however, explicitly incorporates the basic elements of the linguistic 

turn introduced by Wittgenstein in the philosophy of mathematics and the 

contributions of Peircean semiotics to describe and explain mathematical 

communication and interpretation. 

Both TO and OSA assume the epistemological and ontological principles 

of mathematical knowledge and learning characteristics of sociocultural 

approaches. OSA shares a similar anthropological position on the nature of 

mathematics and emergent objects, but it adopts a broader perspective on 

mathematical objects, their types, nature, and functions. When one speaks of 

a mathematical object in TO, one apparently thinks of conceptual objects for 

which OSA has a double conceptualization:  

− from a unitary perspective, as grammatical rules in Wittgenstein’s 

sense (concept-definitions), and  

−  In a systemic sense, as a configuration of operational, discursive, and 

normative practices together with a network of other related objects 

and processes (ontosemiotic configuration).  

The ontosemiotic configuration tool (in its double version, epistemic and 

cognitive), permits a detailed analysis of mathematical activity and the 

objects involved, which are not reduced to conceptual or abstract objects. 

Recognition of the complex network of objects and processes involved in 

problem solving is an explanatory factor of learning and teaching difficulties 
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and a necessary step for the appropriate management of educational-

instructional processes.  

The objectification process is equivalent in cognitive and educational 

terms to that of the personalization of institutional/cultural meanings by 

learners proposed by OSA. Moreover, the view of conceptual objects in their 

unitary version as socially agreed rules for how languages and artifacts are 

used helps understand the two sources of learning proposed by TO: contact 

with the material world, the world of cultural artifacts around us (objects, 

instruments, etc.), and social interaction. What is to be learned are socially 

agreed rules for the use of artifacts. 

OSA learning can be understood as a progressive coupling of personal and 

institutional meanings. Teaching involves the participation of the learner in 

the community of practice fixed by the institution where learning occurs and 

involves the acquisition by the learner of these institutional meanings. The 

principle of learning described by Radford can be assumed naturally in OSA:  

p3: learning is the acquisition of a piece of culturally-objectified knowledge 

that learners achieve through a social process of objectification mediated by 

signs, language, artefacts and social interaction as learners engage in cultural 

forms of reflection and action. (Radford, 2018, p. 4067). 

It is accepted that learning, as a social process of objectification, entails of 

endowing meaning to the conceptual objects encountered by the learner in 

their culture. 

The TO educational-instructional model, based on activity theory and the 

notion of the zone of proximal development, with the principle of "working 

together" (Radford, 2014), is assumed by OSA, although not exclusively. OSA 

assumes different types of didactic configurations that promote learning, 

depending on the types of knowledge sought, the subjects’ initial state of 

knowledge, the instructional process context, and circumstances. 

Constructivist (autonomist), collaborative, personal, or masterful 

instructional models may have their place (Godino et al., 2006). When 
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learning new and complex content, the transmission of knowledge at specific 

times by teachers or learner leaders within teams is crucial. Such 

transmission can be meaningful when students participate in activities and 

work collaboratively (Chapter 4).  

A substantial difference between TO and OSA is the aims of didactic 

research. TO essentially aims to describe the subjects’ processes of 

objectification and to relate/explain such processes in terms of teaching. 

"Objectification research focuses on how culturally and historically encoded 

forms of thought and action become objects of recognition or objects of 

consciousness" (D'Amore & Radford, 2017, p. 123). OSA, moreover, assumes 

the aim of studying the conditions of realization of mathematical and didactic 

activity in the most suitable way, considering the subjects and circumstances 

(Godino et al, 2019). 

The emphasis of TO on the mathematical education's ethical and political 

dimension is included in the OSA through the affective (Beltrán-Pellicer and 

Godino, 2020) and ecological dimensions of didactic suitability, where 

training in democratic values and critical thinking is a criterion of suitability. 

The development of these humanist and ethical values should not, however, 

relegate the development of rationality and mathematical thinking.  

