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A B S T R A C T

Surveys are going through massive changes, and the most important innovation is the use of
non-probability samples. Non-probability samples are increasingly used for their low research
costs and the speed of the attainment of results, but these surveys are expected to have strong
selection bias caused by several mechanisms that can eventually lead to unreliable estimates
of the population parameters of interest. Thus, the classical methods of statistical inference do
not apply because the probabilities of inclusion in the sample for individual members of the
population are not known. Therefore, in the last few decades, new possibilities of inference
from non-probability sources have appeared.

Statistical theory offers different methods for addressing selection bias based on the
availability of auxiliary information about other variables related to the main variable, which
must have been measured in the non-probability sample. Two important approaches are inverse
probability weighting and mass imputation. Other methods can be regarded as combinations of
these two approaches.

This study proposes a new estimation technique for non-probability samples. We call this
technique model-assisted kernel weighting, which is combined with some machine learning
techniques. The proposed technique is evaluated in a simulation study using data from a
population and drawing samples using designs with varying levels of complexity for, a study
on the relative bias and mean squared error in this estimator under certain conditions. After
analyzing the results, we see that the proposed estimator has the smallest value of both
the relative bias and the mean squared error when considering different sample sizes, and
in general, the kernel weighting methods reduced more bias compared to based on inverse
weighting. We also studied the behavior of the estimators using different techniques such us
generalized linear regression versus machine learning algorithms, but we have not been able
to find a method that is the best in all cases. Finally, we study the influence of the density
function used, triangular or standard normal functions, and conclude that they work similarly.

A case study involving a non-probability sample that took place during the COVID-19
lockdown was conducted to verify the real performance of the proposed methodology, obtain
a better estimate, and control the value of the variance.
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1. Introduction

Survey research is one of the most important sources of information on populations. Such research is typically conducted by
electing a probability sample because this enables the generalization of the results of the study to the entire population.

In recent years, however, non-probability samples have boomed, and estimation from non-probability data have been investigated
ore intensively by the survey methodology community. The analysis of databases that compile surveys carried out during the first

ear of the COVID-19 pandemic has made it possible to quantify this trend toward non-probability sampling designs. The latter
epresent 38% of the surveys included in Oxford Supertracker [1] and 92% in a review of surveys related to COVID-19 in Spain [2].

Non-probability sampling is a method that selects the elements of the population under study using non-random methods,
.e. subjective methods. This means that we cannot know precisely the probabilities that each individual belongs to our sample
inclusion probabilities), so we cannot correctly construct the estimators developed in the probability context. These methods are
aster, easier, and cheaper because a complete sampling frame is not necessary to obtain the samples, as in the case of probability
amples. On the other hand, the probabilities of selection of the units are not known, and this does not allow the generalization of
he study results to the entire population through classical statistical inference; as a consequence, the precision of non-probability
amples cannot be measured accurately, see Kalton [3].

The primary approaches for inference from non-probability sources are quasirandomization [4], superpopulation modeling [5],
nd doubly robust estimation [6]. In the quasirandomization approach, the unknown inclusion probabilities are estimated and the
nverse of these probabilities is used as weights in the same manner as in design-based inference. In superpopulation modeling,
he values of variables of interest for unsampled units are predicted using specified models. The doubly robust estimation combines
uasirandomization and superpopulation modeling. These methods for treating non-probability samples are based on modeling either
he probability of being included in the sample or, the variable under study, given a set of covariates. Usually, linear regression
odels are considered for estimation, but recently, some machine learning models have been used in this context. In this field, an

mmense number of papers have been presented in recent years, reflecting the importance assigned to this question (see e.g [5,7,8]
r [9] among others), including simulation studies to compare the efficiency of these alternatives for inference, but no clear results
ave been obtained regarding the best method to use.

Our work focuses on a new procedure to obtain estimations from non-probability samples data, seeking to achieve more accurate
nd reliable estimates through model-assisted estimators, which are designed to be approximately unbiased if the distribution that
enerates the probabilities or the superpopulation model are correctly specified. We will use kernel weighting [10] and some
achine learning techniques to create pseudo-weights using a reference probability sample. Section 2 describes the methodology
sed to construct the new estimators. In Section 3, a simulation study is conducted. A non-probability data selection scenario is
mplemented, and the behavior of the proposed inference method is evaluated by comparing the estimation results with known
opulation totals. In Section 4, we apply the proposed method to a non-probability sample [11], which was carried out in Spain
uring the COVID-19 lockdown. Finally, Section 5 presents the conclusion of the work and the results obtained.

