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Abstract: Etiological factors involved in myelodysplastic syndrome (MDS) include immunologic, ox-
idative stress and inflammatory factors, among others, and these are targets for microRNAs (miRNs).
Here, we evaluated whether some miRNs may affect tumor development comparing untreated
and 5-azacitidine (5-AZA) MDS-treated patients. Peripheral blood samples were collected from
20 controls and 24 MDS patients, and selected miRNs related to redox balance and inflammation
(inflamma-miRs), including miR-18a, miR-21, miR-34a and miR-146a, were isolated and measured
by quantitative real-time polymerase chain reaction (qRTPCR). A differential expression profile of
miRNs was detected in untreated MDS patients and the 5-AZA group. Inflammation increases
miRNs and, specifically, miR-18a, miR-21 and miR-34a were significantly overexpressed in untreated
MDS, compared to controls. However, we did not observe any miRN profile alteration during the
progression of the disease. On the other hand, 5-AZA treatment tends to restore miRN expression
levels. Relating to prognostic risk factors, high-risk MDS groups (high Revised International Prog-
nostic Scoring System (IPSS-R), high cytogenetic risk, high molecular risk (HMR) mutations) tended
to be related with higher expression levels of miR-18a and miR-34a. Higher miRN expression is
correlated with lower glutathione peroxidase activity, while they are related with a higher profile of
pro-inflammatory cytokines (IL-2, IL-6, IL-8, TNF-α). Although our study was limited by the low
number of MDS patients included, we identified miRN deregulation involved in MDS development
that could regulate redox sensors and inflammatory responses. Finally, 5-AZA treatment is related
with lower miRN expression levels in MDS patients.

Keywords: myelodysplastic syndrome (MDS); microRNAs (miRNs); oxidative stress; inflammatory
cytokines; 5-azacitidine (5-AZA)

1. Introduction

Myelodysplastic Syndromes (MDSs) are hematological disorders with an elevated
rate of mortality in the aged population, in which 1 out of 3 patients progress towards
acute myeloid leukemia (AML). The course of the disease is highly variable, and, therefore,
a recent classification and several prognostic score systems have been incorporated for
diagnosis in daily clinical practice [1,2]. In this line, therapies differ between risk groups, in
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which higher-risk patients are treated with hypomethylating agents such as 5-azacitidine
(5-AZA) [3].

Factors determining the pathogenesis and progression of MDS have not been fully
elucidated. Among them, oxidative stress plays an important role in the tumorigenesis, as
it has been observed in a wide variety of solid and hematological tumors [4]. Recently, our
group demonstrated the implication of this biological mechanism in the MDS development
and progression of the disease [5]. Oxidative stress has been involved also in the aberrant
expression of microRNAs (miRNs), which regulate cellular events such as proliferation,
apoptosis, metastasis, and adaptation to hypoxia [6,7]. In turn, miRNs regulate the expres-
sion of key components of the cellular antioxidant response. According to this, numerous
studies have revealed a set of miRNs that are ROS-sensitive, regulating their transcription.
Moreover, the dysregulation of both redox signaling and miRNs has been associated with
tumor-promoting inflammation [8].

The precise functions and molecular mechanisms of miRNs/redox connection are still
not clear, and the possible interplay between redox regulation and cancer processes is cur-
rently being studied [9]. Several antioxidant systems, including the superoxide dismutase
(SOD)/catalase (CAT) system, are targets of miRNs (miR-21 and miR-146a, respectively),
interfering with their antioxidant functions [10,11]. Related to MDS, several studies have
provided evidence of an altered miRN expression profiling in cancer pathogenesis with a
potential clinical utility in the diagnosis, genetics changes and defining risk groups [12].

An altered cellular redox status and cytokine expression have been observed in MDS
patients [5]. To date, however, no information explains the interplay between oxidative
stress parameters, inflammation and miRNs in the pathogenesis of MDS patients. So, we
considered it worthwhile to examine for the first time the potential interplay between
miRNs and MDS, and the possible impact of the hypomethylating agent 5-AZA treatment
on these responses in MDS patients.

