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ABSTRACT

This work is motivated by the interest in determining the effect of the micro-anatomy of the spinal subarachnoid space (SSAS) on the cere-
brospinal fluid flow. To that aim, we model the nerve roots in the SSAS by circular posts of radius a, confined between two parallel plates sep-
arated by a distance 2h and subjected to an oscillatory flow of angular frequency x. First, we analyze the asymptotic limit of small values of
the dimensionless stroke length of the oscillatory flow, for a harmonic waveform, varying the aspect ratio of the post k ¼ h=a and the
Womersley number Wo ¼ ða2x=�Þ1=2. For low values of Wo, the time-averaged steady flow exhibits symmetric recirculating vortices
attached to the wall of the post whose size decreases as Wo increases. However, for values of Wo larger than a critical one, WocðkÞ, which
depends on k, a second, outer vortex is also formed. The dependence of WocðkÞ has been quantified in the range 0:5 < k < 1, showing a
decrease in Woc with k. The analysis has been corroborated experimentally for k¼ 2, and varying Wo, the stroke length as well as the wave
form of the oscillating flow. Imposing an anharmonic oscillating flow shows that the fort-and-aft symmetry of the steady flow is broken, with
the formation of two vortices of different size when Wo < Woc and only one outer vortex in the systolic direction when Wo > Woc. Finally,
the study is experimentally extended considering an array of equally spaced posts, separated a semi-distance d ¼ 2a aligned with the flow.
Qualitatively, the steady flow patterns induced for ‘ ¼ d=a ¼ 2 are similar to those for ‘ ! 1, although the presence of the nearby posts
confines the recirculating vortices and delays the flow transition, increasing WocðkÞ.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0209927

I. INTRODUCTION

The spinal subarachnoid space (SSAS) forms an annular slender
canal filled of cerebrospinal fluid (CSF) bounded externally by the
dura membrane and internally by the pia membrane surrounding the
spinal cord. Along it, CSF features an oscillatory velocity, mainly
induced by the combined contribution of the cardiac and the respira-
tory cycles.1,2 The anatomy of the SSAS is known to present a complex
geometry, including the presence of microanatomical elements,3

namely, trabeculae, denticulate ligaments, and nerve roots, across the
width of the canal, that is much smaller than its perimeter and which,
in turn, is much smaller than its length. In particular, nerve roots are
present in most spinal segments and can be found on both sides of the
canal arranged in bundles that emerge from the spinal cord and exit

the vertebral column through the intervertebral discs (see Fig. 1).
These elements have been reported to play an important role in the
transport of substances along the spinal canal,4–9 such as drugs injected
intrathecally. The present paper, focused on a simplified geometry, is
inspired by the study of the effect of such elements on the flow of CSF
and the transport of solutes in the SSAS. Thus, taking into account the
anatomy of the canal, the description of the effect of nerve roots in the
SSAS can be approached, in a first approximation, as that of a flat canal
in the presence of obstacles facing the oscillatory CSF flow (see Fig. 2).
This configuration is used herein to elucidate the influence of these
anatomical elements on the CSF flow, and more specifically on the
mean, steady Lagrangian motion that is generated, and which is
mainly responsible for the transport of solutes.10 The mean
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Lagrangian velocity experienced by a fluid particle in the SSAS is the
sum of the steady-streaming velocity, determined by time-averaging
the Eulerian velocity field11,12 and the Stokes drift,13 a purely kinematic
effect associated with the spatial nonuniformity of the pulsatile flow.

The phenomenon of steady or acoustic streaming, documented
by Rayleigh14 in the last quarter of the 19th century, has been exten-
sively studied since then and it is considered a classical fluid mechanics
problem. It is known that an oscillating fluid stream, characterized by
a velocity U1 cosðxt0Þ, interacting with a stationary solid body, leads
to a time-averaged steady-streaming motion.11 The resulting solution
depends on the velocity amplitude, U1, the object size, a, the oscillat-
ing angular frequency, x, and the fluid’s kinematic viscosity, �. These
parameters can be combined to give two dimensionless, controlling
parameters, i.e., the dimensionless stroke length e ¼ U1=xa, and the
Womersley number Wo ¼ ða2x=�Þ1=2, related to the Reynolds num-
ber by Re ¼ U1a=� ¼ eWo2. For e � 1, the problem permits a theo-
retical description, where the velocity components are expressed as an
asymptotic expansion involving powers of e. The leading-order terms,
satisfying convection-free linear equations, manifest as harmonic func-
tions with zero time-averaged values, while the first-order corrections
introduce a non-zero steady-streaming component.11

In the case of two-dimensional oscillating flow around a circular
cylinder of radius, a, much smaller than its length, Holtsmark et al.15

derived an analytical description of the Eulerian velocity for e � 1,
reformulated in primitive variables in the Appendix. This analysis pro-
vided expressions for both the dominant harmonic velocity and the
subsequent first-order velocity corrections, later refined by Chong
et al.16 In the distinguished regime of Wo � 1, the magnitude of the
resulting steady-streaming velocity is of the order of that of the Stokes
drift,17 what requires to take into account both phenomena to fully
describe the mean, steady Lagrangian flow. In this case, the symmetry
of the problem yields identical recirculatory patterns in all four quad-
rants. More precisely, when Wo is smaller than a critical value, Woc,
each quadrant displays a single vortex directed toward the cylinder
along the oscillation axis. However, for larger values of Wo, an

additional outer vortex is formed, a feature also confirmed by accom-
panying experiments.15 As Wo increases, the outer vortex strengthens
while the inner one diminishes, being ultimately confined to a thin
near-surface Stokes layer when Wo � 1. Similar flow characteristics
have been observed when the flow is confined between two coaxial cyl-
inders, with the inner one oscillating and the outer one fixed.18

In the early seventies, Tatsuno19 investigated experimentally the sec-
ondary flow induced by an oscillating circular cylinder confined radially
for values ofWo � 1 and finite dimensionless stroke lengths e, finding a
behavior similar to that of Skavlem and Tj€otta18 but different values of
the critical parameters. While the oscillating flow for e � 1 remains peri-
odic and symmetric about the oscillation axis, the solution encountered
when e takes values that are not sufficiently small is known to be more
complicated. The periodic viscous flow becomes unstable to axially peri-
odic vortices above a critical value of e that depends onWo leading to an
asymmetrical flow featuring vortex shedding. This symmetry breaking is
apparent in the experiments of Tatsuno and Bearman,20 who identified
eight different regimes of flow and reported a three-dimensional instabil-
ity along the axis of the cylinder for most of the regimes with turbulent
motion arising as the Reynolds number Re ¼ eWo2 exceeded a critical
value. Furthermore, Justesen21 carried out a numerical study of planar
oscillating flow around a circular cylinder in the range of high Reynolds
number and finite e where, depending on the parameters values, several
flow regimes that included vortex shedding were documented.

Extension to two-dimensional configurations with multiple (infi-
nitely long) cylinders can also be found in the literature.22,23 Of partic-
ular interest to the case of CSF flow over a bundle of nerve roots is the
array of cylinders considered by Alaminos et al.23

Regarding three-dimensional streaming flows in confined geome-
tries, flow visualization has shown that, in the distinguished limit of
Womersley number of order unity with solid boundaries, depending
on the boundary layer thickness, the confined case remains very simi-
lar to the two-dimensional one toward the central plane.24,25 In the
same regime, measurements of the three-dimensional velocity field
show apparent three-dimensional effects which cannot be ignored,
except in the midplane where symmetry enforces no axial motion, i.e.,
null velocity in the cylinder’s axis direction.26 Also for Womersley
number of order unity and streaming Reynolds numbers,
Res ¼ e2Wo2 � 1, when the boundary surface is a bubble excited
acoustically confined between two parallel walls, experiments reveal
that there are large axial displacements near the bubble,27 which was
also analytically reported later.28 Similarly, three-dimensional stream-
ing flows involving multi-curvature bodies have been also studied.29

The objective of the present work is to delve into the complexities
of an oscillating, viscous and incompressible flow around a circular

FIG. 1. Representation of the spinal canal with indication of the nerve roots
across it.

