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ABSTRACT

Flash floods are highly destructive disasters, posing severe threats to lives and infrastructure. In this study, we conducted a comparative

analysis of bivariate and multivariate statistical models and machine learning to predict flash flood susceptibility in the flood-prone Rheraya

watershed. Six models were utilized, including frequency ratio (FR), logistic regression (LR), random forest (RF), extreme gradient boosting

(XGBoost), K-nearest neighbors (KNN), and naïve Bayes (NB). We considered 12 flash flood conditioning variables, such as slope, elevation,

distance to the river, and others, as independent variables and 246 flash flood inventory points recorded over the past 40 years as dependent

variables in the modeling process. The area under the curve (AUC) of the receiver operating characteristic was used to validate and compare

the performance of the models. The results indicated that distance to the river was the most contributing factor to flash floods in the study

area. Moreover, the RF outperformed all the other models, achieving an AUC of 0.86, followed by XGBoost (AUC¼ 0.85), LR (AUC¼ 0.83), NB

(AUC¼ 0.76), KNN (AUC¼ 0.75), and FR (AUC¼ 0.72). The RF model effectively pinpoints highly susceptible zones, which is critical for estab-

lishing precise flash flood mitigation strategies within the region.
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HIGHLIGHTS

• Comparative assessment of bivariate and multivariate statistical models and machine learning algorithms to classify locations as flash-

flooded or not.

• Distance to the river and drainage density have the strongest influence on flash floods in the Rheraya watershed.

• The RF model outperformed all the other models.

• Highly susceptible zones within the ungauged and flood-prone Rheraya watershed were effectively identified.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

A flash flood is a rapid rise of water along a stream or low-lying urban area. Flash flooding occurs within 6 h of a significant
rain event and is usually caused by intense storms that produce heavy rainfall in a short amount of time (Doswell 2015). They

are one of the most devastating, costly, and frequent disasters, resulting in extensive damage to infrastructure and properties
and even the loss of human lives (Jeyaseelan 2003; Tingsanchali 2012; Kuenzer et al. 2013; Dahri & Abida 2017; Nogueira
et al. 2018; Mohanty et al. 2020). More specifically, they are responsible for approximately 84% of global deaths (Jamali et al.
2020). In recent years, the increasing frequency of extreme weather events related to global warming, urbanization, loss of

natural land, deforestation, and changes in land use patterns such as canalization of water streams has made flash floods
a growing concern for scientific communities worldwide, as they expect the severity of this phenomenon to increase
(Kundzewicz et al. 2014; Guha-Sapir et al. 2016; Mekonnen & Hoekstra 2016). Effective flood management strategies

and accurate identification of high-risk areas are therefore necessary to reduce the impact of these events on human lives
and properties (Grothmann & Reusswig 2006; European Union 2007). However, predicting flooding remains a challenging
task due to the complex nature of the phenomenon (Kalantari et al. 2014).

In the context of climate change, the severity and intensity of floods are increasing in Morocco (Loudyi et al. 2022). Over
recent decades, the country, like many others worldwide, has experienced numerous destructive hydrological events that
have impacted many areas of the country. In fact, flash floods are the most common and dangerous disasters in the country

due to how often they happen, their magnitude, and their sudden onset (Mallouk et al. 2016; Karmaoui & Balica 2019). More-
over, there is a 95% chance that the country will face either earthquakes or floods over the next 30 years (The World Bank
2013). This is mainly due to the geographical location of the country, which frequently experiences intense rainfall events.
The country has experienced over 35 major flash floods between 1951 and 2015 (TARGA-AIDE & Zurich Insurance

2015). More specifically, the Rheraya watershed witnessed one of the most destructive flooding events in 1995 due to
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heavy rainfall in a short period of time, killing more than 150 people, including 60 tourists (Digby 2000). Moreover, in 2019,

the basin encountered another severe flash flood, which resulted in significant damage to properties. Similarly, flooding in the
Ourika basin, which limits the Rheraya basin to the east, resulted in the deaths of more than 200 people in 1995 and more
than 60 people in 2002 (Kingdom of Morocco 2011). The high risk and significant loss of life in these specific areas can also

be attributed to the fact that residents often inhabit these exposed regions for tourism purposes (El Alaoui El Fels et al. 2018).
Therefore, pinpointing highly susceptible zones to flash floods in the Rheraya watershed is of paramount relevance for devel-
oping precise mitigation strategies in this touristy zone.

Utilizing flood susceptibility mapping (FSM) is essential for identifying flood-prone areas by considering various environ-

mental factors influencing floods (Wang et al. 2019). Rainfall-runoff models are valuable for flood forecasting but come with
limitations, including the need for calibration and extensive gauging data, which can be resource-intensive (Ludwig et al.
2003; Peel & McMahon 2020). Researchers have utilized diverse methods for creating flood susceptibility maps, including

geospatial analysis through geographic information system tools and remote sensing. Recent advancements include the adop-
tion of statistical methods and machine learning (ML) algorithms. Statistical methods are commonly applied for studying
spatial phenomena and mitigating flood risks. Tehrany et al. (2017), for instance, used bivariate and multivariate statistical

models to map flood susceptibility in Busan City, South Korea. Similarly, Bui et al. (2019) conducted flood susceptibility mod-
eling in the Haraz catchment, Iran, using a multivariate logistic regression (LR) model. Both studies showed high
performance of their models in mapping the susceptibility to floods. ML algorithms, on the other side such as artificial

neural networks (ANNs) (Shu & Burn 2004; Seckin et al. 2013; Liu et al. 2016; Jahangir et al. 2019; Rahman et al. 2021),
support vector machines (Tehrany et al. 2014a, 2015; Dazzi et al. 2021), random forests (RFs) (Chapi et al. 2017; Lee
et al. 2017; Farzaneh et al. 2019; Vafakhah et al. 2020; Abedi et al. 2022; Ghanim et al. 2023), adaptive neuro-fuzzy inference
systems (Ahmadlou et al. 2018), and long-term memory (Apaydin et al. 2020; Dazzi et al. 2021), have enhanced flood risk

