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Abstract: Hybrid energy systems (HESs) integrate renewable sources, storage, and optionally con-
ventional energies, offering a sustainable alternative to fossil fuels. Microgrids (MGs) bolster this
integration, enhancing energy management, resilience, and reliability across different levels. This
study, emphasizing the need for refined optimization methods, investigates three themes: renew-
able energy, microgrid, and multiobjective optimization (MOO), through a bibliometric analysis of
470 Scopus documents from 2010 to 2023, analyzed using SciMAT v1.1.04 software. It segments the
research into two periods, 2010–2019 and 2020–2023, revealing a surge in MOO focus, particularly
in the latter period, with a 35% increase in MOO-related research. This indicates a shift toward
comprehensive energy ecosystem management that balances environmental, technical, and economic
elements. The initial focus on MOO, genetic algorithms, and energy management systems has ex-
panded to include smart grids and electric power systems, with MOO remaining a primary theme
in the second period. The increased application of artificial intelligence (AI) in optimizing HMGS
within the MOO framework signals a move toward more sustainable, intelligent energy solutions.
Despite progress, challenges remain, including high battery costs, the need for reliable MOO data,
the intermittency of renewable energy sources, and HMGS network scalability issues, highlighting
directions for future research.

Keywords: renewable energy sources; hybrid energy system; microgrid; multiobjective optimization;
bibliometric analysis; SciMAT

1. Introduction

The global energy transition, aimed at achieving significant reductions in carbon
emissions across both the energy industry and end-use sectors, necessitates the adoption
of renewable energy sources (RESs) such as low-cost solar photovoltaic (SPV), onshore,
and offshore wind. To meet the targets set by the International Renewable Energy Agency
(IRENA) in the 1.5 ◦C scenario, a substantial increase in global renewable energy (RE)
capacity is essential. This includes expanding the installed renewable electricity generation
capacity to more than 11,000 GW [1]. Notably, this transition occurs amidst fluctuations
in the energy market, as electricity prices have exhibited heightened volatility, especially
during the 2020–2021 pandemic period, compared to preceding years [2]. This highlights
the challenges and complexities of achieving renewable energy targets in a volatile energy
price environment. According to the International Energy Agency (IEA), renewables are
expected to account for 80% of new power capacity additions worldwide by 2030, with SPV
alone contributing more than half of this increase. This substantial growth in RE capacity
highlights viable strategies for addressing the global climate crisis as well as the fuel crisis
in 2022 [3], as depicted in Figure 1.
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RESs play a crucial role as environmentally friendly alternatives but face significant
challenges, notably the variability in energy production influenced by factors like solar
intensity and wind availability. This issue can be addressed by integrating batteries with
RESs to create hybrid renewable energy systems (HRESs) [4]. For enhanced reliability,
particularly in off-grid installations or when connected to an unreliable grid where con-
sistent power is critical, these systems may incorporate conventional energy sources such
as diesel generators (DGs). This integration broadens their functionality, forming what is
known as hybrid energy systems (HESs). Such adaptation allows the systems to maintain
power supply continuity and stability, even under variable environmental conditions or
grid inconsistencies [5,6]. To shed more light on these two systems, Table 1 provides a
comparison between HESs and RESs from different aspects.

Table 1. Comparative analysis of RESs vs. HESs across multiple aspects.

Aspect Renewable Energy Systems (RESs) Hybrid Energy Systems (HESs)

Reliability Weather-dependent, it can be less reliable. More consistent power supplies reduce
reliance on a single source.

Economic Higher initial cost, lower long-term
operational costs.

More cost-effective long-term due to optimized
resource use.

Security Reduces reliance on imported fuels but is
sensitive to environmental changes.

Enhanced security through diversified energy
sources.

Environment Minimal emissions, low environmental
impact.

Potentially lower impact through optimized
energy mix.

Maintenance Requirements Regular maintenance needed, varies by
technology.

Potentially more complex maintenance due to
multiple systems, but can be optimized for
efficiency.

Stability Can be unstable due to reliance on a single
energy source.

Generally more stable due to diversified
energy sources.

Technological Advancement Dependent on specific technology
advancements.

Benefits from advancements in multiple
technologies.

Geographical Suitability Depends on local resource availability. Better adaptability to various geographical
conditions.

Energy Storage and Distribution Storage solutions are required for
inconsistent supply.

More efficient storage and distribution with
steady supply.

Economically and technically, HESs provide an optimal solution by ensuring energy
supply stability when RESs alone are limited by environmental variability. By integrating
multiple energy sources, HESs maintain consistent energy availability [7–9]. However, it is
essential to acknowledge that HESs are not without limitations. Several challenges must be
addressed for their successful implementation and widespread adoption. The following
are some of these limitations.
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1. Technical Challenges: HESs face complexities integrating multiple energy sources,
ensuring grid stability, and maintaining a consistent energy supply amidst environ-
mental variability [10]. These systems require sophisticated control mechanisms and
robust infrastructure to manage diverse energy inputs and outputs effectively.

2. Economic Feasibility: High initial investment costs, ongoing operation and mainte-
nance expenses, and funding challenges can pose barriers to the widespread adoption
of HESs. A thorough economic analysis is essential for long-term sustainability [11].
This includes assessing the cost–benefit ratio, potential savings over time, and securing
adequate funding for implementation.

3. Environmental Impacts: Assessing the environmental footprint of HESs and imple-
menting strategies for mitigation are critical steps toward ensuring their positive
impact on the environment [12]. This includes considering the lifecycle emissions,
potential land use impacts, and ways to minimize negative environmental effects
through innovative design and operation strategies.

4. Research Scope: The scope of research on HESs may be limited, potentially overlook-
ing crucial factors like regional variations, scalability issues, and emerging trends.

5. Social and Policy Implications: Societal acceptance, public awareness, community
engagement, and supportive policies are essential for the successful adoption of
HESs. Understanding and addressing these social and policy factors is crucial for the
transition to and operation of HESs. Supportive regulatory frameworks, incentives,
and educational initiatives can significantly influence the adoption and effectiveness
of these systems.

The integration of hybrid systems into the grid necessitates management to maintain
operations independently from the main grid as required. This requirement has paved
the way for the utilization of microgrids (MGs), which can operate in two modes: con-
nected to the main grid or in an islanded (independent) mode, ensuring coordinated and
controlled energy distribution. A microgrid (MG) is a self-sufficient system composed of
interconnected loads and distributed energy resources within clearly defined electrical
boundaries, acting as a single controllable entity with respect to the grid [13,14]. This
integration, referred to as hybrid microgrid systems (HMGSs), not only reduces costs and
grid dependence but also lessens environmental impact [15]. The effective use of HMGSs
relies heavily on appropriate sizing, simulation, and optimization software tools, which are
crucial for avoiding exorbitant installation costs and ensuring the reliability of the power
supply. These tools are instrumental in studying, evaluating, and optimizing resource use,
playing a critical role in addressing these challenges. Their application enhances system
efficiency and contributes to a more balanced and sustainable energy sector.

The optimization of HMGSs has garnered significant attention, as evidenced by a bib-
liometric study spanning from 2005 to 2021. This study tracked over 2300 scientific papers,
revealing a notable increase in publications on this topic. Various artificial intelligence
(AI) techniques, tools, and software have been utilized to address challenges associated
with HMGS implementation. These approaches have assessed HMGSs from multiple
perspectives, including technical, economic, environmental, control, operation, and siz-
ing aspects. Notably, the study identified the adoption of multi-objective optimization
(MOO) as the most significant advancement in the field over the last five years [16]. This
emphasizes the pivotal role of MOO in enhancing decision-making processes for HMGS
development and implementation, underscoring its necessity for detailed analysis. To
comprehensively understand the application of MOO to HMGSs, this study is structured
into three phases. The first phase focuses on reviewing mathematical models for prevalent
HMGS configurations, laying the theoretical groundwork. The subsequent phase delves
into critical economic and reliability metrics to evaluate HMGSs. The study culminates in
the third phase, which conducts a bibliometric analysis and comparative case studies to
identify research trends and gaps, as illustrated in Figure 2.
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2. Methodological Framework

As outlined in Figure 2, the study begins with the first phase, which concentrates
on the mathematical modeling of HMGSs. This phase is crucial for establishing a solid
theoretical foundation, providing the necessary groundwork for subsequent analysis.

