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Abstract: In the study of some real cases, it is possible to encounter well-defined geometric conditions,
of an industrial or design type—for example, the case of a specific volume within each of several
holes. In most of these cases, it is recommended to fulfil a function defined in a domain in which
information is missing in one or more sub-domains (holes) of the global set, where the function data
are not known. The problem of filling holes or completing a surface in three dimensions appears in
many fields of computing, such as computer-aided geometric design (CAGD). A method to solve
the shape-preserving variational spline approximation problem for hole filling in generalized offset
surfaces is presented. The existence and uniqueness of the solution of the studied method are
established, as well as the computation, and certain convergence results are analyzed. A graphic and
numerical example complete this study to demonstrate the effectiveness of the presented method.
This manuscript presents the resolution of a complicated problem due to the study of some criteria
that can be traduced via an approximation problem related to generalized offset surfaces with holes
and also the preservation of the shape of such surfaces.

Keywords: shape preservation; generalized offset surfaces; hole filling; spline approximation; varia-
tional splines

MSC: 65D05; 65D07; 65D10

1. Introduction

For some real applications, the study of the generalized offset surface problem has
been examined, such as in computer-aided geometric design and generally in the natural
sciences domain.

In [1], the authors study the problem of defining fair filling patches under some
conditions while in [2] the authors present how to fill polygonal holes with minimal energy
surfaces using Powell–Sabin type triangulations. Other studies have aimed to solve the
problem of the flatness of filler patches, such as transfinite interpolation as studied in [3]
and biharmonic optimization in [4]. Meanwhile [5], using B-spline surfaces, some processes
manipulate weakly defined control points, as in [6]; for the filler patch, they study several
functions that have some geometric properties imposed.

The method of Skinning or lofting in surface generation is frequently found in the
design domain in industries such as automobile manufacturing and aircraft and ship
construction. The authors in [7] propose the combination of T-spline technology and surface
skinning modeling by using a new process for local shape preservation in T-spline surface
Skinning with a smaller computational cost. In [8], the authors propose to numerically
solve Caputo’s time fractional diffusion equation using modified cubic exponential B-spline
placement. The work in [9] presents an improvement in some numerical methods to find
the non-polynomial fractional spline, aiming to solve the fractional Korteweg–de Vries
(KdV) equation with respect to time, as well as similar problems in various scientific fields,
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such as plasma physics and mechanics. Meanwhile, in [10], the quintic B-spline differential
quadrature method is modified. This then implies that the algebraic system obtained does
not have abstract points. In this case, the system of equations is solved without the need for
an additional equation. This analysis develops numerical solutions of the KdV equation.
For design, in [11], an algorithm is presented for the effective study of displaced surfaces
for polygonal meshes. The process is good with respect to degenerate configurations and
computes displacements free of (self-)intersection. Furthermore, in [12], the authors study
a method to find a displaced surface with a variable thickness so that the solid volume
between the surface and its displacement minimizes a certain functional and at the same
time verifies a set of conditions. These conditions and the functional can be approximated
in a simple way. In [13], the authors introduce a set of partial shape-preserving spline
basis functions to smoothly combine a collection of shape primitives with flexible blending
range control. These types of spline basis functions can be considered a generalization of
traditional B-spline basis functions, where the shape primitives used are control polygons
or control points. In [14], the author presents a study using a single rectangular B-spline
surface trimmed to fill an n-sided hole, based on an energy minimization or variational B-
Spline technique. The method is justified by taking a fraction of a second to fill n-sided holes
with high-quality waterproof B-spline surfaces under complicated conditions. In [15], the
authors develop a local approach to shape preservation. The objective of their construction
is to follow local changes in data and shape preservation that does not involve overshooting.
In [16], the authors discuss how to repair a polygonal mesh in which some holes have been
detected. The objective of this article is twofold. First, the authors offer a review of the most
relevant gap filling methods and highlight their importance, the context in which each
method is applied and the results obtained. Second, the authors present a comparative
study to evaluate the parameters of all mentioned methods. The work in [17] presents
a detail-preserving variational method for curves and surfaces, which integrates several
approaches; the authors introduce a method that enables users to modify a free-form curve
or surface while preserving its details. The final point that interpolates the B-splines and the
corresponding wavelets of the curve or surface are used as the underlying representation.
In [18], the authors present a fast variational approach for the interactive design of multi-
resolution curves and surfaces. By converting the imposed conditions to different resolution
levels, which are lower than the finest resolution level, an optimization system with fewer
unknowns is needed. The system is solved in real time even if the number of checkpoints
is large. Furthermore, during deformation, the method can preserve the multi-resolution
details. All of this is obtained by optimizing the energy of the deformation of the curve or
surface at the corresponding level, instead of the total energy.