prediction accuracy by addressing non-linearity. For example, Seydi et al. (2022) and Sellami et al. (2022) conducted com-
parative analyses of multiple ML models to assess flash flood susceptibility (FFS) in Iran and Tetouan (Morocco),
respectively. Their findings demonstrated that while there were minor differences in algorithm performance, all models effec-

tively identified areas at very high risk of flooding. Nonetheless, the literature lacks a comprehensive comparative study that
incorporates both statistical models and ML techniques. Specifically, there is limited research assessing the performance of
bivariate and multivariate statistical models alongside various ML algorithms in the same geographical area, with only one

study focusing on just two ML algorithms based on regression trees (Al-Abadi & Al-Najar 2020).
This study aims to compare the effectiveness of statistical and ML models for predicting FFS and developing an FFS map

for the Rheraya watershed, Morocco. Our specific objectives were (1) to identify the most contributing factors to flash flood
occurrence in the region; (2) to create flood susceptibility maps of the region using various models; (3) to assess and compare

the performance of the models; and (4) to pinpoint high-risk zones within the study area. The novelty of this study lies in being
the first study to conduct a comparative analysis of bivariate and multivariate statistical models and various ML algorithms to
assess FFS within a single study and for a specific area. Second, it addresses a crucial gap by developing the first FFS map of

the ungauged Rheraya watershed, an area renowned for its historically destructive flash floods. Through this study, we seek to
provide valuable insights that will aid in the effective management and mitigation of flash flood risk in the Rheraya watershed.

The subsequent sections of the paper are organized as follows: Section 2 describes the study area, methodological

approach, data sources for modeling, and background information on the statistical and ML models used in this work.
Section 3 outlines the obtained results, while Section 4 presents a discussion of the outcomes, including a comparison
between the various models and the final FFS maps. Finally, Section 5 summarizes the research findings with closing

remarks.

2. MATERIALS AND METHODS

2.1. Study area

The Rheraya watershed is located in the south of Marrakech city in the Western High Atlas region. Its outlet is defined by the
hydrometric station of Tahanaout at 1,030.0 m (31.3°N 7.9°E) (Figure 1). Major population centers in the area include Asni,

Imlil, and Moulay Brahim, each hosting various tourism amenities such as restaurants, cafes, and accommodations. The Rher-
aya is considered to be one of the main catchment areas in the High Atlas range, where the socio-economic status of the
region is characterized by a significant reliance on tourism, recreational activities, and agriculture. It covers an area of
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224 km2, with elevations ranging from 1,084.0 to 4,167.0 m and slopes of up to 80°. Rheraya exhibits significant spatio-tem-
poral variability in precipitation, ranging from 600 mm· year�1 in high mountain areas to 356 mm year�1 in low mountain
regions (Chaponnière et al. 2008). Approximately 30–50% of the precipitation occurs as snow (Boudhar et al. 2009). At
the Tahanaout gauge station, the average runoff is recorded at 1.15 m3 s�1. The hydrological pattern of the Rheraya River
is characterized as pluvio-nival, featuring a unimodal distribution peaking in April, which correlates with snowmelt. The
temperatures typically range from 18 to 38 °C. Approximately 50% of the land is covered by forests, 10% by urban areas,

4% comprises orchards, and 28% is dedicated to agriculture. In detail, the hillslopes in the study area are characterized by
degraded rangelands with minimal flora and a stone cover, while the valley has a limited strip of irrigated crops on either
side of the river (Boudhar et al. 2007).

2.2. Data and methods

A flowchart was developed to outline and summarize the adopted methodology of our research (Figure 2). Two statistical
methods (i.e., frequency ratio (FR) and LR) and four advanced ML algorithms (i.e., extreme gradient boosting (XGBoost),

RF, naïve Bayes (NB), K-nearest neighbors (KNN)) were used for the present study. The process consisted of the following
steps: (a) generate a flash flood inventory map (dependent variable); (b) identify flash flood conditioning factors (independent
variables); (c) analyze the spatial relationship between each influencing factor and flash flood events; (d) determine the opti-

mal parameters and create a map of FFS; and (e) evaluate the performance of the models.

2.2.1. Inventory map

Identifying and creating a flash flood inventory map of the study area is a critical step in investigating the relationship between

flash flood events and various influencing factors. Current approaches generally rely on historical records, field surveys, and
satellite imagery. We first used the historical flood records of the Tensift Hydraulic Basin Agency (ABHT), followed by a field
survey in which local residents contributed to the development of a historical flash flood inventory map, and finally, Google

Figure 1 | The location of the study area with the training and testing flash flood inventory points.
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Earth images of both pre- and post-flash floods were exploited for further verification. Through these steps, we were able to

identify 123 flash flood locations. In addition, 123 points were selected as ‘non-flash flood’ from the areas where there was no
evidence of flash floods occurring. Flash FSM is a binary classification; therefore, to generate the training data, we assigned
binary values of 1 to flash flood points and 0 to non-flash flood points for the modeling process. The resulting dataset (i.e., 246

points) was then randomly split into a 70% training set and a 30% testing set (Figure 1).

2.2.2. Flash flood influencing factors

The identification of flash flood conditioning factors can greatly affect the accuracy of the mathematical models (Kia et al.
2012). We thoughtfully selected the conditioning factors based on a comprehensive literature review of previous studies

(e.g., Bentivoglio et al. 2022), data availability, and the characteristics of flash floods in the Rheraya watershed. We made
sure to consider different aspects of the study area, including topographic, hydrological, geological, and land cover features.

