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1 Introduction

Flavor universality of the Standard Model (SM) gauge sector could be an emergent property
below the TeV scale. The possibility of having new physics (NP) that extends the SM gauge
sector in a flavor non-universal manner opens up an interesting path to explain the SM
flavor hierarchies while providing a rich phenomenology. Although flavor observables like
meson mixing put strong bounds on non-universal physics between first and second families,
pushing the scale to the PeV range, the scale of universality breaking between third and
light families can be as low as few TeV [1].

This hierarchy of energies suggests that flavor can be addressed by having multiple
NP scales [2–5], something that is achieved by deconstructing flavor. In analogy to the
deconstruction of an extra dimension [6–8], we can extend some of the factors of the SM gauge
group into identical products that break to their diagonal subgroup at low-energies. Different
SM fermions can then be charged under the different factors, hence resulting in violations of
flavor universality. Whereas it is phenomenologically viable to break universality between
first and second families above the PeV scale, these models are effectively described around
the TeV scale by a gauge group that charges the light families universally and the third family
differently. Examples of models deconstructing some of the SM factors, or its UV completions,
can be found in [9–18]. Among them, a particular interesting realization is the so-called 4321
models [10, 11], a color deconstruction based on the G4321 ≡ SU(4)×SU(3)′×SU(2)L×U(1)X
gauge group. This class of models has been extensively studied [19–23], as it provides one of
the most compelling explanations for the observed hints of deviations from the SM predictions
in B decays [24, 25]. While these hints have become less significant nowadays, 4321 models
present multiple theoretically-appealing features that go beyond the explanation of these
anomalies. For instance, they allow for low-scale unification of third-family quarks and
leptons à la Pati-Salam [26] and provide a natural explanation for the smallness of the
Cabibbo-Kobayashi-Maskawa (CKM) mixing with the third family.
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In general, flavor-deconstructed models require a sector responsible for the breaking of
the extended symmetry to the SM gauge group. A common approach consists in the inclusion
of link scalar fields: fields charged under two group factors that spontaneously break them to
their diagonal once they acquire a vacuum expectation value (vev). In such scenarios, if there
are no other fermions than those in the SM, the cancellation of gauge anomalies requires
to charge full SM generations under each group factor.1 This imposes some rigidity on the
construction of these models that, in certain situations, could be interesting to relax. A
radiatively stable alternative for the symmetry breaking, analogous to technicolor theories for
electroweak (EW) symmetry breaking, is to add an hyper-sector with strong dynamics that
develops condensates breaking the UV symmetry. This avoids the inclusion of extra ad-hoc
scalars. Furthermore, if the composite sector responsible of the lowest breaking confines at
the TeV scale, it could be connected to composite Higgs solutions of the hierarchy problem,
similarly to the 4321 model presented in [29].

In this article, we explore the possibility of charging new fermionic degrees of freedom
of an hypothetical strongly-coupled sector so we can split the SM fermions among different
factors of a deconstructed SM symmetry while avoiding gauge anomalies. Although these
fermionic fields are chiral and have to be massless, the strong dynamics ensures that they do
not appear as asymptotic states but only as partons of new hyper-baryons of the composite
sector at the confinement scale. A variant of this idea is actually realized in nature: the
breaking of SU(Nf )L × SU(Nf )R × U(1)B−L → SU(Nf )V × U(1)B−L triggered by the quark
condensate once QCD becomes strongly coupled, yielding a breaking of the electroweak group
to electromagnetism at the QCD scale. If we imagine a parallel universe where the Higgs does
not take a vev (or it is absent), below the QCD scale we would only see leptons generating
anomalies of the EW symmetry which are canceled only when the quark sector is taken into
account. We extrapolate this mechanism to beyond-the-SM physics.

This paper is structured as follows: in section 2 we explore the deconstruction of two
toy models that encode the main ideas and show how anomaly-cancellation is described
both in an effective chiral description and a holographic description of the strong dynamics.
The application of these ideas to specific SM deconstructions are discussed in section 3. As
a prototypical example, we present a novel 4321 implementation where the top quark is
uniquely identified by the gauge symmetry, as justified by the smallness of the bottom and
all other Yukawa couplings. We further discuss alternative SM deconstructions relaying on
this mechanism. We conclude in section 4.

2 General idea

Before tackling specific SM extensions, we present in this section two toy model examples that
encapsulate, in a simpler manner, how we can use a composite sector for flavor deconstructions
of a gauge symmetry.

1A possibility to break this condition is to include anomalons, chiral fermions of the UV symmetry that get
mass from the breaking and become vector-like fermions under the SM gauge group. Examples of similar
constructions can be found in [18, 27, 28].
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2.1 Toy model I

Let us consider the deconstruction of an SU(N) gauge theory with several families of a
fermion field ψiL,R (i = 1, . . . , Nψ) transforming in a complex vector-like representation. The
vector-like character of the theory makes it trivially anomaly-free. Let us assume we want to
extend the original symmetry to SU(N)1 × SU(N)2. For fields charged under SU(N)1(2), we
will say they belong to the first (second) site. The breaking of this extended gauge group
to the diagonal SU(N)V can be triggered by a composite sector with a gauge symmetry
SU(NHC) and N hyper-quarks ζL,R transforming in a vector-like complex representation.
This sector has then a global symmetry SU(N)L × SU(N)R × U(1)V , so the SU(N) factors
can be identified with the extended gauge symmetry, SU(N)1(2) ≡ SU(N)L(R). When the
hyper-sector confines, the hyper-quarks form a condensate, ⟨ζ̄αLζ

β
R⟩ ∝ δαβ, that breaks the

symmetry to its diagonal subgroup:

SU(N)L × SU(N)R × U(1)V → SU(N)V × U(1)V , (2.1)

so below the scale of this condensate, we recover the starting SU(N) model. This breaking
yields N2−1 would-be-Goldstone bosons, all of them eaten by the gauge bosons that get mass.