We refer readers to Godino et al. (2020), who investigated the 

concordances and complementarities between TO and OSA based on 

empirical research on interpreting a Cartesian graph proposed within the TO 

framework. 

 

7.5.6. Ethnomathematics program 

Ethnomathematics is a research program with a consolidated 

international presence that proposes an expanded vision of mathematics and 

mathematics education (D'Ambrosio, 1985; D'Ambrosio & Knijnik, 2020; 

Oliveras & Godino, 2015). Vithal and Skovsmose (1997) describe four facets 

or fields of study in ethnomathematics: 
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1) History of mathematics. The traditional view of the history of 

mathematics has been criticized for ignoring, devaluing, distorting, or 

marginalizing the contributions of other non-European cultures to the 

body of knowledge referred to as Western mathematics. 

2) Analysis of the mathematics of traditional cultures and indigenous 

peoples who were colonized while maintaining their original 

mathematical practices. These practices have been explored in relation 

to topics such as number systems, symbolism and gestural language, 

games and puzzles, geometry, space, shapes, forms, patterns, 

symmetry, art and architecture, time, money, networks, graphs, sand 

drawings, kinship relations, and artifacts. 

3) Mathematics in everyday life. Analysis of mathematics used by 

different groups in everyday life settings to demonstrate the 

mathematical knowledge generated in a wide variety of contexts, both 

by adults and children. 

4) The relationship between ethnomathematics and mathematics 

education. The connections (or lack of them) between the mathematics 

found in everyday contexts and those studied in the formal school 

system. 

The ethnomathematical research program is interested in the 

sociocultural origins of mathematical knowledge by considering meaning, 

thinking, and reasoning as products of diverse social activities. It is part of 

the perspectives that characterize the social turn in mathematics education 

research and practice (Lerman, 2000). 

Main elements of the program 

Epistemic and ecological facets 

One major aim of ethnomathematics research is to broaden 

understandings of the diverse nature of mathematics. This study claims the 

mathematical character of the practices of diverse cultural groups when 

dealing with certain professional and everyday activities. Mathematics is not 



424 Chapter 7. The OSA theoretical system 

 

 

only the product of a professional mathematician’s activity, which is 

characterized by the use of formal languages, deductive argumentation, and 

the generality of theorems, but also the practices of diverse cultural groups. 

Some authors have assumed key notions of Wittgenstein’s philosophy, 

such as language play, forms of life, family resemblances, grammar, and 

rules, as the philosophical foundation of ethnomathematics (Vilela, 2010; 

Knijnik, 2012). These notions support and justify the socio-anthropological 

view of mathematics, characteristic of ethnomathematics, according to which 

the social practices of other cultures or ethnic groups in certain situations 

and activities are also mathematical practices. 

Also highlighted as a field of enquiry for ethnomathematics is the study of 

political issues (power relations, dependence, subordination) involved in the 

development and study of mathematics as an academic discipline. The 

"naturalized" power relations between epistemological formations linked to 

social, ethnic, and cultural groups must be recognized (Knijnik, 2012). 

European mathematics is the only existing form of mathematics that has 

been introduced into school systems around the world that offers an 

alternative.  

Cognitive and affective facets 

 A basic thesis of ethnomathematics is that mathematics education can be 

improved by considering students’ cultural backgrounds and by providing an 

understanding of their achievements, attitudes, and motivations. It is 

interested in investigating the thought processes that characterize the 

mathematics of each culture, the cultural conceptions that permeate personal 

mathematical thinking, and in determining how students’ self-esteem is 

affected by the school marginalization that can result from imposing 

academic/formal mathematical culture. 

The importance of equity in mathematics education must be at the 

forefront. Therefore, the main goal of educators should be to achieve equity 

among learners and incorporate ethnomathematics into the classroom. 
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"Students learn in ways characterized by social and affective approaches, 

harmony with community, holistic perspectives, dependence on the 

environment, expressive creativity, and non-verbal communication." (Rosa 

& Shirley, 2016, p. 39) 

It aims to relate the mathematical concepts of the school curriculum to the 

students’ cultural background (D'Ambrosio 2001), thus enhancing their 

ability to make meaningful connections and deepen their understanding of 

mathematics.  