First, a 12.5 m digital elevation model (DEM) of the study area was downloaded from the ALOS PALSAR sensor and pro-

cessed using ArcGIS 10.2. Using this DEM, topographic and hydrological variables such as elevation (Figure 3(a)), slope
(Figure 3(b)), aspect (Figure 3(c)), curvature (Figure 3(d)), stream power index (SPI) (Figure 3(f)), drainage density
(Figure 4(b)), and topographic wetness index (TWI) (Figure 3(e)) were generated. The Euclidean distance tool in ArcGIS
was used to create a map of the distance to the river (Figure 4(a)). In addition, 40 years of precipitation data from two stations

in the study area were used to create an annual rainfall map using the inverse distance weighted (IDW) interpolation
approach (Figure 4(c)). To generate land cover and NDVI maps, Sentinel-2B satellite data with a resolution of 10 m were
used. Finally, lithology, which characterizes the soil and underlying rocks that can influence catchment infiltration and

runoff (Janizadeh et al. 2019; Zhao et al. 2019), was incorporated into the modeling process using a lithology map of the
study area, created by digitizing a 1:100,000 geological map of Tahanaout (Figure 4(f)). The role of each factor in flash
flood occurrences is discussed in further detail in the following sections.

Figure 2 | Methodological approach applied for flash flood susceptibility modeling.

Journal of Water and Climate Change Vol 00 No 0, 5

Uncorrected Proof

Downloaded from http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2024.726/1449128/jwc2024726.pdf
by guest
on 31 July 2024



2.2.2.1. Topographical factors. Topographical features included elevation, slope, aspect, curvature, and distance to the river.
Elevation is a key factor in flash flood modeling (Bui et al. 2020; Dodangeh et al. 2020). It is inversely related to flash floods
(Fernández & Lutz 2010), meaning that as elevation decreases, the terrain becomes flatter and the amount of water carried by

rivers increases (Cao et al. 2016). Slope is an important factor in flash floods because it affects the speed of flowing water
(Stevaux et al. 2020). In general, a steeper slope angle leads to higher flow velocity, which can decrease the rate of
infiltration and increase water stagnation. Aspect influences floodwater flow directions, which helps to maintain the
humidity of the soil (Chu et al. 2020). It indirectly affects the flooding. Slope curvature separates diverging and converging

runoff regions, which influences water flow (Torcivia & López 2020). Depending on the slope, runoff accelerates or
decelerates. Convex slopes tend to increase overland flow, potentially affecting infiltration and soil saturation (Cao et al.
2016), while concave slopes can slow down overland flow and potentially improve infiltration (Young & Mutchler 1969).

Distance to the river is a critical factor in determining an area’s vulnerability to flooding in a basin (Tehrany et al. 2015).
Areas closer to rivers are more prone to flooding than those farther away (Butler et al. 2006; Chapi et al. 2017).

Figure 3 | Flash flood condition factors used in this study are: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) TWI, and (f) SPI.
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2.2.2.2. Hydrological and meteorological factors. Hydrological and meteorological variables directly influence the
occurrence and severity of flash floods. Various factors were taken into consideration in this study, such as SPI, TWI,
drainage density, and rainfall. SPI is a measure that assesses the potential flow erosion at a specific topographic surface

point. It has a significant impact on the fluvial system (Knighton 1999). TWI is a hydrological measure corresponding to
the ratio of the area of a specific basin to the angle of the slope (Wilson & Gallant 2000; Nhu et al. 2020). It reflects the
amount of water present in each pixel of the area (Zhang et al. 2020). Drainage density is the sum of the stream length
per unit watershed area (Elmore et al. 2013; Nguyen et al. 2020). High stream densities have a higher risk of flooding

than low stream densities, assuming all other conditions are equal (Chapi et al. 2017). Rainfall is one of the most
significant factors that can cause floods (Pourghasemi et al. 2020). When the intensity of the rain exceeds the ground’s
infiltration capacity, flash floods occur. To generate the precipitation map, data acquired over a 40-year period (1983–

2023) from two meteorological stations, Tahanaout and Armed, were used, with Tahanaout located in the lower
catchment and Armed positioned in the upper catchment. The average annual rainfall over 40 years for each station was
computed, and a rainfall map was generated using the IDW interpolation method in ArcGIS 10.2.

Figure 4 | Flash flood condition factors used in this study are: (a) distance to the river, (b) drainage density, (c) rainfall, (d) land cover, (e) NDVI,
and (f) lithology.
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2.2.2.3. Geological and land cover factors. Geological and land cover variables included lithology, land cover, and NDVI.

The variety of lithologic structures in a study area can significantly increase or decrease the level of flood risk since the
permeability and porosity of these different structures directly influence infiltration and runoff. Land cover affects surface
runoff and sediment transport, which directly influence flood frequency (Benito et al. 2010). Flooding is more common in

urban areas, whereas vegetation, particularly forests, intercepts precipitation and slows runoff velocity. We created a land
cover map using Sentinel-2B images acquired in May 2023. These images were chosen because they exhibited lower cloud
coverage and reduced snow cover. The images were classified into five classes, including agriculture, bare land, bare rocky
soil, forest, and built-up areas, using the maximum likelihood classification in SNAP software (Figure 4(d)). Field surveys

and Google Earth images were used to validate the obtained map. The NDVI is defined as a dimensionless index that
describes the difference between near-infrared and red light, which has values ranging from �1 (e.g., low vegetation
density) to þ1 (e.g., high vegetation density). NDVI values can indicate changes in vegetation and surface water cover

over time (Ahmed & Akter 2017) and reveal the relationship between flooding and vegetation in a basin (Tehrany et al.
2013). To create the NDVI map of the Rheraya watershed, Sentinel-2B images from May 2023 were used, and the map
was classified into six classes (Figure 4(e)).

