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Many systems, when initially placed far from equilibrium, exhibit surprising behavior in their attempt
to equilibrate. Striking examples are the Mpemba effect and the cooling-heating asymmetry. These
anomalous behaviors can be exploited to shorten the time needed to cool down (or heat up) a system.
Though, a strategy to design these effects in mesoscopic systems is missing. We bring forward a description
that allows us to formulate such strategies, and, along the way, makes natural these paradoxical behaviors.
In particular, we study the evolution of macroscopic physical observables of systems freely relaxing under
the influence of one or two instantaneous thermal quenches. The two crucial ingredients in our approach
are timescale separation and a nonmonotonic temperature evolution of an important state function.
We argue that both are generic features near a first-order transition. Our theory is exemplified with the
one-dimensional Ising model in a magnetic field using analytic results and numerical experiments.
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Introduction.—Controlling and predicting relaxation
processes far from equilibrium is still an open task. In
spite of historical advances mostly achieved along the
20th century [1–6], with the exception of some cases in
molecular gases [7,8], we lack a general theory beyond the
linear response theory and fluctuation theorems allowing us
to manage transient regimes and, in particular, optimize
relaxation times of a freely evolving system between two
desired states [9]. Recent progress unraveling anomalous
relaxation processes in out-of-equilibrium systems points
in that direction.
An outstanding example is the Mpemba effect (ME)

[10–12]. Put instantly two systems—identical but for their
different initial temperatures—in contact with a thermal
bath at a colder-than-both temperature. The ME happens
when the initially hotter system cools faster than the system
that was initially closer to equilibrium.
In Markovian systems, the ME can be well understood

using a spectral decomposition and diminishing or cancel-
ing slow-decaying modes for the sake of enhancing the fast
ones. This has been done both in classical [13–20] and open
quantum systems [21–23]. Meanwhile, in systems where

spectral methods are not applicable, other strategies can be
used for controlling fast and slow evolution using macro-
scopic observables. Namely, energy nonequipartition in
water [24], a particular condition in kurtosis in granular
gases [25–27], and correlation length in spin glasses [28].
Furthermore, other strategies using several quenches have
been shown to be useful in attaining a speedup in relaxation
times: preheating protocols [29], taking advantage of
magnetic domains growth when a large number of degrees
of freedom near phase transitions are present in the system
and timescale separation is not possible [30], or different
control techniques [31,32].
We shall not overlook that achieving a speedup is not

a trivial task. As it has been experimentally shown,
the Kovacs effect prevents fast relaxation when using
two quenches in a naive way, either for heating or cooling
[33–36]. What is even more surprising is that, recently,
another anomaly which was verified both theoretically and
experimentally has been found: far from equilibrium, there
can appear an asymmetry between equidistant and sym-
metric heating and cooling processes [37,38]. Even more
fundamental is that, using reciprocal relaxation processes
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between two fixed temperatures, the asymmetry is also
found [38]. This has been successfully explained using the
so-called “thermal kinematics” [38] based on information
geometry [39,40].
Here, we aim to control the out-of-equilibrium evolu-

tion of a system solely relying on its in-equilibrium
physical observables and on the spectral decomposition
of the dynamic-generating matrix. Our focus is on
observable dynamics: clever computational speedups
lacking an experimental counterpart (think, e.g., of
Ref. [41]) are excluded. The physical interpretation is
straightforward. By identifying the slowest-decaying
physical observables, we are able to project the system
under study onto the faster ones in order to speed up the
total relaxation of the system. Near first order phase
transitions, the desired fast relaxation can be achieved
choosing the appropriate initial condition, or, previous to
the final relaxation, by briefly heating or cooling the
system. To showcase this, we use the antiferromagnetic
(AF) 1D Ising model with a magnetic field.
Theoretical framework.—We shall model the micro-

scopic dynamics in contact with a thermal bath at temper-
ature Tb through a Markov dynamics with continuous time
[42], obtained as the continuous limit of some discrete-time
Markov chain (in our case, heat-bath dynamics [43]).
There are two complementary viewpoints on Markov

dynamics. Either one considers the time evolution of the
probability distribution function (the so-called strong
form of the associated stochastic differential equation),
or one focuses on the time evolution of observable
magnitudes (the weak form) [44]. While the strong form
has been emphasized in recent work [32], we shall
privilege the very insightful weak-form approach. We
briefly recall now the main ingredients of both approaches
(see Refs. [42,45] for details).
Let Ω be the set of all possible states of a system [48].