FIG. 2. Schematic configuration of the flow.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 071903 (2024); doi: 10.1063/5.0209927 36, 071903-2

Published under an exclusive license by AIP Publishing

 31 July 2024 07:35:38

pubs.aip.org/aip/phf


cylindrical post confined between two parallel flat plates, as depicted in
Fig. 2. As mentioned above, the work is motivated by the effect of
nerve roots crossing the SSAS (Fig. 1) on the CSF flow in the spinal
canal. The radii of these nerve roots range between a � 1.25–3mm,30

and the width of the canal h � 1.5–10mm,31,32 such that their aspect
ratio, defined by k ¼ h=a, ranges k � 0.5–8. Since the cardiac fre-
quency is approximately 1 s�1, and the viscosity of CSF is
0:7mm2 s�1, the Womersley number ranges between 3.7 and 9,
approximately. In the cervical spine, where the time-averaged velocity
over an oscillation period is approximately 1 cm s�1, the dimensionless
stroke length e ranges 0.5–1.3, whereas in the lumbar spine, due to the
much smaller velocities, on the order of 0:2 cm s�1, the dimensionless
stroke length e is 0.1–0.25. To the best of our knowledge, situations
where the obstacle is confined between parallel plates such that the
aspect ratio k � 1–10, for Womersley numbers Wo � 1–10, have not
been explored before. Although the main focus of the present work
resides in the effect of confinement in the transverse direction, two
separate extensions are included to bridge the gap with the realistic
case of CSF flow over a bundle of nerve roots: we consider an magnetic
resonance imaging (MRI)-based anharmonic waveform of the flow
rate, and we study an array of confined cylindrical posts. In contrast to
the two-dimensional problem in Alaminos et al.,23 here, we take into
account the confinement suffered by the cylinder array, pinched
between the pia and dura mater.

The paper is organized as follows. In Sec. II, an standard asymp-
totic analysis of steady-streaming flows for small stroke lengths, e � 1,
has been carried out together with the computation of the velocity cor-
rection or Stokes-drift. The numerical results are presented in Sec. III.
In particular, the influence of the aspect ratio of the post on the
streaming flow and the evaluation of the Lagrangian mean velocity
field are reported in this section. Section IV is devoted to describe the
complementary experiments performed, the results obtained being
reported in Sec. V. Finally, concluding remarks, limitations, and future
work are presented in Sec. VI.

II. FORMULATION

A fluid of density q and kinematic viscosity � fills the gap
between two infinite parallel plates separated by a distance 2h (see
Fig. 2). Application of a uniform harmonic pressure gradient of angu-
lar frequency x in a given direction x parallel to the plates results in a
unidirectional motion with harmonic velocity v0 given by

v0

uc
¼Re ieixt

0
cosh

1þ i
2

� �
h=

ffiffiffiffiffiffiffiffiffi
�=x

p� �
�cosh

1þ i
2

� �
z0=

ffiffiffiffiffiffiffiffiffi
�=x

p� �

cosh
1þ i
2

� �
h=

ffiffiffiffiffiffiffiffiffi
�=x

p� �
�1

8>>><
>>>:

9>>>=
>>>;
ex;

(1)

where t0 and z0 are the dimensional time and distance to the central
plane, respectively, ex is the unit vector parallel to the pressure gradi-
ent, and uc is the peak velocity amplitude, occurring at z0 ¼ 0. The
exact solution (1) is altered by the presence of obstacles. We con-
sider, in particular, the case of a circular cylinder perpendicular to
the plates whose radius a is comparable to the inter-plate semidis-
tance h, so that k ¼ h=a � 1. The description assumes frequencies x
comparable to the inverse of the viscous time ða2=�Þ�1 and stroke

lengths uc=x small compared with the cylinder radius a, as mea-
sured by the parameters

Wo ¼ a2x
�

� �1=2

� 1 and e ¼ uc=x
a

� 1: (2)

Usingx, a, uc, and qucxa as scales for the time t, cartesian coordinates
(x, y, z), velocity v ¼ ðu; v;wÞ, and spatial pressure difference p
reduces the problem to that of integrating

r � v ¼ 0; (3)

@v
@t

þ ev � rv ¼ �rpþ 1
Wo2

r2v; (4)

for x2 þ y2 > 1 and �k � z � k subject to the nonslip boundary
conditions

v ¼ 0
at x2 þ y2 ¼ 1 for � k � z � k;

at z ¼ 6k for x2 þ y2 > 1;

(
(5)

and the far-field condition

v ¼ Re ieitU0ðzÞ
� �

; 0; 0
	 


as x2 þ y2 ! 1 for� k � z � þk;

(6)

where

U0ðzÞ ¼
cosh

1þ i
2

Wok

� �
� cosh

1þ i
2

Woz

� �

cosh
1þ i
2

Wok

� �
� 1

; (7)

as follows from Eq. (1). In the limit e � 1, the dependent variables can
be expressed as expansions in powers of e as follows:

v ¼ v0 þ ev1 þ � � � and p ¼ p0 þ ep1 þ � � � : (8)

As can be anticipated from the two dimensional configuration, at the
leading order in the limit e � 1, the resulting motion is determined by
a linear problem involving the balance of the local acceleration with
the pressure and viscous forces. Convective acceleration will be seen to
introduce a small relative correction of order e, including a steady-
streaming component, which is to be determined here.

A. Leading-order flow

The leading-order harmonic solution can be expressed in the
form v0 ¼ Re½ieitV� and p0 ¼ Re½eitP�, where Vðx; y; zÞ ¼ ðU ;V;WÞ
and Pðx; y; zÞ, by integration of

r � V ¼ 0; (9)

�V ¼ �rP þ i
Wo2

r2V; (10)

subject to the nonslip boundary conditions

V ¼ 0
at x2 þ y2 ¼ 1 for � k � z � k;

at z ¼ 6k for x2 þ y2 > 1;

(
(11)

and the far-field condition

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 071903 (2024); doi: 10.1063/5.0209927 36, 071903-3

Published under an exclusive license by AIP Publishing

 31 July 2024 07:35:38

pubs.aip.org/aip/phf


V ¼ U0ðzÞ; 0; 0½ � as x2 þ y2 ! 1 for� k � z � þk: (12)

B. Steady streaming

Collecting terms of order e, the following order becomes

r � v1 ¼ 0; (13)

@v1
@t

þ v0 � rv0 ¼ �rp1 þ 1
Wo2

r2v1; (14)

with boundary conditions

v1 ¼ 0

at x2 þ y2 ¼ 1 for � k � z � k;

at z ¼ 6k for x2 þ y2 > 1;

as x2 þ y2 ! 1 for � k � z � k:

8><
>: (15)

The first-order corrections v1 and p1 are 2p-periodic functions of time.
As a result of the nonlinear interactions associated with the convective
terms, their time-averaged values vSS ¼ hv1i and pSS ¼ hp1i are non-
zero, with h�i ¼ Ð 2p0 �dt denoting the time-average operator. Taking
the time average of (13)–(15) and using the identity hv0 � rv0i
¼ 1

2 Re½V � rV	�, where 	 denotes complex conjugates, yields the
steady-streaming problem

r � vSS ¼ 0; (16)
1
2
Re V � rV	½ � ¼ �rpSS þ 1

Wo2
r2vSS; (17)

with boundary conditions

vSS ¼ 0

at x2 þ y2 ¼ 1 for � k � z � k;

at z ¼ 6k for x2 þ y2 > 1;

as x2 þ y2 ! 1 for � k � z � k:

8><
>: (18)

The steady-streaming velocity vSS ¼ hv1i provides the leading-
order description for the mean Eulerian velocity hvi ¼ evSS in the
asymptotic limit e � 1.