. Methodology

Let be 𝑠𝑣 the non-probability sample obtained from population U, using a volunteer survey with size 𝑛𝑣. The response variable
is denoted by 𝑦 and the covariate vector is 𝐱 = (𝑥1,… , 𝑥𝑝). From the sample 𝑠𝑣, we can estimate the population mean 𝑌 = 1

𝑁
∑

𝑈 𝑦𝑖
y the sample mean 𝑦𝑣 =

∑

𝑖∈𝑠𝑣
𝑦𝑖
𝑛𝑣

=
∑

𝑈
1𝑣𝑖𝑦𝑖
𝑛𝑣

where 1𝑣𝑖 = 1 for 𝑖 ∈ 𝑠𝑣 and 1𝑣𝑖 = 0 elsewhere. Bias for this estimator 𝑦𝑣 [12] is given
by

𝐸(𝑦𝑣 − 𝑌 𝑁 ) = 1
𝑓𝑣

𝐸{𝐶𝑜𝑣(1𝑣, 𝑦)}, (1)

where 𝑓𝑣 = 𝑛𝑣∕𝑁 . Thus, we have

𝑀𝑆𝐸(𝑦𝑣) =
1
𝑓 2
𝑣
𝐸{𝐶𝑜𝑟𝑟(1𝑣, 𝑦)2}𝑉 𝑎𝑟(1𝑣)𝑉 𝑎𝑟(𝑦). (2)

The term 𝐸{𝐶𝑜𝑟𝑟(1𝑣, 𝑦)2} is the term most critical and therefore, a non-probability sampling where 𝐸{𝐶𝑜𝑟𝑟(1𝑣, 𝑦)} ≠ 0 induces a
selection bias to the results. Probability distribution underpinning the notation E() and MSE() is the distribution of the random
mechanism for the non-probability sample.

If we seek to eliminate volunteer bias in this type of sampling, we will need accurate auxiliary information related to the topic
that we study in our survey. Depending on the auxiliary information available, we may use different bias reduction techniques [13]:

• Population totals of covariates (often called control totals).
• Covariate values for every element in a reference probability sample.
• Covariate values for every element in the entire population.

In this study, we consider the second situation. We denote the probability sample by 𝑠𝑟, also called the reference sample, extracted
from the target population U with size 𝑛𝑟 and 𝐱 = (𝑥1,… , 𝑥𝑝) being the same covariate vector measured in the non-probability
sample 𝑠𝑣. For 𝑠𝑟, the probability that have each individual of belonging to our sample is known and greater than zero, which
are necessary conditions for a probability sample. These probabilities are also known as first-order inclusion probabilities (𝜋𝑟),
and we can obtain the design weights (𝑤 ) through its inverse, which is a key part of the estimates. In non-probability samples,
273
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inclusion probabilities are not known due to the lack of a probability theory to support them since the selection mechanism is
non-random. In the quasirandomization approach, we estimate the pseudo-inclusion probabilities. These estimated probabilities are
called propensities (𝜋𝑣) and will be the approach that we will use in this study. We assume an ignorable selection mechanism of
the non-probability sample, that is ∀𝑖 ∈ 𝑈 :

𝜋𝑣𝑖 = 𝑃
[

1𝑣𝑖 = 1|𝐱𝑖
]

where 1𝑣𝑖 =
{

1 for 𝑖 ∈ 𝑠𝑣
0 otherwise. (3)

We will elaborate a procedure for defining estimators for the population mean that includes (1) estimation of the propensity
scores, (2) use of the estimated propensities to construct weights for the units using kernel weighting, and (3) definition of a model-
assisted estimator that uses the propensity score model and regression model for the response variable. This proposal is described
below.