Instructional facet (interactional and mediational) 

From its beginnings, the ethnomathematics program involved two 

dimensions that have always remained closely related: field research and 

pedagogical work developed in school based on this research. Among the 

potential changes in education (curricula, resources and classroom practices) 

to consider the multicultural background of mathematics classes, Gerder 

(1996) stated: 

− Incorporation of material from diverse cultures into the curriculum, 

thus valuing all students’ cultural backgrounds. 

− Incorporation of mathematical ideas from various linguistic and 

cultural groups within a country or region and/or developed by various 

social groups, such as basket weavers, potters, and house builders, into 

teacher education programs. 

− Introduction of cultural elements that facilitate learning that most 

students recognize and value as belonging to their culture in textbooks. 

− Development of materials that explore the possibilities of 

mathematical activities based on artistically appealing designs that 

belong to the students’ culture (possibly in a broad sense) or that of 

their ancestors/parents. 

OSA interpretation 
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The plural vision of mathematics advocated by ethnomathematics is 

consistent with OSA when considering how the notion of mathematical 

practice and the postulate of institutional and personal relativity of practices, 

objects, and meanings are conceived. Likewise, the consistency between both 

theoretical frameworks results from how the notion of institution is 

interpreted in the OSA, which encompasses any cultural or ethnic group, 

context, or community of practices.  

The ontosemiotic configuration tool can characterize, in a detailed 

manner, the mathematical practices of cultural groups and thus describe and 

explain the differences and similarities between different "epistemic 

varieties" of mathematics. OSA postulates a relativism for mathematical 

practices, objects, and meanings but acknowledges ecological relations 

between the different epistemological formations that constitute diverse 

mathematics, whether linked to cultural or professional groups.  

The analysis of the ethnomathematics program, in its educational 

component, reveals that a substantial part of is "instructional design-

oriented research" (Oliveras & Godino, 2015). However, it lacks an explicit 

instructional theory to support the design, implementation, and 

retrospective analysis of its intended educational interventions. We often 

find ethnomathematical works that use tools from other frameworks 

(realistic mathematics education, didactic engineering, etc.), which results in 

a certain theoretical framework that is not always coherent and productive. 

OSA provides analytical tools for analyzing the objects and processes 

involved in mathematical practices (system of practices, ontosemiotic 

configuration), tools for analyzing teaching and learning processes in the 

classroom (didactic configuration and trajectory), and meta-didactic 

reflection (normative dimension and didactic suitability). Therefore, OSA 

tools can aid in performing detailed descriptions of the mathematical and 

didactic practices claimed by Vithal and Skovsmose (1997) for educational 

experiences based on ethnomathematics. In turn, the ethnomathematical 
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perspective can enrich the ecological facet of the educational-instructional 

processes proposed by OSA by incorporating analytical categories of the 

social and political components involved in mathematics education. 

Moreover, by considering the multicultural factor of educational contexts, 

this can guide the reconstruction of the reference meanings for the intended 

contents, which is required in the design of educational-instructional 

processes based on OSA.  

 

7.5.7. Comparing theories regarding the understanding-use 

duality 

 In this section, we compare the five theories and OSA from the point of 

view of the understanding-use duality, according to the model proposed by 

Stokes (1997), which applies   to both natural and social sciences, to classify 

types of research. To achieve this, Stokes uses a matrix with four cells, whose 

rows distinguish whether the research is inspired by the seeking of a 

fundamental understanding of phenomena and whose columns distinguish 

whether the research is inspired by practical application or use. Thus, 

quadrant I is considered basic applied research (e.g., that developed by Louis 

Pasteur); quadrant II, fundamental or basic-pure research (such as that of 

Niels Bohr); quadrant III, the identification of singular phenomena; and 

quadrant IV, pure applied research (e.g., that of Thomas Alva Edison). In 

Figure 7.4, we interpret these quadrants and indicate the position of OSA, 

along with the theories discussed in this section. 