C. Lagrangian mean motion

When addressing the oscillating flow around a cylinder, the
Lagrangian mean motion of the fluid particles comes partly from the
contribution of the Eulerian mean motion (vSS ¼ hv1i) and partly
from that of the so-called Stokes drift, arising in non-uniform oscillat-
ing flows. Consequently, streamlines visualized in experiments
employing dyed fluid do not coincide in general with those determined
from the steady-streaming velocity. The velocity of the Lagrangian
mean motion is

vL ¼ vSS þ 1
2
ImðV � rV	Þ; (19)

where 1
2 ImðV � rV	Þ corresponds to the Stokes drift contribution. Of

particular interest is the role played by the complex function 1
2V � rV	

in determining the Lagrangian mean motion. In the steady streaming
formulation, as discussed in (16) and (17), the forcing term is the real
part of the complex function, while its imaginary part gives the Stokes-
drift velocity. Notably, in the scenario of large Wo, viscous forces pre-
dominate within a thin Stokes layer. Beyond this layer, the flow is
potential, characterized by the function V being real. Consequently,

one can anticipate that the contribution of the Stokes drift is negligible
in comparison with the steady-streaming one for large values ofWo.

III. NUMERICAL RESULTS

For k � 1, no analytic solution is available, and the problem for-
mulated in Sec. II must be solved numerically. To that aim, Eqs. (9)
and (10) subject to (11) and (12) and Eqs. (16) and (17) subject to (18)
were written in the weak form and implemented in the finite element
solver COMSOL MultiphysicsV

R

v5.6 using the Weak Form PDE tool-
box. In the regime herein investigated, i.e.,Wo � 1–10 and e � 1, the
flow can be anticipated to be symmetric respect to the planes y¼ 0 and
z¼ 0, and, thus, the computational domain for y 
 1 and z 
 1 has
been considered imposing symmetry conditions in the aforementioned
planes. The domain was discretized using a structured mesh with hex-
ahedral elements. Second-order Lagrange elements were used for the
pressure and the velocity. Mesh elements were compressed toward the
solid and symmetry boundaries to assure enough spatial resolution.
Both the domain extension and the mesh resolution were varied to
assure the domain-size and grid-resolution independence of the
results. In the final configuration, the typical element size ratio with
respect to the radius, a, was ranged from 10�3 at the surfaces to 10�1

near the far-field boundary, assuring the accuracy of the solution with
reasonable computational times. The domain extension in the x- and
y-directions had a length of 25 times the radius of the cylinder, i.e.,
25a.

A. Steady streaming

There are different methods to represent and visualize a three-
dimensional flow field. Some of these methods can be found in the
literature (see, for instance, Refs. 33 and 34). In the cases of jet or
wake-like flows, the Q-criterion or the k2-criterion are widely accepted
for the representation of the flow through vortical structures. When
the exact analytical solution can be found, stream surfaces are often
preferred to characterize the flow. In the particular case at hand, the
absence of the normal component of the velocity field in the symme-
try, z¼ 0 and y¼ 0, and antisymmetry planes, x¼ 0, and the fact that
the symmetry of the flow is conserved when e � 1, allows the visuali-
zation of the flow topology by means of representation of the steady
streaming streamfunction contours in these planes. Only one compo-
nent of the vorticity field is not zero in each coordinate plane, so
the corresponding streamfunction comes from r2wi

SS ¼ Xi
SS for

i ¼ 1ðz ¼ 0Þ; 2ðy ¼ 0Þ; 3ðx ¼ 0Þ with homogeneous Dirichlet
boundary conditions in the far-field, in the cylinder and in the walls.

Representative results are shown in Fig. 3 forWo ¼ 1, 12, and 20
and for k ¼ 0.5, 1, and 5. Because of the flow conditions and the geo-
metrical configuration, the flow is symmetric respect to the plane
x¼ 0. Therefore, only half of the domain (x 
 0) is shown. The
streaming structure arising for finite values of the dimensionless aspect
ratio k in the central plane z¼ 0 is qualitatively similar to that of a sin-
gle cylinder (k � 1). In this plane, the mean secondary Eulerian flow
displays a vortex in each quadrant for the lower value of the
Womersley number Wo¼ 1 (plotted in the left column), being the
core of the vortex located along the p=4 ray and closer to the cylinder
as k decreases. This vortex is also known to progressively approach the
post wall asWo increases, as can be seen in Fig. 3 forWo¼ 1 (left col-
umn), Wo¼ 12 (central column), and Wo¼ 20 (right column). These
particular values of Wo have been selected to show the transition in
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the topology of the flow for the three values of k, where a second vor-
tex with opposite circulation begins to form outside whenWo exceeds
a critical value,Woc. Thus, the critical value of the Womersley number,
Woc, represents a threshold for which a change in the topology of the
flow is observed.

As shown in Fig. 3, the critical value of the Womersley number
depends on the aspect ratio k. For k ¼ 0:5 [Fig. 3(a)], it can be seen
that the transition occurs between Wo¼ 12 and Wo¼ 20, while for
k¼ 1 and k¼ 5 the transition happens for Wo< 12 [Figs. 3(b) and
3(c)]. More details will be given below. In the planes y¼ 0 and x¼ 0, a
similar behavior can be observed. As it happens in the plane z¼ 0, the
vortex in each quadrant of these planes progressively approaches to
the post as Wo increases. The core of these vortices is located at
z ¼ k=2 for low values of Wo and it is situated at lager values of z,
closer to the confining walls, when Wo increases. That indicates that
the flow tends to be two-dimensional near the central plane (z¼ 0) for
large values of Wo and for large values of k. When the Womersley
number, Wo, is increased sufficiently, a Stokes layer appears close to
the solid boundaries and in the limit of e � 1; Wo � 1; Res �Oð1Þ,
the flow outside this boundary layer becomes potential.

As previously indicated, the value of Wocr for which a change in
flow topology occurs depends on k. For the case of an infinite cylin-
der, k � 1, the critical value of the Womersley number can be deter-
mined from the exact solution15 (Woc � 6:08) as the value of Wo for
which the streamfunction wSS vanishes in the far field. Our numerical
simulations indicate that Woc varies with k, increasing as k decreases.
This dependency is shown in Fig. 4, together with accompanying
contours of the steady streaming functions in the central plane z¼ 0
for different pairs of Wo and k, shown in the insets. The value of
Woc is found to vary significantly for low values of k. These higher
values of Woc for lower values of k are attributable to the effect of
confinement, which also produces a drastic reduction in the magni-
tude of the streaming motion. In contrast, for sufficiently large values
of k, the value of Woc tends to that of the infinite cylinder (uncon-
fined case). In this regard, as it can be seen for the cases of
k ¼ 1; 5;1 with Wo¼ 15 in the three upper insets, the core of the
outer vortex moves away from the post as the aspect ratio increases.
Identical behavior is observed in the rest of the cases. Figure 4 also
shows by a green point the value of Woc corresponding to the experi-
mental configuration reported in Sec. IV.

FIG. 3. Streamlines in the symmetry (z¼ 0, y¼ 0) and anti-simmetry (x¼ 0) planes corresponding to the steady-streaming velocity, vSS, for k ¼ 0:5 (a), k¼ 1 (b), and k¼ 5
(c) for three different values of Wo.
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B. Evaluation of the Lagrangian mean velocity

Figure 5 shows streamlines and color contours of vorticityX corre-
sponding to three different velocity fields for k¼ 1 and two Womersley
numbers, i.e., Wo¼ 0.5 and Wo¼ 12. The first column shows the
steady-streaming velocity, vSS, the second one the Stokes-drift or veloc-
ity correction, vSD, and the last one the steady mean Lagrangian velocity,
given by the sum of the two of them, vL ¼ vSS þ vSD. Figure 5(a) dis-
plays streamlines and vorticity contours of the velocity fields in the sym-
metry planes z¼ 0 and y¼ 0 for Wo¼ 0.5, while in Fig. 5(b), the same
results are presented forWo¼ 12.

Regarding the streaming structure in the plane z¼ 0 for
Wo¼ 0.5, the flow displays one vortex in each quadrant, with the
clockwise circulation (negative vorticity) exhibited by the vortex in the
first quadrant corresponding to fluid approaching the cylinder along
the oscillation axis y¼ 0. In the plane y¼ 0, the flow, that is much
weaker than in the middle symmetry plane z¼ 0, displays also one
vortex in the semi-infinite space of x > 1; y ¼ 0 with the identical
behavior in the region of x < �1; y ¼ 0. The Stokes-drift results for
Wo¼ 0.5 display a primary clockwise-rotating vortex occupying most
of the quadrant, along with a much weaker counter-rotating vortex of
negligibly small circulation near the oscillation axis y¼ 0. For this
value of Wo, this primary vortex is stronger than the corresponding
steady-streaming vortex. The mean Lagrangian velocity field is largely
determined by its Stokes-drift component, as reflected in the shape of
the corresponding Lagrangian vortex in the right panel of Fig. 5(a).