2.1. Estimation of propensity scores

We assume that the selection mechanism of 𝑠𝑣 follows the following model:

𝜋𝑣𝑖 = 𝑃 (1𝑣𝑖 = 1|𝐱𝑖) = 𝑝𝑖(𝐱) = 𝑚(𝜸, 𝐱𝑖), 𝑖 = 1,… , 𝑁, (4)

where 𝑚(⋅) is a given function with second continuous derivatives with respect to 𝜸.
We aimed to estimate propensity scores using data from both samples. First, we obtain 𝛾̂ that maximizes the pseudo-likelihood

[6]:

𝑙(𝜸) =
∑

𝑠𝑣

𝑙𝑜𝑔
𝑚(𝜸, 𝐱𝑖)

1 − 𝑚(𝜸, 𝐱𝑖)
+
∑

𝑠𝑟

1
𝜋𝑟𝑖

𝑙𝑜𝑔(1 − 𝑚(𝜸, 𝐱𝑖)). (5)

Once the pseudo-maximum likelihood estimator 𝜸̂ is obtained, the estimated propensities 𝜋̂𝑣𝑖 = 𝑚(𝜸̂, 𝐱𝑖) are used to readjust the
propensity bias of the volunteer sample.

Due to the binary nature of 1𝑣𝑖, logistic regression models are usually considered, but in the last few years, other machine learning
(ML) models have been used (e.g. [14]. A gradient-boosting machine (GBM) will be used in our work. This technique works as an
ensemble of weak classifiers. This algorithm converges toward the minimum value of the loss function by an iterative process. Then
the propensity is:

𝜋̂𝑣𝑖 = 𝐯𝑇 𝐽
(

𝐱𝑖
)

, 𝑖 ∈ 𝑠𝑣 (6)

where 𝐽
(

𝐱𝑖
)

is a matrix of terminal nodes of 𝑚 decision trees used for the boosting and 𝐯 is a vector indicating the weight of each
tree.

Once we have computed the propensities 𝜋̂𝑣, we will explain the technique for designing the weights for the units included in the
non-probability sample. The most used technique is inverse weighting [6], which is provided by the estimator ̂̄𝑌 𝑃𝑆𝐴 =

∑

𝑖∈𝑠𝑣
1
𝑁

𝑦𝑖
𝜋̂𝑣𝑖

.
This method is sensitive to the propensity model specification and produces highly uncertain estimates when there are extreme
weights [10]. In this work, we will focus on the kernel weighting (KW) method, which is less sensitive to model misspecification
and avoids extreme weights. The KW method has produced promising results [15].

2.2. Constructing weights for the units using the kernel weighting method (KW)

The KW method [10] constructs its new weights by weighting the design weights 𝑤𝑟 from the probability sample, which are
known and well-constructed, according to the similarity between the individuals from both samples. The idea is that if an individual
in the non-probability sample has similar characteristics (according to its covariates’ values) to those in the probability sample, then
both will have similar inclusion probabilities and therefore will have similar design weights. To obtain these similarities, we compute
the distance between individuals through the difference in the propensity scores, which is based on the values of the covariates:

𝑑𝑖𝑗 = 𝜋𝑣𝑖 − 𝜋𝑣𝑗 , 𝑖 ∈ 𝑠𝑣, 𝑗 ∈ 𝑠𝑟 (7)

These distances are symmetric, continuous, and positive; therefore they can be density functions of random distributions such as
the normal function or the triangular function. As we want to obtain proportions, called kernel weights, that measure the similarity
between individuals, the following expression is used:

𝑘𝑖𝑗 =
𝐾{𝑑𝑖𝑗∕ℎ}

∑

𝑖∈𝑠𝑣
𝐾{𝑑𝑖𝑗∕ℎ}

(8)

eing 𝐾{.} a kernel function centered at zero, and ℎ the corresponding bandwidth. These weights will take values between zero
nd one, and their sum for all individuals in the non-probability sample must be equal to one [10]. In this case, the larger the
alue of these weights, the smaller the difference between individuals. Finally, to compute the pseudoweights, we multiply the
esign weights 𝑤𝑟𝑗 , ∀𝑗 ∈ 𝑠𝑟, by the kernel weights 𝑘𝑖𝑗 , which measure the similarity between individuals, and do the sum for each
ndividual 𝑖 ∈ 𝑠𝑣. In this way, we obtain a pseudoweight for each individual in the non-probability sample of the form:

𝑤𝐾𝑊
𝑖 =

∑

𝑤𝑟𝑗𝑘𝑖𝑗 (9)
274
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We can define the new estimator:

𝑌 𝐾𝑊 = 1
𝑁

∑

𝑖∈𝑠𝑣

𝑤𝐾𝑊
𝑖 𝑦𝑖. (10)

Wang et al. [10] showed that the KW estimator 𝑌 𝐾𝑊 → 𝑌 in probability under certain conditions of the kernel function (see
ppendix A).