2.3. Flash flood susceptibility modeling

2.3.1. Statistical approaches

2.3.1.1. Frequency ratio. The FR is defined as a bivariate statistical analysis approach for analyzing the impact of different
flood conditioning factors on the likelihood of future floods (Lee et al. 2012). It examines the correlation between flash flood

locations and their related factors in a specific area. The equation used to calculate the FR is:

FR ¼ [Npix(SXi)=
Xm

i¼1

SXi ]=[Npix(Xj)=
Xn

j¼1

Npix (Xj)]

whereNpix (SXi) is the number of flash flood points in class i of variable X, Npix (Xj) is the number of pixels in variable Xj,m is
the total number of classes in variable Xi, and n is the total number of flood conditioning factors (Regmi et al. 2013; Jaafari
et al. 2014). The FR values for each class of each conditioning factor are then used to create a susceptibility map using the

following equation:

Flash flood susceptibility index (FSI) ¼
Xn

j¼1

FR

The FR is one of the most commonly used and trustworthy methods to evaluate the susceptibility to floods worldwide
(Rahmati et al. 2016a, 2016b; Samanta et al. 2018). An FR value higher than 1 indicates that the factors have a substantial

influence on flash flooding, while an FR value less than 1 means that there is a negative correlation between the flash flood
frequency and the conditioning factors (Lee & Talib 2005).

2.3.1.2. Logistic regression. LR is a multivariate statistical analysis approach applied to estimate and predict the likelihood of
an event occurring by analyzing multiple variables. The method uses dichotomous data such as 1 or 0 (presence or absence)

to identify the relationship between flash floods and the factors that influence them (Helsel & Hirsch 2002). The main
objective of this approach is to find the most accurate model that explains the connection between the variables. To
calculate the LR model, we used the equation:

P ¼ 1=(1þ e�z)

where z is the linear regression model:

z ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn
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The intercept of the model is b0, the number of independent variables is n, the coefficients are b1, b2,… bn, and the flash flood

conditioning factors are x1, x2,… xn. The P-value indicates the probability of vulnerability and ranges from 0 to 1. A P-value
close to 1 suggests a high vulnerability, while a P-value close to 0 represents a low vulnerability.

2.3.2. ML algorithms

2.3.2.1. Extreme gradient boosting. XGBoost is an advanced ML algorithm that minimizes a regularized objective function.
It handles missing values and uses tree pruning. Examples are initially grouped so that similar residues are in the same cluster,

and then they are branched off. A similarity score for each threshold is given by the following equation:

Similarity score ¼ (
P

Residuals)2P
[ pi0 � (1 � pi0 )] þ l

where pi0 is the previous probability calculated for the i training example, and λ is the regularization parameter.
The minimum number of residuals in each leaf, as well as the minimum child weight (cover), must also be considered

(Madhuri et al. 2021). Generally, the minimum cover value is 1. The equation for calculating cover is:

Cover ¼
X

[ pi0 � (1 � pi0)]

The leaf is removed if the cover is less than the minimum. The tree complexity parameter facilitates tree pruning. For all
leaves, the output values (W ) are given by the following equation:

W ¼
P

ResidualsP
[ pi0 � (1 � pi0)] þ l

The output value is multiplied by the rate of learning, subtracted from the prior probability, and expressed in terms of the

log of the odds. After one iteration, the probability can be calculated by changing the obtained value back to probability. In
the end, XGBoost aims to reduce the objective function in the equation given below:

O(yi, pi, w) ¼
Xn

i¼1

L (yi, pi) þ 1
2

ƛw2

The loss function, L (yi, pi), was used as the negative log-likelihood function in the equation that follows to derive all the
equations and expressions above:

L(yi, pi) ¼ [–yi log (pi)þ (1–y) log (1–pi)]

The optimization procedure in XGBoost starts with the creation of the first learner for the variable dataset, followed by the
creation of the model according to the residuals. When it reaches the stopping criteria, the procedure ends. The algorithm
becomes stronger when there is missing data in the dataset compared with other models. The Caret package in the R statisti-

cal software (R.3.6.2., R Core Team) was used to apply the XGBoost algorithm.

2.3.2.2. Random forest. The RF algorithm (Breiman 2001) is a binary decision tree-based ensemble classifier system. It is
primarily a statistically based approach and can handle many variables. The model creates numerous trees based on
random bootstrapping using the training dataset (Goetz et al. 2015) and is commonly employed to investigate the

complex relationships between explanatory and response variables. Therefore, the RF model has been used to identify
hierarchical and non-linear interactions in large datasets as well as to better predict novel data cases (Olden et al. 2008).
Three parameters must be tuned in the RF algorithm: the number of variables, the number of trees, and the maximum

number of terminal nodes (Yang et al. 2016). The model is built on tree-structured classifiers and is represented as follows:

h(x, ik), k ¼ 1, 2, . . .n
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where 1, 2… n are the input vectors, and x and ik are the conditioning factors. The general error of the algorithm is defined as

follows (Masetic & Subasi 2016):

GE ¼ Px,y(mg(x, y) , 0)

where x and y indicate the different conditioning factors of the flash flood, and mg represents the margin function. The RF
model is generated using the Caret package in R statistical software (R.3.6.2, R Core Team).

2.3.2.3. K-nearest neighbors. KNN is an easy-to-use supervised ML algorithm that can be used for both regression and

classification tasks. It is a non-parametric and lazy algorithm, meaning it does not make assumptions about the dataset
and only calculates the KNN based on distance for prediction. This is especially useful when modeling hydrological
phenomena, such as floods, where there is little prior knowledge of data distribution (Wettschereck et al. 1997). The
optimal number of neighbors typically depends on the regression and classification metrics used. For continuous
variables, the Euclidean distance is the most commonly used distance metric, while for discrete variables, the Hamming
distance is the most typical. The value of K is usually set to the square root of the number of samples, and it can vary
depending on the dataset (Duda et al. 2012; Guo et al. 2023).