2. Results
2.1. Differential Patterns of miRN Expression in MDS Patients

Relative expression of miR-18a-5p, hsa-miR-21-5p, hsa-miR-34a-5p and hsa-miR-146a-
5p was analyzed using hsa-miR-30b-5p as an endogenous control because its expression
did not vary in MDS patients and controls [13]. MDS untreated patients had significantly
higher levels of miR-18a (p = 0.012), miR-21 (p < 0.001) and miR-34a (p = 0.019) compared
to the controls (Figure 1A–C). This increment was significantly higher in the 5-AZA treated
group for miR-21 and miR-34a (Figure 1B,C). Although miR-146a expression tends to
increase in the MDS untreated patients, no significant differences were observed in the
groups (Figure 1D). Moreover, compared to the untreated patients, the 5-AZA group tends
to decrease the expression of the four studied miRNs. The treatment with 5-AZA, however,
did not recover the expression to the levels of the control group (Figure 1).

2.2. miRN Expression and Risk Factors in MDS Patients

To explore if the changes observed in the miRN profile from untreated MDS patients
are conserved during the disease progression, we categorized MDS patients according to
the recent WHO classification, as early stage (ES, n = 13; <5% bone marrow blasts) and
advanced stage (AS, n = 6; >5% bone marrow blasts). Differences between both stages of
the disease in the miRN expression profile, were not detected (Figure 2).

We next analyzed every relationship between miRN expression and the clinical charac-
teristics, such as IPSS-R score, cytogenetic risk and mutational profile. For this evaluation,
untreated MDS patients were divided into two groups according to different categories:
IPSS-R: high risk (n = 9) vs. low risk (n = 10); cytogenetic risk: favorable (good karyotypes,
n = 15) vs. unfavorable (intermediate, poor and very poor karyotypes, n = 4); molecular
risk: high risk (presence of at least one mutation in any of high molecular risk (HMR)
genes (TP53, ETV6, ASXL1, RUNX1, EZH2) [14], n = 12) vs. low risk (absence of mutations
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in HMR genes, n = 6); and mutational score (number of total mutations present in the
dysplastic clone (≤2 total mutations, n = 14) vs. (>3 total mutations, n = 4).
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Figure 1. Changes in the relative expression of the miRN transcripts in MDS untreated (n = 19)
and MDS 5-AZA-treated (n = 7) patients. The following miRN levels are represented: (A) miR-18a,
(B) miR-21, (C) miR-34a, (D) miR-146a. Data are expressed as means ± SEM of miRNs (miR), using
miR-30b as an endogenous control in plasma samples of 24 myelodysplastic syndrome (MDS) patients
and controls. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. control.

Based on the IPSS-R prognostic stratification, we observed that the expressions of
miR-18a and miR-34a tend to increase in MDS patients with a high IPSS-R risk compared
with those with a low risk of progression (Figure 3A,C). miR-21 and miR-146a expression
levels, however, did not differ between both groups (Figure 3B,D).

When we analyzed miRN expression based on cytogenetic risk, we highlighted the
significant increase in miR-21 (p = 0.01) and miR-146a (p = 0.02) levels in the MDS group
with high cytogenetic risk compared to the favorable cytogenetic risk group (Figure 3F,H).
miR-18a and miR-34a levels tend to increase in the high-risk group although this increase
is not significant (Figure 3E,G).

Finally, we categorized MDS patients concerning molecular risk (high risk, presence of
at least one mutation in any of high molecular risk (HMR) genes) vs. low risk (absence of
mutations in HMR genes). We observed that miR-21 and miR-34a values tend to be higher
in the MDS group that present molecular risk factors than the MDS group with no HMR
mutations (Figure 3J,K).