In what follows, we assume that all complex representations are the fundamental, which
we denote as □. For the ψ fermions, this is a natural choice as we intend to identify them with
the SM fermions, as for the hyper-quarks we do so for simplicity. We can charge both chiralities
of ψ in the fundamental representation of the same SU(N)X (with X = L,R), or charge each
of them under a different SU(N)X group. In either case, the theory potentially contains gauge
anomalies that need to be canceled by introducing new fields. We start considering N ≥ 3.
Since all our fields are in fundamental representations of SU(N)R and SU(N)L respectively,
they generate local gauge anomalies of the type SU(N)X − SU(N)X − SU(N)X . To cancel
them, we will add Nχ right-handed fermions, χR, in the fundamental of SU(N)L, and Nχ

left-handed fermions, χL, in the fundamental of SU(N)R, all of them singlets of SU(NHC).
As we show below, these fermions can get a mass in the broken phase and get integrated out,
leaving the same low-energy spectra that our initial model had. The exact value of Nχ depends
on the charge assignment of the ψ fields. An example is illustrated in table 1, where we charge
ψL under SU(N)L and ψR under SU(N)R. If we have Nχ = NHC +Nψ, all gauge anomalies
are canceled. For N = 2, there are no local gauge anomalies, but there could be global
ones [30] (also called non-perturbative anomalies). In particular, for every SU(2) component,
there should be an even number of fields charged in the fundamental representation [31]. If
not, the partition function will flip sign under large gauge transformations. If the number of
fundamental fields on each site is even, we do not need χL,R fermions. Otherwise, an odd
number of fields χL,R will be needed. Thus, for table 1, we would only need one fermion
χL,R if NHC is even and none if NHC is odd.

Finally, to give mass to these new fermions, we assume the existence of an extended
hyper-color sector that generates the four-fermion operators

LEHC ⊃ λab
Λ2

EHC
(χ̄aLχbR)(ζ̄LζR) , (2.2)
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Field SU(NHC) SU(N)L SU(N)R
ζL □ □ 1
ζR □ 1 □

ψiL 1 □ 1
ψiR 1 1 □

χaL 1 1 □

χaR 1 □ 1

Table 1. Toy model I: to cancel gauge anomalies, we need Nχ = NHC +Nψ, where Nψ and Nχ are
the number of ψL,R and χL,R fermions, respectively. Here, i = 1, . . . , Nψ and a = 1, . . . , Nχ.

where a is the flavor index of χL,R running from 1 to Nχ. When the chiral symmetry is
broken, this interaction generates the mass terms

Lchiral ⊃∼
4πf3

ζ

Λ2
EHC

λab(χ̄aLχbR) , (2.3)

so χL,R become vector-like fermions under the SU(N)V gauge symmetry.

2.2 Toy model II

Let us consider now as starting point an IR model with a gauge symmetry SU(N) × U(1)
and multiple fermion families in the complex vector representation ψiL,R ∼ (□, 1) (with
i = 1, . . . , Nψ). As before, this model is anomaly-free due to its vector-like character.

We can now deconstruct the SU(N)-factor of the gauge symmetry while keeping the
U(1) factor universal, so we extend the gauge symmetry to SU(N)1 × SU(N)2 × U(1). The
composite sector can be chosen in the same way as before: we assume an hyper-sector with
gauge symmetry SU(NHC) and N hyper-quarks ζL,R triggering the same symmetry breaking
described in eq. (2.1). In this case, there are several kinds of anomalies to consider:

(1) Cubic U(1) anomalies, U(1)− U(1)− U(1). They cancel if∑
ψ

(−1)sψ(qψ)3 = 0, (2.4)

where ψ denotes all fermions charged under U(1) with charge qψ and sψ = 1(0) for LH
(RH) fermions. This anomaly trivially cancels because U(1) is universal and it cancels
in the IR model.

(2) Gravitational U(1) anomalies. They cancel if∑
ψ

(−1)sψqψ = 0. (2.5)

Like cubic U(1) anomalies, this anomaly cancels because it cancels in the IR model.

(3) Pure SU(N)i anomalies, both local SU(N)X − SU(N)X − SU(N)X and global ones.
They can be canceled by introducing new fermions χL,R as in toy model I.
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Field SU(NHC) SU(N)1 SU(N)2 U(1)

ζL □ □ 1 − Nψ
NHC

ζR □ 1 □ − Nψ
NHC

ψiL 1 □ 1 1
ψiR 1 1 □ 1
χaL 1 1 □ 0
χaR 1 □ 1 0

Field SU(NHC +Nψ) SU(N)1 SU(N)2

ΞL = (ζL, ψiL) □ □ 1
ΞR = (ζR, ψiR) □ 1 □

χaL 1 1 □

χaR 1 □ 1

Table 2. Toy model II (top) and its possible UV-completion (bottom). To cancel gauge anomalies,
we need Nχ = NHC +Nψ, where Nψ and Nχ are the number of ψL,R and χL,R fermions, respectively.
Here, i = 1, . . . , Nψ and a = 1, . . . , Nχ.

(4) Mixed anomalies SU(N)X − SU(N)X − U(1). They cancel if∑
ψ

(−1)sψqψ = 0, (2.6)

where the sum is restricted now to all the fermions charged under the same SU(N)
(that we assume that transform in the fundamental representation). In principle, they
only cancel if both ψL and ψR are located in the same site.

The last type of anomaly appears to be an obstacle to put ψL and ψR on different sites,
not fixable by introducing new degrees of freedom. However, as shown in the example given
in table 2 (top), these anomalies can be canceled by appropriately charging the hyper-quarks
under the U(1) symmetry. Hyper-quarks then also contribute to the sums of eq. (2.6) and
make them vanish without creating other U(1) anomalies due to their vector-like character
under U(1).

Interestingly, this solution has a very natural UV completion that avoids fractional
charges: we can promote SU(NHC) to SU(NHC + Nψ) and arrange the fields as shown
in table 2 (bottom). Then, if SU(NHC +Nψ) breaks to SU(NHC)× U(1) at some high scale,
we recover the original model. This approach is similar to the Pati-Salam (PS) unification
of quarks and leptons [26] but now applied to the hyper-sector. In this case, the ψ fields
become the hyper-leptons of the hyper-quarks.

2.3 Effective chiral description

When the composite sector confines, its degrees of freedom change from hyper-colored states
to Goldstone bosons and resonances. We can describe our models using these degrees of
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freedom in the same way chiral perturbation theory (χPT) describes the low-energy limit of
QCD. In such an effective chiral description, non-hyper-colored fermions generate anomaly
contributions that are only canceled by the so-called Wess-Zumino-Witten (WZW) terms in
the effective Lagrangian [32–34], constructed with the (would-be) Goldstone bosons resulting
from the breaking. In this subsection, we explicitly build such terms for our toy models and
the models discussed in the next section. This subsection and section 2.4 are more technical
than the rest of the article, and they could be skipped in a first reading.