.3. The proposed new model-assisted estimator

We can also construct a model-assisted estimator using the reduction bias technique called statistical matching [16]. This is a
odel-assisted estimator because it is based on the modelization of the relationship between 𝑦 and the vector 𝐱, using a training set

the non-probability data obtained from 𝑠𝑣. For this, we have to assume that the target population is a realization of a superpopulation
model 𝑀 :

𝑦𝑖 = 𝑀
(

𝐱𝐢
)

+ 𝑒𝑖, 𝑖 = 1,… , 𝑁 (11)

being 𝑀
(

𝐱𝐢
)

= 𝐸𝑀 [𝑦𝑖|𝐱𝐢] and 𝑒 ∼ 𝑁(0, 𝜎). Once we have our model that explains the relationship between both variables, we will
predict the value of the response variable in 𝑠𝑟 using the covariate values from individuals that belong to this sample:

𝑦𝑖 = 𝐸𝑀
[

𝑦𝑖|𝐱𝐢, 1𝑖
]

, 𝑖 ∈ 𝑠𝑟. (12)

This estimation will depend on the model used, producing different results. We can use models like general linear models (GLM)
or a more innovative approach using machine learning models. One of the techniques that produces better results is extreme gradient
boosting (XGBoost), which has been shown to produce better results than traditional models [17].

The mean of the variable under study can be expressed as

𝑌 = 1
𝑁

(
∑

𝑘∈𝑈
𝑦̂𝑘 +

∑

𝑘∈𝑈

(

𝑦𝑘 − 𝑦̂𝑘
)

). (13)

Thus, we can compute an estimator using the generalized difference predictor given in Cassel et al. [18], as:

𝑌𝑀𝐴𝐾𝑊 = 1
𝑁

(
∑

𝑗∈𝑠𝑟

𝑤𝑟𝑗 𝑦̂𝑗 +
∑

𝑗∈𝑠𝑣

𝑤𝐾𝑊
𝑗

(

𝑦𝑗 − 𝑦̂𝑗
)

), (14)

where 𝑤𝐾𝑊
𝑗 are the weights from kernel weighting and the first term of the function is the Horvitz-Thompson estimator of the mean

of the predicted values.
We call this estimator the model-assisted kernel weighting estimator (MAKW).
Now we discussed the properties of the proposed estimator. We assume the regularity conditions given in Appendix A, and we

also assume a parametric regression model 𝑀
(

𝐱𝐢
)

= 𝑓 (𝐱𝐢, 𝜷). Let 𝑌 𝐻𝑇 = 1
𝑁

∑

𝑗∈𝑠𝑟 𝑤𝑟𝑗𝑦𝑗 the Horvitz-Thompson estimator, note that

𝑌𝑀𝐴𝐾𝑊 − 𝑌 𝐻𝑇 = 1
𝑁

∑

𝑖∈𝑠𝑣

𝑤𝐾𝑊
𝑖 𝑒𝑖 −

1
𝑁

∑

𝑗∈𝑠𝑟

𝑤𝑟𝑗𝑒𝑗 , (15)

here 𝑒𝑖 = 𝑦𝑖 − 𝑓 (𝐱𝐢, 𝜷̂) and 𝜷̂ a consistent estimator of 𝜷.
If model 𝑀 is correctly specified, under the regularity conditions given in Appendix A, we have:

𝐸(𝑌𝑀𝐴𝐾𝑊 − 𝑌 𝐻𝑇 ) ≈
1
𝑁

(
∑

𝑗∈𝑈
𝑒𝑗 −

∑

𝑗∈𝑠𝑟

𝑤𝑟𝑗𝑒𝑗 ), (16)

where 𝑒𝑗 = 𝑦𝑗 − 𝑓 (𝐱𝐣, 𝜷∗) and 𝜷∗ is the probability limit of 𝜷̂. The second term is asymptotically design unbiased for 1
𝑁

∑

𝑗∈𝑈 𝑒𝑗 , so

he estimator 𝑌𝑀𝐴𝐾𝑊 is asymptotically unbiased under the pseudo-inclusion model.
On the other hand, if the outcome regression model is correctly specified, then 𝐸𝑀 (𝑒𝑗 ) ≈ 0, thus 𝐸𝑀 (𝑌𝑀𝐴𝐾𝑊 − 𝑌 𝐻𝑇 ) ≈ 0

and 𝑌𝑀𝐴𝐾𝑊 is an approximately unbiased estimator of the population mean. Therefore, we have established double robustness of
𝑌𝑀𝐴𝐾𝑊 , our proposed estimator is approximately unbiased if the pseudo-inclusion or superpopulation models are correctly specified.