Scientific and technological research (quadrants I and II) aims to describe, 

explain, and predict phenomena; it is characterized by generality, control of 

variables, experimental design, and quantitative methods. Therefore, they 

are characterized by the paradigm of the natural sciences, basically positivist 

(Cohen et al., 2007). In the case of education, quadrant III can be represented 

by naturalistic enquiry in its different versions (ethnographies, case studies, 

biographies, etc.). Quadrant IV can be characterized by reflective practice 
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(action research in its different versions); the focus is on the improvement of 

practice, either collaboratively or individually. Quadrants III and IV include 

investigations of singular phenomena, interpretation, ethnography, 

participant observation, and qualitative methods. 

  

Figure 7.4. Research types according to the understanding-use duality 

In Figure 7. 4 we have included, in quadrant I, Realistic Mathematics 

Education (RME) (Freudenthal, 1991; Van den Heuvel-Panhuizen & Drijvers, 

2014) and the Ethnomathematics program (D'Ambrosio, 1985), in quadrant 

II, the Theory of Didactic Situations in Mathematics (TSDM) (Brousseau, 

2002) and the Anthropological Theory of Didactics (ATD), although when 

didactic developmental engineering (ID-D) is applied, they also intersect 

with quadrant I. In both APOS and TO theory, we identify features of 

quadrants I and II.OSA includes principles and tools for conducting research 

focused on both understanding and use. The OSA Didactic 
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Suitability module is intended as a tool to support professional enquiry, and 

therefore, we represent it in the four quadrants. 

 

7.6. OSA applications and diffusion 

The main publications reflecting the development of the OSA theoretical 

tools, their applications to different mathematical contents, in teacher 

training, as well as on comparison and articulation with other theoretical 

frameworks are available in the various entries of the web repository: 

http://enfoqueontosemiotico.ugr.es. This activity has been conducted in the 

framework of various research projects and postgraduate programs at 

different universities. In the web repository, there are 106 PhD theses 

available to date that have been produced using OSA as a theoretical 

framework.  

 A specific entry also includes publications in English in the main 

mathematics education journals, grouped in the same categories as on the 

main page: synthesis papers, ontosemiotic meanings and configurations, 

didactic design and analysis, didactic appropriateness, articulation with 

other theories, teacher training, algebra, arithmetic, calculus, statistics, 

probability, and combinatorics.  

Kaiber et al. (2017) analyzed for the 10-year period prior to 2017 the 

papers based on OSA presented at Latin American conferences, such as the 

Reunión Latinoamericana de Educación Matemática (RELME), the 

Conferencia Interamericana de Educación Matemática (CIAEM), and the 

Congreso Iberoamericano de Educación Matemática (CIBEM). The analysis 

of the proceedings of these congresses allowed us to identify 188 articles in 

which OSA was used as the main theoretical reference for research or as a 

theoretical guide for the production of analyses. This set of 188 publications 

comprises 121 articles published in ALME, 26 in the Annals of CIAEM and 41 

in the Annals of CIBEM, covering different dimensions or research areas in 
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Didactics of Mathematics. In addition, papers supported by OSA are common 

at the SEIEM, CERME, PME, and ICME conferences. 

The impact of OSA on postgraduate mathematics education in Brazil was 

analyzed in an article by Breda et al. (2021). They conducted a meta-analysis 

of 16 doctoral theses presented from 2005 to 2019 at different Brazilian 

universities and used OSA tools as a theoretical framework to state the 

research problem and analyze and interpret the results. 

 

7.7. Synthesis of OSA philosophical postulates 

The plurality of paradigms and theories converging in mathematics 

education and the need to clarify and articulate them are sources of 

inspiration for the emergence of OSA as a field of scientific and technological 

enquiry. The construct ontosemiotic configuration that incorporates 

transdisciplinary elements has been developed to overcome the boundaries 

between philosophical, psychological, and sociological disciplines to the 

extent that they are interested in mathematics, its learning and 

dissemination, as reasoned in Chapter 2. An essential postulate of OSA is the 

emergence of mathematical constructs (concepts, propositions, etc.) from 

people’s operational and discursive practices when solving problems (Font et 

al., 2013).  