2.1. First Phase: Mathematical Model of HMGSs

As mentioned earlier, HMGSs are financially beneficial for both current and future
electricity supply needs. The most common form of these systems typically integrates SPV,
wind, batteries, and DGs [17,18]. MGs, with their ability to operate both autonomously
and in conjunction with the main grid, increase resilience and offer flexibility in power
distribution [19]. Figure 3 categorizes MG setups by function, demand, and capacity [20],
highlighting the range and scalability of MG configurations.
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The subsequent subsections will detail the mathematical models of each component,
offering a detailed understanding of their functions within HMGSs.

2.1.1. SPV System

The SPV system within HMGSs includes the following key elements: SPV panels,
an inverter, a charge controller, and a battery storage unit. Detailed discussions of each
component will follow.

• SPV: A solar cell, or photovoltaic (PV) cell, is a device that transforms light into electricity
through the photovoltaic effect. The behavior of both an ideal SPV cell and a practical
SPV device are typically represented in diagrams, such as those depicted in Figure 4.

The current–voltage relationship of an ideal solar cell is described by a fundamental
equation from semiconductor theory, shown as Equation (1):

I = ISPV,cell − IO,cell[exp
(

qV
αkT

)
− 1]. (1)

Here, ISPV,cell is the SPV current generated by the cell due to incident light, IO,cell is the
reverse saturation current of the diode, q is the charge of an electron (1.60217646 × 10−19

Coulomb), K is the Boltzmann constant (1.38064852 × 10−23 Joules/Kelvin), T is the
absolute temperature (in Kelvin) of the diode junction, and α is the diode ideality factor.
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Since a practical SPV array has series resistance Rs and parallel resistance Rp, Equation (1)
does not describe its I–V characteristic. Practical arrays consist of many interconnected
SPV cells; this requires the addition of new parameters to the basic equation for accurate
monitoring of characteristics in SPV array stations, as demonstrated in Equation (2).

I = ISPV − IO

[
exp

(
V + RsI

Vtα

)
− 1

]
−

(
V + RsI

Rp

)
. (2)
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SPV array datasheets typically provide essential information, including the nominal
open-circuit voltage (Voc,n), the nominal short-circuit current (Isc,n), the voltage at the
maximum power point (MPP) (Vmp), the current at the MPP (Imp), the open-circuit volt-
age/temperature coefficient (KV), the short circuit current/temperature coefficient (KI),
and the maximum experimental peak output power (Pmax,e). It is commonly assumed
in SPV device modeling that the short-circuit current (Isc,n) is approximately equal to
the photovoltaic current (ISPV). This assumption holds because, in practical devices, the
series resistance is typically low, and the parallel resistance is high, affecting the overall
performance. The diode saturation current (IO) is described by Equation (3).

IO =
Isc,n + KI∆T

exp(Voc,n+KV∆T
∝Vt

)− 1
. (3)

The maximum output power Pmax,m is calculated to the maximum experimental
power Pmax,e when Pmax,m = Pmax,e solving the resulting equation for Rs, as detailed in
Equation (4).

Pmax,m = Vmp

{
Ispv − Io[exp

(
q

kT
Vmp + RsImp

αNs

)
− 1]−

Vmp + RsImp

Rp

}
. (4)

SPV systems are classified into various configurations based on the application’s
requirements and the coupling of various power sources. Figure 5 depicts various SPV
system configurations [21].

• Charge controller: A charge controller, also known as a charge regulator or battery
regulator, moderates the flow of electric current to and from the batteries. This
control prevents excessive charging and voltage spikes, which can damage the battery,
reduce its efficiency, or pose safety concerns. In SPV systems, solar charge controllers
adjust the power or DC voltage coming from the solar panels before it is directed to
the batteries.

• Inverter: Various inverter models exist, each tailored to the specific requirements of
the load. The selection depends on the load’s waveform needs and the inverter’s
efficiency. The choice is also influenced by whether the inverter is standalone or
grid-connected. Inverter failure is a leading cause of malfunctions in SPV systems,
presenting opportunities for engineers to improve inverter designs. The efficiency of
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an inverter (ηinv) is typically represented by the ratio of the output power (Pout) to
the input power (Pin), mathematically expressed as:

ηinv =
Pout

Pin
< 1, (5)

indicating that the output power Pout is always less that Pin due to inherent system
losses. These losses can originate from various sources, such as component resistance,
inefficiencies during semiconductor switching, and other imperfections.

• Battery: A battery bank within HMGSs serves dual purposes: as a power source
and for energy storage, balancing power needs over time. Surplus energy from RESs
is stored in the batteries, which then provide energy during low RES output due
to adverse weather. Battery size, determined by the autonomy days (N) and the
difference between load demand (EL) and power from RESs (EG), is calculated using:

CB = N· (EL − EG)

ηB × ηinv × DOD
. (6)

where ηB denotes the battery’s efficiency and ηinv signifies the efficiency of the inverter,
with DOD referring to the depth of discharge [22].
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2.1.2. Wind Energy

It is crucial to recognize that the power output from a wind turbine (p) varies continu-
ously due to changes in wind speed (V) and differing operational scenarios. To accurately
calculate the average power output over a specific period, it is necessary to account for
these fluctuations by integrating the power equation over that duration. Additionally, a
wind turbine’s power generation is capped by its rated power Pr, which is the maximum
power it can generate under optimal wind conditions. The power output from a wind
turbine, taking into account the rated wind speed (Vr), the cut-in speed (Vcut−in), and the
cut-out speed (Vcut−out), is determined using the following equation:

P(V) =


0, if V < Vcut−in, V > Vcut−out,

Pr ∗
(

V3−V3
cut−in

V3
r−V3

cut−in

)
, if Vcut−in ≤ V ≤ Vr,

Pr, if Vr ≤ V ≤ Vcut−out.

(7)

This formula becomes particularly relevant in calculating the power generation poten-
tial under varying wind speeds, from the point where the turbine starts operating (Vcut−in)
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to the speed beyond which it must stop to avoid damage (Vcut−out), including its optimal
performance at the rated speed (Vr) [23].

2.1.3. Diesel Generator (DG)

To accommodate power supply variability from RESs, systems operating off stan-
dalone setups or connected to unreliable grids often incorporate batteries to store surplus
energy generated during peak times, which is then available for use during low production
periods. However, due to limitations such as battery capacity and discharge rates, DGs
offer an alternative or supplementary solution to ensure a consistent power supply. The
hourly fuel consumption of a DG (Gt) is calculated using the following formula:

Gt = γ·Pmax + β·Et, (8)

where Gt represents hourly fuel consumption, γ(0.24) and β(0.084) are coefficients for
converting fuel to electrical energy, Pmax is the generator’s rated power, and Et denotes the
electrical energy produced during the hour. This equation helps in optimizing fuel usage
in response to fluctuating RES outputs, enhancing the system’s efficiency [22,24].

2.2. Second Phase: Decision-Making Tools and Investment Metrics for HMGSs

This section outlines the essential metrics for evaluating the economic viability, re-
liability, sustainability, and investment return of HMGSs. These metrics are pivotal for
stakeholders to make informed decisions regarding the implementation and operation
of HMGSs.

2.2.1. Decision-Making Tools (LCOE, LCC, NPC, LPSP, RF)

This section focuses on key decision-making tools that offer stakeholders a compre-
hensive understanding of the cost, reliability, and sustainability of HMGSs.

1. Levelized Cost of Energy (LCOE): This represents the average cost per unit of energy
produced by a system throughout its lifecycle, incorporating all lifecycle costs. It is
calculated as follows [25]:

LCOE =
∑n

t=0
Ct

(1+r)t

∑n
t=0

Et
(1+r)t

. (9)

where Ct is the total costs (capital, operating, maintenance) in year t, Et is the electricity
generated in year t, r is the discount rate, and n is the system’s lifetime in years.