As can be seen for Wo¼ 12 in Fig. 5(b), in the first quadrant of
the center plane z¼ 0, the flow displays a second vortex with opposite
circulation since Wo exceeds the corresponding critical value Woc for
k¼ 1 (Woc � 10:2), which in the case of Stokes-drift prevails over the
inner vortex, similar to what happens in an array of cylinders.23 The
hegemony of the steady-streaming over the Stokes-drift in the mean
Lagrangian motion becomes apparent in this range of the Womersley
number. As inferred from Fig. 5, the Stokes drift prevails for

sufficiently small values of the Womersley number, whereas in the
opposite limit the Stokes-drift motion fades away, as observed by
comparing the steady-streaming and the mean Lagrangian motion
contours, which are almost identical. Same dominance of the steady-
streaming component happens in the plane y¼ 0, where no second
vortex appears for this value of the Womersley number.

IV. EXPERIMENTS

The complementary experiments carried out allowed us to ana-
lyze the long-time-scaled flow patterns of the motion generated for dif-
ferent flow conditions, varying the frequency, the stroke volume of the
oscillating flow, as well as the waveform. Two types of experiments
were performed: the first one focused on the flow field around a single
post and the second one on the flow around an array of five posts sepa-
rated a distance ‘ ¼ d=a, where a is the radius of the posts and d the
semi-distance between the axes of contiguous posts, being both types
of experiments conducted in an adaptable experimental facility using
distilled water of density q ¼ 998:2 kg=m3 and kinematic viscosity
� ¼ 10�6 m2=s as the working fluid. Figure 6(a) shows a sketch of the
complete experimental facility, with the test section illuminated with a
laser sheet, which includes the programable pump used to establish the
oscillating flow and the acquisition system. As seen in Fig. 6(b), the
model consisted of an acrylic channel of total volume V ¼ 20� 10
�2 cm3, where L ¼ 20 cm; 2w ¼ 10 cm, and 2h ¼ 2 cm are the
length, width, and height of the channel, respectively. The bottom of
the channel was covered with black adhesive vinyl, which acted as a
background for the experiments and at the same time prevented laser
reflections. A vertical cylindrical post of radius a ¼ 5mm and length
2h ¼ 2 cm, made of black anodized aluminum to minimized laser
reflections, was perpendicularly placed at the center of the canal, being
the corresponding aspect ratio k ¼ h=a ¼ 2. Such radius was suffi-
ciently small to avoid any influence from the lateral confining walls on
the fluid motion near the post, being the distance between the axis of

FIG. 4. Critical value of the Womersley number, Woc, as a function of k. Insets show streamlines in the central plane, z¼ 0, for different values of Wo and k. The green point
indicates the value of Woc corresponding to the experimental configuration reported in Sec. IV.
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the post and the walls equal to w¼ 10a. This model configuration was
also extended to consider a linear array of five posts, which were
arranged aligned with the fluid motion. These elements were separated
a distance 2d ¼ 20mm, being the dimensionless inter-post semi-
distance ‘ ¼ d=a ¼ 2 since, for a typical diameter of a nerve root of
2a � 2.5–6mm and a separation distance of 3–10mm,30 in human
beings the relevant values of ‘ ranges between 1 and 8. Thus, ‘ ¼ 2
falls within the characteristics physiological values. In both configura-
tions, the posts were screwed to the bottom of the canal and perfectly
anchored to the top surface. The in vitro model was connected to a
CompuFlow 1000 MR programable pump on one side, which gener-
ated the oscillatory flow with a prescribed waveform, and an open-air
container on the other side, to allow the displacement of the stroke vol-
ume [see Fig. 6(a)]. Providing flow rate ranges, Qpump, and oscillatory
frequency ranges, f, between 0.1 and 35ml/s with an accuracy of63%
and 0.1–12Hz, respectively, the pump allowed to vary the relevant
parameters of the flow: the stroke volume, DV , the oscillatory

frequency, f ¼ x=ð2pÞ, and the waveform [from a harmonic sinusoi-
dal wave to a MRI-based anharmonic one as displayed in Fig. 6(c)].
For this range of frequencies, the lowest Womersley number in the
experiments was limited to Wo � 5. The fluid entered and exited the
canal through two nozzles placed at the inlet and outlet sections, which
also included flow conditioning elements to generate a uniform flow.

The experiments aimed at characterizing the time-averaged flow,
induced by the oscillatory stream in the presence of the obstacles. To
that end, in order to visualize the flow patterns and to measure the
velocity and vorticity fields, particle image techniques were applied,
seeding the flow with neutrally buoyant hollow glass spheres of diame-
ter /p � 10 lm. The experiments consisted of series of long-duration
sequences of black-and-white images acquired in phase, at the same
frequency as the oscillating flow. The sequences contained between
100 and 200 images depending on the experimental set, which were
acquired with a CCD camera of resolution 2048� 2048 pixels2,
equipped with a 50mm Nikon lens to give a field of view of 38:9

FIG. 5. Streamlines and color contours of vorticity X corresponding to the steady-streaming velocity, vSS, Stokes-drift velocity, vSD , and steady mean Lagrangian velocity,
vL ¼ vSS þ vSD for k¼ 1 and Wo ¼ 0:5 (a) and Wo¼ 12 (b). For each value of Wo, streamlines are represented using a constant spacing dw ¼ 0:01 (Wo¼ 0.5) and
dw ¼ 0:03 (Wo¼ 12), with the corresponding vorticity levels indicated in the color bar on the right.
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�38:9mm2 for the sole post configuration, and 58:2� 58:2mm2 for
the linear array configuration, providing a pixel resolution of 18.99
and 28.4lm/pixel, respectively. The camera was synchronized with a
Nd:YAG dual-pulsed laser with a maximum pulse energy of 200mJ
able to run at a maximum frame rate of 15Hz [Fig. 6(a)], used to gen-
erate a planar green sheet (klaser ¼ 541 nm) of width dh < 1mm at
z¼ 0 (streamwise direction—horizontal plane).

The resulting images were analyzed in two different ways to
determine the fluid particle trajectories as well as the Lagrangian steady
velocity and vorticity fields. To obtain the long-time-scaled Lagrangian
trajectories, the images were first enhanced subtracting their back-
ground which was calculated using an average filter. Afterward, the
steady fluid flow patterns could be extracted integrating all the snap-
shots acquired in each experimental set, to yield a cumulative image. It
should be emphasized that all the images were taken at the same phase
at a sampling frequency, fs, equal to that of the oscillating flow, f. In
addition, the velocity and vorticity fields were also determined using
particle image velocimetry (PIV) analysis, applying the MATLAB tool-
box PIVlab GUI35 to couples of images acquired at an interval of time,
Dt ¼ 1=f . To perform the analysis, the images were first pre-
processed, masking the cylinder to eliminate solid regions and apply-
ing a high-pass filter of window size larger than 150 pixels to avoid
non-uniform background illumination, in combination with an auto-
matic contrast adjustment. The PIV routine was applied to the pre-
processed images, using an initial window of 160� 160 pixels2 with a
window reduction up to a minimal size of 32� 32 pixels2 in four steps
with a 50% overlap, providing a spatial resolutions of less than 0.5mm
in all the cases.