Also, concerning molecular risk, we evaluated miRN expression between untreated
MDS group based on the mutational score (number of total mutations present in the
dysplastic clone, ≤2 (n = 14) vs. >3 (n = 3) total mutations). Similarly, we did not observe
differences between patients with a high number of total mutations (>3 total mutations)
with respect to those with low mutational score (≤2 total mutations), although miR-21 and
miR-34a values tend to be elevated in the MDS group with high risk.
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Figure 2. The relative expression of the miRN transcripts in MDS untreated patients (n = 19) during
the disease progression. The relative expression of (A) miR-18a, (B) miR-21, (C) miR-34a and (D) miR-
146a is represented. Data are expressed as means ± SEM of miRNs (miR), using miR-30b as an
endogenous control in plasma samples of 19 untreated myelodysplastic syndrome (MDS) patients
according to the disease progression: Early Stage (ES) untreated MDS (n = 13) and Advanced Stage
(AS) untreated MDS (n = 6). No significant differences were observed (p > 0.05).

2.3. miRN Profile Could Be Related to Redox Signaling and Inflammation in MDS Patients

In our previous work, we analyzed the oxidative stress and inflammatory markers
in MDS patients versus the control group [5]. Here, we evaluated possible correlations
between the miRN expression profile, the endogenous antioxidant system, and inflamma-
tory markers.

Firstly, we studied the relation between the following antioxidant defense molecules:
the glutathione cycle, SOD, CAT, glutathione reductase (GRd), glutathione peroxidase (GPx)
and the markers of oxidative damage (lipid peroxidation, LPO and advanced oxidation
protein products, AOPP), with the four miRN expressions here analyzed in MDS patients.
From all analyses, only a negative correlation between miR-21 and CAT activity (r = −0.507,
p < 0.05) was found (Figure 4A).

Secondly, and taking into an account that in the previous study we analyzed the
plasma cytokine levels (IL-1β, IL-2, IL-6, IL-8, IL-10, TNF-α and INF-γ), here we correlated
these parameters with miR relative expressions in MDS patients. The negative correlations
between miR-18a and TNF-α (r = −0.6471, p < 0.005), and between miR-146a and IL-6 levels
were detected (r = −0.5739, p < 0.01) (Figure 4B,C).
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Figure 3. The relative expression of (A,E,I) miR-18a, (B,F,J) miR-21, (C,G,K) miR-34a and (D,H,L) miR-
146a, using miR-30b as an endogenous control in plasma samples of 24 patients with myelodysplastic
syndrome (MDS), classified according to the following risk prognostic factors: IPSS-R score (A–D)
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non-parametric Mann–Whitney test. Data are presented as mean ± SEM. * p < 0.05 vs. control.
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3. Discussion

miRNs are important regulators of the differentiation and maintenance of hematopoi-
etic stem/progenitor cells, and changes in their expression levels could initiate and promote
tumor development. A wide variety of alterations in miRNs from MDS patients has been
reported [12,13,15,16]. Thus, we addressed here the possible role of some miRNs in the
MDS pathogenesis.

First of all, our study analyzed risk factors such as ASXL1, SRSF2, RUNX1, TP53,
which are related to poor prognosis [17]. Based on the molecular characteristics (data
reflected in Table 1), the patients were divided according to the presence of high-risk
mutations (HRMs). However, the classification based on cellular pathways (RNA splicing,
DNA methylation, transcription regulation, etc.) encompasses seven different groups and
with the number of patients included in our study, statistical significance is not achieved
and it deserves further analysis. The main objective of the present work are the risk factors,
because they are directly related to the risk and progression of the disease. Furthermore,
we carried out an additional study based on the number of driver mutations [14]. In this
context, the relevance of the molecular profiling in the diagnosis, risk assessment and
therapeutic decisions, among others, has been emphasized [18]. Our analysis includes
both the identification of specific subgroups and the genomic profile using the IPSS-M
(Molecular International Prognostic Scoring System) to specify patient risk progression.
Based on all this, it is reflected that our data are clinically and biologically useful.