In this subsection, we will work in Euclidean time and a compactified 4d spacetime,
M4 = S4. For field configurations on this spacetime that can be continuously deformed to
the constant map, the easiest way to write WZW terms is to follow Witten’s construction
in [35]. WZW terms are the integral of a 5-form ωWZW

5 in a fictitious 5d disk M5 whose
boundary is the physical 4d space M4 = ∂M5,

SWZW =
∫
M5

ωWZW
5 . (2.7)

The form ωWZW
5 has to be invariant under the symmetries of the theory and closed when

it is extended to a higher-dimensional space with d > 5, dωWZW
5 = 0.2 Then, this term

can be written as the integral on the physical 4d space M4 of the primitive 4-form ωWZW
4 ,

dωWZW
4 = ωWZW

5 , which does not change under continuous deformations of the 5d extension.
If several classes of 5d extensions that are not connected by a continuous deformation exist,
they may give different values of SWZW. A quantization condition for the normalization of
ωWZW

5 is then necessary [35, 36] to ensure that different 5d extensions give the same value of
eiSWZW , which is the physically relevant object. Thus, the particular choice to extend the fields
to the fictitious 5d space is irrelevant, and therefore, unphysical. However, it is typically easier
to write ωWZW

5 which, contrary to ωWZW
4 , explicitly preserves the symmetries of the theory.3

Before building the WZW terms, it is convenient to introduce the Chern-Simons (CS)
forms ωCS

2n+1 and some of their properties [39]. Let A ≡ AaµTadxµ be a matrix-valued gauge
connection that, for our purposes, will be a connection of SU(N). We assume the gauge fields
here are normalized such that the kinetic term comes with the inverse squared of the gauge
coupling constant. CS terms are defined as 2n + 1-forms such that

dωCS
2n+1 = I2n+2(A) , (2.8)

with

I2n(A) = Tr(F ∧ . . . ∧ F︸ ︷︷ ︸
n times

) . (2.9)

CS forms can be explicitly built like

ωCS
2n+1(A) = (n+ 1)

∫ 1

0
dtTr

(
A ∧ Ft ∧ . . . ∧ Ft︸ ︷︷ ︸

n times

)
, (2.10)

2In components, (dω)µ0...µp ≡ (p + 1) ∂[µ0 ωµ1...µp].
3An extra more technical assumption on ωWZW

5 called the Manton condition is necessary to properly define
G-invariant WZW terms in a coset space, G/H, with H a closed subgroup of G [37, 38]. This condition
is automatically satisfied if the 4-th homology group of the coset space is trivial, H4(G/H) = 0, or if G is
semisimple. For the coset spaces we consider here, G/H ∼= SU(N) and H4(SU(N)) = 0.
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where Ft is the field-strength tensor of the gauge connection At = tA. Although the CS
term is not invariant under gauge transformations, its variation under the infinitesimal gauge
transformation α is the differential of a 2n form,

δαω
CS
2n+1(A) = dω1

2n(α,A) , (2.11)

with

ω1
2n(α,A) = n(n+ 1)

∫ 1

0
dt (1− t)Tr{α d(A ∧ Ft ∧ . . . ∧ Ft︸ ︷︷ ︸

n−1 times

)} . (2.12)

Interestingly, ω1
2n describes possible anomalies from fermion loops. Indeed, in the case of toy

models I and II, non-hyper-colored fermion loops contribute to the SU(N)3
X anomaly as

δαΓ ⊃ i(Nψ −Nχ)
24π2

∫
M4

[ω1
4(αL, AL)− ω1

4(αR, AR) + δαB4(AL, AR)] , (2.13)

where α = (αL, αR), Γ is the quantum effective action, and B4 are local counterterms that
one may add to shift the anomaly between the different currents [40] and depend on the
regularization procedure of the loop integrals [39]. We will assume here that the currents
associated to all generators are treated symmetrically, and therefore, B4 = 0. Note that
for SU(2), ωCS

5 = 0 because the SU(2) generators satisfy Tr(Ta{Tb, Tc}) = 0, showing that,
indeed, SU(2) cannot have pure local anomalies.

For the mixed anomaly of toy model II, it is also convenient to introduce the mixed
CS term, satisfying in this case

dω̄CS
5 (A,AU(1)) = FU(1) ∧ I4(A) , (2.14)

where AU(1) and FU(1) are the gauge field and field strength tensor of the extra U(1). They read

ω̄CS
5 (A,AU(1)) = ξ FU(1) ∧ ωCS

3 (A) + (1− ξ)AU(1) ∧ I4(A) , (2.15)

with ξ parametrizing an exact form we may add without affecting eq. (2.14). Similarly to
the pure CS form, its variation is an exact form, δ(α,αU(1))ω̄

CS
5 = dω̄1

4, such that

ω̄1
4(α, αU(1);A,AU(1)) = ξFU(1) ∧ ω1

2(α,A) + αU(1)(1− ξ)I4(A) , (2.16)

with αU(1) the gauge parameter of the U(1) group. Thus, the Nψ fermions ψL,R with charge 1
under U(1) in toy model II contribute to the mixed anomalies SU(N)X − SU(N)X − U(1) as

δαΓ ⊃ iNψ

32π2

∫
M4

[
ω̄1

4(αL, αU(1);AL, AU(1))− ω̄1
4(αR, αU(1);AR, AU(1))

]
= iNψ

32π2

∫
M4

{
ξFU(1) ∧ [ω1

2(αL, AL)− ω1
2(αR, AR)] + αU(1)(1− ξ)[I4(AL)− I4(AR)]

}
,

(2.17)

where now α = (αL, αR, αU(1)), and ξ parametrizes how the anomaly is shared between the
U(1) current and SU(N) currents. For instance, ξ = 0 (1) shifts the anomaly completely
to the U(1) current (SU(N) currents).
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To construct the WZW terms, we follow [40], where the authors give the general
construction for a broad class of G/H coset spaces. We particularize here for the case
SU(N) × SU(N)/SU(N) ∼= SU(N). First, it is convenient to define the form

ω̃2n+1(A0, A1) = (n+ 1)
∫ 1

0
dtTr

(
(A1 −A0) ∧ Ft ∧ . . . ∧ Ft︸ ︷︷ ︸

n times

)
, (2.18)

where here Ft is the field strength tensor of the gauge connection At = (1− t)A0 + tA1. This
form is invariant under simultaneous gauge transformations of A0 and A1, Ag = g(A+d)g−1,

ω̃2n+1(Ag0, A
g
1) = ω̃2n+1(A0, A1) , (2.19)

and it satisfies [40]

dω̃2n+1(A0, A1) = I2n+2(A1)− I2n+2(A0) . (2.20)

Note also that ωCS
2n+1(A) = ω̃2n+1(0, A).