Mathematical constructs or ideas are not independent of people but are 

simultaneously creation and discovery (Cañón, 1993), thus assuming an anti-

Platonist perspective. Mathematical axioms and postulates are inventions 

that occur in people’s brains. Although the propositions derived from them 

are unknown a priori and apparently have been discovered, this does not 

justify Platonism.  

Ontological dimension 

The OSA philosophy of educational mathematics, implicitly embodied in 

the ontosemiotic configuration construct (Chapter 2), is summarized in the 
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following postulates, using the adapted scheme proposed by Bunge (1983) to 

characterize his philosophical system.  

− Naturalism. Assumes the existence of material objects and rejects the 

independent existence of ideas, whether physical or formal. At the 

same time, it rejects physicalism because it denies the fact that all 

objects are physical entities. Mathematical practices are actions of 

people and therefore are cerebral and bodily processes (manipulative 

and gestural); when these practices are shared within a community, 

they are institutional practices that depend on the cerebral activity of 

its members and the interpersonal interactions established between 

them. 

− Systemism. It assumes the systems of practices, objects, processes, and 

contexts in which mathematical activity takes place, articulated in the 

ontosemiotic configuration construct as its objects of study. 

− Emergentism. It assumes that abstract mathematical objects come 

from other previous entities (the operational and discursive practices) 

and are not reducible to them.  

− Pluralism. The diversity of practices, objects, and processes required 

for the description and understanding of mathematical activity in its 

various varieties. 

− Dynamism. It assumes that meaning changes with time and personal 

and contextual circumstances. 

Epistemological dimension 

− Realism. Both formal and applied mathematical knowledge emerge 

from operational and discursive practices when solving problems. A 

kind of virtual or fictional reality refers to objects that emerge from 

mathematical activities when they interact with perceivable objects 

and artifacts in the environment. 
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− Evolutionism. It postulates that personal and institutional meanings 

evolve over time as subjects progressively address more complex 

problems. The construction of new knowledge starts from existing 

knowledge, expanding and correcting previously produced by 

individuals within historical communities. 

− Social constructivism. Cognitive ontosemiotic configurations are 

created by subjects, and socioepistemic configurations result from 

interpersonal communication. Knowledge construction occurs for 

subjects in a community whose norms promote or inhibit investigative 

activities. 

− Moderate rationalism and empiricism. Both reason and experience are 

necessary to construct mathematical knowledge; mathematical 

practices can be both operational (involving the use of empirical 

artifacts) and discursive (involving objects of reason). 

− Conventionalism. Concept definitions, propositions, and 

mathematical procedures are not arbitrary conventional rules but are 

motivated by the activity of describing and explaining the real world 

and virtual constructs facts and objects. This conventional character 

explains the necessity and universality of mathematical constructs. 

− Justificationism. It includes arguments as a primary object type. These 

arguments can be descriptive, explanatory, or justificatory, and 

different types of reasoning can be used based on both reason and 

experience. These arguments result from the use of different types of 

reasoning, based on both reason and experience.  

Semiotic dimension 

− Realism. In realist theories of meaning (Kutchera, 1975), linguistic 

expressions have an attributional relation to certain entities (objects, 

attributes, facts). Words and signs are meaningful when they are 

assigned an object, concept, or proposition as meaning. In this way, 
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there are entities that are not necessarily concrete but are always 

objectively given before words, which are their meanings. 

Ontosemiotics postulates a type of referential semiotic function, 

designating certain entities by convention. In this way, the 

representational value of languages is accounted for. 

− Pragmatism. In pragmatic (operational) theories, meaning depends on 

the context in which the words are used. Signs become meaningful 

because they are playing a certain function in a linguistic game when 

they are used in this game in a certain way and for a certain purpose. 