We found that plasma miR-18a, miR-21, miR-34a expression significantly increased in
MDS patients compared with controls. This is in accordance with the previous reports that
showed an increased expression of miR-18a and miR-21 in the bone marrow and peripheral
blood from MDS patients [15]. Moreover, plasma mir-146a expression tends to be higher
in the group of MDS patients. It is possible that attention should be paid to this miRN,
and the difference could be detected in a greater number of patients. These differences
may suggest that tissue expression and plasma levels of this miRN may be differently
regulated. Based on our results, upregulation of miR-18a, miR-21 and miR-34a could
contribute to the ineffective hematopoiesis in MDS. In this sense, miR-34a has been related
to an increase in the apoptosis of bone marrow progenitors [19] and with hematopoietic
suppression [20]. No differences were found between genders in the control group or the
patients. These results show the possible relationship of miRNs in the pathogenesis of the
disease. Although miRN analysis has been carried out on peripheral blood samples and
not on MDS cell lineages, the alteration in the miRN profile observed in MDS patients in
relation to controls is attributed to the dysplastic cellular process. This observation agrees
with the molecular and cytogenetic similarity between analysis of DNA in bone marrow
and in plasma in MSD patients published elsewhere [21].

Next, we compared the miRN profile expression with the risk of the disease pro-
gression according to WHO classification, early (<5% bone marrow blasts) and advanced
(>5% bone marrow blasts) MDS stages. We observed that the plasma expression levels of
miR-18a, miR-21, miR-34a and miR-146a did not discriminate between both stages of the
disease in MDS patients. Other studied miRNs, including miR-422 and miR-617, however,
were associated with MDS progression in bone marrow samples [22]. These differences be-
tween early MDS subtypes and advanced ones could suggest that altered miRN expression
happens from the initial stages of the disease and it may be an event that contributes to the
pathogenesis of MDS.

To deepen the role of miRNs on MDS disease, we then investigate the possible varia-
tion of their plasma expression levels according to risk prognostic factors of the disease.
According to the IPSS-R, we observed that miR-18a and miR-34a expression tended to
increase in high-risk (intermediate-/high/very high) compared to low-risk (low and very
low) MDS groups, supporting the finding of Choi et al. with miR-21 [23].
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Table 1. Clinical characteristics of the 24 MDS patients of the study.

UPN Age Gender WHO-2016 IPSS-R IPSS-R Risk Cytogenetic
Risk Mutational Profile Score

Mutational
Molecular

Risk Treatment

1 80 MALE MDS-SLD
(Early Stage) BR Low Risk Good

(Favorable)
ASXL1 (37%), U2AF1 (41.8%),

SETBP1 (2.9%) 3 High Risk Azacitidine

2 42 FEMALE MDS-SLD
(Early Stage) VL Low Risk Good

(Favorable) ASXL1 (44.2%), U2AF1 (40.85%) 2 High Risk NA

3 51 MALE MDS-RS-SLD
(Early Stage) BR Low Risk Good

(Favorable) SF3B1 (43.2%), TET2 (47.2%) 2 Low Risk NA

4 75 FEMALE MDS-MLD
(Early Stage) INT High Risk Good

(Favorable)
TP 53 (28.6%), ASXL1(25.4%),
SRSF2 (28.6%), U2AF1 (30.6%) 4 High Risk Azacitidine

5 65 MALE MDS-MLD
(Early Stage) VL Low Risk Good

(Favorable)
ASXL1 (18.3%), EZH2 (37.3%),

RUNX1 (9.9%), TET2 (28%) 4 High Risk Azacitidine

6 73 FEMALE MDS-MLD
(Early Stage) INT High Risk Poor

(Unfavorable) TP53 (76.4%) 1 High Risk NA

7 71 MALE
MDS-MLD

(Early Stage) VL Low Risk
Good

(Favorable)