The strong form of the dynamics focus on the master

equation for PðtÞ
y , the probability of finding the system in

the microscopic state y at time t:

dPðtÞ
y

dt
¼ 1

τ0

X

x∈Ω
PðtÞ
x Rx;y; ð1Þ

where Rx;y=τ0 is the probability per unit time for the system
to jump from state x to state y when subject to a thermal
bath with temperature Tb (τ0 is a fixed time unit). Setting
the diagonal term as Rx;x ¼ −

P
y∈Ωnfxg Rx;y ensures the

conservation of the total probability. The master equation
can be solved by expressing the initial probability Pðt¼0Þ as
a linear combination of the left eigenvectors of the matrix R
(see, e.g., [42,45]), but this would take us too far off field.
Instead, we wish to focus on the weak form of the
dynamics, for which there are two crucial mathematical
ingredients.

Our first ingredient is the inner product between two
observables,A and B (i.e., two mappings fromΩ to the real
numbers). Let ET ½A� ¼ P

x∈Ω πTxAðxÞ be the equilibrium
expected value of A at temperature T (πTx is the Boltzmann
weight for state x). The inner product ofA and B is defined
at the bath temperature:

hAjBi ≔ ETb ½AB� ¼
X

x∈Ω
πTb
x AðxÞBðxÞ: ð2Þ

In particular, let 1 be the constant observable such that
1ðxÞ ¼ 1 for any state x. Hence, for any observable A,
h1jAi ¼ ETb ½A�, while the equilibrium variance at temper-
ature Tb is hA⊥jA⊥i, where A⊥ ≔ A − 1ETb ½A� accounts
for the fluctuations of A from its expected value at Tb.
Furthermore, the fluctuation-dissipation theorem tells us that

T2
dET ½A�
dT

����
T¼Tb

¼ hA⊥jEi ð3Þ

(E is the energy, and hA⊥jEi ¼ ET ½AE� − ET ½A�ET ½E�).
Our second crucial ingredient is the operator R, that

generates the time evolution of observables: R½A�ðxÞ ¼P
y∈Ω Rx;yAðyÞ [the matrix R was defined in Eq. (1)]. In

particular, R½1�ðxÞ ¼ 0 for all x due to probability con-
servation (hence, 1 is an eigenfunction: R½1� ¼ 0 · 1).
Detailed balance implies that R is self-adjoint with

respect to the inner product (2). For any A and B

hR½A�jBi ¼ hAjR½B�i: ð4Þ

It follows that we can find an orthonormal basis of the space
of observables with finite variance ð1;Ob

2;O
b
3;…Þ, in

which the Ob
k are all eigenfunctions R½Ob

k � ¼ λkOb
k [49].

We order the basis in such a way that 0 ¼ λ1 > λ2 ≥
λ3 ≥ …. Take now an arbitrary starting distribution func-
tion Pðt¼0Þ at time t ¼ 0. The expected value of any finite-
variance observable A at time t > 0 is

Et½A� ¼ ETb ½A� þ
X

k≥2
αðt¼0Þ
k βAk e

−jλkjt=τ0 ; ð5Þ

βAk ¼ hOb
k jAi; αðt¼0Þ

k ¼
X

x∈Ω
Pðt¼0Þ
x Ob

kðxÞ: ð6Þ

As long as the system shows separation of timescales (i.e.,
jλ2j < jλ3j), Eq. (5) gives rise to a hierarchy of physical
magnitudes, with Ob

2 having the slowest decay. If we are

able to find an initial setup such that αðt¼0Þ
2 ¼ 0—all αðt¼0Þ

k
are independent of the observableA under consideration—
then, provided that βA2 ≠ 0, its expected value will benefit
from an exponential speedup in the evolution toward its
equilibrium value ETb ½A�.
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It is important to notice that the initial setup that will be
used to speed up the system—coded in the starting
probability Pðt¼0Þ—is not restricted to an equilibrium state.
However, our interest lies on equilibrium states because
they are easier to control (e.g., experimentally). For
instance, using an equilibrium initial condition, the require-
ment for a speedup would be met if we can find a

temperature T ≠ Tb such that αðt¼0Þ
2 ≡ ET ½Ob

2� ¼ 0. We
show below how to find (or force) this condition, explain-
ing along the way different anomalous behaviors.
Experimental suitability.—If the number of states is

large enough, the spectral decomposition (5) might not
be practical. In particular, the slowest decaying observable
Ob