.4. Variance estimation

There is no agreement on how to determine the efficiency of estimators based on non-probability samples. The variance of the
roposed estimators could be calculated with respect to the distribution of the probability sample design, with respect to the random
echanism of the pseudo-inclusion model, and with the superpopulation model 𝑀 . Therefore, there are three sources of variation.

It should be noted that the sample design used for obtaining 𝑠𝑟 influences the calculation of the propensities and must be
onsidered as a source of variation in the estimation of the variance component due to the use of 𝑠𝑣. Valliant [7] proposed an

estimator of variance for the propensity score adjustment (PSA) estimator ̂̄𝑌 𝑃𝑆𝐴 =
∑

𝑖∈𝑠𝑉
1
𝑁

𝑦𝑖
𝜋𝑣𝑖

using linearization, when 𝜋𝑣𝑖 is
estimated using the logistic model. However, this estimator does not consider the distribution of the probability sample design, and
consequently, the variance is underestimated. This author also proposed a grouped jackknife in which both the random mechanism of
275
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Table 1
|𝑅𝐵| and RMSRE of the estimators.

𝑛𝑟 = 1000, 𝑛𝑣 = 500 𝑛𝑟 = 1000, 𝑛𝑣 = 1000 𝑛𝑟=1000, 𝑛𝑣 = 1500

|RB| RMSRE |RB| RMSRE |RB| RMSRE

̂̄𝑌𝑃𝑆𝐴 2,2513 2,3776 2,2514 2,3399 2,2278 2,2830
̂̄𝑌𝐾𝑊 0,8980 1,1029 0,8220 1,0152 0,7570 0,9251
̂̄𝑌𝐷𝑅 1,1243 1,3513 1,1677 1,3649 1,1612 1,3373
̂̄𝑌𝑀𝐴𝐾𝑊 0,8080 0,9806 0,7781 0,9676 0,7546 0,9244

Table 2
|𝑅𝐵| and RMSRE of the proposed estimator for different techniques.

𝑛𝑟 = 1000, 𝑛𝑣 = 500 𝑛𝑟 = 1000, 𝑛𝑣 = 1000 𝑛𝑟 = 1000, 𝑛𝑣 = 1500

|RB| RMSRE |RB| RMSRE |RB| RMSRE

̂̄𝑌𝑀𝐴𝐾𝑊 _𝐺𝐿𝑀 0,8080 0,9806 0,7781 0,9676 0,7546 0,9244
̂̄𝑌𝑀𝐴𝐾𝑊 _𝐾𝑁𝑁 0,8347 1,0249 0,6977 0,8891 0,6677 0,8184
̂̄𝑌𝑀𝐴𝐾𝑊 _𝑁𝑁 0,9644 1,2140 0,8124 0,9918 0,7433 0,9461
̂̄𝑌𝑀𝐴𝐾𝑊 _𝐺𝐵𝑀 0,8372 1,0114 0,8007 0,9827 0,7917 0,9606

Table 3
|𝑅𝐵| and RMSRE for normal kernel density.

𝑛𝑟 = 1000, 𝑛𝑣 = 500 𝑛𝑟 = 1000, 𝑛𝑣 = 1000 𝑛𝑟 = 1000, 𝑛𝑣 = 1500

|RB| RMSRE |RB| RMSRE |RB| RMSRE

̂̄𝑌𝐾𝑊 _𝑆𝑁 0,8644 1,0587 0,7808 0,9655 0,6900 0,8517
̂̄𝑌𝑀𝐴𝐾𝑊𝑁_𝑆𝑁 0,8142 0,9888 0,7530 0,9346 0,6915 0,8600

the pseudo-inclusion model and the sampling design are repeated for each replicate. This replication method is more computationally
complex but can implicitly reflect the variation due to the estimated weights. However, its consistency has not been formally proven.