The meanings of mathematical objects as systems of operational and 

discursive practices imply the acceptance of pragmatic theories and the 

recognition of the instrumental value of languages. 

Ontosemiotics assigns an essential role in the creation and manipulation 

of sign systems representing different types of objects and instruments of 

mathematical activity. Thus, representationist and instrumentalist 

postulates in semiotic cognitive theories are compatible and complementary. 

The OSA provides a transdisciplinary vision of mathematical activity by 

considering, in an articulated manner, different views of disciplines 

interested in mathematical knowledge, its learning, and dissemination. 

These are the following points: 

−  Epistemological: mathematics as a particular mode of human activity 

and its product as a special type of knowledge. 

− Ontological: mathematics as a finished product and a system of objects 

and theories. 

− Psychological: a particular type of mental (or cerebral) activity. 

− Sociological: mathematics as a social activity and its product as a 

special cultural artifact. 

− Historical: mathematics as a historical process of discovery, invention, 

and diffusion in a given society. 
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− Instrumental: mathematics as a tool for science, technology and the 

humanities. 

These different views of mathematics are mutually compatible and even 

complementary. It would be wrong to adopt one of them to exclude all others 

because mathematics consists simultaneously of everything that these 

different perspectives provide.  

 

7.8. Synthesis of OSA theoretical system and open 

questions 

In Table 7.1. we include a synthesis of the 11 features that characterize OSA 

as a theoretical system, in line with the syntheses of the five theories 

described in chapters 2 to 6: Brief summary; scope/objective; rationale; 

hypotheses; constructs; relationships; provenance; similarities; 

complementarities; operationalization; and uses. 

Table 7.1. Synthesis of OSA 

Elements Description 
Summary. What is the 
theory about, and what 
are its main 
propositions? 

The ontosemiotic approach to mathematics education provides 
a system of constructs, principles and methodological tools for 
studying and understanding the nature of mathematical activity, 
mathematical knowledge and teaching and learning processes. 
This scientific component (descriptive, explanatory and 
predictive) on mathematics education is complemented by 
another technological (prescriptive) component formed by a 
system of criteria or standards to optimize the design, 
implementation and evaluation of educational-instructional 
processes and a professional development model. The system 
comprises five theories: 
 1) The ontosemiotic theory of mathematical activity. It develops 
an anthropological and pragmatist vision of mathematics, that 
is, as a human activity focused on problem solving. This 
anthropological conception of mathematics as an activity is 
complemented and articulated with two other conceptions: 
mathematics as a system of objects and processes, and 
mathematics as a system of signs.  
2) The ontosemiotic theory of meaning and mathematical 
cognition. Develops a global vision of the meaning of 
mathematical objects, articulating realistic and pragmatic 
assumptions as the basis of mathematical cognition from 
individual (personal) and social (institutional) perspectives. 
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3) The theory of educational design in mathematics. It develops 
assumptions and theoretical tools to describe and design 
mathematics teaching and learning processes based on the 
OSA’s specific theory of mathematical activity and object 
meaning.  
4) The theory of didactic suitability. It develops a system of 
criteria for the local optimization of the design, implementation, 
and evaluation of educational-instructional processes in 
mathematics based on the OSA assumptions and constructs. 
Criteria are developed for the epistemic, ecological, mediational, 
interactional, cognitive, and affective facets of teaching and 
learning processes. 
5) The theory of teacher professional development. It develops 
a model of mathematics teachers’ knowledge and competences 
that considers the facets, components and sub-components of 
the educational processes involved in the activities of grounding, 
design, planning and evaluation. It also includes a system of 
principles or criteria for the efficiency of teacher education 
programs. 
 

Scope/Objective. What 
phenomena does the 
theory explain? 

The OSA theoretical system aims to describe, explain, and 
predict phenomena related to the design, implementation, and 
evaluation of mathematical teaching and learning processes at 
different educational contexts and levels. It also seeks to identify 
criteria for the local optimization of such processes and, thus, 
prescribe preferable actions to achieve the intended educational 
purposes based on the ontosemiotic assumptions of 
mathematical knowledge. 
 