We first consider the case of SU(N) with N ≥ 3.4 The WZW terms are functions of
the gauge fields and the would-be Goldstone bosons. The latter will be written as a matrix
Σ ∈ SU(N), transforming under the total group SU(N)L × SU(N)R as Σ → UL ΣU †

R. In the
expressions below, this matrix will be written like Σ = g−1

L gR for some choice of gL and gR.
A first candidate for the WZW term, up to the appropriate normalization, would be

ω′
5 (Σ, AL, AR)

∣∣
SU(N)3 = −ω̃5

(
AgLL +AgRR

2 , AgLL

)
+ ω̃5

(
AgLL +AgRR

2 , AgRR

)
. (2.21)

The particular way Σ is split into gL and gR is irrelevant, and all of them give the same result
due to eq. (2.19) (a possible choice is, for instance, gL = 1 and gR = Σ). It is easy to check
that this form is invariant under gauge transformations, and using eq. (2.20), that

dω′
5 = −I6(AL) + I6(AR). (2.22)

This form is closed if only the unbroken group is gauged so AL = AR. We would like
however to gauge the full group. For that, we will add the appropriate CS terms, defining
our SU(N)3 WZW term to be [41, 42]:

ωWZW
5 (Σ,AL,AR)

∣∣∣
SU(N)3

= m

24π2

[
ω′

5 (Σ,AL,AR)
∣∣
SU(N)3+ωCS

5 (AL)−ωCS
5 (AR)

]
, (2.23)

where, as discussed above, the overall normalization has to be quantized, m ∈ Z.5 Due to the
CS forms, the WZW term is closed but invariant only under gauge transformations in the
unbroken group SU(N)V . The variation under a general gauge transformation is proportional
to the integral of dω1

4(αL, AL)− dω1
4(αR, AR) in the 5d space. Using the Gauss theorem, it

can be written localized in the boundary, i.e. in the physical space. If m = Nχ −Nψ = NHC ,
4The 4-th homotopy group of the coset space is trivial, π4(SU(N)) = 0 for N ≥ 3, so every configuration of

the Goldstone field can be extended to M5.
5The 5-th homotopy group of the coset space is non-trivial, π5(SU(N)) = Z for N ≥ 3, which implies that

there are infinite classes of 5d extensions for Σ not connected by a deformation.
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this contribution precisely cancels the SU(N)3
X anomaly caused by the non-hyper-colored

fermions of eq. (2.13).
For SU(N) groups with N = 2, the SU(2)3 WZW term vanishes. However, if NHC =

Nχ−Nψ is odd, the chiral description of toy models I and II has a non-perturbative WZW-like
term (different to the ones discussed here) that reproduces the global-anomaly contribution
from the hyper-quarks and cancels the contribution from the non-hyper-colored fermions.
This is achieved if this term flips the sign of the partition function for configurations of the
Σ field that cannot be deformed to the constant map.6

Coming back to general values of N ≥ 2, in toy model II there is also a U(1) gauge
field that allows to define a new form [42]

ω′
5 (Σ, A)

∣∣
SU(N)2−U(1) = FU(1) ∧

[
−ω̃3

(
AgLL +AgRR

2 , AgLL

)
+ ω̃3

(
AgLL +AgRR

2 , AgRR

)]
.

(2.24)
As before, this form is gauge invariant, but not closed under general gauge transformations:

dω′
5 (Σ, A)

∣∣
SU(N)2−U(1) = FU(1) ∧ [−I4(AL) + I4(AR)] . (2.25)

To make it closed, we add mixed CS forms and define the SU(N)2 − U(1) WZW term:

ωWZW
5 (Σ, A)

∣∣∣
SU(N)2−U(1)

= m̄

32π2

{
ω′

5 (Σ, A)
∣∣
SU(N)2−U(1)

+ ξ FU(1) ∧
[
ωCS

3 (AL)− ωCS
3 (AR)

]
+ (1− ξ)AU(1) ∧ [I4(AL)− I4(AR)]

}
. (2.26)

Like in the previous case, the WZW term is now only invariant under the unbroken group
but not under the complete group. The normalization here can be chosen for the variation
of the CS terms to exactly cancel the anomaly contribution from the Nψ fermions ψiL,R
of eq. (2.17), m̄ = −Nψ. Thus, this contribution makes the effective theory anomaly free.
Remarkably, in this case we can directly write a primitive 4-form dωWZW

4 = ωWZW
5 , avoiding

fictitious 5d extensions:

ωWZW
4

∣∣∣
SU(N)2−U(1)

= m̄

32π2 AU(1) ∧
{
− ω̃3

(
AgLL +AgRR

2 , AgLL

)
+ ω̃3

(
AgLL +AgRR

2 , AgRR

)

+ ξ
[
ωCS

3 (AL)− ωCS
3 (AR)

]}
. (2.27)

2.4 Holographic realization

Holographic models are a useful way to describe strongly-coupled sectors in the large-NHC
limit. Due to holography or the AdS/CFT correspondence [43, 44], one expects that theories
living in a slice of a 5d space with metric

ds2 = e−2σ(y)ηµνdxµdxν − dy2, (2.28)
6Note that the 4-th homotopy group of the coset space is π4(SU(2)) = Z2. A large gauge transformation of

one of the SU(2) factors changes the homotopy class of the field configuration of Σ.
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where σ(y) ∼ y when y → −∞, describe effectively strongly coupled sectors in 4d. This 5d
space is an asymptotic AdS space, and it will be bounded by a 4d UV brane at y = yUV
and a 4d IR brane at y = yIR > yUV. In this description, the hyper-colored degrees of
freedom are replaced by this 5d bulk with weakly-coupled physics. It is instructive to
see how this 5d dynamics provides mechanisms to cancel the anomaly contribution of the
non-hyper-colored fermions.

The holographic dictionary [45] guides us in how to map the features of the strongly-
coupled sector into the 5d model. We can then build the holographic version of toy models I
and II. In this subsection, we only consider models with SU(N) groups with N ≥ 3. They
consist on a SU(N)L × SU(N)R × U(1)V gauge theory in the 5d bulk corresponding to a
composite sector with a SU(N)L × SU(N)R × U(1)V global symmetry.7 Reproducing the
anomalies of the symmetries of the composite sector requires the inclusion of CS terms in
the bulk that we discuss below [44, 46]. Let us focus first on the SU(N)L × SU(N)R part,
which is common for both toy models. A condensate breaking SU(N)L × SU(N)R to the
diagonal SU(N)V can be implemented through the breaking of the symmetry in the IR
brane. This is done by selecting as boundary conditions of the gauge fields those that set
to zero the 4d components associated to the broken generators, so SU(N)V is preserved in
the IR brane. The UV brane will preserve the full SU(N)L × SU(N)R symmetry because it
is gauge in the dual 4d model. The fundamental degrees of freedom χL,R and ψL,R appear
as fermions localized in the UV brane. In principle, they will create an anomaly localized
in the UV brane similar to the one in eq. (2.13),

δαΓ5d ⊃ δ(y − yUV)
i(Nψ −Nχ)

24π2

[
ω1

4(αL, AL)− ω1
4(αR, AR)

]
. (2.29)

This anomaly is canceled by the CS terms in the bulk [47, 48]:

L5d ⊃
NHC
24π2

[
ωCS

5 (AL)− ωCS
5 (AR)

]
. (2.30)

The variation of these terms exactly cancels the anomalous contribution of eq. (2.29), and does
not create a new one in the IR brane because, by boundary conditions, AL(yIR) = AR(yIR).