Variance estimation for the model-assisted estimator is a challenging problem. It is difficult to construct a consistent variance
stimator with unknown scenarios on the model specifications [9]. Chen et al. [6] described a technique for the variance of the
stimator 𝑌 𝐷𝑅 = 1

𝑁 (
∑

𝑗∈𝑠𝑟 𝑤𝑟𝑗 𝑦̂𝑗 +
∑

𝑗∈𝑠𝑣
1
𝜋𝑣𝑗

(

𝑦𝑗 − 𝑦̂𝑗
)

), when using linear models for the propensities and for modeling the 𝑦 values.
he technique is delicate with various issues for practical applications. On the other hand, there are hardly any results on the
heoretical properties of variance estimators when more complex machine learning models and techniques are used, as in our case.

In the real application described in the following section, we have chosen a jackknife methodology [19] similar to that used by
alliant [7]. In this replication variance estimation method, each 𝑠𝑣/𝑠𝑟 combination is divided into random groups, and the model

or predicting the propensities is readjusted in every group, i.e., both the quasirandomization given by propensities and regression
odel estimation steps are calculated for each replicate.

. Simulation study

To test the behavior of the inference methods described in the previous section, we simulate a population 𝑈 of size 10000 with
ne variable of interest and six auxiliary variables 𝐱 = (𝑥1,… , 𝑥6) that we use to estimate the propensities, specifically 𝑥1, 𝑥3, 𝑥5,
ollowed a Bernoulli distribution with 𝑝 = 0.6 and 𝑥2, 𝑥4, 𝑥6 followed a Normal distribution with a standard deviation of 0.5 and a
ean parameter dependent on the value of the previous Bernoulli variable for each individual

𝑥1𝑖, 𝑥3𝑖, 𝑥5𝑖 ∼ 𝐵𝑒(0.6) 𝑖 ∈ 𝑈

𝑥𝑗𝑖 ∼ 𝑁(𝜇𝑗𝑖, 0.5) 𝑖 ∈ 𝑈, 𝑗 = 2, 4, 6

𝜇𝑗𝑖 =
{

1 if 𝑥(𝑗−1)𝑖 = 1
0 otherwise , 𝑖 ∈ 𝑈, 𝑗 = 2, 4, 6. (17)

By using simple random sampling without replacement, we extracted 𝑛𝑟 = 1000 samples and non-probability samples were
xtracted by Poisson sampling with probability

𝑙𝑛
(

𝜋𝑣
1 − 𝜋𝑣

)

= −1 +
√

3𝜋𝑥2𝑥3 (18)

for different sample sizes 𝑛𝑣 = 500, 1000, and 1500. Finally, the variable of interest is defined as
276

𝑦 = 𝑁(3, 0.5) + 𝜋𝑣 + 2𝑥5. (19)
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Fig. 1. Without adjustment, kernel and model-assisted kernel estimations for variables of interest.

where 𝜋𝑣 is the probability defined by Poisson sampling, so it would be an example of missing not at random data, where the
outcome is directly related to the selection mechanism. We use generalized linear models to estimate the propensities and to obtain
the predicted values 𝑦̂𝑖. We used the triangular density on (−3, 3) (previously used by [10]) as the selected kernel function. We
focus on the model-assisted kernel weighting (MAKW) discussed in this paper. We also calculate three other estimators: propensity
score adjustment (PSA), kernel weighting (KW) and doubly robust (DR) estimators. To compare the results, we calculate the relative
bias (|𝑅𝐵|) of the estimators and the root mean square relative error (𝑅𝑀𝑆𝑅𝐸)

|𝑅𝐵| = 1
1000

1000
∑

𝑖=1

|𝑦̄𝑖 − 𝑌 |
𝑌

∗ 100 (20)

𝑅𝑀𝑆𝑅𝐸 =

√

√

√

√
1

1000

1000
∑

𝑖=1

(

𝑦̄𝑖 − 𝑌
𝑌

)2

∗ 100 (21)

being 𝑦̄𝑖 an estimate of 𝑌 computed for the 𝑖th sample.
The R packages sampling, survey, caret, NonProbEst, and KWML are used to calculate propensities, sampling weights, and

estimators.
The simulation results in various values of 𝑛𝑣 are reported in Table 1.
Results from Table 1 can be summarized in the following points: (1) the proposed estimator ̂̄𝑌𝑀𝐴𝐾𝑊 has the smallest of both

|RB| and RMSRE. (2) In general, the KW- methods (including ̂̄𝑌𝐾𝑊 and ̂̄𝑌𝑀𝐴𝐾𝑊 ) reduced bias more than methods based on inverse
weighting ( ̂̄𝑌𝑃𝑆𝐴 and ̂̄𝑌𝐷𝑅). (3) As sample size 𝑛𝑣 increases, the biases and errors of the estimators decrease.