2.3.2.4. Naïve Bayes. NB is a simple and easy-to-implement algorithm that is based on Bayes probability theory. It is used for

classifying phenomena based on the probability of the phenomenon occurring or not occurring. It does not require extensive
tuning of hyperparameters, performs well on small-scale data, and is capable of handling various classification issues (Zhu
et al. 2020). In addition, the algorithm has a strong mathematical base and consistent classification accuracy. The NB

algorithm assumes that the impact of a given category (c) of the various predictor values is neutrally affected by the
predictor cost (x). This presumption is called ‘conditional independence’:

P(cjx) ¼ P (xjc) � P (c)
P(x)

P(xjc) ¼ P(x1jc)� P(x2jc)� � � � � P(xnjc)

where P(c) is the prior probability of the class, P(x) is the prior probability of the predictor, and P(c|x) is the posterior
probability of the target (Zhang 2004).

2.4. Model validation

Assessing the performance of a model is a critical step in probabilistic modeling, as it ensures the reliability of the output.

There are various metrics that have been used to evaluate the performance of flash flood prediction models. The area
under the receiver operating characteristic curve (AUC ROC) is used to assess the performance of our models. AUC computes
the entire two-dimensional area below the ROC curve and provides an aggregate measure of classification performance
across all potential thresholds. It quantifies the probability that the model will correctly rank a randomly chosen positive

instance higher than a randomly chosen negative instance (Hanley 1989). A higher AUC value indicates a better performance
of the model (Shirzadi et al. 2019).

3. RESULTS AND ANALYSIS

3.1. FR model

The susceptibility of the Rheraya watershed to flash floods was assessed using the FR bivariate statistical method with geos-
patial techniques. The FR for various classes of each factor was used to understand and determine the significance or

probability of a subclass under flash flood occurrences (Table 1).
Analysis shows that flash floods frequently occur at an elevation of 981.0–1,610.0 m with an FR value of 1.46, which indi-

cates that they are unlikely to occur at higher altitudes in the Rheraya basin. The slope angle was also found to be a significant

factor, with the highest probability of flash flood occurrence observed in the 0–7-degree and 7–18-degree classes, with FR
values of 1.50 and 1.52, respectively. In addition, it was observed that as the slope angle increases, the FR values decrease,
indicating a reduced probability of flash floods at higher slope angles. The relationship between flash floods and the slope
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Table 1 | Spatial relationship between the flooded area and its related factors using the FR method

Factors Factor class
Number of flash flood
pixels

Percentage of flash
flood

Number of pixels in
class

Percentage of
domain FR

Elevation 400–981 3,593.75 27.06 705,148 28.66 0.94
981–1,610 4,218.75 31.76 536,973 21.83 1.46
1,610–2,188 5,156.25 38.82 737,981 30.00 1.29
2,188–2,928 312.5 2.35 317,140 12.89 0.18
2,928–4,211 0.00 162,723 6.61 0.00

Slope 0–7 4,062.5 30.59 495,495 20.14 1.52
7–18 4,062.5 30.59 502,247 20.42 1.50
18–28 2,031.25 15.29 371,190 15.09 1.01
28–39 2,812.5 21.18 738,683 30.03 0.71
39–80 312.5 2.35 352,350 14.32 0.16

SPI 0–26,678 12,500 94.12 2,453,021 99.72 0.94
26,678–92,923 0.00 0.00 2,868 0.12 0.00
92,923–199,745 312.5 2.35 1,373 0.06 42.16
199,745–352,565 468.75 3.53 1,136 0.05 76.43
352,565–913,374 0.00 0.00 1,567 0.06 0.00

TWI 5_6 3,437.5 25.88 1,094,759 44.50 0.58
6_8 3,906.25 29.41 793,326 32.25 0.91
8_10 2,656.25 20.00 399,365 16.23 1.23
10_13 1,093.75 8.24 136,934 5.57 1.48
13_21 2,187.5 16.47 35,581 1.45 11.39

Aspect Flat 2,968.75 22.35 462,063 18.78 1.19
North 3,437.5 25.88 351,613 14.29 1.81
Northeast 1,093.75 8.24 262,371 10.67 0.77
East 625 4.71 285,843 11.62 0.40
South 2,968.75 22.35 368,264 14.97 1.49
Southwest 937.5 7.06 389,575 15.84 0.45
West 1,250 9.41 340,236 13.83 0.68

Distance To
river

0–300 10,781.25 81.18 492,783 20.03 4.05
300–600 1,406.25 10.59 813,071 33.05 0.32
600–800 0.00 0.00 565,760 23.00 0.00
800–1,000 156.25 1.18 337,585 13.72 0.09
1,000–1,200 937.5 7.06 250,472 10.18 0.69

Drainage
density

0–1.5 625 4.71 484,182 19.68 0.24
1.5–3 312.5 2.35 550,492 22.38 0.11
3–4.5 625 4.71 543,162 22.08 0.21
4.5–6 3,906.25 29.41 488,064 19.84 1.48
6–8.32 7,812.5 58.82 387,534 15.75 3.73

NDVI �0.32 156.25 1.18 24,787 1.01 1.17
0–0.15 3,906.25 29.41 774,171 31.47 0.93
0.15–0.3 5,468.75 41.18 819,295 33.31 1.24
0.3–0.45 1,093.75 8.24 454,964 18.49 0.45
0.45–0.85 2,656.25 20.00 305,485 12.42 1.61

Rainfall 369–373 4,062.5 30.59 713,544 29.01 1.05
373–378 1,562.5 11.76 658,802 26.78 0.44
378–384 781.25 5.88 226,069 9.19 0.64
385–389 2,812.5 21.18 278,829 11.33 1.87
389–392 4,062.5 30.59 582,427 23.68 1.29

Land cover Agriculture 4,687.5 35.29 208,855 8.49 4.16
Built-up and
urban

312.5 2.35 24,114 0.98 2.40

Bare soil 5,000 37.65 1,333,323 54.20 0.69
Forest 2,812.5 21.18 781,870 31.78 0.67

(Continued.)
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aspect reveals that flash floods are frequent on flat (1.19), north (1.81), and south (1.49) terrain surfaces. Convex slope cur-

vatures had the highest probability of flood occurrence, with an FR value of 12.17. The proximity to a river was found to be a
significant factor, with the highest FR values observed within a distance of 0–300 m from a river, as flash floods are more
likely to occur close to the riverbank. For land cover, the highest FR value observed is in the agriculture and built-up classes.