2. Life Cycle Cost (LCC): Encompasses the total cost of ownership of the HMGS during
its lifespan, including installation, operation, maintenance, and decommissioning costs
but excluding system depreciation [26]. The LCC is calculated using the equation:

LCC = CCCA + ∑T
t=1

COM,t + Crep,t − St

(1 + I)t . (10)

where CCCA is the initial cost, COM,t the annual operation and maintenance costs,
Crep,t are the replacement costs, St salvage values, T the system’s lifetime, and I the
interest rate per annum.

3. Net Present Cost (NPC): Calculates the present value of all costs and profits associated
with the HMGS, offering a net-cost perspective over the system’s lifecycle [27].

NPC = CCCA + ∑T
t=1

COM,t + Crep,t − Rt

(1 + R)t (11)

where Rt represents annual revenues or savings from operation, distinct from the
salvage value St.

4. Loss of Power Supply Probability (LPSP): Defined as the ratio of the total time the
system cannot meet the demanded load to the total observation period (often a
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year), indicates the likelihood of power outages. It may be computed using the
generic formula:

LPSP =
∑ Unmeet Load Periods

Total Observation Period
. (12)

5. Renewable Fraction (RF): Quantifies the fraction of total energy provided by RESs in
the HMGS, a key metric for assessing system sustainability [28].

RF =
Total Renewable Energy Generated

Total Energy Generated
(13)

Here, the Total Energy Generated represents the overall energy production of the
HMGS, including both renewable and non-renewable sources.

2.2.2. Investment Metrics (NPV, EPBT, PBP, ROI)

Understanding the financial and environmental impacts is crucial for HMGS and RE
system projects.

1. Net present value (NPV): Calculates the profitability of a project by discounting future
cash flows to the present.

NPV =
n

∑
t=1

Rt
(1 + i)t (14)

where Rt is net cash inflow–outflows during a single period t, i is discount rate or the
cost of capital, t is time in years, and n is total number of periods.

2. Energy Payback Time (EPBT): Determines how long a RE system takes to generate
energy equal to its energy input over its lifespan. The EPBT formula is as follows:

EPBT =
Total Energy Investment

Annual Energy Production
, (15)

Total Energy Investment refers to the overall quantity of energy used in the system’s
development, installation, and operation, while Annual Energy Production is the
amount of energy generated annually.

3. Payback Period (PBP): Assesses the time it takes for an investment to recoup its value
through savings.

PBP =
Cost of Investment

Annual Revenue Flow of Savings
(16)

4. Return on Investment (ROI): Measures profitability from an investor’s perspective.

ROI =
Net Profit

Cost of Investment
× 100 (17)

Here, Net Profit is the overall financial benefit from the HMGS after subtracting the
initial and operational costs, while Cost of Investment encompasses the total initial cost
of setting up the HMGS [29–31]. This comprehensive exploration provides insights into
both the environmental and financial viability of HMGSs. The complexity of designing
HMGSs necessitates the use of MOO to balance cost, reliability, and sustainability effectively.
The subsequent section will explore MOO approaches in HMGSs through a bibliometric
analysis, shedding light on key trends and influential research in this multidisciplinary area.

2.3. Third Phase: Bibliometric Analysis and Comparative Case Studies

This phase begins by delineating MOO from single-objective optimization (SOO).
After establishing this fundamental knowledge, the research further explores the intricacies
of bibliometric analysis.
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Optimization Overview: Optimization tasks can be broadly classified into two cate-
gories: those with a single objective and those with multiple objectives. Let us delve into
these concepts.

SOO: In basic terms, SOO focuses on optimizing one specific function. Formally,
the objective is to either minimize or maximize f (x), subject to constraints gi(x) ≤ 0
for i = 1, . . . , m and hj(x) = 0 for i = 1, . . . , p, where x is an n − dimensional vector,
x = (x1, . . . , xn), and belongs to the domain Ω.

MOO: Addresses problems involving multiple objectives, often leading to scenarios
where improving one objective adversely affects another, creating a complex balance of
trade-offs. Unlike SOO, where the optimal solution is clearly defined, MOO requires a
relative definition of ‘optimal’. A common method in MOO is to seek Pareto optimal
solutions, where any improvement in one objective results in a deterioration of another.
This makes MOO a challenge, as it is mathematically represented by multiple objectives
that cannot all be maximized or minimized simultaneously due to inherent inter-objective
constraints. The general form of MOO is to ‘optimize’ f1(x), f2(x), . . . , fn(x), subject to
gi(x) ≤ 0 for i = 1, . . . , m and hj(x) = 0 for i = 1, . . . , p, where x is an element of Ω.

Here, the term ‘optimize’ is as previously defined; each function fn(x) represents a
unique objective function, where ‘n’ denotes the total number of objectives, and Ω signifies
the feasible region or solution space, as noted in [32]. Figure 6 illustrates the differences
between SOO and MOO processes, with a particular emphasis on the selection of a Pareto
optimum solution.
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The goal of MOO is to optimize solutions across multiple, sometimes conflicting,
criteria simultaneously. This approach introduces the concept of Pareto optimality, where
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a solution is considered Pareto optimum if any further improvement in one objective
would necessarily worsen at least one other objective [33]. The collection of all such Pareto
optimum solutions forms the Pareto front, also known as the Pareto border. Often, no
single solution satisfies all objectives optimally, leading decision-makers to rely on this set
of Pareto optimum solutions to make choices based on their preferences or other considera-
tions [34]. MOO is particularly crucial in HMGSs, balancing complex and varied objectives
such as cost, efficiency, and environmental impact [35–37]. As such, MOO strategies are
instrumental in navigating the trade-offs inherent in decision-making processes, enabling
the integration of cost-effectiveness with sustainability.

Bibliometric Analysis

Bibliometric analysis is a popular and effective method for examining large volumes
of scientific data. It facilitates the exploration of the evolutionary dynamics of a specific
topic and highlights emerging areas [38]. Figure 7 illustrates the steps of the bibliometric
analysis used in this study, employing a dual analysis approach to achieve its objectives.
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This analysis comprised the following steps: (i) a systematic literature review (SLR)
on MOO as applied to MGs integrated with RESs and (ii) a bibliometric analysis focusing
on performance analysis and scientific mapping. The subsequent sections briefly describe
each of these phases.

First phase: Systematic literature review (SLR):
The literature review structure follows best practices detailed in [38] (see Figure 7) and

was conducted through the following steps:

1. Problem planning and formulation: This initial step establishes the foundation for
the study, involving the framing of research questions, deciding on relevant literature
criteria, methods for filtering unrelated findings, and outlining possible conclusions.

2. Database(s), keywords, and search string determination: A range of databases was
chosen, and a set of important terms was identified for searching. Selecting appro-
priate terms is crucial to encompass varied research while remaining focused on
relevant articles.

3. Literature selection: At this stage, adherence to the PRISMA guidelines, which pertain
to systematic reviews and meta-analyses, ensures that the selected articles align with
the study’s direction [39]. Insights from these articles were systematically extracted.

4. Period identification: This step involves considering elements like the topic’s depth,
existing literature, and its evolution over time.

Second phase: Bibliometric analysis:
Following the SLR, a bibliometric analysis is conducted in the second phase. This

combines scientific mapping, describing the conceptual structure and development of the
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research, with a performance analysis that assesses the impact of citations. The goal is to
demonstrate the relationships among authors, documents, and disciplines. The analysis
was performed using SciMAT v1.1.04, an open-source tool that involves the following:

1. Theme identification and strategic diagram: Initially, the software sets up the equiv-
alency index. It then employs a specific methodology to identify the most relevant
topics. Subsequently, using the concepts of centrality and density, it strategizes for
every theme, illustrating how the core research and related subjects are interconnected.
Centrality refers to the degree of influence a theme has over others in the network.
Themes with high centrality are vital and positioned on the right side of the diagram.
Density analyzes the relationships between terms within a theme to determine its de-
velopment level. Themes with high density are considered well-developed and placed
toward the top of the diagram [40–42]. The diagrams, divided into four sections, as
shown in Figure 8, illustrate the various research topic categories.

• Driving themes: Important and well-understood subjects in the top right, essen-
tial for research growth.

• Highly developed and isolated themes: Topics that stand alone and are well-
understood, found in the top left, specialized but separate from the main research.