The second study examines the behavior of the estimator when using different techniques, including generalized linear regression
(GLM) and machine learning techniques, specifically, K nearest neighbor (KNN), neural network (NN), and gradient boosting
machine (GBM). The simulation results are reported in Table 2.

Linear models seem to be the most robust compared to machine learning models. In some cases, other methods achieve good
results, but we do not find a method that is the best in all cases.

Finally, we will study the influence of the density function used. We also considered the standard normal density (SN). Results
are shown in Table 3.

In view of the results, we see that both density functions work in a similar way with respect to |𝑅𝐵| and RMSRE, although it
seems that using the normal density produces slightly smaller values. Therefore, we can say that there is little influence of the kernel
function in this study.
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In summary, this simulation study shows the robustness of the proposed estimator, which is already capable of reducing bias in
ituations in which the model is poorly specified.

. Survey on habits and living conditions in Spain during home confinement

The proposed method is applied to data obtained from a survey conducted in Spain during the COVID-19 lockdown [11]. This
urvey was conducted between 28th April and 14th May in 2020, and it is a non-probability sample because they used a snowball
ampling via email and social media, so we can expect a significant lack of representativity and the estimates obtained will be highly
iased. With this survey, they wanted to get information about how the people in Spain lived and felt during these lockdowns, so
hey asked about household habits, employment issues, health, and politics. They also obtain some sociodemographic variables that
efine each individual who participated in the survey (auxiliary variables). Some of these variables are the same as those used in
he CIS Barometer of May 2020 [20]. We will obtain our reference sample from this survey because it was conducted by an official
nstitution following strict methodologies and we consider it a probability survey. The CIS is the Spanish Sociological Research
enter; therefore, both surveys have the same target population and both were developed during the same period.

The auxiliary variables that both samples have in common are: age, autonomous community, education level, confidence in the
overnment during the pandemic, employment status, intended electoral vote, last electoral vote, province, sex, and urban density.

In Fig. B.2 (Appendix B), the relative frequencies of some auxiliary variables can be obtained for both samples and the population
alues obtained from official national organizations when these are available. If we observe the autonomous community, we can see
hat in most communities, the non-probability sample under-represents this value; however, in the community of Ceuta, it is highly
ver-represented. In the case of the urban density variable, the non-probability sample under-represents the population value in all
ategories, except in the last category, that is, in large urban centers. With respect to sex, in the man category, both samples were
nderrepresented with respect to the population value. Regarding the age variable, we have considered three age ranges, with the
ower limit being 18 years, since we are conducting a study on economic variables, specifically on work issues. In this case, in the
irst two categories, the non-probability sample under-represents the population, and in the third category, which includes workers
ver 45 years of age, it is over-represented in both samples. We compute three different estimators: The naive estimator without
djustment 𝑦𝑣, the kernel estimator 𝑌 𝐾𝑊 , and the model-assisted kernel estimator, 𝑌𝑀𝐴𝐾𝑊 .

To obtain the results, we analyzed the questions with binary answers Yes/No from Pérez et al. [11] related to productivity and
work experience during confinement, specifically, 3001 A (which we will called WP), 3001B (WE1, WE2, WE3, WE4, WE5), and
3001C (WPI1, WPI2, WPI3, WPI4, WPI5).

The differences between the estimations obtained considering the 𝑦𝑣, 𝑌 𝐾𝑊 , and 𝑌𝑀𝐴𝐾𝑊 estimators for each of the main questions
are observed in Fig. 1.

In Fig. 1 it can be seen that in all the variables of interest, the estimate using the model-assisted kernel is higher than that
obtained without adjustment or using only KW. Regarding the variance, if we look at the Table C.4 (Appendix C), we see that
the two methods that use the kernel have greater variance than the naive estimator, as we expected, since we must include the
variability due to the calculation of the propensities.

5. Conclusions

The use of non-probability samples for academic research and official statistics requires a valid inference framework based on
sample data and possible auxiliary information. We consider the situation in which this auxiliary information is provided by a
probability sample representing the population well but excludes the study variable.