This might be due to the impermeable surfaces and sparse vegetation in these areas. Drainage density was also found to have
an impact on flash floods, with the highest probability of occurrence at densities of 6–8.32, with an FR value of 3.7. The study
found that impermeable rocks were the most sensitive to flash floods, with an FR value of 1.12. The TWI was found to be

proportional to the FR; as TWI values increased, so did the FR values. The river power index (SPI) indicated that areas
with high flow power (199,745–352,565) had a high likelihood of flash flood occurrence, with an FR value of 76.43. The
relationship between the vegetation index (NDVI) and flash floods showed that areas with high vegetation values had the

highest FR values. Lastly, the study found that rainfall values between 389 and 392 mm had a high FR value of 1.29, indicating
a higher occurrence of flash floods.

The FR method was used to generate a flash flood susceptibility index (FSI), from which a susceptibility map was created
(Figure 5(a)). The map was created using 12 conditioning factors and classified into 5 susceptibility classes using the natural

break classification technique: very high (1.62%), high (12.66%), moderate (13.64%), low (16.23%), and very low (55.84%)
(Figure 6). The main strength of the FR approach is its ability to conceptualize the impact of subclasses of each conditioning
factor on flash flood occurrence (Tehrany et al. 2014a). Thus, the results show that bivariate statistical analysis approaches are

useful and efficient for flood susceptibility assessment and flood mitigation.

3.2. LR model

LR is a commonly used technique for determining the magnitude of the relationship between flash flood conditioning factors
and locations. The relative importance of each conditioning factor is expressed by the LR coefficients, which were computed
using R software (Table 2).

The results revealed that curvature, distance to the river, drainage density, rainfall, SPI, and NDVI show positive corre-
lations with flash flooding in the study area, while the remaining factors show negative correlations. A positive value
means that the influence of the variable increases the likelihood of flash flooding, while a negative value means that the pres-

ence of the variable reduces the likelihood of flash flooding. It is clear that flash floods in the study area are not controlled by
a single factor but rather by a combination of factors. Based on the absolute values of the LR coefficients, the factor with the
greatest impact on flash flood occurrence in the study area was found to be drainage density.

Although slope, elevation, land cover, and lithology seem like factors that would influence FFS (Al-Juaidi et al. 2018;
Anucharn 2019), their significance in the LR model can vary depending on the study area and the scale of analysis. In
some cases, other variables such as rainfall intensity, distance to the stream, and drainage density patterns may overshadow
the effects of these variables. For instance, in areas with high rainfall intensity, even relatively flat terrain can experience flash

floods due to poor drainage or urbanization (Shao & Shao 2019). The lack of significance of land cover in the analysis could
be due to the complexity of land cover types and their interaction with other variables. In some cases, land cover may
indirectly influence FFS through factors such as soil infiltration rates. Similar to land cover, lithology’s lack of contribution

Table 1 | Continued

Factors Factor class
Number of flash flood
pixels

Percentage of flash
flood

Number of pixels in
class

Percentage of
domain FR

Rocky bare soil 468.75 3.53 111,679 4.54 0.78

Lithology Impermeable 6,718.75 50.59 1,106,856 44.99 1.12
Permeable 3,906.25 29.41 770,101 31.31 0.94
Semipermeable 2,656.25 20.00 501,845 20.40 0.98

Curvature Concave 468.75 3.53 223,604 9.08 0.39
Flat 1,093.75 8.24 2,058,021 83.66 0.10
Convex 11,718.75 88.24 178,340 7.24 12.17
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might be attributed to its interaction with other variables or the specific geological characteristics of the study area. Certain

lithological units may promote rapid runoff and contribute to flash floods, but their significance may not always be captured
in the model due to collinearity with other predictors.

Finding the same example in other studies is difficult, but in some studies, certain factors that have a high influence on flash

floods have either values close to 0 or negative values. Tehrany et al. (2014), for instance, showed that soil drainage was
almost the least influencing factor, and the slope and soil effect were not statistically significant in the model. Nandi et al.
(2016) also revealed that the distance to the stream was the least contributing factor to floods in their study area. Therefore,

in summary, the lack of significance of slope, elevation, land cover, and lithology in our LR analysis may be due to the inter-
play of various factors and the specific characteristics of the study area.

An FFS map was created by multiplying the LR coefficients with their corresponding conditioning factors (Figure 5(b)).

These values were then classified into five classes using the natural break classification technique, i.e., very high (10.06%),
high (19.81%), moderate (26.95%), low (27.6%), and very low (15.58%) (Figure 6).

Figure 5 | Flash flood susceptibility models using (a) FR, (b) LR, (c) XGBoost, (d) RF, (e) KNN, and (f) NB.

Journal of Water and Climate Change Vol 00 No 0, 13

Uncorrected Proof

Downloaded from http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2024.726/1449128/jwc2024726.pdf
by guest
on 31 July 2024



Figure 6 | The percentage of flash flood susceptible areas under different classes of the six models.

Table 2 | LR coefficients of different factors

Factors LR coefficient

Constant �8.594� 10�1

Elevation �1.437� 10�3

Slope �8.159� 10�4

Aspect �4.935� 10�3

Curvature 2.881� 10�2

Distance to the river 7.35� 10�5

Drainage density 1.016

Rainfall 2.353� 10�2

TWI �4.34� 10�2

SPI 9.947� 10�6

Land cover �6.329� 10�7

NDVI 2.585� 10�1

Lithology �8.371� 10�7
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3.3. ML models

In the present section, four ML algorithms were used to examine the impact of each flood conditioning factor on the likeli-
hood of flash floods occurring in the Rheraya basin. The analysis results indicate that the distance to the river, drainage

density, and TWI are the most influential factors, followed by SPI, rainfall, elevation, lithology, aspect, NDVI, land cover,
slope, and curvature (Figure 7). These values demonstrate that all conditioning factors play a significant role in flash flood
occurrence; however, the distance to the river and drainage density have a greater impact on the study area.