2 might be unknown (or, even if known, its experimental
measurement may present difficulties). Nonetheless, in
some situations there may be a simple way out.
Specifically, let us consider the neighborhood of a first-

order phase transition at zero temperature separating two
ground states with different symmetries (we consider a
specific example below). Let Mw be the order parameter
of the unstable phase (the suffix w stands for wrong). If
symmetries are such that ET ½Mw� ¼ 0 for all T, then there
are good chances that ðM2

wÞ⊥ will be a nice proxy for Ob
2.

Indeed, at phase coexistence, slow observable dynamics
(OD) often stems from metastability [50]. We consider
ðM2

wÞ⊥, the fluctuating part of M2
w, to mimic the behavior

of Ob
2: 0 ¼ h1jOb

2i ¼ ETb ½Ob
2�.

We expect 1 ≈ hðM2
wÞ⊥jOb

2i=hðM2
wÞ⊥jðM2

wÞ⊥i1=2 for
any good proxy: in geometrical terms, the angle between
Ob

2 and ðM2
wÞ⊥ defined by the scalar product (2) will

be small.
The crucial point leading to unconventional OD effects

is that ET ½M2
w� is a nonmonotonic function of T,

and we can find a bath temperature T�
b such that

dET ½M2
w�=dTjT¼T�

b
¼ 0 (see Figs. 1 and 2). This maxi-

mum generates surprising OD.
The behavior in Figs. 1 and 2 is generic because ET ½M2

w�
is proportional to the susceptibility of Mw with respect to
its conjugate field. Now, this susceptibility vanishes when
T → 0 (becauseMw is the order parameter for the unstable
phase) while, for large enough T, all susceptibilities
decrease as T grows.
The basic observation.—Consider the spectral decom-

position (5) when the starting distribution Pðt¼0Þ is the

Boltzmann weight for some temperature T� ≠ Tb. We can

approximate coefficient αðt¼0Þ
2 as

αðt¼0Þ
2 ≈

1

Λ
�
ET� ½M2

w� − ETb ½M2
w�
�
; ð7Þ

with Λ ¼ hðM2
wÞ⊥jðM2

wÞ⊥i1=2 a relatively uninteresting
constant fixed by the bath temperature [51]. In the more
general case, ET� ½M2

w� should be traded with Et¼0½M2
w� in

Eq. (7). Several anomalous effects can be better understood
from this simple observation.
The Markovian Mpemba effect [13].—Consider a bath at

temperature Tb and two other temperatures, Tc and Th such
that Tb < Tb < Th, chosen to have expected values ofM2

w
as shown in Fig. 1(a). In the view of Eq. (7), it is clear that
αh2 ¼ 0, while jαc2j > 0. This means that, provided that we
start from a system in equilibrium at Th, any observable A
with βA2 ≠ 0 [cf. Eq. (5)] will benefit from an exponential
OD speedup, in its approach to equilibrium at Tb. Instead,
the system originally in equilibrium at Tc will display a
slower relaxation in the bath at Tb. This is regarded as the
strong ME [14]. Mind that, in general, Th will not be such
that ETh ½M2

w� exactly equals ETb ½M2
w�, but Th will be near

the temperature where exact equality is achieved. That is,
the condition 0 < jαh2j < jαc2j is fulfilled, which leads to a
subexponential speedup regarded as the weak ME [14].
In particular, the ME will be most spectacular if we

choose A such that ETc ½A� is closer to ETb ½A� than ETh ½A�
is, because in that case the difference Eh

t ½A� − Ec
t ½A� will

change sign in a clearer way.
Preheating for faster cooling.—In these protocols [29,30]

the transition of the system from equilibrium at temperature
T0 toward equilibrium at bath temperature Tb < T0 can be
done faster by introducing a brief sudden quench at a higher
temperature Tq > T0, rather than simply leaving the system
to freely relax under the action of the bath.
In order to amplify the effect, we choose T0 near the

maximum of ET ½M2
w�, so that αT0→Tb

2 will be as large
as possible, cf. Eq. (7). On the other hand, we choose

FIG. 1. Staging the anomalous effects. (a) The Mpemba effect.
(b) Preheating for faster cooling. (c) Asymmetry of heating and
cooling processes.