Justification. Why is 
this theory necessary 
and how does it 
improve on previous 
theories? 

OSA addresses the problem of the diversity and disparity of 
existing theories in mathematics education by developing a 
modular and inclusive theoretical system that considers 
dilemmas regarding ontological, semiotic, cognitive, and 
epistemological issues in teaching and learning. Other existing 
theories are enhanced by grounding mathematics instruction 
and teacher education models into explicit and articulated 
theories of mathematical activity, meaning, and mathematical 
cognition.  
 

Hypotheses. What 
specific hypotheses 
does the proposed 
theory propose, and 
how do they differ 
from other theories? 

To describe and understand educational-instructional processes 
in mathematics, OSA assumes it is necessary to question the 
nature of mathematics and, therefore, develop explicit theories 
about the types and emergence of mathematical objects, the 
relationship of mathematics with languages, and material 
reality. It also assumes that mathematics education has a 
scientific (descriptive, explanatory and predictive) and 
technological (prescriptive) component and thus requires the 
development of tools to address the study of scientific and 
technological issues. 
The promotion of learning (growth of mathematical knowledge, 
understanding and competence) requires an appropriate 
selection of partial meanings of the content and an appropriate 
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sequence of didactic configurations that consider the 
ontosemiotic complexity of the content. 
 

Constructs. What 
elements constitute 
the theory? 

The constructs comprising each theory in the OSA theoretical 
system are: 

− Theory of mathematical activity: mathematical practices; 
types of objects and process; ontosemiotic configuration. 

− Theory of meaning and cognition: Semiotic function; types 
of meaning; knowledge, understanding, mathematical 
competence. 

− Theory of educational design: facets and components of an 
educational-instructional process; didactic configuration; 
didactic trajectory; normative dimension. 

− Theory of didactic suitability: didactic suitability; criteria of 
suitability. 

− Theory of teacher professional development: Didactic-
mathematical knowledge; didactic-mathematical 
competences; criteria of suitability of training programs.  

 
Relations. How are the 
elements of the theory 
related to each other? 

The constructs of meaning theory are based on the typology of 
practices and objects in mathematical activity theory. The 
theory of educational design draws on mathematical activity, 
meaning, and cognition theories. The components and sub-
components of the theory of suitability are based on the model 
of meaning and knowledge from the theory of mathematical 
cognition. The theory of teacher professional development 
builds on the other theories. 
 

Origin. On which 
theories is it based, 
and how? 

(See explanation for each theory) 
The philosophical component is based on the anthropological 
and conventionalist assumptions of Wittgenstein's philosophy 
of mathematics and Peirce's pragmatism. It also assumes 
Vygotsky’s cultural-historical view of cognition. 
 

Similarity. Which 
theories are most 
similar to this theory? 

OSA is related to anthropological theory in didactics 
(Chevallard, 1992; 1999), theory of didactic situations 
(Brousseau, 2002), sociocultural theories developed in 
mathematics education, such as the theory of objectification 
(Radford, 2006), cognitive theories, such as the theory of 
conceptual fields (Vergnaud, 1990), APOS (Dubinsky & 
McDonald, 2001), and theory of semiotic representation 
registers (Duval, 1995). 
 

Complementarity. 
With which theories 
can it be 
complemented? 

Theories related to OSA study partial aspects of mathematics 
education and provide results that complement analyses of 
ontosemiotic theories. For example, the Theory of Semiotic 
Representation Registers (Duval) delves into the types of 
languages used in mathematical activity and the treatments and 
conversions that they entail.  
 

Operationalization. 
How are the constructs 

(See explanation for each theory) 
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measured or 
identified? 
 
 
Uses. What can the 
theory be used for? 

Each partial theory in the OSA system is used to investigate 
issues relevant to mathematics education. 
 
The ontosemiotic theory of mathematical activity enables 
detailed analyses of mathematical activity and helps us 
understand the complexity of the objects and processes involved 
in problem solving, providing a foundation for educational-
instructional processes in mathematics. 
 