XGBoost, RF, NB, and KNN algorithms were utilized to evaluate the susceptibility of flash floods for each pixel of the basin.

The RF model proved to be the most successful in terms of prediction performance. A number of classification methods were
applied in several studies to classify the FFS maps, such as the equal interval, regular interval, standard deviation, quantile, natu-
ral break, and manual approach. Among these methods, the natural break and quantile approaches are the most popular in the

literature (Tehrany et al. 2019a, 2019b; Tien Bui et al. 2019a, 2019b), and thus, this study used the natural break classification
method to classify the FFS maps into five classes: very low, low, moderate, high, and very high (Figure 5(c)–5(f)).

Based on the results, the KNN model showed that the lowest percentage of area (1.62%) belonged to the low-risk class,

followed by the moderate (18.83%), very low (23.05%), high (27.6%), and very high (28.9%) classes. The NB model revealed
that the percentages of areas for the very high, high, moderate, low, and very low classes are 49.35, 21.43, 12.66, 9.42, and
7.14%, respectively. The RF model shows that the percentage of areas in the very high flash flood susceptible class is 10.06%,
followed by moderate (10.39%), high-risk (13.64%), low-risk (20.13%), and the very low flash flood susceptible classes

(45.78%). Lastly, for the XGBoost model, the area percentages were 17.53% for the very high FFS class, 6.17% for the
high, 4.87% for the moderate, 8.12% for the low, and 63.31% for the very low (Figure 6).

The findings indicate that the KNN and NB models tend to overestimate FFS in regions with high risk while underestimat-

ing it in areas with low risk, in contrast to the RF and XGBoost models. Nevertheless, all four models unanimously indicate a
very high flash flood risk in locations near the main river within the study area.

3.4. Validation and comparison

The accuracy and prediction ability of the six FFS models were evaluated using the area under the ROC curve metric using

both training and testing data. The higher the AUC value, the better the model’s prediction performance, and vice versa.

Figure 7 | The importance of flash flood conditioning factors. g1: Semipermeable, g2: impermeable, g3: permeable, l1: built-up and urban, l2:
bare rocky land, l3: agriculture, l4: forest, and l5: bare land.
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According to the success rate curve (e.g., training dataset), the RF model (AUC¼ 0.90) surpassed the XGBoost (AUC¼
0.86), LR (AUC¼ 0.85), NB (AUC¼ 0.81), KNN (AUC¼ 0.79), and FR (AUC¼ 0.77) models (Figure 8(a)). The results of
the prediction rate curve (e.g., testing dataset) also showed similar results, with the RF model having a higher AUC value
of 0.86 in comparison to the XGBoost (AUC¼ 0.85), LR (AUC¼ 0.83), NB (AUC¼ 0.76), KNN (AUC¼ 0.75), and FR

(AUC¼ 0.72) (Figure 8(b)).
Although all six FFS models exhibited high to moderate prediction accuracy with AUC values greater than 0.70, the RF

model was determined to be the most effective for predicting FFS in the study area.

4. DISCUSSION

This study highlights the multifaceted nature of flash flood occurrences, the interplay of conditioning factors, and the poten-
tial of bivariate and multivariate statistical models and ML techniques for flash FSM in the Rheraya watershed, a flood-prone

region. These susceptibility maps are invaluable resources for a wide range of stakeholders, including hazard managers, urban
planners, and policymakers, to prevent flash flood-related injuries and property losses (Figure 5; Shokouhifar et al. 2022).
Moreover, the increasing risk of flash floods, driven by various factors such as rapid urbanization, deforestation, canalization,

changes in land use, and the effects of climate change (i.e., changes in the intensity and frequency of heavy precipitation),
highlights the critical need for improved mapping of FFS (Hapuarachchi et al. 2011; Badraq Nejad et al. 2019; Prasad
et al. 2021). Therefore, our study holds significant implications for understanding and managing FFS in the Rheraya basin

and similar ungauged regions known for their past destructive flash flood occurrences.
The results indicate that all the models unveiled several significant factors influencing FFS in the Rheraya watershed, such

as elevation, slope, distance to the river, NDVI, and rainfall. This highlights the complex nature of flash floods, reflecting the
combined impact of terrain features, land use patterns, and hydrological conditions. Identifying the most contributing factor

to flash floods in our area is so significant as it will allow for targeted and effective mitigation strategies, resource allocation,
and risk assessment. Distance to the river emerged as the most influential factor for flash floods in the region. Many studies
have also confirmed the important contribution of this factor to flood occurrence (Rahmati et al. 2016a, 2016b; Pham et al.
2020; Bansal et al. 2022; Chaulagain et al. 2023). This is evident as areas near riverbanks are more susceptible due to their
increased exposure to rapid water flow as well as their role as natural drainage paths. Therefore, urban development in the
Rheraya watershed should consider safe locations, particularly those away from riverbanks.

Our FFS modeling involved six approaches, including two statistical methods (i.e., FR and LR) and four ML algorithms
(i.e., RF, XGBoost, NB, and KNN). The comparative analysis revealed the RF model as the best-performing model, with a
consistently high AUC value of 0.86, followed by XGBoost (AUC¼ 0.85), LR (AUC¼ 0.83), NB (AUC¼ 0.76), KNN
(AUC¼ 0.75), and FR (AUC¼ 0.72). Multiple studies have aligned with our findings, emphasizing the robustness of RF in

modeling FFS (Lee et al. 2017). For instance, Islam & Chowdhury (2024) conducted a local-scale FFS assessment in north-
eastern Bangladesh using RF and support vector machine algorithms, demonstrating RF’s superior performance. Similarly,

Figure 8 | The validation of the six-flash flood susceptible models using the ROC curve based on the training point (a) and the validation point
(b).
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Ghanim et al. (2023), Abedi et al. (2022), and Vafakhah et al. (2020) assessed various ML algorithms and statistical tech-

niques to delineate FFS at regional scales in Jeddah City (Saudi Arabia), the Bâsca Chiojdului river basin (Romania), and
Gilan province (Iran), respectively, also finding RF to be the most effective. In addition, Zhao et al. (2018) mapped flood sus-
ceptibility in mountainous areas on a national scale in China using RF, artificial neural network, and support vector machine

methods, with RF emerging as the optimal model. Hence, RF emerges as a consistently effective model for FFS modeling.
However, it is noteworthy to mention that all models in our study exhibited AUC values exceeding 0.70, indicating their effi-
cacy in assessing FFS.