FIG. 2. Validation of ðM2
stÞ⊥ as a proxy for the slowest decaying

observable Ob
2 . (a) χst as computed for N → ∞ vs kBT=jJj, see

Eq. (10), has a maximum at T�
b ≈ 4.15. The curves for N ¼ 8 and

N → ∞ are hardly distinguishable at this scale. (b) ForN ¼ 8, the
cosine of the angle between ðM2

stÞ⊥ and Ob
2 is close to 1 for a

wide range of bath temperatures. The colored dots in (a) and
(b) indicate the three temperatures that we mostly use to
demonstrate unconventional OD.
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Tq ≫ T0 so that ETb ½M2
w� > ETq ½M2

w�, see Fig. 1(b). Now,
starting from the equilibrated system at T0, we instanta-
neously raise the bath temperature to Tq, and let the
system relax. During the relaxation, the expected value of
M2

w decreases from its initial value (which is the T0

equilibrium value) and eventually crosses ETb ½M2
w� at a

time t0. This means [cf. Eq. (7)] that we can find a suitable
time tw ≈ t0 such that, if we instantaneously lower the bath
temperature from Tq to Tb at time tw, we shall start the
relaxation at Tb with αtw2 ¼ 0. The tw time overhead, due
to the initial temperature excursion from T0 to Tq, is
compensated by the exponential speedup at Tb, that would
otherwise be absent.
Heating and cooling may be asymmetric processes (see

also [37,38]).—Let us consider the maximum of ET ½M2
w�

at T ¼ T�
b in Fig. 1(c). Given the aforementioned relation

between metastability and slow relaxations, it is natural to
expect that the largest relaxation time in the system 1=jλ2j,
see Eq. (5), will also attain its maximum value at T�

b (the
asymmetry stems from λ2, rather than α2). Now, one would
naively think taking to equilibrium at TA a system initially
at equilibrium at TB would take the same time as the inverse
process TA → TB. Quite on the contrary, if we choose
TB ¼ T�

b the process TB → TA is faster than its counterpart
TA → TB, no matter whether TA < TB or TA > TB. Indeed,
Eq. (7) tells us that αTB→TA

2 and αTA→TB
2 are numbers of

similar magnitude (but opposite sign). Hence, the slowness
of the relaxation is ruled by 1=jλ2j, which is larger at TB.
The relaxation of the energy is an important exception,

however. Indeed, applying Eq. (3) toM2
w, one finds that βE2

[cf. Eq. (5)] is inordinately small at TB ¼ T�
b. Therefore, the

approach to equilibrium of E at TB is ruled by λ3 rather than
λ2, which precludes us from making definite predictions.
A working example: The antiferromagnetic 1D Ising

model.—We consider a periodic chain with N spins
σi ¼ �1, 1 ≤ i ≤ N, and σNþ1 ≔ σ1. The state space is
given by Ω ¼ f−1; 1gN. The energy for a given spin
configuration x ¼ ðσ1; σ2;…; σNÞ is

EðxÞ ≔ −J
XN

k¼1

σkσkþ1 − h
XN

k¼1

σk; ð8Þ

where we assume J < 0 and h > 0, as well as N even to
avoid frustration. The minimum energy configuration
differs at both sides of the line 2J þ h ¼ 0. If J > −h=2
the ground state (GS) is the uniform configuration
fσi ¼ 1g. Instead, if J < −h=2 the GS is one of the
two AF ordered staggered configurations fσi ¼ ð−1Þig
or fσi ¼ ð−1Þiþ1g. Therefore, the first-order transition at
T ¼ 0 needed to demonstrate exotic OD is realized in
this model.
The uniform (Mu) and the staggered (Mst) magnetiza-

tions are order parameters able to discriminate our GS:

MuðxÞ ¼
XN

k¼1

σk; MstðxÞ ¼
XN

k¼1

ð−1Þkσk ð9Þ

(for the uniform GS, Mu ¼ N and Mst ¼ 0, while for
the staggered GSs one finds Mu ¼ 0 and Mst ¼ �N).
The energy E (8) is invariant under spatial translations
(σi → σiþ1) which ensures that ET ½Mst� ¼ 0 for all temper-
atures. This is why we make stable the uniform GS by
choosing ðJ; hÞ ¼ ð−4; 8.2Þ. Hence, our wrong order
parameter will be Mw ≡Mst.
Other magnitudes of interest will be the staggered

susceptibility χst and the spin-spin interaction C1:

χst ¼
1

N
ET ½M2

st�; C1ðxÞ ¼
XN

k¼1

σkσkþ1: ð10Þ

The reader will note that all our magnitudes of interest
(namely, Mu;M2

st; E, and C1) are invariant under spatial
translations. Also our dynamics, see Eq. (1), preserves the
translation invariance of the starting probability Pðt¼0Þ.
Hence, the spectral decomposition (5) can be restricted
to the subspace of magnitudes Ob

k that are themselves
invariant under translations.
Figure 2 shows that the two conditions necessary for

exotic OD [namely, a nonmonotonic behavior of χst and a
small angle—as defined by Eq. (2)—between ðM2

stÞ⊥ and
Ob

2] are met with our working parameters.
Results.—We have considered the three protocols

explained in Fig. 1 in the 1D AF Ising model considered
above. We have studied a single-site dynamics (heat-bath
dynamics or Gibbs sampler [42,43,45]). For short chains
(N ¼ 8, 12), we solved the master equation (1) through
Monte Carlo (MC) simulations, and by finding the “exact”
spectral decomposition of the operator R [52], full details
can be found in [45]. The two methods were in full
agreement and supported the proposed approach for small
N ¼ 8, 12. For larger chains (N ¼ 32), only MC simu-
lations were computationally feasible and, again, validated
our proposal. For clarity’s sake, we only show numerical
results for a selection observables (see Ref. [45] for the

FIG. 3. Mpemba effect. Evolution of Δt½A� [cf. Eq. (11)] for the
observables A ¼ E (a) and A ¼ C1 (b). We show the results for
N ¼ 8 (blue), N ¼ 12 (red), and N ¼ 32 (purple, with a lighter
shade representing the error bars of the MC data). The time at
which Δt½A� changes sign is marked by a dot.
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remaining ones). In all three protocols, we have found
statistically compatible results for N ¼ 12 and 32.
Figure 3 illustrates the ME as obtained with Tb ¼ 1,

Tc ¼ 4.15, and Th ¼ 15.177, by a change of sign in

Δt½A� ≔ 1

N
ðEh

t ½A� − Ec
t ½A�Þ: ð11Þ

Supercooling through preheating is illustrated in Fig. 4,
with the choices Tb ¼ 1, T0 ¼ 4.15, Tq ¼ 2000, and
tw ¼ 0.156. It is useful to define

δt½A� ≔ 1

N
jEt½A� − ETb ½A�j: ð12Þ

Finally, the asymmetry between heating and cooling is
illustrated in Fig. 5(a) with the choices TA ¼ 1 and
TB ¼ 4.15 ≈ T�

b, and in Fig. 5(b) with the choices
TA ¼ 15.177 and TB ¼ 4.15.
Discussion.—We have shown that the “weak form” of

Markov dynamics provides a unified, geometric framework
that allows us to explain and control several exotic OD
effects pertaining to the Mpemba effect realm. Our approach

departs from previous work that usually privilege the “strong
form” of the dynamics by following the evolution of the
system entropy (or, rather, some kind of entropic “distance”
such as the Kullback-Leibler divergence [53]). We have
dealt, instead, with different physical observables, some
of which can be measured at the mesoscopic level. Our
geometric approach has unearthed an orthogonality phe-
nomenon that may cause an observable as prominent as the
energy to remain blind to the overall speedup achieved by
the temperature changing protocols. This result warns that
one cannot have a too-narrow spectrum of observables when
investigating the Mpemba effect [54,55].
Finite-size effects on the separation of timescales are also

of concern, because it is this separation what determines the
attainable exponential speedup. Fortunately, we have found
that the speedup depends very mildly (if at all) on the system
size. Finally, we stress that the approach presented here can
also be applied to other systems where anomalous relaxation
has been observed [15,29,38], and where the nonmonoto-
nicity of equilibrium thermodynamic observables is also
present. Also, extending our approach to the analysis of the
time-varying temperature protocols followed in recent
experiments [56] is an exciting venue for future work.
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