The ontosemiotic theory of meaning and mathematical 
cognition helps analyze and understand processes of 
representation and signification in the construction and 
communication of mathematical knowledge. It helps recognize 
different or partial meanings of mathematical objects and select 
a representative sample adapted to the given context. It makes 
it possible to recognize the web of knowledge involved in 
mathematical activity and, consequently, to elaborate an 
educational-instructional model that considers its complexity. 
 
Educational design theory is used to plan and implement 
educational processes in mathematics at the micro (lessons), 
meso (topics), and macro (programs) levels. It also serves as a 
tool to describe, explain, and assess educational processes 
designed from other theoretical perspectives, helping to identify 
aspects that can be improved.  
 
The theory of didactic suitability is a guide for designing locally 
suitable (optimal) instructional processes in mathematics to 
achieve the planned educational goals. It helps to become aware 
of the complexity of finding a weighted balance between the 
different facets involved (epistemic, ecological, mediational, 
interactional, cognitive, and affective). It is also used as a guide 
for evaluating the design and implementation of instructional 
processes and identifying aspects that can be improved. 
Therefore, it is a resource for teachers to reflect on their own 
practice. 
 
The theory of teacher professional development is used to 
design, implement, and evaluate specific mathematics teacher 
education programs and actions. The developed system of 
categories of didactical-mathematical knowledge and 
competences and the suitability criteria of the training programs 
can be used to describe and understand the activity of 
mathematics teacher educators and teachers and to identify 
possible improvements. 
 
Overall, the OSA has been developing a system of articulated 
theoretical instruments for the realization of research activities 
and teaching practice in mathematics education, considering 
the complexity of the aspects involved. 
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The complexity of mathematics education, as a field of research and 

practice, led us to develop five articulated theories that address issues related 

to theoretical foundations, design of educational processes, their 

implementation and evaluation, and teacher professional development. In 

the different chapters of the book, we justified the need to elaborate on the 

conceptual and methodological tools that characterize each partial theory. 

We have also addressed the study of the concordances and 

complementarities of OSA with various theories, in particular, the theory of 

didactic situations, the anthropological theory of didactics, realistic 

mathematics education, APOS theory, objectification theory, and the 

ethnomathematics program. These studies of theory articulation should be 

deepened and extended to other theories used in mathematics education, 

such as those mentioned by Asenova et al. (2024). The extent to which OSA 

is sufficient as a theoretical system for mathematics education should also be 

analyzed. Can we reduce to five theories that are necessary and sufficient for 

studying the scientific and technological research problems posed by 

mathematics teaching and learning, including teacher training? What 

changes and developments are necessary in OSA to effectively resolve the 

dilemmas and contradictions between different theories, avoid 

redundancies, and provide a shared language?  
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Synopsis 

 

Ontosemiotic Approach in Mathematics Education 

Foundations, Tools, and Applications  

 

This book addresses the dilemmas and contradictions posed by the diversity 

of theories elaborated to understand the complexity of teaching and learning 

in mathematics education research. The ontosemiotic approach to 

mathematical knowledge and education is a modular and inclusive 

theoretical system that addresses this problem. It comprises four articulated 

partial theories that address ontological, epistemological, and semiotic 

questions regarding mathematical knowledge and those related to the 

design, implementation, and evaluation of educational-instructional 

processes. These theories serve as the basis for developing a fifth theory on 

educating mathematics teachers and teacher educators. The book presents 

the initial assumptions and specific tools of each theory, along with examples 

of their application to different mathematical contents. It also includes a 

study of concordances and complementarities with other theoretical 

frameworks, particularly the theory of didactic situations, the 

anthropological theory of didactics, realistic mathematics education, APOS 

theory, objectification theory, and the ethnomathematics program. This book 

is useful for researchers in mathematics education, teacher educators, and 

mathematics teachers interested in understanding their professional 

activities and who want to learn tools to reflect on their practice. 
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