IDH2 (46,6%), DNMT3A (45%) 2 Low Risk NA

IDH2 (46.7%), DNMT3A (46.5%) 2 Low Risk Azacitidine

8 78 MALE MDS-MLD
(Early Stage) VL Low Risk Very Good

(Favorable) ND ND ND Supportive
care

9 61 FEMALE MDS-MLD
(Early Stage) VL Low Risk Good

(Favorable) Not detected 0 Low Risk NA

10 73 FEMALE MDS-MLD
(Early Stage) BR Low Risk Good

(Favorable) ASXL1 (12.5%) 1 High Risk Supportive
care

11 88 FEMALE MDS-RS-MLD
(Early Stage) BR Low Risk Good

(Favorable) ND ND ND Supportive
care

12 80 FEMALE MDS-RS-MLD
(Early Stage) VL Low Risk Good

(Favorable) RUNX1 (49.3%), SF3B1 (28%) 2 High Risk NA

13 66 FEMALE MDS del(5q)
(Early Stage) INT High Risk Good

(Favorable) Not detected 0 Low Risk Supportive
care
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Table 1. Cont.

UPN Age Gender WHO-2016 IPSS-R IPSS-R Risk Cytogenetic
Risk Mutational Profile Score

Mutational
Molecular

Risk Treatment

14 82 MALE MDS del(5q)
(Early Stage) BR Low Risk Good

(Favorable) ASXL1 (47.7%), TET2 (47.3%) 2 High Risk NA

15 61 FEMALE MDS SA
(Early Stage) BR Low Risk Good

(Favorable)
RUNX1 (18.8%), SF3B1 (42%),

JAK2 (5.8%), TET2 (40.9%) 4 High Risk Supportive
care

16 77 FEMALE MDS SA
(Early Stage) INT High Risk Poor

(Unfavorable) SF3B1 (40.3%) 1 Low Risk NA

17 78 MALE MDS EB-1
(Advanced Stage) AR High Risk Intermediate

(Unfavorable) ASXL1 (32.5%), ZRSR2 (67.4%) 2 High Risk Supportive
care

18 75 MALE MDS EB-1
(Advanced Stage) INT High Risk Good

(Favorable) ASXL1 (11.6%) 1 High Risk Azacitidine

19 73 FEMALE
MDS EB-1

(Advanced Stage) INT High Risk Good
(Favorable)

WT1 (11.8%) 1 Low Risk NA

WT1 (17.4%) 1 Low Risk Azacitidine

20 65 FEMALE MDS EB-1
(Advanced Stage) MAR High Risk Very Poor

(Unfavorable) TP53 (2.9%), RUNX1(1.9%) 2 High Risk NA

21 65 MALE
MDS EB-2

(Advanced Stage) INT High Risk Good
(Favorable)

ASXL1 (31.1%), FLT3 (9.3%),
SRSF2 (32.8%), TET2 (33.3%),

NRAS c.35G>A (11.8%), NRAS
c34G>A (5.9%), ETV6 (2.5%)

7 High Risk NA

ASXL1 (18%), FLT3 (1%), SRSF2
(21.1%), TET2 (42.7%), NRAS

c.35G>A (3.9%), NRAS c34G>A
(1.1%), ETV6 (3.3%),

CEBPA (2.7%), JAK2 (16.4%),
CBL (10%)

10 High Risk Chemotherapy

22 66 MALE MDS EB-2
(Advanced Stage) MAR High Risk Intermediate

(Unfavorable)

ASXL1 (45.9%), RUNX1(48%),
EZH2(94.7%), NRAS (11.5%),

FLT3 (2%), CEBPA (1.7%)
6 High Risk Azacitidine
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Table 1. Cont.

UPN Age Gender WHO-2016 IPSS-R IPSS-R Risk Cytogenetic
Risk Mutational Profile Score

Mutational
Molecular

Risk Treatment

23 83 MALE MDS EB-2
(Advanced Stage) MAR High Risk Very Poor

(Unfavorable) TP53 (70.5%) 1 High Risk NA

24 72 MALE MDS EB-2
(Advanced Stage) AR High Risk Good

(Favorable)