Concerning U(1)V ≡ U(1) in the holographic toy model I, it is preserved in the IR brane
because it is respected by the condensate, but broken in the UV brane by boundary conditions
AU(1)|yUV = 0 on the 4d components, because U(1) is not gauged in the dual theory. However,
in the holographic toy model II, the U(1) symmetry is preserved everywhere, including the
UV brane. In this case, the mixed anomaly generated in the UV brane similar to eq. (2.17)
is canceled by the mixed CS term in the bulk,

L5d⊃
m̄

32π2

{
ξFU(1)∧

[
ωCS

3 (AL)−ωCS
3 (AR)

]
+(1−ξ)AU(1)∧[I4(AL)−I4(AR)]

}
, (2.31)

with m̄ = −Nψ and which, as before, does not generate any anomaly in the IR brane
because AL(yIR) = AR(yIR).8

7So far, we have not considered the axial U(1)A symmetry because it is anomalous. However, in the
large-NHC limit this anomaly is subleading so U(1)A could also be included. Nevertheless, it does not play
any relevant role in our discussion.

8Although irrelevant for gauge-anomaly cancellation, a similar CS term is also present in the holographic
toy model I to match the SU(N) − SU(N) − U(1)V ’t Hooft anomalies of the composite sector.
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The cancellation of these anomalies is reminiscent of the cancellation of the same anomalies
in the effective chiral description with WZW terms. In both cases, the same CS terms are
the ones that cancel anomalies from the non-hyper-colored fermions, in one case in the AdS
space, and in the other in a fictitious 5d space. The only condition to be able to write such
terms is that CS forms must vanish when evaluated in the unbroken gauge fields. In the AdS
space description this condition is required to not create anomalies in the IR brane, while in
the effective chiral description this is needed to build the WZW term. This is not surprising
as it is known that CS terms in the 5d bulk are dual to WZW terms in the 4d description.
Indeed, one can show that after integrating out the bulk degrees of freedom of a 5d theory,
CS terms in the 5d action generate WZW terms in the so-called holographic action [49].

3 Deconstructing the Standard Model

We now apply the ideas from the previous section to build realistic models based on SM
deconstructions. Before doing so, it is useful to embed the SM gauge group into larger
global symmetries present in the SM kinetic terms, which are anomaly free. For instance,
U(1)Y = U(1)R ⊕ U(1)B−L, where U(1)R charges with ±1/2 the up (down) fermions, and
U(1)B−L charges with −1/2 (1/6) for leptons (quarks). Furthermore, U(1)R ⊂ SU(2)R and
SU(3)c×U(1)B−L ⊂ SU(4)PS. We thus arrive to the PS symmetry [26]: if we add one singlet
fermion per family, i.e. three right-handed neutrinos νR, each SM family can be embedded into
two multiplets ΨL ∼ (4,2,1) and ΨR ∼ (4,1,2) of the PS group SU(4)PS ×SU(2)L×SU(2)R:

ΨL =
(
qL
ℓL

)
, ΨR =

(
(uR dR)
(νR eR)

)
. (3.1)

One advantage of this embedding is that anomaly cancellation for each SM family becomes
transparent: neither mixed nor gravitational anomalies can appear because the group is
semisimple, SU(4)PS anomaly cancels between ΨL and ΨR (as it is a vector-like symmetry),
and SU(2)L and SU(2)R are anomaly-safe groups. Furthermore, there are no global anomalies
associated to SU(2)L,R because for each group there are 4 doublets per family forming a
fundamental of SU(4)PS. Another advantage of considering the PS group embedding compared
to other unification groups, such as SU(5) or SO(10), is that the gauging of this symmetry
does not introduce proton decay, thus allowing for typically lower (partial) unification scales.9

For our purposes, even when we do not gauge the PS group entirely, it will be convenient
to think in terms of this symmetry. When deconstructing the SM gauge symmetry, we
distinguish the following scenarios:

i) When full PS multiplets are present in a given site, no extra U(1) symmetries are
involved and the situation is similar to toy model I. In this case, we only need to
appropriately choose the number of vector-like fermions χL,R, if needed, to make the
deconstruction anomaly-free.

ii) When a PS multiplet is distributed among different sites and the only deconstructed
groups are semisimple, a universal U(1) symmetry, which can be hypercharge or some
component of it, will cause mixed anomalies. In this situation, one can use the
mechanisms of toy model II for anomaly cancellation.

9See [15] for a recent model example of SU(5) deconstruction.
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iii) A last possibility appears when a PS multiplet is distributed among different sites
and the deconstructed symmetry involves U(1) factors. In this class of models, the
mechanisms discussed in model I or II are not sufficient to cancel gauge anomalies, so
we disregard it in what follows.

We provide phenomenologically relevant examples of SM deconstructions of type i) and
ii) in the next subsections.

3.1 4321 deconstructions

In this section, we focus in deconstructions of the SM color group based on the gauge symmetry

G4321 ≡ SU(4)× SU(3)′ × SU(2)L × U(1)X , (3.2)

where SU(2)L acts universally on the three SM fermion families, while the SU(4), SU(3)′
and U(1)X groups act non-universally. Around the TeV scale, this gauge group is as-
sumed to get spontaneously broken to the SM subgroup, such that SU(3)c × U(1)Y ≡
[SU(4)× SU(3)′ × U(1)X ]diag and SU(2)L is the SM group factor. Hence, gauge universality
of the SM appears as an emergent property at low-scales for this class of models. Rather
than discussing the fermion charges in terms of the 4321 gauge symmetry, it results more
convenient to present them in terms of the larger (global) symmetry

G4422 ≡ SU(4)× SU(4)′ × SU(2)L × SU(2)R , (3.3)

with SU(4)′ ⊃ SU(3)′ × U(1)′ being non-universal on the SM families and, similarly to
SU(2)L, the SU(2)R ⊃ U(1)R symmetry assumed to be universal. The U(1)X factor in the
4321 symmetry is obtained from the diagonal combination of the U(1) factors in SU(4)′ and
SU(2)R, namely U(1)X ≡ [U(1)′ × U(1)R]diag.