A series of experiments were conducted first to evaluate the
effects of the Womersley number, Wo, and the dimensionless stroke
volume, e ¼ ðU1=xÞ=a, where U1 is the amplitude of the oscillating
flow, on the flow characteristics using a post with a fixed value of the
aspect ratio k¼ 2, complementing the numerical study reported in
Sec. III. Thus, a value e ¼ 0:2 was initially established, assuming that it
was small enough to approximate the distinguished limit e � 1, and
the Womersley number was varied from Wo¼ 5 to 11 (experimental
sets 1–7 and 13–19 in Table I). Some of them will be compared with
the numerical results reported in Sec. III. Then, the stroke volume was
increased to e ¼ 0:5 to evaluate the effect of e (experimental sets 8–12
and 20–23 in Table I). The experiments were performed considering

two different waveforms in order to investigate the effect of the shape
of the flow rate on the induced flow patterns. The first waveform con-
sisted of an harmonic function that provided a periodic flow rate given
by Q0ðt0Þ ¼ Qmax cosðxt0Þ, or similarly, a periodic velocity far from the
post u01ðt0Þ ¼ U1 cosðxt0Þ with, x ¼ 2pf ; u01ðt0Þ ¼ Q0ðt0Þ =ð4whÞ

TABLE I. Experimental conditions of the different sets of the experiments performed.
Here, Wo ¼ ða2x=�Þ1=2; f ¼ x=ð2pÞ; U1 is the peak velocity of the CSF motion
for the harmonic waveform, and the harmonic equivalent peak velocity of the CSF
motion for the anharmonic one, and e ¼ ðU1=xÞ=a. “Sine” indicates that the wave
form is harmonic and “MRI” that is an anharmonic cardiac signal obtained from mag-
netic resonance imaging.

Experiment Waveform f (Hz) Wo U1 (mm/s) e

1 Sine 0.16 5 1.005 0.2
2 Sine 0.24 6 1.508 0.2
3 Sine 0.32 7 2.01 0.2
4 Sine 0.40 8 2.51 0.2
5 Sine 0.50 9 3.14 0.2
6 Sine 0.64 10 4.02 0.2
7 Sine 0.78 11 4.90 0.2
8 Sine 0.16 5 2.51 0.5
9 Sine 0.24 6 3.77 0.5
10 Sine 0.32 7 5.03 0.5
11 Sine 0.40 8 6.28 0.5
12 Sine 0.16 9 7.85 0.5
13 MRI 0.16 5 1.005 0.2
14 MRI 0.25 6 1.508 0.2
15 MRI 0.32 7 2.01 0.2
16 MRI 0.40 8 2.51 0.2
17 MRI 0.50 9 3.14 0.2
18 MRI 0.625 10 4.02 0.2
19 MRI 0.80 11 4.90 0.2
20 MRI 0.16 5 2.51 0.5
21 MRI 0.25 6 3.77 0.5
22 MRI 0.32 7 5.03 0.5
23 MRI 0.40 8 6.28 0.5

FIG. 6. (a) Schematic view of the experi-
mental facility, consisting of the in vitro
model, the pumping system (programable
peristaltic pump and opened-air container)
and the image acquisition setup (Nd:YAG
laser and CCD camera, both synchronized
with a PC). (b) In vitro model with the cor-
responding dimensions. (c) Flow rate
waveforms used in the experiments.
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and U1 ¼ Qmax=ð4whÞ (experimental sets 1–12 in Table I). For the
second waveform, a realistic anharmonic flow rate, obtained by MRI
measurements, was used. This waveform, emulating the CSF motion
along the spinal canal, was obtained by a modal Fourier analysis, using
eight modes to produce a well fitted signal as described in Sec. VC
(experimental sets 13–23 in Table I). Finally, additional experiments,
not included in Table I, were conducted with a linear array of elements,
aligned with the flow as described in Sec. VD.

V. EXPERIMENTAL RESULTS

In this section, the results of the time-averaged Lagrangian flow
induced by the interaction of an oscillating stream with a single post
and an array of posts obtained from the in vitro experiments are
described. For the case of a single post, Sec. VA first discusses the
effect of the Womersley number, Wo, for small values of the stroke
length, e ’ 0:2, to be compared with numerical predictions of Sec. III,
obtained for the limit e � 1. These results are extended to order unity
values of e in Sec. VB, for which the asymptotic description in powers
of e, for e � 1, is no longer valid. The analysis in Secs. VA and VB is
conducted assuming a harmonic sinusoidal wave. In Sec. VC, this
study is extended to analyze the time-averaged flow induced by an
anharmonic oscillatory wave, similar to that found in realistic CSF
flows, as induced by intracranial pressure fluctuations generated by the
cardiac cycle. Finally, the time-averaged Lagrangian flow originated by
the presence of an array of posts aligned with the flow oscillation axis
is briefly described in Sec. VD.

A. Effect of flow frequency, Wo

As described in Sec. II, for small values of e � 1, the motion can
be decomposed into the sum of a zero-averaged purely oscillatory
velocity field and a first-order correction, whose non-zero average is

denoted steady-streaming velocity. The Eulerian velocity field of the
two-dimensional flow, k ¼ 1, is described in the Appendix. Such
description, although strictly valid for e � 1, has been recently
reported to provide results that remain reasonably accurate for finite
values of e, close to unity, for a linear array of circular cylinders.23

Furthermore, the description of the long-timescale motion of a fluid
particle includes the additional contribution of the Stokes drift16 that,
in combination with the steady streaming, yields the mean Lagrangian
velocity field. The Stokes drift has been found to be comparable to the
steady streaming forWo � 1, but negligible otherwise.36 In the case at
hand, since the values of Wo experimentally considered vary between
5 and 11, it is expected that the time-averaged Eulerian and
Lagrangian velocity fields almost coincide in the cases reported in the
present section for k¼ 2.

In general terms, the results reveal that, as happens in the two-
dimensional case, the Lagrangian mean motion in the horizontal sym-
metry plane z¼ 0 shows identical recirculation patterns in the four
quadrants. Consequently, for the single post case, results in only one
quadrant will be reported in the following (see Fig. 7). In this configu-
ration, two different flow topologies can be identified. For values of the
Womersley number below a critical one (denoted hereafter as sub-
critical values, Wo < Woc), a sole vortex forms in each quadrant (left
panels in Fig. 7, Wo ¼ 6), which, in the first quadrant, rotates in the
clockwise direction, i.e., the flow moves toward the post along the
stream’s oscillation axis, y¼ 0, and away from the post along the anti-
symmetry axis, x¼ 0. For values larger than the critical one (or super-
critical values), Wo > Woc, a secondary external counter-rotating
vortex appears, which, differently from what happens in the two-
dimensional flow, in this case is closed due to the presence of the
confining walls (right panels in Fig. 7, Wo ¼ 10). The external vortex
encloses the internal one close to the wall of the post at distances that

FIG. 7. (a) Steady pathlines and (b) normalized velocity field and vorticity contours of the flow around a single cylindrical post for e ¼ 0:2 and different values of Wo. Left side
of each panel corresponds to the experimental measurements and right side to the analytical predictions (e � 1). Colormap indicates the vorticity normalized with the overall
maximum analytical and experimental values, respectively, X=Xmax .
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decrease as Wo increases. As indicated in Sec. III, the presence of the
plates at the top and bottom boundaries has also an impact on the crit-
ical value,Woc, at which such flow topology change takes place. In par-
ticular, Woc increases as k ¼ h=a decreases, being Woc ’ 6:08 in the
infinite cylinder case, k ¼ 1, andWoc ’ 8:5 in the present configura-
tion, k¼ 2 (see Fig. 4), which practically coincides with the value
obtained analytically for e � 1. In addition, the numerical analysis
shows that the time-averaged flow becomes three-dimensional, and it
is characterized by the formation of two additional recirculating
regions in the planes x¼ 0 and y¼ 0, although this issue will not be
experimentally explored, due to optical access limitations. To illustrate
these observations, Fig. 7 shows the comparison between the time-
averaged analytical (e � 1) and experimental (e ’ 0:2) results. In par-
ticular, Fig. 7(a) shows pathlines of the mean Lagrangian motion
obtained experimentally, left or second quadrant, and analytically,
right or first quadrant, for values of Wo ¼ 6, 8, and 10, in columns
from left to right, respectively. The first two columns display flow
topologies corresponding toWo < Woc, whereas a change in the flow
topology becomes apparent for Wo¼ 10, where a second external
counter-rotating vortex appears, which confines the inner vortex to
the high-vorticity Stokes layer close to the post. Figure 7(b) shows the
vectors associated with the velocity fields, together with color contours
of vorticity, normalized using the overall maximum analytical and
experimental values of velocity and vorticity, respectively. In general
terms, very similar and symmetric flow patterns are found for both the
theoretical predictions and the measurements, with the analytical or
experimental cores of the vortices located, approximately, along the
p=4 or 3p=4 rays, respectively, in all cases, the theory predicting
slightly larger radial distances from the post to the vortex core. Finally,
it can be also observed that increasing values ofWo yield more intense
circulations, as inferred from the vorticity contours, while the core of
the vortex, for Wo < Woc, and that of the internal vortex, for
Wo > Woc, become closer to the post, as it was previously anticipated.