ASXL1 (41.6%), RUNX1 (47.3%),
EZH2 (93.3%), CSF3R (45.1%),

CSF3R (5.9%)
5 High Risk NA

Note: Unique Patient Number (UPN); Myelysplastic Syndrome (MDS); MDS with single lineage dysplasia: MDS-SLD; MDS with multilineage dysplasia: MDS-MLD; MDS with ring
sideroblasts: MDS-RS; MDS with SLD and ring sideroblasts (MDS-RS-SLD); MDS with MLD and ring sideroblasts (MDS-RS-MLD); MDS with isolated del(5q): MDS (del5q); MDS
EB-1, -2: MDS with Excess of Blasts-1, -2. IPSS-R: Revised International Prognostic Scoring System. Low Risk (Very Low Risk (VLR)/Low Risk (LR); High Risk (Intermediate Risk
(INT)/High Risk (HR)/Very High Risk (VHR). Cytogenetic risk: Favorable (Very good (-Y, del(11q), Good (normal, del(20q), del(5q) alone or with 1 other anomaly and del(12p)); Poor
(Poor (complex with 3 abnormalities, der(3q) or chromosome 7 abnormalities), Very poor (complex with ≥3 abnormalities)); Intermediate (all other single or double abnormalities not
listed). Favorable (Good karyotypes) vs. Unfavorable (Intermediate, Poor and Very Poor karyotypes). Mutational Score: number of total somatic mutations detected in each patient. In
Mutational Profile, the Variant Allelic Frequencies (VAFs) are shown in parentheses and genes indicated in bold are High Molecular Risk (HMR) genes. Molecular risk: High Risk
(presence of at least one mutation in any of High Molecular Risk (HMR) genes) vs. Low Risk (absence of mutations in HMR genes). NA: Not Applicable; ND: No Data.
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Concerning cytogenetic risk, some studies revealed that a karyotype change ((del(5q)/
trisomy 8/del(20q)) correlates with a unique profile of miRNs. MDS patients with del(5q)
had substantially decreased miRN-146a in the bone marrow cells [16]. We did not study
differences between miRN expression levels and an MDS-specific karyotype due to the
low number of patients. Here, dividing MDS patients according to cytogenetic risk, we
detected a significant increase in miR-21 and miR-146a expression levels in high-risk
patients compared with low-risk ones in plasma.

Analysis of the relationship between the presence of somatic mutations and the levels
of circulating miRNs in MDS demonstrated that MDS patient with at least one mutation
in HMR genes tend to have higher expression levels of miR-21 and miR-34a than those
without HMR mutations. In general, miRN expression increases in MDS patients with the
presence of risk prognostic factors, a finding that required further studies that support their
use as prognostic biomarkers of risk progression towards AML.

We previously identified an improvement of the intracellular oxidative status in MDS
patients, with a significant decrease in the GSSG·GSH−1 ratio and glutathione peroxidase
(GPx) activity. Moreover, the control of the hydrogen peroxide detoxification was related to
the increase in the catalase (CAT) activity, explaining the decrease in the cellular oxidative
damage (lipid peroxidation, LPO, and advanced oxidative protein products, AOPP) [5].
According to this, we considered it worthwhile to analyze here miRNs plasma levels with
a potential role in oxidative stress. Here, we only found a negative correlation between
miR-21 and CAT activity. Because miR-21 inhibits SOD3 preventing hydrogen peroxide
production [10], it is suggested that the levels of hydrogen peroxide in MDS patients depend,
at least in part, on the elevated miR-21 levels that prevent CAT activity. These effects may
favor the oxidative stress condition in MDS patients reported elsewhere [5]. Thus, the dual
role of miR-21 on SOD3 and CAT, the primary enzyme systems controlling the source of
ROS, probably explains the absence of correlations at secondary levels including GPx and
GRd enzymes.