The proposed estimation method employs explicit assumptions for the outcome regression and quasirandomization models. The
method is based on kernel weighting methodology that uses estimated propensities as a measure of similarity and is therefore
less sensitive to model misspecification than the usual inverse propensity method [7]. The proposed estimator has good robustness
properties against deviations in the model specification of the propensity score model or the outcome model. We have also confirmed
with a simulation study that the use of this method produces an effective bias reduction while controlling variance. The practical
application carried out shows the importance of the differences in the estimates obtained between the different methods.

CRediT authorship contribution statement

Beatriz Cobo: Writing – review & editing, Writing – original draft, Software, Methodology, Funding acquisition, Formal analysis,
Data curation, Conceptualization. Jorge Luis Rueda-Sánchez: Writing – original draft, Software, Formal analysis, Data curation.
amón Ferri-García: Writing – original draft, Methodology, Funding acquisition.María del Mar Rueda:Writing – review & editing,

Writing – original draft, Methodology, Funding acquisition, Conceptualization.

Acknowledgments

This work is part of grant PDC2022-133293-I00 funded by the MCIN/AEI/10.13039/5011000 11033, Spain and the European
Union ‘‘NextGenerationEU’’/PRTR’’1 and the grant FEDER C-EXP-153-UGR23 funded by the Consejería de Universidad, Investigación
e Innovación and by the ERDF Andalusia Program 2021–2027, Spain. The research was also partially supported from IMAG-María
de Maeztu CEX2020-001105-M/AEI/10.13039/501100011033 and PPJIA2023-030 of the University of Granada, Spain. Funding for
278

open access charge: Universidad de Granada / CBUA.



Mathematics and Computers in Simulation 227 (2025) 272–281B. Cobo et al.
Appendix A. Regularity conditions

The first and second-order probabilities verify:
(1a) 𝑁−2 ∑𝑁

𝑖≠𝑗=1(𝜋𝑖𝜋𝑗 − 𝜋𝑖𝑗 )𝑟 = 𝑂(𝑛−2𝑟𝛿)
(2a) 𝑁−1 ∑𝑁

𝑖=1(𝑦𝑖∕𝜋𝑖 − 𝑌 ∕𝑛)2𝑘 < 𝑀 < ∞ for 𝛿 > 0 and 𝑟−1 + 𝑘−1 = 1
The kernel function 𝐾(𝑢), the bandwidth ℎ, and the sampling schemes verify the following:
(2a) 𝐾(𝑢), ∫ 𝐾(𝑢)𝑑𝑢 = 1, sup𝑢 |𝐾(𝑢)| < ∞, and lim

|𝑢|→∞ |𝑢||𝐾(𝑢)| = 0
(2b) ℎ = ℎ(𝑛𝑣), ℎ → 0, 𝑛𝑣 ℎ → ∞ when 𝑛𝑣 → ∞
The distributions of the estimated propensity scores in the probability and non-probability samples are interchangeable.

Appendix B. Relative frequencies in both surveys and the population values for the covariables

See Fig. B.2.

Fig. B.2. Relative frequencies.
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Fig. B.2. (continued).
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Appendix C. Without adjustment, kernel and model-assisted kernel estimations and variances for variables of interest

See Table C.4.

Table C.4
Without adjustment, kernel, and model-assisted kernel estimations and variances for variables of interest.

Variable Without adjustment Kernel Model-assisted kernel

Estimation Variance Estimation Variance Estimation Variance

WP 0,2949 1,24E−05 0,2835 8,99E−04 0,5071 2,16E−04
WE1 0,0503 4,98E−06 0,0510 7,93E−04 0,1229 7,56E−05
WE2 0,0702 6,39E−06 0,0685 1,09E−03 0,1722 1,19E−04
WE3 0,0775 6,82E−06 0,0808 1,15E−03 0,2292 1,18E−04
WE4 0,0736 6,59E−06 0,0644 1,23E−03 0,1860 1,24E−04
WE5 0,1329 8,74E−06 0,1469 1,34E−03 0,3500 1,27E−04
WPI1 0,0807 7,00E−06 0,0759 9,75E−04 0,2696 8,32E−05
WPI2 0,0168 1,89E−06 0,0266 7,17E−04 0,0486 5,17E−05
WPI3 0,0315 3,35E−06 0,0399 9,13E−04 0,0658 7,66E−05
WPI4 0,0099 1,14E−06 0,0030 6,60E−06 0,0131 7,48E−07
WPI5 0,1755 8,52E−06 0,1674 1,28E−03 0,4542 1,09E−04
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