B. Effect of e

The flow rate and stroke volume vary along the spinal canal,
affecting the local value of e, which also varies from order unity values

at the cervical region to very small values at the lower regions. The
asymptotic description in powers of e in the limit e � 1 ceases to be
valid for finite values of the stroke length, e � Oð1Þ. To explore this
effect, the experimental results for e � Oð1Þ are shown herein for two
values of Wo, namely, Wo ¼ 5 < Woc (sub-critical regime) and
Wo ¼ 9 > Woc (supercritical regime), which are also compared with
their counterparts for e ¼ 0:2 (considered here to be a good represen-
tation of the distinguished limit e � 1Þ. Therefore, Fig. 8 displays
pathlines of time-averaged Lagrangian flow, left or second quadrant,
and the corresponding velocity and vorticity fields, right or first quad-
rant, for Wo¼ 5, first column, and for Wo¼ 9, second column, for
e ¼ 0:2 in Fig. 8(a), and for e ¼ 0:5 in Fig. 8(b). In this figure, the vor-
ticity contours are shown with dimensions, X0 to facilitate the compar-
ison. In both Wo cases, similar flow patterns are observed for e ¼ 0:2
and e ¼ 0:5. Thus, a unique vortex is generated with clockwise rota-
tion in the first quadrant for Wo¼ 5, whereas for Wo¼ 9, a second
external counter-rotating recirculating region appears, enclosing the
internal vortex near the post. A close inspection of the results reveals
that increasing the stroke length has an impact on the global flow
topology and rotation intensity. In that regard, for Wo¼ 9, the size of
the vortices decrease as e increases, and their cores move closer to the
post. The latter is accompanied by more intense recirculations, as
observed from the larger amplitudes of vorticity in the case of e ¼ 0:5
compared to those of e ¼ 0:2 in Fig. 8. These results agree with those
recently reported by Alaminos-Quesada et al.23

C. Time-averaged Lagrangian motion in anharmonic
oscillating flows: CSF flow

So far, the analysis has been focused on the flow around a post
subject to a harmonic stream flow of velocity u01ðt0Þ ¼ U1 cosxt0:

However, it is common to find oscillatory flows that present
anharmonic temporal variations in nature, such as that of the blood in
veins and arteries, or the CSF flow in the central nervous system
(CNS).1,2 Therefore, in the present section, the study has been experi-
mentally extended to analyze the flow induced by an anharmonic
oscillatory flow around a post. Specifically, a wave of temporal depen-
dence equal to that of a CSF flow measured in a human spinal canal37

FIG. 8. Steady flow patterns (left side of
each panel) and corresponding dimen-
sional velocity and vorticity fields (right
side of each panel) of the flow around a
cylindrical element for Wo < Woc (left
column, Wo¼ 5) and Wo > Woc (right
column, Wo¼ 9). Here, (a) e ¼ 0:2 is
considered to satisfy the theoretical
approximation (e � 1) and (b) e ¼ 0:5
assumes to be of order-unity.
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has been considered. This velocity waveform can be expressed as a
Fourier series u01ðt0Þ ¼ R1

n¼1Re½Aneiðxnt0þ/nÞ�, where An, xn, and /n
are respectively the amplitude, angular frequency, and phase associated
with each mode.23,38,39 Figure 9(a) shows the flow rate associated with
a harmonic waveform, while Fig. 9(b) represents a period of the flow
rate provided by a cardiac anharmonic waveform. In this figure, the
positive and negative flow rates are given during systole, of dimension-
less duration t1, and diastole, of dimensionless duration t2, respectively,
with

Ð 2p
0 QðtÞdt ¼ 0 or, similarly, j Ð t10 QðtÞdtj ¼ j Ð 2pt1 QðtÞdtj, where

t ¼ 2pt0=T represents the dimensionless time, and T ¼ 1=f ¼ 2p=x
is the period of the waveform.

Unlike the results reported in Secs. VA and VB for the harmonic
waveform where the secondary steady flow patterns were doubly sym-
metric, the flow induced by an anharmonic wave results in a steady
motion which is only symmetric with respect to the axis of the flow
oscillation y¼ 0. Consequently, in the following, the first two quad-
rants, y 
 0, of the plane z¼ 0 will be shown to describe the flow.
Figure 10(a) shows pathlines of the time-averaged Lagrangian flow for
the harmonic wave, with their counterparts for the anharmonic wave
shown in Fig. 10(b), both for e ¼ 0:2 and Wo ¼ 6, 8, and 10, respec-
tively, where the first mode of the Fourier series, x1, was used to define
Wo in the anharmonic case and U1 has been defined as that of the
equivalent harmonic waveform signal with the same period and stroke
volume. As previously shown, the harmonic wave induces steady flow
patterns that are symmetric in each quadrant. However, this symmetry
is broken in the anharmonic case, as a result of the inter-modes inter-
action.23,39 For the lowest value of Wo (Wo¼ 6), the lack of fore-and-
aft symmetry is already observable, where the vortices appear distorted,

with their cores near the post, as in the harmonic case. Despite this
fact, differences can be observed in the size of the vortices, with the
vortex located in the positive midplane (x> 0) being smaller than its
complementary one in the negative one (x< 0). The loss of symmetry
is also apparent for larger values of Wo, e.g., Wo¼ 8, where, as for
Wo¼ 6, two vortices form close to the post with their cores displaced
downward in the systolic direction (toward the positive x-coordinate).
In addition, the two vortices seem to be surrounded by a region of fun-
damentally streamwise velocity, which becomes more noticeable for
even larger values of Wo. It should be noted that, for Wo¼ 10, the
flow topology has already changed. However, differently from the flow
pattern observed when a harmonic waveform is imposed, where a sec-
ond outer vortex is formed in each quadrant, the steady flow is charac-
terized by the formation of only an outer vortex in the first quadrant
(downstream in the systolic direction). Moreover, the two vortices,
already present forWo < Woc, undergo larger distortions and are also
displaced downwards in the systolic direction. These three vortices are
surrounded by an almost horizontal external stream, which is in agree-
ment with the results obtained for the infinite cylinder40 or more
recently in a linear array of circular cylinders.23

The effect of considering finite stroke lengths is analyzed in
Fig. 11, where results for e ¼ 0:5 [Fig. 11(b)] are compared with those
previously shown for e ¼ 0:2 [Fig. 11(a)], for Wo ¼ 6 and 8. As hap-
pened in the harmonic case, the size of the vortices formed is reduced
when e is increased, these being also more distorted and displaced
downward in the systolic direction in this case. Interestingly, as it was
previously anticipated, increasing e has also an impact on the flow
topology change, reducing the value ofWoc. The latter can be observed
for both values of Wo, for which only two vortices are formed close to
the post when e ¼ 0:2, one in each quadrant, whereas a third external
vortex appears when e ¼ 0:5 in the first quadrant already atWo¼ 6.

D. Time-averaged motion around a linear array
of posts

To further investigate the effect of the presence of different ele-
ments on the steady flow induced by an oscillatory stream flowing
around them, the present section reports experimental results of the
time-averaged Lagrangian flow around an array of five circular posts,
aligned with the axis of oscillation, which are separated a semi-
distance between the axes of contiguous posts d, with the dimension-
less semi-distance ‘ ¼ d=a ¼ 2.