• Evolving or receding themes: Topics in the bottom left that are not fully developed
or currently significant. Their importance may increase or decrease in the future.

• Cross-cutting basic themes: Fundamental subjects important to the research but
not yet fully developed, occupying the lower right section of the quadrant.

2. Thematic Network Creation: This explores relationships between keywords and
subjects to refine strategic diagrams. Each network depicted in Figure 8 is named
after its principal keyword. The size of the circles indicates the number of associated
papers, while the thickness of the links is determined by the equivalence index.

3. Conceptual Connections: The inclusion index [43] illustrates how themes are inter-
connected over time:

• Overlay Graph: Shows prevalent terms alongside keywords that have been
added or removed over time.

• Thematic Evolution Map: Dotted lines represent sub-elements, and solid lines
indicate connections to the primary theme. The size of circles and the thickness
of lines signify the number of documents and the inclusion index, respectively.

4. Evaluation of Performance: Evaluates research contributions using various metrics. It
identifies leading subfields based on indicators such as the number of articles, citation
counts, and variations in the h-index.
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3. Findings and Analysis

The results from the prior sections are detailed and can be viewed in Figures 7–13 as
well as Tables 2–5.

3.1. SLR on the Application of MOO for HMGSs

This study aims to explore the current landscape of knowledge concerning the MOO
of MGs integrated with RESs, herein referred to as HMGSs. To guide this exploration, the
investigation was formulated around the following research questions (RQs):

RQ1: How is current research evolving in the selected field?
RQ2: Which core ideas shape this area of study?
RQ3: Which challenges currently persist in this research domain?
RQ4: What are the pivotal moments or crucial issues related to the topic?
RQ5: What topics attract significant focus and discussion?
RQ6: What gaps or shortcomings can be identified in current studies?
RQ7: Which publications or studies are considered seminal in this field?
RQ8: Who are the leading contributors or prolific writers in this sector of research?

This study utilized the SCOPUS database, which houses numerous significant global
scientific publications across various fields. The review focused on microgrids, renewable
energy systems, and multi-objective optimization. Keywords relevant to these topics were
applied in an advanced SCOPUS search as follows: TITLE-ABS-KEY (“microgrid” OR
“micro grid” OR “micro-grid” OR “microgrids”) AND (“renewable energy” OR “renewable
energy sources” OR “renewable energy systems” OR “hybrid energy” OR “distributed
energy resources” OR “hybrid energy systems” OR “hybrid energy sources” OR “hybrid re-
newable energy system” OR “hybrid power system”) AND (“multiobjective optimization”
OR “multiobjective optimisation” OR “multi objective optimization” OR “multi objec-
tive optimisation” OR “multi-objective optimization” OR “multi-objective optimisation”
OR “multi-objective programming” OR “multiobjective programming” OR “vector opti-
mization” OR “multicriteria optimization” OR “multiattribute optimization” OR “Pareto
optimization”). A SLR was conducted following the PRISMA flowchart guidelines depicted
in Figure 9.
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Initially, 557 bibliographic records were retrieved from the Scopus database. The
selection was refined by applying specific exclusion criteria, leading to the removal of
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77 records. These criteria included relevance to the research topic, language (with a focus
on articles in English), publication date (considering articles published up until 2023), and
publication status (excluding articles in press). In the subsequent eligibility phase, book
series were excluded due to their format, resulting in the elimination of an additional
10 sources. This refinement process ensured that the final selection comprised articles
directly relevant to the research topic. After the final round of eliminations, 470 pertinent
papers remained for analysis.

To study publication trends from 2010 to 2023, the timeframe was divided into two
periods based on the number of selected papers and relevant milestones.

First period (2010–2019): 200 articles were recorded. During this period, the US
Department of Energy (DOE) held its first workshop on microgrid research areas. SPV
module prices saw a significant drop, falling below USD 1 per watt in 2011. The year 2015
was pivotal for RESs, marked by the approval of the United Nations Development Goals
(SDGs), specifically target 7.2 of goal 7, and the Paris Climate Conference [44]. The main
objective of the Paris Conference was to limit global temperature rises to below 2 ◦C this
century, with RE playing a key role.

Second period (2020–2023): 270 articles were recorded. During this period, research
surged, driven by the urgency to address climate change and reduce reliance on fossil fuels.
A notable outcome from the DOE Smart Grid R&D Program workshop was the creation of
an MG-focused MOO framework using quantitative metrics and dynamic programming,
along with the development of specific design tools and a solutions library by 2020 [13].
Figure 10 shows the distribution over time of 470 publications, revealing consistent growth
in this field.
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3.2. Bibliometric Analysis: Insights from Science Mapping and Performance Metrics

This section examines various graphical analyses, including strategic diagrams for
each period, critical thematic networks, an overlay graph, and a thematic evolution map.
Additionally, it assesses the timeline progression of documents, citation counts, top-cited
authors, and the overall quality and quantity of the publications.

3.2.1. Strategic Diagrams

Figure 11 depicts strategic diagrams for the periods 2010–2019 and 2020–2023, respec-
tively, illustrating the popularity of research subjects based on publication volume.

The size of each circle in the diagram indicates the relative volume of publications
for each research theme. Table 2 summarizes the performance metrics for each theme and
period, including the number of documents, h-index, centrality, density, and publication
count, providing a quantitative overview of the impact and relevance of each theme within
the specified periods.
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Following is a brief overview of the results for each time period.
First period (2010–2019): The analysis of 200 selected articles identified 10 research

topics, as shown in Figure 11a’s strategic diagram. Three themes—multi-objective opti-
mization, energy management systems, and genetic algorithms—were identified as driving
themes, indicating their significance in shaping the field’s direction. AC generator mo-
tors and expectancy emerged as well-developed yet isolated themes, highlighting areas
of focused but separate research. Monte Carlo techniques and MILP were classified as
evolving or receding themes, suggesting areas of diminishing focus or emerging interest,
while fuzzy logic and economic optimization were identified as foundational yet underde-
veloped areas. A comprehensive performance study, as summarized in Table 2, alongside
the strategic diagram’s insights, revealed that MOO and energy management systems
exhibited superior performance metrics, notably achieving the highest h-index values with
over 16,000 citations.

Second period (2020–2023): Analyzing 270 papers from this more recent period yielded
13 research themes, as depicted in Figure 11b’s strategic diagram. This period saw three driv-
ing themes—multi-objective optimization, electric power systems, and MILP—indicating
continued or emerging importance. Four themes—fuzzy logic, compromise programming,
waste heat utilization, and CCHP—were recognized as developed but isolated, reflecting
specialized areas of research with limited cross-theme integration. Sustainable development
goals and electric vehicles emerged as evolving or receding themes, pointing to shifting
research priorities, while wind turbines, reliability, operation optimization, and smart grids
were identified as basic yet foundational themes. Notably, MOO and electric power systems
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stood out in performance measurements, exhibiting superior h-index and citation impact,
as detailed in Table 2.

Table 2. Theme-specific performance metrics.

Period 1 (2010–2019)

Name of clusters Documents count h-index Citations count Centrality Density

Multiobjective optimization 198 51 9630 373.74 131.48

Ac generator motors 3 3 16 59.44 242.5

Energy-management systems 104 43 7351 226.49 24.94

Genetic algorithm 47 19 2956 126.1 19.49

Economic optimization 47 20 2630 134.23 8.16

Fuzzy logic 19 11 1839 89.02 9.76

MILP 9 7 472 70.22 10.63

Expectation 2 1 13 6.49 44.44

Monte Carlo methods 4 4 177 8.82 16.67

Period 2 (2020–2023)

Name of Clusters Documents count h- index Citations count Centrality Density

Multiobjective optimization 260 30 3347 363.59 135.68

Electric-power systems 176 29 2795 245.16 25.61

MILP 14 9 436 46.55 9.67

Smart grid 27 14 686 65.42 8.09

Fuzzy logic 9 5 193 39.26 47.41

Operation optimization 23 9 324 48.7 4.23

Wind turbines 26 9 381 61.39 4.34

Reliability 21 12 365 54.4 4.84

Sustainable-development goal 9 5 116 24.09 6.92

CCHP 6 4 101 16.65 19.67

Compromise programming 2 1 6 5.73 150

Waste-heat utilization 2 1 5 2.81 77.78

Electric vehicles 5 3 121 17.9 3.45

It is worth noting that, over the examined periods, the mixed integer linear program-
ming (MILP) theme shifted from ‘evolving or receding’ to a ‘driving’ theme, suggesting
an increase in its significance and centrality. Concurrently, fuzzy logic progressed from a
‘basic’ to a ‘developed but isolated’ theme, indicating its specialized growth despite limited
connection with broader research themes. These transitions illustrate the dynamic nature of
research landscapes, emphasizing the importance of tracking topic evolutions to guide fu-
ture studies. In the context of evolving research approaches, studies such as [45] have MILP
to optimize energy management and sizing in HMGS, resulting in significant cost savings
and improved resource allocation efficiency. Reference [46] applied MILP to simplify the
complexity of energy system scenario analysis, thereby enhancing the manageability and
strategic planning of MGs. Reference [47] describes an energy management system for
MGs that leverages fuzzy logic for efficient energy dispatch and forecasting. This system
adapts to variations in RESs and incorporates expert rules, thereby improving reliability
and economic returns.