The authors in [19] seek to approximate three-dimensional models of watertight
surfaces that contain holes, in which the holes are too geometrically complicated to fill,
through the study of triangulation estimation.

Using biquadratic spline functions that are of C1, an approximation study is presented
in [20] to fill holes in some generalized surfaces, while, in [21], by using variational splines,
some generalized offset surfaces are approximated.

The resolution of a complicated problem is presented due to the combination of many
conditions. Besides being an approximation problem regarding generalized offset surfaces
with holes, it also involves the preservation of the shape of this type of surface. To this end,
we present an approximation method to preserve the shape of generalized offset surfaces
with holes.

We highlight the advantages of this work with respect to those existing in the literature
(see, for example, [7]). On one hand, we compute the resulting function; on the other hand,
the analysis of some convergence results is performed.

To demonstrate the usefulness of the method, some examples are studied to approxi-
mate the shape of the function inside the hole by using some given data of the function
outside the hole only. Please note that the Abstract of this manuscript has been published
in the ICRAMCS 2023 Proceedings, ISSN 2605-7700; for more details, please consult [22].
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The organization of the rest of the manuscript is as follows. The formulation of the
global problem and some preliminary results are presented in Section 2. In Section 3, a
construction function outside the hole is presented. In Section 4, a construction function
inside the hole is studied. Section 5 is devoted to constructing the approximating solution
over the entire domain. In Section 6, some numerical and graphical examples are illustrated
to show the effectiveness of the studied method. This manuscript ends with the conclusions
and future perspectives.

2. Notations and Formulation of the Global Problem

Let n, m ∈ N, with n > 0, m > 0, and we denote by ⟨ · ⟩n and ⟨ · , · ⟩n, respectively, the
square norm and inner product in Rn. Let Ω be a non-empty polygonal bounded subset of
R2, let Πm(Ω) be the restriction to Ω of the polynomials of degree less than m defined on
R2, and let Hm(Ω;R3) be the usual Sobolev space of order m. We shall use in this space
Hm(Ω;R3) the norm

∥u∥
m,Ω

=
(

∑
|α|≤m

∫
Ω
⟨∂αu(x)⟩2

3 dx
) 1

2
,

the semi-norms

|u|
l,Ω

=
(

∑
|α|=l

∫
Ω
⟨∂αu(x)⟩2

3 dx
) 1

2
,

and the corresponding inner semi-products

(u, v)
l,Ω

= ∑
|α|=l

∫
Ω
⟨∂αu(x), ∂αv(x)⟩3 dx, for l = 0, . . . , m.

Let f and g be two real functions. We write

f (d) = O(g(d)), as d → d0

if there exists some real constant C > 0 and η > 0 such that

∀d ∈ R, |d − d0| < η, | f (d)| ≤ C g(d).

Likewise, we write
f (d) = o(g(d)), as d → d0

if lim
d→d0

f (d)
g(d)

= 0.

Now, let us consider a subset H of real positive numbers of which 0 is an accumulation
point. In this case, for any h ∈ H, let us also consider a partition Th of Ω using rectangles K
with diameters hK ≤ h.

Now, we designate by Vh a finite element space constructed on the partition Th from a
generic finite element of class Ck, with k ≥ 1, such that

Vh ⊂ Hm(Ω) ∩ Ck(Ω). (1)

For any h ∈ H, let us denote Vh = (Vh)
3. Then, Vh ⊂ Hm(Ω;R3) ∩ Ck(Ω;R3).