Figure 12 shows time-averaged pathlines in the horizontal sym-
metry plane z¼ 0 generated by a harmonic flow for different values of
Wo, namely, Wo ¼ 5, 6, and 9, and two values of e, i.e., e ¼ 0.2
[Fig. 12(a)] and 0.5 [Fig. 12(b)], for ‘ ¼ 2. Qualitatively, the steady
flow patterns induced for ‘ ¼ 2 are similar to those for ‘ ! 1. Thus,
considering the results for e ¼ 0:2, for Wo¼ 5 and 6, two symmetric,
counter rotating vortices are generated, one in each quadrant, with the
same direction of rotation as for ‘ ! 1. The presence of contiguous
posts renders a confining effect, limiting the size of each vortex to the
semi-distance length in the axial direction. Consequently, deformed
vortices are generated, whose cores are displaced toward the antisym-
metry axis (x¼ 0), in agreement with Ref. 23. This effect becomes
more apparent for the lowest studied value of the Womersley number,
Wo¼ 5, since the vortices reduce their size and move closer to the
posts when Wo increases. The presence of neighboring posts also has
an impact onWoc, delaying the flow transition featuring the apparition

FIG. 9. (a) Harmonic flow waveform (t1 ¼ t2 ¼ p). (b) Realistic flow waveform,
obtained through MRI measurements and set as Fourier expansion (t1 6¼ t2). Here,
t ¼ 2pt0=T represents the dimensionless time, with T ¼ 1=f ¼ 2p=x as the
period of the waveform.
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of external counter rotating vortices in each quadrant to larger values
of Wo. The latter is noticeable for Wo¼ 9, where only two internal
vortices are formed, one in each quadrant, whereas its counterpart for
‘ ! 1 displays two vortices in each quadrant (Woc ’ 8:5 for

‘ ! 1) as can be seen in Fig. 8. Figure 12(b) represents the results
obtained for e ¼ 0:5 for the same three values of Wo, also imposing a
harmonic velocity. From an inspection of Fig. 12, it cannot be con-
cluded that the size of the vortices substantially change with e (at least

FIG. 11. Steady fluid particles trajectories
around a cylindrical post of aspect ratio
k¼ 2 for Wo¼ 6 and 8, obtained with an
anharmonic, subject-specific CSF wave-
form. (a) e¼ 0.2 and (b) e¼ 0.5.

FIG. 10. Steady flow patterns around a cylindrical post of aspect ratio k¼ 2 for e ¼ 0:2 and different values of Wo using, a harmonic waveform (a) and a anharmonic one (b).
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in the range of values of e at which we have been able to perform the
experiments). However, an increase in e decreases the value ofWoc, as
it was commented in Secs. VB and VC. This can be observed in the
case of Wo¼ 9, for which a pair of inner and outer counter rotating
vortices are formed in each quadrant when e ¼ 0:5, whereas only an
inner vortex is seen when e ¼ 0:2. The linear array configuration is
further explored in Fig. 13, where time-averaged pathlines induced by
an anharmonic fluid stream are shown for three values of Wo, two of
them in the sub-critical regime (Wo ¼ 6 and 9), and the other one in
the supercritical regime (Wo¼ 11), all of them at z¼ 0 and for
e ¼ 0:2. These kinds of waveforms have been found to cause the loss
of flow symmetry in all quadrants; thus, this flow is only symmetric
respect to the axis y¼ 0. As a consequence, forWo < Woc, two differ-
ent and asymmetric inner vortices are induced, with their cores
unevenly displaced in the axial direction, which decrease in shape,

become closer to the posts and increase in intensity when Wo
increases. ForWo > Woc, a second external vortex appears in the first
quadrant, similar to what happened for ‘ ! 1, but in the case of
‘ ¼ 2, the vortices are deformed and axially enclosed within the semi-
distance length. Moreover, in all cases, the vortices are also surrounded
by a region of streamwise velocity.

VI. CONCLUSION

In this work, the problem of oscillatory streams around a cylin-
drical post, confined between two parallel plates, has been addressed.
Eulerian and time-averaged Lagrangian flow fields have been described
in detail for k ¼ Oð1Þ and stroke volumes e < 1. The problem has
been initially tackled analytically and numerically for e � 1, varying
the Womersly number, Wo, and the post aspect ratio, k. The numeri-
cal results indicate that, when the oscillating flow is harmonic, for a

FIG. 12. Steady flow patterns around a linear array of cylindrical posts separated a semi-distance ‘ ¼ 2 at different values of Wo (columns) induced by a harmonic waveform
for (a) e¼ 0.2 and (b) e¼ 0.5.

FIG. 13. Steady flow patterns around a linear array of cylindrical posts separated a semi-distance ‘ ¼ 2 for different values of Wo, induced by an anharmonic, patient-specific,
waveform with e ¼ 0:2.
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given value of k, at low values ofWo the flow field is sub-critical, show-
ing a recirculating vortex anchored to the post symmetric with respect
to the x and y axes. The size of the vortex decreases as k decreases due
to the confining effect of the upper and lower walls, at the same time
that it narrows and approaches the surface of the post asWo increases.
However, for values of Wo larger than a critical one, WocðkÞ, which
depends on k, the flow becomes supercritical, with the formation of a
second, outer vortex also symmetric, whose size decreases as k
decreases. The evolution of the critical Womersley number with the
post aspect ratio is shown Fig. 4, with examples of the flow topology
displayed for different values of k and Wo. It can be clearly observed
that transition between sub-critical and supercritical regimes is delayed
when k decreases, i.e., when the distance between the upper and lower
walls is decreased, and the magnitude of the streaming motion is
reduced. Regarding the Lagrangian mean motion, given by the sum of
the steady-streaming and the Stokes drift, it can be concluded that the
Stokes drift prevails over the steady-streaming for sufficiently small
values of the Womersley number, whereas in the opposite limit, the
Stokes-drift motion fades away. Nevertheless, for the range of interest
of Wo in the present work, it has been observed that the steady-
streaming dominates over the Stokes-drift.

The numerical results have been complemented by an experi-
mental study, which compares the effect of Wo in the Lagrangian
steady flow patterns at z¼ 0 and for k¼ 2, showing a good agreement.
This experimental work has been extended to situations beyond the
theory, where e is no longer much smaller than one, and cases close to
reality, comparing the flow patterns obtained with harmonics and
anharmonic waveforms. Furthermore, the mean Lagrangian flow gen-
erated by the presence of an array of posts immersed in an oscillatory
stream has also been experimentally characterized, emulating the pres-
ence of nerve roots in the spinal subarachnoid space. Results obtained
for a harmonic flow show time-averaged flow patterns that are identi-
cal in all quadrants, in each of which a recirculation cell forms near the
post, for Wo < Woc, whose size reduces as Wo increases. When
Wo > Woc, the flow topology changes, and a second, external vortex
is formed. The time-averaged flow induced by an anharmonic wave-
form is found to lose the symmetry respect to the transversal axis, and
two vortices of different size are formed at each side of the post in the
sub-critical regime (Wo < Woc). However, in the supercritical regime
(Wo > Woc), only an outer cell generates in the quadrant down-
stream, in the systolic direction. Regardless the waveform, the flow
topology transition has been found to also depend on the stroke length
e, taking place at values of Woc that decrease as e increases. Finally,
considering a linear array of posts, the induced flow patterns are simi-
lar to those observed with a single post configuration when the stream
is harmonic. However, significantly different flow topologies are found
for anharmonic waveforms. These results aim to provide a better
understanding of the characterization of the influence of microanat-
omy on CSF flow and lay the foundation for future research, where
not only the fluid flow but also the solute transport should be taken
into account.
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APPENDIX: REVISTING TWO-DIMENSIONAL
STREAMING FLOWOVER A CIRCULAR CYLINDER

Using the same scales as the three dimensional problem for the
time t, cartesian coordinates (x, y), velocity v ¼ ðu; vÞ, and spatial
pressure difference p reduce the problem to that of integrating

r � v ¼ 0; (A1)

@v
@t

þ ev � rv ¼ �rpþ 1
Wo2

r2v; (A2)

for x2 þ y2 > 1, subject to the nonslip boundary conditions

v ¼ 0 at x2 þ y2 ¼ 1; (A3)

and the far-field condition

v ¼ cos t; 0ð Þ as x2 þ y2 ! 1: (A4)

1. Eulerian velocity for e � 1

Following standard practice, we describe the flow by introduc-
ing expansions for the different flow variables in powers of e, i.e.,

v ¼ v0 þ ev1 þ � � � ; (A5)

and p ¼ p0 þ ep1 þ � � �. The leading-order solution satisfies the lin-
ear equation
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r � v0 ¼ 0; (A6)