During the first period, MOO and genetic algorithms were prominent; ref. [48]
showed a multi-objective genetic algorithm (MOGA) optimizing system design for size,
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cost, and availability using high-resolution insolation data, demonstrating a complete
techno-economic analysis. Energy management systems were central in the first period,
indicating an increasing emphasis on energy efficiency, with ref. [49] developing an optimal
management approach for smart-grid sustainability, cost reduction, and carbon emission
minimization while incorporating uncertainties and dynamic conditions over a 24-h cycle.
Economic optimization appeared as a basic theme; ref. [50] identifies optimal HMGS capac-
ities for reduced costs and environmental impact, alongside a strategy cutting diesel use by
12%, emphasizing the economic aspect. MILP and fuzzy logic emerged as emerging themes,
signaling the start of their path to becoming important methodological tools. Furthermore,
the use of Monte Carlo techniques, as noted in [51], indicated the use of probabilistic
approaches in system analysis and design, which is critical for dealing with uncertainties
in [52].

Moving into the second period, there was a notable shift. MOO remained a signif-
icant topic, whereas MILP gained prominence and relevance, becoming a key theme in
the research environment. The expanding relevance of electric power systems and smart
grids, as shown by an emphasis on renewable-rich HMGSs [53], demonstrates the trend
toward integrating intelligent technologies for optimal energy distribution while balancing
cost, availability, and area limits. Emerging areas like Sustainable Development Goals,
electric vehicles, and wind turbines gained focus, signaling a shift toward sustainable and
renewable energy solutions. Since 2022, the movement toward clean energy has increased,
as seen by a 55% rise in electric vehicle sales, which have surpassed 10 million [54]. Notably,
this includes considering the total cost of ownership for electrifying heavy-duty trucks, a
critical aspect of the transportation sector’s low-carbon transition [55]. Meanwhile, topics
like combined cooling heating and power (CCHP) and waste-heat utilization exhibited
a continuous yet concentrated focus on specific energy optimization and recovery tech-
niques, demonstrating a sophisticated approach to RE integration, as evidenced in research
sources [56,57]. This illustrates a substantial push toward different sources of clean energy,
where heat pumps have registered an 11% rise in sales, reaching the 15% growth rate
required to fully align with the Net Zero Scenario [58].

Finally, the movement in research subjects from basic methodology to advanced
technological applications reflects the field’s growing emphasis on sustainability and
intelligent energy solutions. The study underscores the significance of flexibility and
innovation in solving complex optimization problems, paving the way for future research
to enhance the efficiency and resilience of energy systems. This synthesis not only illustrates
the field’s dynamic nature but also highlights the importance of MOO collaboration in
advancing the energy transition.

3.2.2. Thematic Networks

To investigate the thematic networks, a key topic was chosen for each period to examine
its relationships with other subjects, revealing the underlying themes associated with the main
theme. Consequently, ‘MOO’ (see Figure 12a) and ‘Electric Power Systems’ (see Figure 12b)
were selected as the driving themes from the first and second periods, respectively.

The analysis in Figure 12a underscores the pivotal role of MOO within MGs, empha-
sizing its strong connections to ‘Microgrid’, ‘Renewable Energy Resources’, and ‘Electric
Load’. This highlights how MOO is crucial for balancing objectives such as aligning energy
supply with demand, integrating RE smoothly into the grid, and enhancing the efficiency
and effectiveness of MG operations. In contrast, Figure 12b focuses on the ‘Electric Power
Systems’ theme, detailing its complex interactions with key MOO algorithms like ‘Genetic
Algorithm’ and ‘Multi-Objective Particle Swarm Optimization’. This underscores the vital
role these advanced algorithms play in enhancing the efficiency of electric power systems,
particularly in terms of renewable energy integration and demand management. It delves
into ‘control systems’, ‘energy management systems’, and ‘demand response programs’,
underscoring the importance of these areas in the broader context of electric power systems
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optimization. The pronounced use of meta-heuristic methods, especially genetic algorithms,
showcases their capability to tackle complex challenges in the energy sector [59].
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This dual analysis allows us to compare the evolving focus from MOO’s application
within MGs to the broader challenges of integrating advanced algorithms for optimizing
electric power systems. The visualizations also underscore key operational, financial,
and efficiency concerns in both periods, from ‘Levelized Cost’ and ‘Sizing’ to ‘Emission’
and ‘Environmental Impact’, reflecting the sector’s shift towards not only technical and
operational efficiency but also environmental and economic sustainability.

3.2.3. Graphical Overlay and the Evolution of Theme Mapping

Figure 13 displays two critical aspects of the analysis: Figure 13a presents an overlay
graph depicting the evolution of keywords over the study periods, while Figure 13b
illustrates a thematic evolution map that outlines the shifts and relationships within the
research themes.

Figure 13a illustrates the changing quantity and content of keywords over the years.
The number of keywords increased from 726 to 890 from the first to the second period,
demonstrating growth rate. Of 726 keywords found in the first period, 27% (196 keywords)
were retained in the second period. Additionally, 694 new keywords were added, bringing
the total to 890 keywords during the later period. This indicates a significant introduc-
tion of new and transitional keywords, as well as overall growth in keyword count over
time, suggesting that the field is becoming more thematically diverse. The recurrence of
certain phrases in subsequent periods indicates that this emerging subject is increasingly
being normalized.

The thematic evolution map (Figure 13b) emphasizes the evolving nature of the
research landscape. The MOO node’s prominent placement and size reflect a large concen-
tration of investigations and an extensive range of publications in this field, highlighting
its ongoing significance and progress within the HMGS domain. Thematic shifts from
‘Energy Management Systems’, ‘Genetic Algorithm’, and ‘Economic Optimization’ in the
first period to ‘Electric Power Systems’ in the second period indicate a move toward in-
tegrating these fundamental concepts into a larger framework of power systems. This
demonstrates a growing area in which theoretical models are increasingly being applied
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to real-world energy systems. The map also shows ‘Economic Optimization’ branching
into themes like ‘MILP’, ‘Operation Optimization’, and ‘Reliability’ in the second period,
showing the sector’s emphasis on operational efficiency, advanced modeling, and reliability
of systems. ‘MILP’ additionally evolves to ‘CCHP’, ‘Wind Turbine’, and ‘Smart Grid’, indi-
cating its analytical importance in optimizing complex energy systems and incorporating
renewable technology.
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Notably, in the first period, ‘Fuzzy Logic’ connects with itself and progresses to ‘Wind
Turbine’, ‘Reliability’, and ‘Sustainable Development Goals’ in the second period, demon-
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strating its use in mitigating uncertainty in RESs [60], enhancing system dependability, and
contributing to sustainability goals. This relevance extends to addressing the complexity of
power system outages through innovative strategies like the N-K events scale reduction
technique and fuzzy zero-violation clustering for optimizing directional overcurrent relays
(DOCRs) [61]. It is worth noting that four topics from the first period migrated to ‘Reliabil-
ity’ and three others to ‘Electric Power Systems’ in the second phase. This trend reflects a
research environment in which power system dependability is becoming more important,
driven by the integration of varied energy sources and the need for strong power system
infrastructures [62].