For a regular parametric surface defined for a differentiable function ϕ : Ω → R,
we consider its associated parametric representation r(u, v) = (u, v, ϕ(u, v)), its two unit
tangent vectors in the directions of u and v, and its normal vector given by

−→e 1 =
ru(u, v)

⟨ru(u, v)⟩3
, −→e 2 =

rv(u, v)
⟨rv(u, v)⟩3

, −→n (u, v) =
ru(u, v)× rv(u, v)

⟨ru(u, v)× rv(u, v)⟩3
, (2)

respectively, where × stands for the cross-product in R3.
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Let us describe the direction determined by the vectors d1(u, v)e1(u, v), d2(u, v)e2(u, v)
and d3(u, v)n(u, v), where d1, d2, d3 are functions of Hm(Ω). In this case, the generalized
surface r0(u, v) is defined by

r0(u, v) = r(u, v) + d1(u, v)−→e 1(u, v) + d2(u, v)−→e 2(u, v) + d3(u, v)−→n (u, v). (3)

Let us consider as a hole an open set H ⊂ Ω and let Hh =
⋃

K⊂Th
K∩H ̸=∅

K; moreover, a surface

with some hole S is defined by the function f ∈ Hm+1(Ω − H;R3), and its generalized
offset surface is defined by the function

s f (u, v) = f (u, v) + d1(u, v)−→e 1(u, v) + d2(u, v)−→e 2(u, v) + d3(u, v)−→n (u, v),

for all (u, v) ∈ Ω − H. Obviously, it is verified that s f ∈ Hm(Ω − H;R3).
Finally, let Vh

1 and Vh
2 be the functional spaces of the restrictions to Ω − Hh and Hh,

respectively, of the space Vh.
We wish to approximate s f from the finite point set s f (A) and fill the holes through

the construction of a function of the type

σh(u, v) =
{

σh
1 (u, v), (u, v) ∈ Ω − Hh,

σh
2 (u, v), (u, v) ∈ Hh,

such that σh
1 ∈ Vh

1 approximates s f over Ω − Hh, σh
2 ∈ Vh

2 preserves the shape of f from
Ω − Hh to Hh by the data proceeding from σh

1 , and σh ∈ Ck(Ω;R3).
To achieve this, we proceed to study the following stages:

• firstly, using a smoothness approach method, we seek to find the generalized offset
function σh

1 ∈ Vh
1 that approximates s f over Ω̄ − Hh and compute it;

• secondly, we seek to construct the function σh
2 ∈ Vh

2 in order to fill the holes and also
compute it using an interpolation method;

• finally, we achieve the construction of the function σh ∈ Vh approaching s f over Ω− H
and fill and preserve the "shape" of f on the hole H.

3. Constructing the Function σh
1 Outside the Hole

For each M ∈ N, with M > 0, let AM = {a1, . . . , aM} be a finite Πm−1(Ω − Hh)-
unisolvent set of M points of Ω − H, i.e., for any p ∈ Πm−1(Ω − Hh), verifying p(ai) = 0
for i = 0, . . . , M one has p = 0.

Suppose that

sup
x∈Ω−Hh

min
1≤i≤M

⟨x − ai⟩2 = O
(

1
M

)
, M → +∞. (4)

For any r = 0, . . . , k and j = 0, . . . , r, let Lr
j be the functional operator given by

Lr
j (v)(x) = ∂(r,r−j)v(x), ∀ x ∈ Ω, ∀ v ∈ Ck(Ω;R3),

and let ρr
j : Ck(Ω − Hh;R3) → RM,3 be the functional operator given by

ρr
j (v) =

(
Lr

j (v)(ai)
)

1≤i≤M
.

Now, let J1 : Hm(Ω − Hh;R3) → R be the functional given by

Jh
1 (v) =

k

∑
r=0

r

∑
j=0

⟨ρr
j (v)− ρr

j (s f )⟩2
M,3 + ε|v|2m,Ω−Hh

,
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where ⟨A⟩M,3 = ⟨A, A⟩
1
2
M,3, ⟨A, B⟩M,3 =

M

∑
i=1

⟨ai, bi⟩3, for any A = (ai)1≤i≤M, B = (bj)1≤j≤M ∈

RM,3 and ε > 0.