@v0
@t

¼ �rp0 þ 1
Wo2

r2v0; (A7)

subject to boundary conditions stated in (A3) and (A4). The prob-
lem can be alternatively written using v0 ¼ ReðeitV0Þ with
V0ðx; yÞ ¼ ðU0;V0Þ representing a complex velocity. The integra-
tion can make use of the stream function W0ðx; yÞ defined such that

U0 ¼ @W0

@y
and V0 ¼ � @W0

@x
; (A8)

and

X0 ¼ �r2W0; (A9)

where the complex function X0ðx; yÞ, related to the vorticity by

x0 ¼ @v0
@x

� @u0
@y

¼ ReðeitX0Þ; (A10)

satisfies

iWo2X0 ¼ r2X0; (A11)

as follows from (A7). Equations (A9) and (A11) must be integrated
subject to

W0 ¼ ðx; yÞ � rW0 ¼ 0 at x2 þ y2 ¼ 1; (A12)

@W0

@y
� 1 ¼ @W0

@x
¼ 0 as x2 þ y2 ! 1: (A13)

For a general value of Wo, the resulting velocity V0ðx; yÞ ¼ ðU0;V0Þ
has real and imaginary parts. Note, however, that in the limit of
steady creeping flow Wo � 1, the solution is real everywhere, while
in the inviscid limit Wo � 1, the solution contains an imaginary
part only in the thin Stokes layer of thickness 1=Wo hat develops on
the cylinder surface, outside of which X0 ¼ 0 and ImðV0 ¼ 0Þ.

Formulating the problem in cylindrical polar coordinates
instead of Cartesians and separating variables, i.e., X0ðr; hÞ
¼ XRðrÞXHðhÞ, we find the following solution of Eq. (A11),

X0ðr; hÞ ¼ p
2
XiHð1Þ

1 aWo rð Þsin h; (A14)

where X is a constant to be determined by the boundary conditions,
Hð1Þ

1 is the Hankel function of first kind and order one and a ¼ ffiffi
i

p
.

Using the fact that Eq. (A9) is linear, it can be applied the
superposition principle.

r2W0 ¼ �X0 :
r2Ŵ0 ¼ 0 with b:c ðA12Þ � ðA13Þ;
r2 ~W0 ¼ �X0 with homogeneous b:c:

(

(A15)

The solution of r2Ŵ0 ¼ 0 with the boundary conditions (A12) and
(A13) can be expressed as follows:

Ŵ0 ¼ A r þ B
r

� �
sin h; (A16)

that has the same form as potential solution for the flow. The value
of the constants of integration A and B will be determined below.

The equation r2 ~W0 ¼ �X0 is solved using the Frobenius
method, yielding

~W0 ¼ 1
aM

Hð1Þ
1 aWo rð Þ
Hð1Þ

0 aWoð Þ
sin h: (A17)

The leading order stream function will be

W0 ¼ Ŵ0 þ ~W0: (A18)

In this case, the stream function will be

W0 ¼ 1
aWo

Hð1Þ
1 aWo rð Þ
Hð1Þ

0 aWoð Þ
� 1
2

r þ 1
r
Hð1Þ

2 aWoð Þ
Hð1Þ

0 aWoð Þ

 !" #
sin h: (A19)

To calculate the constant X it must be imposed the no slip bound-
ary condition for the azimuthal velocity (vh0 ¼ � @W0

@r ¼ 0 at r¼ 1).
The value of the constant X in Eq. (A14) is

X ¼ Hð1Þ
2 aWoð Þ

Hð1Þ
0 aWoð Þ

: (A20)

As follows from collecting terms of order e, the problem at the
following order becomes

r � v1 ¼ 0; (A21)

@v1
@t

þ v0 � rv0 ¼ �rp1 þ 1
Wo2

r2v1; (A22)

with boundary conditions

v1 ¼ 0
at x2 þ y2 ¼ 1;
as x2 þ y2 ! 1:

�
(A23)

The first-order corrections v1 and p1 are 2p-periodic functions of
time. As a result of the nonlinear interactions associated with the
convective terms, their time-averaged values hv1i and hp1i are non-
zero, with h�i ¼ Ð 2p0 �dt denoting the time-average operator. Taking
the time average of (A21)–(A23) and using the identity
hv0 � rv0i ¼ 1

2 ReðV0 � rV	
0Þ, where the asterisk 	 denotes complex

conjugates, provides the steady-streaming problem

r � hv1i ¼ 0; (A24)
1
2
ReðV0 � rV	

0Þ ¼ �rhp1i þ 1
Wo2

r2hv1i; (A25)

with boundary conditions

hv1i ¼ 0
at x2 þ y2 ¼ 1;
as x2 þ y2 ! 1:

�
(A26)

Introducing the time-averaged stream function hw1i, with

hu1i ¼ @hw1i
@y

and hv1i ¼ � @hw1i
@x

; (A27)

and associated vorticity hx1i ¼ �r2hw1i, reduces (A25) to

�Wo2

2
Re

@W0

@y
@X	

0

@x
� @W0

@x
@X	

0

@y

� �
¼ r2r2hw1i; (A28)
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involving the complex functions W0 and X	
0 ¼ �r2W	

0. The result-
ing recirculating cells can be obtained by integrating (A28) subject
to the boundary conditions:

hw1i ¼ ðx; yÞ � rhw1i ¼ 0 at x2 þ y2 ¼ 1; (A29)

hw1i ¼ 0 as x2 þ y2 ! 1: (A30)

In cylindrical polar coordinates:

�Wo2

2
Re

1
r

@W0

@h
@X	

0

@r
� @W0

@r
@X	

0

@h

� �� �
¼ r2r2hw1i: (A31)

The equation can be solved using the method of separation of varia-
bles, supposing hw1i ¼ w1RðrÞ sin 2h, and the method of variations
of parameters to do

w1RðrÞ¼ r4
1
48

ðr
1

1
r0
Uðr0Þdr0 þC1

� �
� r2

1
16

ðr
1
r0Uðr0Þdr0 þC2

� �

þ 1
16

ðr
1
r
03
Uðr0Þdr0 þC3

� �
þ 1
r2

� 1
48

ðr
1
r
05
Uðr0Þdr0 þC4

� �
;

(A32)

where

UðrÞ ¼ iWo2Im

"
Hð1Þ

2 ðaWorÞ
Hð1Þ

0 ðaWoÞ
þ 2

jjHð1Þ
0 ðaWoÞjj2

� 1
r2
Hð1Þ

2 ðaWoÞHð1Þ
0 ðarÞ þ Hð1Þ

2 ðaWorÞHð1Þ
0 ðaWoÞ

� �#
;

(A33)

and

jjHð1Þ
0 ðaWoÞjj2 ¼ ReðHð1Þ

0 ðaWoÞÞ2 þ ImðHð1Þ
0 ðaWoÞÞ2:

The constants

C1 ¼ � 1
48

ð1
1

1
r
UðrÞdr; C2 ¼ 1

16

ð1
1
rUðrÞdr;

C3 ¼ 1
16

ð1
1

1
r
UðrÞdr � 1

8

ð1
1
rUðrÞdr;

C4 ¼ � 1
24

ð1
1

1
r
UðrÞdr þ 1

16

ð1
1
rUðrÞdr;

(A34)

are determined by imposing the boundary conditions (A29) and
(A30). The Lagrangian mean motion can be defined as follows:

vL ¼ hv1i þ 1
2
ImðV0 � rV	

0Þ; (A35)

where 1
2 ImðV0 � rV	

0Þ is the Stokes drift or correction. In the pre-
sent case, the streamfunction of the Stokes drift can be calculated as
follows:

wSD ¼ 1
2
Im

Hð1Þ
2 ðaWorÞ

Hð1Þ
0 ðaWoÞ

þ 1
r2
Hð1Þ

2 ðaWoÞ
Hð1Þ

0 ðaWoÞ
Hð1Þ	

0 ðaWorÞ
Hð1Þ	

0 ðaWoÞ
� 1

 !"

þHð1Þ
0 ðaWorÞ

Hð1Þ
0 ðaWoÞ

Hð1Þ	
2 ðaWorÞ

Hð1Þ	
0 ðaWoÞ

#
sin 2h: (A36)
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