Overall, the map depicts a field undergoing significant transformation, with MOO and
other modeling techniques being employed to tackle novel challenges in power systems.
The clearly strong thematic connections and the increasing focus of research underscore
a sector on the cusp of innovation. This sector is increasingly driven by concerns for
sustainability and economic efficiency, spurred by the need to integrate a variety of RESs
into reliable and efficient power systems.

3.2.4. Evaluation of Performance

This study analyzed 245 journals. Table 3 displays the top 10 journals, which con-
tributed 151 papers, accounting for 32.13% of the total documents evaluated.

Table 3. Key journals contributing to the study area.

Name of the Journal Documents
Count

Total
Citations

Most Cited
Document

Citations
Count

Energy 26 2391 [63] 490

Energies 24 264 [64] 29

IEEE Access 22 265 [65] 41

Applied Energy 17 1449 [36] 357

International Journal Of Electrical Power
And Energy Systems 15 443 [66] 121

Renewable Energy 10 905 [35] 360

Sustainable Cities And Society 10 386 [67] 121

Energy Conversion And Management 10 609 [68] 200

Journal of cleaner production 9 338 [69] 164

IET Renewable Power Generation 8 271 [70] 96
Note: Citation and document counts are accurate as of 18 January 2024.

Additionally, the table displays the most cited document from each journal. These
top-cited publications predominantly discuss the development of MGs optimization and
management methods, with a focus on the proper integration of RESs. Key concerns high-
lighted include increasing energy efficiency, ensuring reliability amidst uncertainties (such
as fluctuations in wind and SPV), and balancing environmental and economic objectives
within MG operations.

The SLR conducted for this investigation identified 1369 authors who have contributed
to the examined topic, as shown in Table 4.

The above table lists authors who have published more than five articles, along with
their total number of citations and h-index, an indicator assessing an author’s influence
and quality based on the frequency with which their research is cited. The articles primarily
discuss energy storage management, control techniques, and the optimization of MG
operations under uncertainty, with an emphasis on MOO approaches that balance technical,
economic, and environmental considerations.
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Table 4. Key authors in the research area.

Authors’ Names Documents
Count

Total
Citations H-Index Most Cited

Document
Citations
Count

Yue Wang 8 186 12 [71] 128

Hongdong Wang 8 130 12 [72] 102

Josep M. Guerrero 8 131 130 [65] 41

Tomnobu Senjyu 6 57 9 [73] 33

Meenakshi De 6 57 5 [74] 20

Yuanzheng Li 6 25 31 [75] 12

Yongjun Zhang 6 71 30 [76] 34

Ziqiang Wang 6 101 14 [77] 52

Maria Luisa Di Silvestre 6 445 22 [78] 147

Hesen Liu 6 53 9 [79] 27
Note: Citation and document counts are accurate as of 18 January 2024.

The SLR concluded by finding the most-cited papers within the area of the review.
Out of the 470 documents analyzed, a total of 12,989 citations were recorded. The top ten
most-cited papers, which are detailed in Table 5 and account for 3384 citations, or 26% of the
total citations observed, largely address the optimization and efficient energy management
of MGs employing MOO methods, with an emphasis on the integration of RESs and
HESs. Critical topics explored include optimal size, economic dispatch, and the creation of
powerful algorithms for boosting the sustainability and reliability of MG operations.

Table 5. Top-cited documents in the study.

Authors’ Names Year Citation Counts Most-Cited Document

Chaouachi, A., Kamel, R.M., Andoulsi, R, Nagasaka, K. 2013 545 [37]

Niknam, T., Moghaddam, A.A., Seifi, A., Alizadeh Pahlavani, M.R. 2011 490 [63]

Ramli, M.A.M., Bouchekara, H.R.E.H., Alghamdi, A.S. 2018 360 [35]

Niknam, T., Azizipanah Abarghooee, R, Narimani, M.R. 2012 357 [36]

Aghajani, G., Ghadimi, N. 2018 347 [80]

Borhanazad, H., Gounder Ganapathy, V., Mekhilef, S., Mirtaheri, A.,
Modiri-Delshad, M. 2014 342 [81]

Eriksson, E.L.V., Gray, E. 2017 264 [62]

Basu, A.K., Bhattacharya, A., Chowdhury, S., Chowdhury, S.P. 2012 250 [82]

Balog, R.S., Shadmand, M.B. 2014 217 [48]

Abapour, S., Mohammadi-Ivatloo, B., Nazari-Heris, M. 2017 212 [83]

Note: Citation counts are accurate as of 18 January 2024.

4. Comparative Analysis of MOO in HMGs: Evaluating Techniques and Algorithms for
Enhanced Performance and Sustainability

Table 6 presents a comprehensive review of the evolution in MOO techniques ap-
plied to HMGSs from 2010 to 2023, showcasing how these methodologies have addressed
changing technological challenges and advancements. The table is organized into two
distinct periods, highlighting specific challenges and developments in each era. Studies
were meticulously selected for their relevance to the key challenges in HMGS design, their
contributions to advancing MOO methodologies, and their impact within the field, as
evidenced by their citation metrics.
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Table 6. Comparative analysis of HMGS optimization techniques.

First Period (2010–2019)

Ref. Key System
Components

Primary Objective
of Optimization

Optimization
Technique Used Key Findings Algorithm Performance

Comments
Publication

Year

[35] SPV, WT, DG,
BT

Optimization of
component sizing

for economic
efficiency and

system reliability in
HMGS

MOSaDE

The study utilizes the MOSaDE
algorithm to optimize the sizing of
components in an HMGS in Yanbu,

Saudi Arabia, focusing on
cost-effectiveness and reliability.
‘Sizing’ in this context involves

determining the optimal capacity and
configuration to achieve economic

efficiency while maintaining system
performance. The analysis

demonstrates the algorithm’s
effectiveness in adapting to varied

operational scenarios and its impact on
reducing the cost of energy (COE). It

confirms the practicality and
adaptability of the optimization

approach, emphasizing its real-world
applicability across different settings.

The MOSaDE algorithm has
proven highly effective in

optimizing HMGS in this study,
adeptly handling multiple

objectives such as cost,
reliability, and integration of

renewable energy sources
(RESs). Its ability to generate a

Pareto front of solutions
enhances the versatility of
design options, offering a

spectrum of optimal solutions
tailored to varying priorities.
Additionally, the algorithm’s

flexibility is underscored by its
successful application across
different system components,
demonstrating its adaptability

in real-world settings.

2018

[84] SPV, CCHP,
GSHP, BT

Minimizing LCOE,
reducing CO2
emissions, and

alleviating
disturbances from

uncertainties

MOCE

The integrated scheduling approach for
MGs addresses uncertainties caused by

intermittent RESs and random loads.
Load shifting is introduced as an

effective demand response program for
industrial customers. The MOCE

algorithm minimizes costs and
emissions under worst-case scenarios
of uncertainties, with robust sets and

budgets of uncertainty capturing these
effectively. The strong duality-based

model transformation method
addresses coupling and nonlinearity in
the system’s formulation. Comparative

experiments confirm the approach’s
superior performance in attenuating
disturbances and achieving optimal

economic and environmental benefits,
outperforming traditional

single-objective robust optimization
and deterministic MOO approaches.

The MOCE algorithm is selected
for its high accuracy and

straightforward approach to
addressing the proposed

formulation. It conceptualizes
the optimization problem as an

estimation issue, utilizing
importance sampling techniques

to accurately estimate
parameters of probability

density functions. Proven highly
effective in MOO, this method
not only meets all optimization

objectives but also delivers a
robust solution to the MG
scheduling problem under

uncertain conditions. This study
particularly highlights the
algorithm’s capability to

efficiently handle complex
scenarios, making it a reliable

choice for real-world
applications.

2017

[85] SPV, WT, BT,
DG

Minimizing LCOE,
reducing CO2
emissions, and

lowering the LPSP

GA

The author utilizes Pareto front
solutions to address a MOO problem,
focusing on three critical dimensions:
investment costs, emission pollution,

and power loss. The optimization
process employs a GA, adeptly

managing both technical and economic
constraints. This method is effective in

both grid-connected and standalone
HMGS operation modes. The study is

particularly noted for its ability to
balance the intricate interplay of cost,

environmental, and efficiency
objectives, presenting a comprehensive
and balanced approach to MG planning

and resource optimization.