We consider the following minimization problem: find σh
1 ∈ Vh

1 such that

∀v ∈ Vh
1 , Jh

1 (σ
h
1 ) ≤ Jh

1 (v). (5)

Proposition 1. The solution of problem (5) is unique. It is called the generalized offset variational
spline in Vh

1 relative to M, AM, (Lr
j (s f )) 0≤j≤r

0≤r≤k
and ε, which also is the unique solution of the

following variational problem: find σh
1 ∈ Vh

1 such that, for any v ∈ Vh
1 , one has

k

∑
r=0

r

∑
j=0

⟨ρr
j (v), ρr

j (σ
h
1 )⟩M,3 + ε(v, σh

1 )m,Ω−Hh =
k

∑
r=0

r

∑
j=0

⟨ρr
j (v), ρr

j (s f )⟩M,3. (6)

Proof. By adapting the notations and using the Lax–Milgram lemma of [23], the proof is
obtained, which is similar to that of Proposition 1 of [20].

3.1. Computing the Function σh
1

The generalized offset variational spline σh
1 ∈ Vh

1 relative to the data M, AM, (Lr
j(s f )) 0≤j≤r

0≤r≤k

and ε is computed in the following way: let {v1, . . . , vN1} be the basis functions of the re-
strictions over Ω − Hh of the space Vh

1 .

Thus, σh
1 =

N1

∑
i=1

αivi, where α1, . . . .αN1 ∈ R are the solutions of the linear system

(
k

∑
r=0

r

∑
j=0

Ar
j + εR

)
α =

k

∑
r=0

r

∑
j=0

Br
j , (7)

where
Ar

j =
(
⟨ρr

j (vi), ρr
j (vj)⟩M,3

)
1≤i,j≤N1

,

R =
(
(vi, vj)m,Ω

)
1≤i,j≤N1

,

α = (α1, . . . , αN1)
T ,

Br
j =

(
⟨ρr

j (vi), ρr
j (s f )⟩M,3

)
1≤i≤N1

.

We do not need all of the data of s f on Ω − Hh but only some of them to resolve the
linear system (7).

3.2. Convergence

From the definition of Hh, it is verified that, for any x ∈ Ω − H, there exists an open
set ωx ⊂ Ω − H and h0 ∈ H such that x ∈ ωx, and, for any h ≤ h0, one has ωx ⊂ Hh.
Following the same proof as in [20] [Theorem 1], the local convergence result is obtained.

Theorem 1. If hypothesis (4) is satisfied, one has

ε = O(M2), M → +∞, (8)

and
M2h2m

ε
= o(1), M → +∞. (9)
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Let x ∈ Ω − H; then,
lim

M→+∞
∥s f − σh

1 ∥m,ωx = 0.

4. Constructing the Function σh
2 over Hh

Formulation of the Problem over Hh

Let σh
1 be the function given by

σh
1(u, v) = σh

1 (u, v)− d1(u, v)−→e 1(u, v)− d2(u, v)−→e 2(u, v)− d3(u, v)−→n (u, v),

for any (u, v) ∈ Ω − H.
Then, σh

1 ∈ Hm(Ω − H;R3) and, from Theorem 1, under adequate hypotheses, it is
verified that, for any x ∈ Ω − H, there exists an open set ωx ⊂ Ω − H and h0 ∈ H such
that, for any h ≤ h0, one has ωx ⊂ Ω − Hh and

lim
M→+∞

∥ f − σh
1∥m,ωx = 0.

Now, suppose that f verifies that

τr
i Lr

i ( f )(x) ≥ 0, ∀ r = 0, . . . , k, ∀ i = 0, . . . , r, ∀ x ∈ H,

where τr
i ∈ {0, 1}, for any r = 0, . . . , k and i = 0, . . . , r.

Remark 1. Observe that if τ0
0 = 1, then f is a positive function on H.

In addition, if k = 1 and τ1
0 = τ1

1 = 1, then f is monotonic with respect to both coordinate axes.

Now, for any h ∈ H, let us consider that Γh stands for the set of the knots of Hh, i.e.,
for all x ∈ Γh, x is associated with a degree of freedom of Vh

2 . Let ∆h stand for the set of the
knots of Γh belonging to the boundary of Hh, i.e., ∆h = Γh ∩ ∂Hh, and consider

F = {L1, . . . ,LN}

the set of the degrees of freedom of Vh
2 associated with the knots of ∆h. Let

Mh = {v ∈ Vh
2 | Li(v) = Li(σ

h
1), i = 1, . . . , N,

τr
i Lr

i (v)(x) ≥ 0, r = 0, . . . , k, i = 0, . . . , r, x ∈ H}

and
M0

h = {v ∈ Vh
2 | Li(v) = 0, i = 1, . . . , N,

τr
i Lr

i (v)(x) = 0, r = 0, . . . , k, i = 0, . . . , r, x ∈ H}.