In analogy with the toy model examples from section 2, we will say that fields charged
under SU(4) (SU(4)′) belong to the first (second) site. Different charge assignments for the
SM fermions correspond to different 4321 implementations. The most common one locates
first- and second-family fermions in the second site by charging them as in the SM under
SU(3)′ × SU(2)L × U(1)X , whereas third-generation quarks and leptons (together with a
right-handed neutrino) are unified into SU(4) fourplets,10 thus belonging to the first site.
The breaking to the SM group is typically done through a set of scalar fields charged under
SU(4) that acquire a vev. An alternative possibility consists in breaking the 4321 symmetry
through the condensate of hyper-fermions from a strongly-coupled sector [29].11

The strongly-coupled option follows a similar structure to the one exemplified by toy
model I, with new will-be-vector-like fermions being the ones responsible for compensating the

10For the usual see-saw mechanisms, the scale of quark-lepton unification has to be as around 1014 GeV to
have light neutrinos without fine tuning. Instead, naturally light neutrino masses with a low SU(4)-breaking
scale can be realized through an inverse see-saw mechanism by introducing an additional gauge-singlet
fermion [11, 50–52].

11In 4321 models, an extra advantage of breaking the symmetry with a condensate is that one avoids
dangerous 5-dimensional operators that break baryon number, leading to fast proton decay even when they
are suppressed by the Planck scale [53]. We thank Tomasz Dutka for pointing this out.
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Field SU(NHC) SU(4) SU(4)′ SU(2)L SU(2)R
ζR □ 4 1 1 1
ζL □ 1 4 1 1
χiL 1 4 1 2 1
χiR 1 1 4 2 1
ψ3
L 1 4 1 2 1

ψ3
R 1 4 1 1 2

ψ1,2
L 1 1 4 2 1

ψ1,2
R 1 1 4 1 2

Table 3. 4321 deconstruction from [29]. To cancel the anomalies, we need NHC = 2Nχ.

gauge anomalies introduced by the hyper-fermions (see table 3).12 This choice of charges for the
SM fermions singularizes the third family, resulting in a U(2)q×U(2)u×U(2)d×U(2)ℓ×U(2)e
flavor symmetry before 4321 symmetry breaking. Among other things, this symmetry
provides an explanation for the smallness of the 2-3 CKM matrix elements and yields an extra
protection for the NP sector against flavor constraints. Interestingly, if there is a mass term
between χiR and q1,2

L , the will-be-vector-like fermions induce the Yukawa couplings which are
a priori forbidden by the gauge symmetry when they are integrated out. Moreover, it becomes
easy to embed this construction into a more complete setup where the Higgs is also localized
in the first site, hence explaining the smallness of first- and second-generation Yukawas.
However, the smallness of the bottom and tau Yukawas typically remains unexplained by
this implementation, as all third-family fermions are put in the same footing.

Changing the number of will-be-vector-like fermions with respect to NHC leads to different
arrangements of the SM fields. If NHC = 2Nχ + 2, anomalies would cancel if, for instance,
third-family right-handed fields are charged under SU(4)′. This possibility results in a
U(2)q×U(3)u×U(3)d×U(2)ℓ×U(3)e flavor symmetry before 4321 symmetry breaking, which
is enough to explain the suppression of light Yukawas and 2-3 CKM matrix elements [54].
Indeed, if the SM Higgs is embedded in a scalar field charged under G4321 like (4, 3̄,2)− 1

2
,

only the top Yukawa coupling can be written at the renormalizable level.
A perhaps more natural choice for fermionic charges would be to isolate the top quark

by locating ψ3
L = (q3

L ℓ
3
L) and ψ3u

R = (tR ν3
R) in the first site and ψ3d

R = (bR τR), together
with first- and second-family fermions, in the second. This choice gives rise to a U(2)q ×
U(2)u × U(3)d × U(2)ℓ × U(3)e flavor symmetry in the gauge sector, which coincides with the
approximate symmetry of the Yukawa sector and thus offers a good starting point to explain
its structure dynamically.13 As before, it is possible to argue that the Higgs field is located
in the first site and thus only the top Yukawa is generated in first approximation, whereas
all other Yukawas are generated through subleading mass mixing effects. A dedicated study

12In this implementation, we choose ζR (ζL) to be a fundamental of SU(4) (SU(4)′). In principle, the
opposite identification is also possible, exchanging the chiralities of the will-be-vector-like fermions. Other
representations of the will-be-vector-like fermions under SU(2)L or SU(2)R are also possible.

13The minimal set and size of the spurions breaking this symmetry that are required to accommodate the
SM Yukawa structure is discussed in [55].
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of the corresponding flavor symmetry spurions as well as their possible dynamical origin is
beyond the scope of this work and will be discussed elsewhere. Possible gauge anomalies
are more clearly seen using the bigger global group

G4421 = SU(4)× SU(4)′ × SU(2)L × U(1)R ⊃ G4321, (3.4)

where SU(2)L × U(1)R acts universally. Anomaly cancellation of the gauge group G4321
will be inherited from anomaly cancellation of G4421. Cubic and gravitational anomalies
of U(1)R cancel like in the SM because U(1)R is universal. Cubic anomalies of SU(4) or
SU(4)′ are canceled by choosing appropriately the number of will-be-vector-like fermions,
NHC = 2Nχ + 1. The splitting of top and bottom fermions also causes mixed anomalies
between SU(4)′ or SU(4) and U(1)R:∑

ψ∈s
q

(R)
ψ = −

∑
ψ∈s′

q
(R)
ψ = 1

2 , (3.5)

where s (s′) represents the set of elementary fields charged under SU(4) (SU(4)′) and q
(R)
ψ is

their charge under U(1)R (all of them are RH fermions). However, these anomaly contributions
can be compensated by charging hyper-quarks under U(1)R, or equivalently, U(1)X , following
a similar structure to that of toy model II. The complete implementation is described in
table 4 (top). Thus, hyper-quarks also contribute to the sums of eq. (3.5), making them vanish.
Furthermore, hyper-quarks do not create other U(1)R anomalies due to their vector-like
character under U(1)R.

As with toy model II, it is possible to extend this model to a larger UV symmetry where
the U(1) symmetry is embedded into other SU(N) factors, see table 4 (bottom). In this
case, the right-handed top appears as the hyper-lepton associated to the hyper-quarks in the
hyper-Pati-Salam extension. If the Higgs is realized as a pseudo-Nambu-Goldstone boson by
extending the composite sector in a similar manner to [29], four-fermion operators that induce
the top Yukawa coupling after confinement could be generated by the same NP responsible of
breaking SU(NHC + 1)× SU(2)R → SU(NHC)× U(1)X . Depending on the details of this NP
sector, which should lie around the 10TeV scale, the largeness of the top-Yukawa compared
to the others Yukawas could be dynamically explained given the different charges of the
right-handed top in this UV completion. Notice that this completion with a semisimple
group makes the cancellation of mixed anomalies of our 4321 model more transparent, in
a similar way than the PS completion does for the SM.