Some shreds of evidences have revealed that miRNs regulate the genes associated
with the secretion of different cytokines, including TNF-α, IL-1 and IL-6, among oth-
ers [24]. We previously observed an upregulation in the IL-2, IL-6, IL-8 and TNF-α levels
in plasma samples from MDS patients, reflecting an alteration of the inflammatory sig-
naling pathway [5]. In this sense, miR-146a can suppress inflammatory activity through
the downregulation of IRAK1 and TRAF6, resulting in the inhibition of the NF-κB path-
way [25,26]. Furthermore, miR-146a downregulates IL-6 production in aging and some
pathological conditions [24,25,27]. Together these data may reflect an attempt of miR-146a
to prevent further increase in IL-6 in MDS patients. Additionally, we also found a nega-
tive correlation between miR-18a and TNF-α levels, whereas miR-18a is highly expressed
in glioma and it can affect proliferation, migration and invasion of human glioblastoma
cells [28]; an explanation for the connection between these molecules here shown requires
additional analysis.

Finally, our group has also recently described that 5-AZA treatment increases oxidative
stress in MDS patients, with a decrease in the catalase activity related to a marked increase
in plasma LPO [5]. Analogously, we investigated whether treatment with 5-AZA modified
the expression profiles of the miRNs studied. We observed that 5-AZA group decreased all
miRN expression compared with untreated MDS patients, although the levels of the control
group were not recovered. According to this, low miR-21 expression levels in the serum
from MDS patients seem to predict a response to hypomethylating agents [29]. Similarly,
treatment with an epigenetic therapy (lenalidomide) decreases miR-34a-3p and miR-34a-5p
expression levels in peripheral blood monocytes [30].
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4. Material and Methods
4.1. Study Design
4.1.1. Patients and Controls

A total of 24 myelodysplastic syndrome (MDS) patients (12 males and 12 females;
mean age of 70 years) of the San Cecilio’s University Hospital of Granada were included
in the study. MDS patients were registered on the Spanish MDS Registry (RESMD), and
their subtypes were defined according to the World Health Organization (WHO-2016) [2]
as early-stage disease (ES, <5% bone marrow blasts) and advances-stage disease (ASD, >5%
bone marrow blasts). The ES subgroup included 2 patients with single lineage dysplasia
(MDS-SLD), 7 with multilineage dysplasia (MDS-MLD), 1 with SLD and ring sideroblasts
(MDS-RS-SLD), 2 with MLD and ring sideroblasts (MDS-RS-MLD), 2 with ring sideroblasts
(MDS-RS) and 2 with isolated del(5q) MDS (del5q). The ASD subgroup involved 4 patients
with excess blasts-1 (MDS EB-1), and 4 with excess blasts-2 (MDS EB-2). Based on the
revised International Prognostic Scoring System (IPSS-R) all patients were divided into
lower-risk disease (IPSS-R very low, low) and higher-risk disease (IPSS-R intermediate,
high, very high). The cytogenetic risk categories were divided as follows: Favorable (Very
good, −Y, del(11q), Good (normal, del(20q), del(5q) alone or with 1 other anomaly, and
del(12p)), Poor (complex with 3 abnormalities, der(3q) or chromosome 7 abnormalities),
Very poor (complex with ≥3 abnormalities), and Intermediate (all other single or double
abnormalities not listed) (Table 1).

MDS patients were classified according to the established therapy as untreated MDS
patients (patients at diagnosis or only with supportive care including erythropoietin, Epo
and/or granulocyte macrophage colony-stimulating factor, GM-CSF) or treated MDS
patients (patients treated with hypomethylating agents such as 5-AZA from 3 to 7 cy-
cles). Only one MDS patient received chemotherapy treatment and was included within
treated patients.

Samples from 20 healthy volunteer donors (control group) were also analyzed. All
controls (3 males and 17 females, median age 70 years; range 42–88 years), had nor-
mal hemograms and they had no history of neoplastic disease, or previous exposure to
chemotherapy drugs, radiation therapy or immunotherapy.

4.1.2. Blood Samples

Peripheral blood samples were collected by peripheral venipuncture from the ante-
cubital vein in MDS patients and controls between 8 and 10 a.m. Blood samples were
centrifuged at 3000 rpm for 15 min. Plasma and erythrocytes were separated (erythro-
cytes were washed twice with cold saline) and were aliquoted and stored at −80 ◦C for
oxidative stress parameter studies. Aliquots of miRNs plasma assays were collected into
RNase/DNase-free tubes and immediately aliquoted and frozen at −80 ◦C until the assays
were performed.