The GA is valued for its
effectiveness in solving complex

optimization problems. It is
particularly suitable for tasks
such as DER planning, where
both technical and economic
constraints are involved. The
GA excels in finding optimal

solutions within
multi-dimensional objective

spaces, as demonstrated in this
study by its application to the
MG across various operational

modes.

2016

[60] WT, SPV, BT,
MT, FC

Minimize cost and
emissions, with and
without responsive

loads

MOPSO,
Fuzzy-based
mechanism,
Non-linear

sorting system

The study utilized MOPSO,
complemented by a fuzzy-based

mechanism and a non-linear sorting
system, to optimize operations, aiming
to reduce operating costs and emissions.

Including responsive loads notably
decreased power generation by WT and
SPV during peak hours. Additionally,
the implementation of DR programs
led to a 24% reduction in operating

costs and a 16% decrease in emissions.

In this study, MOPSO proved
highly effective in achieving the
dual objectives of cost reduction

and emission control,
demonstrating significant

enhancements in both
operational efficiency and

environmental impact.

2015
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Table 6. Cont.

First Period (2010–2019)

Ref. Key System
Components

Primary Objective
of Optimization

Optimization
Technique Used Key Findings Algorithm Performance

Comments
Publication

Year

[81] WT, SPV, BT,
DG

Minimizing LCOE,
reducing LPSP, and
ensuring a system
primarily based on

RESs

MOPSO

The study demonstrated that MOPSO
effectively optimized the system

configuration and component sizing,
focusing on reducing LCOE and LPSP.
Results highlighted the effective use of

wind and solar energy in various
regional contexts, showing notable

enhancements in energy reliability and
cost efficiency. The sensitivity analysis
validated the optimization outcomes,
suggesting that the implementation of

hybrid systems can significantly
improve access to reliable and

sustainable energy in remote areas.

MOPSO was successful in
optimizing the system for

cost-effectiveness and reliability,
demonstrating its utility in
managing complex energy

systems with a focus on
renewable resources.

2014

[86]

WT, SPV, MT,
FC, CHP,

electrical and
thermal
storage

Minimizing total
operational costs

and net emissions in
a CHP-based MG

MBFO, Interactive
Fuzzy Satisfying

Method

The study introduced an integrated
energy management system (IEMS) for

a CHP-based MG, employing MBFO
and an interactive fuzzy satisfying

method to minimize operational costs
and emissions. This system efficiently
managed total electrical and thermal
load demands, effectively balancing

economic and environmental criteria.

According to the study results,
MBFO, enhanced by the

interactive fuzzy satisfying
method, successfully balanced
the trade-offs between cost and
emissions, thereby enhancing

the MG’s performance
efficiency.

2013

[82] MT, DG,
DERs

Optimizing
economic

scheduling of DERs
in a CHP-based MG,

focusing on
balancing fuel costs

and emissions

PSO, DE

The study focused on economically
deploying DERs in a CHP-based MG,

utilizing PSO for optimal sizing and DE
for balancing fuel costs and emissions.
It assessed various DER combinations,
including MTs and DGs, to efficiently
distribute electrical and thermal loads.

The findings confirmed the
effectiveness of these DER mixes in

meeting diverse energy demands while
maintaining a cost-effective and

environmentally friendly balance.

The findings indicated that the
integration of PSO and DE was
effective for MOO, successfully

balancing fuel costs and
emissions while promoting
economic and efficient MG

operations.

2012

[63] SPV, WT, BT,
FC, MT

Minimizing total
operating costs and
net emissions in a

renewable MG

AMPSO, CLS,
FSA

This study introduced the AMPSO
algorithm to optimize the operations of

an MG equipped with RESs and a
backup system consisting of MT, FC,

and BT. The primary goal was to
minimize both operating costs and

emissions. SPV and WT were included
as part of various distributed

generation sources. Enhanced with CLS
and FSA, the AMPSO was employed to
manage the nonlinear MOO challenge,

focusing on balancing power
mismatches and optimizing energy

storage requirements.

Based on the results, integrating
AMPSO with CLS and FSA

provided an effective solution
for MOO, balancing economic

and environmental objectives in
MG operations based on RES.

AMPSO is adaptable and
optimizes quickly but can
converge prematurely and

requires high computational
resources. CLS improves

solution diversity and
cooperation but is complex to

coordinate and scale. FSA
effectively explores the solution
space and avoids local optima
but may be slow to converge

and is computationally
demanding [87–89].

2011

[90] GT, SPV

Minimizing
emissions (CO2, CO,
NOx) from GTs and

reducing fuel
consumption in an

MG

MATLAB
function

‘fgoalattain’ for
MOO

The study focused on optimizing an
MG that includes GTs and an

SPV-based active generator. MOO was
implemented to minimize emissions

from the GTs and to maximize the use
of the non-polluting SPV-based active
generator. This optimization led to a
9.17% reduction in equivalent CO2

emissions, with the active generator
contributing 11% of the total energy to

the system.

In this study, the MOO, using
the MATLAB function

‘fgoalattain’, effectively balanced
environmental goals with

energy management,
demonstrating efficiency in
reducing emissions and fuel

consumption while specifically
utilizing SPV systems.

2010



Sustainability 2024, 16, 5156 23 of 29

Table 6. Cont.

First Period (2010–2019)

Ref. Key System
Components

Primary Objective
of Optimization

Optimization
Technique Used Key Findings Algorithm Performance

Comments
Publication

Year

Second Period (2020–2023)

[91]
SPV, WT, Hy-

droelectric,
Biomass

Minimizing total
annualized cost of
electricity supply

and reducing energy
imports from the

grid

MOPSO

The article introduces a novel
optimization technique for MG

production in a Spanish town with
inconsistent grid connections.

Employing the MOPSO technique, the
primary aim is to minimize costs and
reduce dependence on the grid. The

methodology achieves a practical and
feasible solution, demonstrating a

20-year internal rate of return of 8.33%.
This is accomplished through a

combination of SPV, WT, hydropower,
biomass, and turbine-based power
production. This approach not only
enhances the capacity to meet local

energy needs independently but also
serves as a model for potentially

disconnecting from Spain’s national
power network.

In this study, the MOPSO
algorithm was used to

effectively minimize the
objective function, achieving a

balance between cost and energy
imported from the network. The

results indicated that higher
installed power capacity

resulted in reduced energy
imports from the network.

2023

[92] SPV, WT, DG,
BT LCOE, LPSP, RF MOSSA

This study proposes an optimization
design for a stand-alone MG in Djelfa,

Algeria, aimed at serving a remote
off-grid community. The system,

powered by hybrid sources (SPV, WT,
BT, DG), utilizes MOSSA to optimize

COE and LPSP. The results
demonstrate MOSSA’s superiority over

algorithms like MODA, MOGA, and
MOALO, achieving better RF, COE,

and LPSP. The study highlights the use
of RESs and suggests future

enhancements with diverse renewable
sources and advanced AI algorithms.

The application of MOSSA in
optimizing a stand-alone MG

underscores its effectiveness in
managing complex energy
systems. By focusing on RE
integration and cost-efficient
operations, it showcases the

potential of advanced
algorithms to enhance future

MG designs, seamlessly
blending sustainability with

practicality.

2022

[93]

MGT, WT,
SPV, Bromide
Refrigerator,

AC, FC,
HESS

Minimizing power
generation and
environmental
treatment costs

(BAS-ABC)
Improved ABC

This study introduces an economically
optimized MOO model for a CCHP

MG, utilizing an enhanced ABC
algorithm with the Beetle Antennae
Search Algorithm (BAS-ABC). The

model strives to minimize both daily
power generation dispatching costs and

environmental pollutant treatment
costs. An analysis of a grid-connected

CCHP MG in Shanghai during summer
shows that BAS-ABC achieves faster

convergence and lower minimum costs
compared to traditional ABC.