At energies below the confinement scale, the hyper-sector is better described by an effective
chiral action of the would-be Goldstone bosons containing the WZW terms of section 2.3.
Identifying SU(4) with SU(N)R and SU(4)′ with SU(N)L, the effective description for all
these 4321 models has the would-be-Goldstone bosons of the coset SU(4)L× SU(4)R/SU(4)V ,
all of them eaten by the gauge bosons. With them we can write the pure WZW term
of eq. (2.23) and, for the model of table 4 (top), also the mixed WZW term of eqs. (2.26)
and (2.27) with m̄ = −1/2 and U(1) ≡ U(1)R. Since only G4321 is gauged, the gauge fields
appearing on these WZW terms should be taken to be

AR =
15∑
a=1

Aa4 Ta, AL =
8∑

a=1
Aa3 Ta +

√
2
3 AX T15, (3.6)
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Field SU(NHC) SU(4) SU(4)′ SU(2)L U(1)R
ζR □ 4 1 1 − 1

2NHC

ζL □ 1 4 1 − 1
2NHC

χiL 1 4 1 2 0
χiR 1 1 4 2 0
ψ3
L 1 4 1 2 0

ψ3u
R 1 4 1 1 1

2

ψ3d
R 1 1 4 1 −1

2

ψ1,2
L 1 1 4 2 0

ψ1,2;u
R 1 1 4 1 1

2

ψ1,2;d
R 1 1 4 1 −1

2

Field SU(NHC + 1) SU(4) SU(4)′ SU(2)L SU(2)R
ΞR = (ζR, ψ3u

R ) □ 4 1 1 1
ΞL = (ζL, UL) □ 1 4 1 1

χiL 1 4 1 2 1
χiR 1 1 4 2 1
ψ3
L 1 4 1 2 1

ψ3
R = (UR, ψ3d

R ) 1 1 4 1 2
ψ1,2
L 1 1 4 2 1

ψ1,2
R 1 1 4 1 2

Table 4. 4321 deconstruction (top) and possible UV completion (bottom). To cancel the anomalies,
we need NHC = 2Nχ + 1. At some high scale, SU(NHC + 1) → SU(NHC) × U(1)HC, and U(1)HC ×
SU(2)R → U(1)X . At this scale, UL and UR can get a mass and be integrated out, recovering the
top table.

and, for the model of table 4 (top), also

AU(1) = AX , (3.7)

where A1,...,15
4 , A1,...,8

3 and AX correspond to the gauge fields of SU(4), SU(3) and U(1)X
respectively, and Ta are the usual SU(4) generators with the canonical normalization
Tr(TaTb) = 1

2 δab, so Ta with a = 1, . . . , 8 expand SU(3) and T15 = 1
2
√

6diag(1, 1, 1,−3).
Holographic realizations are also possible if we include the CS terms as in section 2.4.

Elementary fermions are then localized in the UV brane, and the 5d bulk with the geometry of
eq. (2.28) effectively describes the composite sector. Its global symmetries, SU(4)L×SU(4)R×
U(1)V where SU(4)R ≡ SU(4) and SU(4)L ≡ SU(4)′, are implemented in the holographic
description as gauge symmetries in the 5d bulk. As for the boundary conditions of these 5d
gauge fields, while in the IR brane they describe the appearance of a condensate breaking
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the symmetry SU(4)L × SU(4)R → SU(4)V , AL = AR, in the UV brane they are dictated by
the gauging and are given by eq. (3.6) and also eq. (3.7) with U(1) ≡ U(1)V for the model
of table 4 (top).14 The 5d actions for all the 4321 models discussed have the CS forms of
eqs. (2.30) and (2.31). They cancel all anomaly contributions of the elementary fermions in
the UV brane. In particular, for the model of table 4 (top), the CS form of eq. (2.31) cancels
the mixed anomalies. Using the identification U(1) ≡ U(1)R, it requires m̄ = −1/2.

Regarding the phenomenological implications of these models, all 4321 implementations
discussed here predict a massive vector leptoquark that is able to address the tensions
observed in B-decays [24, 25], particularly in the RD(∗) measurements [56]. However, an
added advantage of the one where bR and τR are charged under SU(4)′ (cf. table 4) is that
the absence of leptoquark couplings to the right-handed bottom quark weakens the bounds
from LHC searches [57, 58]. This implementation further predicts RD/RSM

D = RD∗/RSM
D∗ ,

which might be experimentally testable if the anomaly persists.

3.2 SU(2)L deconstructions

A similar approach can be used for deconstructing other simple factors of the SM gauge
group. For instance, the deconstruction of SU(2)L has been extensively discussed (see for
instance [16, 18, 59–66]). This is, the extension of GSM to SU(3)c×SU(2)l×SU(2)h×U(1)Y ,
where SU(2)l charges light families and SU(2)h the third family.15 This deconstruction realizes
the U(2)q×U(2)u×U(3)d×U(2)ℓ×U(3)e flavor symmetry, which only allows for third-family
Yukawas at the renormalizable level if the Higgs is charged under SU(2)h. However, as
pointed out in [28], this flavor symmetry suggests a wrong pattern for the PMNS matrix
because it imposes selection rules on the Weinberg operator. We can then be less ambitious
and use SU(2)L deconstructions to address the flavor hierarchies only in the quark sector.
Keeping the same structure for quarks but charging all lepton doublets under the same
group factor would promote U(2)ℓ to U(3)ℓ as in the SM.16 Such models do not address the
hierarchy between the τ and light-lepton masses, but can have interesting phenomenological
implications [18]. Of course, like in toy model II, these charge assignments create mixed
anomalies between SU(2)l,h and U(1)Y , or more specifically, the U(1)B−L component of
hypercharge. Then, we can use them to illustrate how the anomaly-cancellation mechanism
is implemented. For concreteness, we will assume that we want to charge all leptons under
SU(2)h (other possibilities can be built following the same logic).17 Let us say the breaking
SU(2)l × SU(2)h → SU(2)L is triggered by a condensate of a strong sector with two flavors of
hyper-quarks in the fundamental representation of SU(NHC). If right-handed hyper-quarks are
arranged into doublets of the SU(2)l symmetry, and left-handed hyper-quarks into doublets
of SU(2)h, all local anomalies are canceled provided the hyper-quarks also carry hypercharge
1/NHC (see table 5 (top)). Moreover, global anomalies require NHC to be even. Interestingly,