4.1.3. RNA Isolation and Quantification of Circulating miRN Levels

The total RNA extraction was performed using a miRNeasy Serum/Plasma advanced
isolation kit (Qiagen, Toronto, Canada) according to the manufacturer’s instructions. Briefly,
200 µL of plasma samples was used to extract the total RNA, and an equal volume of
denaturing solution was added (20 µL). Four miRNs (miR-18a-5p, hsa-miR-21-5p, hsa-miR-
34a-5p and hsa-miR-146a-5p) with a potential role in oxidative stress and inflammation
were analyzed.

4.1.4. Quantitative Real-Time Amplification (qRT-PCR)

Real-Time PCR technique was performed in a Stratagene Mx3005P QPCR System
(Agilent Technologies, Barcelona, Spain) according to the manufacturer’s protocol, using
TaqMan Fast Advanced Master Mix (2×) and TaqMan probes (20×) (assay names: hsa-
miR-18a-5p, assay ID: 478551; hsa-miR-21-5p, assay ID: 477975; hsa-miR-34a-5p, assay
ID: 478048; hsa-miR-146a-5p, assay ID: 478399) (Thermo Fisher Scientific, Waltham, MA,
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USA). The total reaction volume was 20 µL per well. The reaction conditions were enzyme
activation, 20 s at 95 ◦C, denaturation, 3 s at 95 ◦C (40 cycles), and elongation, 30 s at 60 ◦C.
The levels of plasma miRN expression were normalized to hsa-miR-30b-5p (assay ID: 47995,
Thermo Fisher Scientific, Waltham, MA, USA) as a housekeeping gene using the 2−∆Ct and
2−∆∆Ct formulas.

4.1.5. Measurement of the Antioxidative Defense

The evaluation of antioxidant defense molecules (disulfide glutathione, GSSG, and
glutathione, GSH) and the activities of the enzymes involved (superoxide dismutase,
SOD; catalase, CAT; glutathione reductase, GRd; and glutathione peroxidase, GPx) were
measured as described in Montes et al. [5].

4.1.6. Assessment of Cytokine Levels

Determinations of pro-inflammatory cytokines were carried out in the plasma fraction
as described in Montes et al. [5].

4.2. Statistical Analysis

Relative expressions of miRNs between MDS groups were compared using the non-
parametric Mann–Whitney U test or Kruskal–Wallis test. Data are expressed as mean ± SEM.
Correlations between miRNs and oxidative stress parameters and cytokines were analyzed
using Pearson’s correlation coefficient. GraphPad Prism v. 6.0 (GraphPad Software, Inc., La
Jolla, CA, USA) was used to analyze data. p < 0.05 was considered statistically significant.

5. Conclusions

To summarize, miRNs are known to regulate critical cellular processes and, in the
present investigation, miR-18a, miR-21, miR-34a and miR-146a have been related to the
MDS pathogenesis, being associated with risk MDS groups, and correlated with pro-
inflammatory cytokines. In this sense, miRNs could be used as a possible therapeutic tool,
in which the inhibition or downregulation of these miRNs might re-establish the MDS
microenvironment. Finally, 5-AZA treatment tends to decrease miRN expression levels
in the serum from MDS patients. To further clarify the interpretation of the results, our
data reflect changes in miRN expression and a correlation in MDS patients with treatment,
but we cannot know at this time whether these changes are due to cause or are an effect
of them. In addition, although we correlated here the changes in miRNs with treatment
in MDS patients, it should be considered that these miRN fluctuations may also result in
cellular changes, which requires further analysis.

Limitations of the Study

We are aware that the number of patients collected for this study is low, mainly due
to the requirements for the inclusion in the study and the relative low percentage of MDS
patients, and especially in cases when these patients were divided into subgroups according
to risk factors (stage of the disease, IPSS-R, cytogenetic risk and mutational profile). Thus,
although we found some tends of the markers measured in our study, it would be possible
to detect significant changes by increasing the number of patients.
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