Finally, consider the following minimization problem: find σh
2 ∈ Mh such that

|σh
2|m,H ≤ |v|m,H , ∀ v ∈ Mh. (10)

Theorem 2. The unique solution of problem (10) is named the shape-preserving interpolation
variational spline relative to f and F . It is also characterized as the unique solution of the following
variational problem: find σh

2 ∈ Mh such that

∀ v ∈ M0
h, (σh

2, v)m,H = 0.

Proof. It is clear that Mh is a non-empty closed convex set of Hm(H;R3). Moreover, the
application given by

((u, v)) = ⟨ρh(u), ρh(v)⟩N,3 + (u, v)m,H , u, v ∈ Hm(H;R3),
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where ρh(w) =
N

∑
i=1

Li(w), for any w ∈ Hm(H;R3), is an inner product in Hm(H;R3), with

the associated norm [[w]] = ((w, w))
1
2 . This norm is equivalent to the Sobolev norm ∥w∥m,H

introduced in Section 2.
Since, for any v ∈ Mh, it is verified that ρhv = ρh(σh

1), problem (10) can be traduced to
find σ2 ∈ Mh, verifying [[σ2]] ≤ [[v]], for any v ∈ Mh.

By using the theorem of projection on a closed convex set, it is deduced that there exists
a unique σh

2 ∈ Mh, which is the projection of function 0 over Mh such that [[σh
2]] ≤ [[v]], for

any v ∈ Mh, and verifying

σh
2 ∈ Mh, ((−σh

2, w − σ2)) ≤ 0.

Let v ∈ M0
h; then, σh

2 − v ∈ Mh and thus ((−σh
2, v)) ≤ 0. Taking into account that M0

h
is a linear subspace and ρh(v) = 0, we obtain the result.

Now, let us consider the two sets Mh and M0
h defined by

Mh = {v ∈ Vh
2 | Li(v) = Li(σ

h
1), i = 1, . . . , N,

τr
i Lr

i (v)(x) ≥ 0, r = 0, . . . , k, i = 0, . . . , r, x ∈ Γh}

and
M0

h = {v ∈ Vh
2 | Li(v) = 0, i = 1, . . . , N,

τr
i Lr

i (v)(x) = 0, r = 0, . . . , k, i = 0, . . . , r, x ∈ Γh},

In this case, the minimization problem considered is to find σ̃h
2 ∈ Mh such that

|σ̃h
2 |m,H ≤ |v|m,H , ∀ v ∈ Mh. (11)

The proof of the following theorem is similar to that of Theorem 2.

Theorem 3. The solution of problem (11) is unique, named the shape pseudo-preserving interpo-
lation variational spline relative to f and F . It is also characterized as the unique solution of the
following variational problem: find σ̃h

2 ∈ Mh such that

(σ̃h
2 , v)m,H = 0, ∀ v ∈ M0

h.

Now, by reasoning as in [24] [Section 4], we can construct an algorithm to calculate a
finite sequence (σ̃h

2,ℓ)1≤ℓ≤ηh
such that σ̃h

2,ηh
= σ̃h

2 . Moreover, by adapting the notations and
results in [24] [Theorem 12], one can have

lim
h→0

∥σ̃h
2 − σh

2∥m,H = 0. (12)

Then, σ̃h
2 tends toward the shape preservation of f on H as h tends to 0.

Remark 2. For the construction of the finite sequence, the formulation of the algorithm can be
consulted in great detail in [25].

5. Construction of the Solution σh over Ω

Let σh
2 ∈ Vh

2 be the function defined by

σh
2 = σ̃h

2 + d1
−→e 1(u, v) + d2

−→e 2(u, v) + d3
−→n (u, v).
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Hence, the solution of the initial problem is given by

σh =

{
σh

1 on Ω − Hh,

σh
2 on Hh.

In this case, the following properties are verified.