Additionally, it reveals the inherent
conflict between minimizing power
generation costs and environmental

costs, emphasizing the need for a
balanced approach to economic

efficiency and environmental
sustainability.

The integration of the BAS-ABC
algorithm into the CCHP MG
model marks an advancement

over traditional ABC,
particularly in terms of
convergence speed and

cost-efficiency. However, the
study also highlights the

inherent trade-offs between
economic and environmental
objectives, emphasizing their

importance for sustainable
energy management.

2021

[94]

WT, P2G,
SOFC/GT,
H2 Storage,
Electrolyzer

Minimizing system
cost and wind

curtailment rate
MOGA

This research integrates a micro-energy
system (MES) with wind power, P2G,
H2 storage, and a SOFC/GT hybrid.

Using a MOO approach with a GA, it
focuses on minimizing system costs

and wind curtailment rate while
managing wind power and load

variability. The results demonstrate a
low wind curtailment rate of 0.63%,

high RE penetration at 90.1%, and an
optimized life cycle cost of GBP
2,468,093. The SOFC/GT system
operates at maximum electrical

efficiency of 67.1%, adhering to safety
constraints, and a power management
strategy is developed to ensure efficient
operation amidst fluctuating demands.

This study demonstrates how
MOGA can effectively balance

competing goals such as
cost-efficiency and RE

integration, ensuring an
optimized and sustainable MG

operation.

2020
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Table 6. Cont.

First Period (2010–2019)

Ref. Key System
Components

Primary Objective
of Optimization

Optimization
Technique Used Key Findings Algorithm Performance

Comments
Publication

Year

[95] SPV, WT, BT

Minimizing annual
comprehensive cost

and grid
dependency

MOCS, TOPSIS

This study establishes a MOO function
for a grid-connected MG, focusing on

minimizing the annual comprehensive
cost and grid dependency. It utilizes

the k-medoids method to handle
uncertainties of RESs and load demand.
The MOCS algorithm is employed to

solve the model, and the TOPSIS
method is used to identify the optimal

compromise solution.

The combination of the MOCS
algorithm and the TOPSIS

method in this study presents a
robust approach to MG

configuration under uncertain
conditions. It underscores the

importance of addressing
multiple objectives and

managing uncertainties in RESs
to achieve both economic and

grid reliability goals.

2020

Abbreviation: ABC: Artificial Bee Colony, AC: Air Conditioner, AMPSO: Adaptive Modified Particle Swarm
Optimization, BAS: Beetle Antennae Search Algorithm, BT: Battery, CCHP: Combined Cooling Heating and Power,
CHP: Combined Heat and Power, CLS: Chaotic Local Search, CO2: Carbon Dioxide, COE: Cost of Energy, DE:
Differential Evolution, DERs: Distributed Energy Resources, DG: Diesel Generator, DR: Demand Response, FC:
Fuel Cell, FSA: Fuzzy Self Adaptive, GA: Genetic Algorithm, GSHP: Ground Heat Source Pump, GT: Gas Turbine,
HESS: Hybrid Energy Storage System, HMGS: Hybrid Microgrid System, IEMS: Intelligent Energy Management
System, LCOE: Levelized Cost of Energy, LPSP: Loss of Power Supply Probability, MBFO: Modified Bacterial
Foraging Optimization, MGs: Microgrids, MOALO: Multiobjective Ant Lion Optimizer, MOCE: Multiobjective
Cross Entropy, MOCS: Multi-Objective Cuckoo Search, MODA: Multiobjective Dragonfly Algorithm, MOGA:
Multiobjective Genetic Algorithm, MOO: Multi-objective Optimization, MOPSO: Multi-objective Particle Swarm
Optimization, MOSaDE: Multi-objective Self-Adaptive Differential Evolution, MOSSA: Multi-objective Salp
Swarm Algorithm, MGT: Micro Gas Turbine, MT: Micro Turbine, P2G: Power-to-Gas, PSO: Particle Swarm
Optimization, RE: Renewable Energy, RESs: Renewable Energy Systems, RF: Renewable Factor, SDG: Sustainable
Development Goal, SOFC/GT: Solid Oxide Fuel Cell/Gas Turbine, SPV: Solar Photovoltaic, TOPSIS: Technique
for Order of Preference by Similarity to Ideal Solution, WT: Wind Turbine.

A list of all abbreviations used is provided at the end of the table for easy reference.
The research in MG and HMGS optimization significantly evolved from 2010 to 2023.

During the earlier period (2010–2019), the focus predominantly centered on managing
uncertainties inherent in RESs and load demands, employing algorithms like MOCE, which
proved effective in MOO problems. This period utilized a variety of optimization tech-
niques, including GA, MOPSO, MBFO, PSO, and DE, each aimed at balancing economic and
environmental objectives, with a common theme of integrating RESs like SPV and WT to
minimize operational costs and emissions. The initial adoption of advanced computational
algorithms marked an early stage of complexity in MG optimization.

Contrastingly, from 2020 to 2023, more sophisticated computational techniques such
as MOPSO, TOPSIS, MOSSA, and BAS-ABC were introduced for comprehensive analyses
that encompass economic, environmental, and sustainability aspects. There was a notable
shift toward sustainability, aligning with the Sustainable Development Goals (SDGs), with
studies like ref. [95] employing TOPSIS alongside SDGs goals for a 100% renewable con-
figuration. This period also expanded MG applications to various geographical regions
and included novel technologies like power-to-gas (P2G), solid oxide fuel cell/gas Turbine
(SOFC/GT) hybrids, and hydrogen storage, continuing to balance economic efficiency with
environmental friendliness through algorithms like MOGA and MOCS. The progression
from 2010 to 2023 in HMGS optimization research reflects a significant transition from foun-
dational methods to embracing complexity, sustainability, and broader scopes, mirroring
the global trend toward sustainable and efficient energy solutions.

5. Conclusions

Diversifying energy sources has become essential in addressing global challenges,
making the integration of renewable energy into hybrid microgrids (HMGSs) a crucial and
efficient alternative. This study reviews the economic and reliability metrics of HMGSs and
further investigates developments in microgrids (MGs), renewable energy (RE), and their
multi-objective optimization (MOO). Utilizing SciMAT bibliometric analysis of literature
from 2010 to 2023, sourced from Scopus, the study identifies trends through an overview
and a detailed analysis of two distinct periods: 2010–2019 and 2020–2023.
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From 2010 to 2019, 200 research articles were published, which increased by 35% to
270 papers between 2020 and 2023. This surge in publication output underscores the critical
role of initiatives like the Department of Energy’s Microgrid Initiative in steering research
toward the development of more sophisticated and efficient MG technologies that align
with global renewable energy and climate change mitigation goals. Strategic diagrams
were employed to assess the evolution of this research topic, indicating a significant shift
from the first period’s focus on MOO and energy management systems toward a rising
emphasis on advanced, eco-friendly, and intelligent energy management solutions. The
second stage highlighted MOO’s strategic importance in balancing competing objectives
such as cost, efficiency, and environmental impact, with predominant themes being MOO
and electric power systems. This shift mirrors the global movement towards sustainable
and efficient energy solutions and broader efforts to integrate renewable energy sources
and combat climate change. Analysis of keyword overlap and thematic evolution maps by
period demonstrated remarkable progress in developing new and transitional keywords,
showcasing the continual evolution of research in this field. Thematic networks and
strategic diagrams revealed a marked increase in research activity, particularly in employing
artificial intelligence (AI) for optimization, with methods like genetic algorithms, particle
swarm optimization, and fuzzy logic gaining prominence. The study also underscored
significant challenges addressed by researchers, such as economic sizing, environmental
concerns, energy management systems, and investment issues, indicating a shift toward
more complex, sustainable, and intelligent energy management systems.

Despite recent progress, challenges such as high battery storage costs, data reliabil-
ity requirements, and managing the intermittency of renewable sources persist. Future
research should focus on scalable HMGS designs, cost-effective storage solutions, and
improved data analytics for MOO. Leveraging AI to optimize HMGSs will be paramount in
addressing energy management challenges. Building on this study’s findings, researchers
are encouraged to foster adaptation, collaboration, and innovation, which will significantly
contribute to the development of robust, resilient, and sustainable energy systems.
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