Our FFS maps of the Rheraya watershed, generated by the different models, offer valuable insights into high-risk areas.

Consistently, regions such as Moulay Brahim (Figure 9(a)), Asni (Figure 9(b)), Tinitine (Figure 9(c)), Imlil (Figure 9(d)),
and Armed (Figure 9(e)) have been identified as highly vulnerable to flash floods. These areas, known for their tourist attrac-
tions and urbanization, need immediate attention in terms of disaster preparedness and mitigation measures. It is imperative

to strengthen the infrastructure for disaster management in these regions, including the establishment of additional meteor-
ological stations for enhanced rainfall measurement and flood forecasting. In addition, policies should be implemented to
regulate urban development, ensuring that construction activities adhere to flood-resistant standards and are located away

from high-risk zones. Moreover, public awareness campaigns and community engagement initiatives should be undertaken
to educate residents about the risks associated with flash floods and the necessary safety measures to mitigate their
impact. By implementing these policies and measures, we can effectively safeguard lives and properties in these vulnerable

areas in the Rheraya watershed.
Although this study showed the effectiveness and robustness of statistical methods and ML techniques, particularly RF, in

identifying flash flood high-risk areas in the ungauged and flood-prone Rheraya watershed, in addition to identifying the most
contributing factors to flash floods in our region, it is important to mention that our approach is not without limitations. The

models applied rely on various assumptions, and the results may be sensitive to the choice of conditioning factors and their
classification (Tehrany et al. 2019a, 2019b). Future research could explore the use of additional data sources and the vali-
dation of the models for different conditions to enhance the accuracy of the FFS maps. Climate models, for instance,

provide data for different future projections, which could lead to better FFS mapping. In addition, collaborative efforts in
data collection and sharing can enhance data accessibility, spanning from local to global flood inventories. This expanded
dataset’s availability can help in the evaluation of models performance across diverse spatial scales, assessing their adapta-

bility and generalizability. The flashiness of floods is significantly influenced by the characteristics of rainfall events.
Saharia et al. (2021) showed that spatial variability of rainfall impacts flash flood severity as much as basin geomorphology

Figure 9 | 3D representation of the RF model with the area’s most vulnerable to flash floods: (a) Moulay Brahim, (b) Asni, (c) Tinitine, (d) Imlil,
and (e) Armed.
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and climatology. Therefore, future work should also investigate adding rainfall event-related factors such as intensity, dur-

ation, spatial distribution, and temporal patterns to the modeling and consequently developing more robust FFS maps. It
is crucial to note that our study utilized data from just one study site, which limits the generalizability of our findings to
other ungauged basins. Nonetheless, to ensure the scalability of our approach, it is essential to assess the accuracy of our

methods across basins with diverse topographical, hydrological, geological, geographical, and anthropogenic characteristics.
Future research should aim to confirm the reliability of ML compared with statistical models across various watersheds, con-
sidering the variability in factors that could impact model outcomes.

5. CONCLUSION

Flooding risks are constantly increasing due to climate change and land use changes. Flash floods, in particular, are a very
difficult phenomenon to predict, and the impacts and consequences can be very extreme. Creating an FFS map through the
use of mathematical and statistical methods based on analyzing geospatial data is a significant advancement in managing the

hazards of flash floods.
The Rheraya basin is an area susceptible to flash flooding due to its steep slopes, high altitude, low permeability, high den-

sity of drainage, etc. To mitigate the severity of flash floods in this region, effective methods for identifying the most vulnerable
locations are necessary. Recent advancements in statistical approaches and ML algorithms have proven to be valuable tools

in this endeavor. In this study, six models were evaluated and applied, including LR, FR, RF, NB, XGBoost, and KNN. Input
data for the models consisted of two major variables: 12 independent factors such as elevation, land use, slope, NDVI, rain-
fall, lithology, distance to the river, and drainage density, and one dependent factor, flash flood inventory, which represents

246 locations recorded over the past 40 years, obtained from historical archives, field surveys, and validated with satellite
data. Flash flood inventory was divided into 70% for training the models and 30% for validating them. Results indicated
that the RF model performed the best based on the ROC curve evaluation metric (AUC¼ 0.86), followed by XGBoost

(AUC¼ 0.85), LR (AUC¼ 0.83), NB (AUC¼ 0.76), KNN (AUC¼ 0.75), and FR (AUC¼ 0.72). The analysis also revealed
that distance to the river and drainage density were the most influential factors in the occurrence of flash floods in the
Rheraya basin.

The current study has demonstrated the robustness and effectiveness of the methodology adopted for the analysis of sus-
ceptibility to flash floods. Therefore, it is strongly recommended to extend the application of the RF model to predict the
susceptibility to flash floods in other basins, especially in the case of ungauged watersheds that lack hydrological data.
This will enable a more accurate assessment of vulnerability in areas with high human traffic, allowing for the precise identi-

fication of high-risk zones. Furthermore, these models can also be utilized to guide the installation of meteorological
equipment and evaluate the suitability of the location of flood warning stations. Future work should broaden the factors con-
sidered in susceptibility modeling to better understand flash flood vulnerability. Collaborative data collection and improved

data accessibility will help incorporate additional information, making flood management and disaster risk reduction more
effective on a larger scale.
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