14These boundary conditions apply only to the 4d components of the gauge fields.
15UV completions of this deconstruction such that the different SU(2) factors unify in a simple group have

been studied in [67].
16Other possibilities to fix this issue could be adding heavy neutral leptons to implement an inverse see-saw

mechanism like in [51].
17For instance, another interesting possibility is charging all leptons under SU(2)l, that would explain an

overall suppression of the lepton Yukawas.
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Field SU(NHC) SU(2)h SU(2)l U(1)Y
ζR □ 1 2 1

NHC

ζL □ 2 1 1
NHC

ℓ1,2,3L 1 2 1 −1
2

q3
L 1 2 1 1

6

q1,2
L 1 1 2 1

6

Field SU(NHC + 2) SU(2)h SU(2)l U(1)′Y
ΞR = (ζR, L1

R, L
2
R) □ 1 2 0

ΞL = (ζL, ℓ1L, ℓ2L) □ 2 1 0
L1,2
L 1 1 2 −1

2

ℓ3L 1 2 1 −1
2

q3
L 1 2 1 1

6

q1,2
L 1 1 2 1

6

Table 5. Anomalous SU(2)L deconstruction (top) and UV completion (bottom). Only fields charged
under SU(2)l,h are shown. Other charge assignments are the same as in the SM.

this condition ensures that the hyper-baryons of the strongly-coupled sector have integer
electric charge: they will fit in real representations of SU(2)L (and have hypercharge 1).

As it happened with the 4321 deconstruction, we can UV-complete the model to explain
the fractional charges of the hyper-quarks. Let us take SU(NHC + 2)× SU(3)c × SU(2)l ×
SU(2)h × U(1)′Y and arrange the fields as in table 5 (bottom). Then, at some high scale
above the confinement scale of SU(NHC), SU(NHC +2)×U(1)′Y breaks to SU(NHC)×U(1)Y ,
with U(1)Y = U(1)HC ⊕ U(1)′Y and the charges of {ζL,R} and {ℓ1,2L , L1,2

R } under U(1)HC ⊂
SU(NHC + 2) being 1/NHC and −1/2, respectively. Furthermore, L1,2

L and L1,2
R form a Dirac

pair after this breaking and can naturally get a mass at the high scale. After integrating
out these extra fermions, we recover the model of table 5 (top).

3.3 Multiple-factor deconstructions

So far, we have only considered UV completions where just one simple factor of the SM
gauge group is deconstructed, but several group factors can be deconstructed simultaneously.
For instance, in [12] it has been suggested that the deconstruction of SU(4)PS × SU(2)R
while SU(2)L remains universal has particularly interesting properties to explain the SM
flavor structure. In those cases, there are several choices for the strongly-coupled sector
triggering the breaking:

• One single representation of hyper-quarks that realizes a hyper-colored flavor symmetry
containing all the factors that we want to deconstruct. For instance, to deconstruct
SU(4)PS × SU(2)R, we can have 8 flavors of hyper-quarks realizing SU(8)L × SU(8)R so
SU(4)PS × SU(2)R ⊂ SU(8)V .
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• Several complex representations of hyper-quarks, with each realizing as flavor symmetry
one of the group factors that we want to deconstruct. In this case, each representation
will develop a condensate responsible of the breaking to the diagonal of each factor.

• Several strong sectors, each of which responsible for triggering the breaking of one of
the deconstructed group factors.

In analogy to the model examples described above, it is possible to employ different variants
of toy models I and II to implement various anomalous arrangements of the SM fermions
in some multiple-factor deconstructions. A dedicated study of these possibilities is however
beyond the scope of this paper.

4 Conclusions

In this article, we have proposed new possibilities to build NP models in the context of flavor
deconstructions: UV completions of the SM where the gauge group is extended to multiple
copies that act non-universally on the fermions. These constructions offer an interesting
approach to address the flavour puzzle, as they forbid at the renormalizable level some of the
SM Yukawa couplings. These couplings are then generated dynamically from NP contributions
at higher scales, thus providing a multi-scale explanation of the flavor hierarchies. Since, at
the lowest energy scale, these explanations share most of the accidental global symmetries
of the SM Yukawa sector, the corresponding NP at that scale is typically protected from
sensitive flavor observables and can lie around the TeV scale.

A new sector that breaks the extended gauge symmetry to the SM one is an essential
ingredient in any flavor deconstruction. If this sector consists on scalar fields that acquire a
vev and no new fermions are added beside the SM ones, gauge-anomaly cancellation requires
charging complete SM families under the same factors. Thus, when the deconstructed group
is (semi)simple, the splitting of SM families among the deconstructed factors typically creates
mixed anomalies between these factors and some U(1) group related to hypercharge. In
this article, we have shown that, if the breaking is triggered by the condensate of a new
strongly coupled hyper-sector, the fundamental fermionic degrees of freedom of the hyper-
sector (hyper-quarks) can be charged fractionally under this U(1) group in a way that the
anomaly-cancellation condition is relaxed. Fermions of the same generation can thus be split
among different group factors. We also identified UV completions of these models that avoid
fractional charges. These are analogous to Pati-Salam unification, but now applied to the new
hyper-sector. Besides relaxing the anomaly-cancellation condition, other advantages of using
a strongly-coupled sector for the symmetry breaking are their radiative stability and the
possibility to extend them to incorporate a composite Higgs, linking the multi-scale picture
to solutions of the Higgs hierarchy problem. We have provided the fundamental description
of these models in terms of hyper-quarks, but also reviewed the cancellation of anomalies
in their effective chiral description through WZW terms and in holographic realizations.
Interestingly, anomaly cancellation in the chiral description and in the holographic picture
share some formal resemblance, with Chern-Simons forms playing similar roles.

The application of these ideas open new ways to build novel and well-motivated SM
deconstructions. As a practical example, we concentrated on the explanation of the hierarchy
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between top and bottom quarks, which normally remains unexplained by standard decon-
structions. With the new mechanisms explored in this paper, models with a gauge structure
that uniquely identify the top quark from other SM fermions become possible and natural.
Following this logic, a 4321 model featuring quark-lepton unification of the third family, but
excluding the right-handed bottom and tau fields has been proposed. Other possibilities that
we have discussed are an SU(2)L deconstruction breaking universality in the quark but not
in the lepton sector, or the deconstruction of multiple semisimple groups.

To conclude, deconstructing flavor anomalously offers the possibility of exploring NP
models at the TeV scale that realise different flavor symmetries than those found in standard
flavor deconstructions. In some cases, these could be more convenient to describe the SM flavor
patterns. For instance, a gauge sector realizing a U(2)q × U(2)u × U(3)d flavor symmetry in
the quark sector naturally addresses the top-bottom hierarchy and could be a better starting
point for a multi-scale explanation of the flavor hierarchies.
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