- For construction, one has that σh ∈ Vh.
- Moreover, from Theorem 1, under adequate conditions, σh locally converges to s f in

Hm(Ω − H).
- Finally, from the interpolation conditions in Hh, it results from (12) that σh

2 tends to
preserve the shape of the function s f in Hh; then, we can conclude that σh tends to
preserve the “shape” of s f in Hh .

6. Graphic and Numerical Example

Consider the regular surface S parameterized by

f (u, v) =
{

u, v,
1

1 + e12.73−13.5
√

0.1+u2+v2

}
, (u, v) ∈ Ω = (0, 1)× (0, 1),

and s f (u, v) parameterizes the generalized offset surface with variable offset distances and direc-
tions determined by the vectors d1(u, v)−→e 1(u, v), d2(u, v)−→e 2(u, v) and d3(u, v)−→n (u, v), being

d1(u, v) = 0.02u, d2(u, v) = 0.02v, d3(u, v) = 0.25(u2 + v2 − u − v) + 0.175.

Let H = H1 ∪ H2 be the open subset of Ω given by the points sets H1 : 3(x − 0.4)2 +
12(y − 0.22)2 < 0.1 and H2 : 4(x − 0.6)2 + 9(y − 0.73)2 < 0.2.

In this case, Vh is the finite element space constructed from the generic Bogner–Fox–Schmit
element of class one over a partition Th of 6× 9 equal rectangles of Ω (Figure 1).

Figure 1. The hole H and the partition Th, on the left, and the graphs of f and s f over Ω − H from
bottom to top, on the right.

Now, we consider the set Hh =
⋃

K⊂Th
K∩H ̸=∅

K and a set AM ⊂ Ω − Hh of M = 4000

approximation random points (Figure 2).
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Figure 2. The hole Hh and the approximation point set AM, on the left, and the graphs of f and s f
over Ω − Hh from bottom to top, on the right.

Applying the above approximation method, we construct the smoothing generalized
offset variational spline σh

1 ∈ V1
h relative to AM, (s f (a))a∈AM and ε = 10−12. We have

computed an estimation of the relative error via the expression Er =

√
∑5000

i=1 ⟨s f (ξi)−σh
1 (ξi)⟩2

3

∑5000
i=1 ⟨s f (ξi)⟩2

3
,

with {ξ1, . . . ξ5000} ⊂ Ω − Hh being a random set of points. In this case, it is obtained that
Er = 2.36006 × 10−4 (Figure 3).

Figure 3. The graphs of s f and σh
1 over Ω − Hh, from left to right. Er = 2.36006 × 10−4.

Next, we construct the interpolating variational spline σh
2 ∈ V2

h relative to σh
1 and F

and the freedom degree set of Vh
2 associated with the knot set belonging to ∂Hh, and we

obtain the approximation σh of s f over Ω (Figure 4).

Figure 4. The graphs of s f and σh over Ω, from left to right.

Table 1 is given to present the relative error estimations Er from different values
approximating points M and the smoothness parameter ε.
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Table 1. Computation of the relative error estimations Er for different values of the approximation M
and the smoothness parameter ε.

M ε Er

500 10−7 4.8358 × 10−3

10−9 2.7416 × 10−3

10−12 2.7314 × 10−3

1000 10−7 2.4427 × 10−3

10−9 2.3178 × 10−3

10−12 2.3157 × 10−3

1500 10−7 1.2414 × 10−3

10−9 1.0115 × 10−3

10−12 1.0096 × 10−3

1000 10−9 6.5812 × 10−3

10−12 5.1828 × 10−4

10−14 8.5806 × 10−4

1500 10−9 5.5815 × 10−4

10−12 4.0570 × 10−4

10−14 3.6152 × 10−4

2500 10−9 3.9301 × 10−4

10−12 2.0592 × 10−4

10−14 1.3303 × 10−4

7. Conclusions and Perspectives

From the data presented in Table 1, one can verify the justification of the convergence
results and the effectiveness of the studied method. In fact, using small values of the
approximating points M, a good order of approximation represented by the relative errors
Er considered is reached. One can observe that the estimation of the error Er decreases as
the point M tends to increase, and the same occurs for the estimation of the error Er as the
parameter ε. This indicates the agreement between the theory of the convergence result
and the numerical theory.

In short, the computation of the order of the estimation of the relative errors is similar
if we compare it with the known offset surfaces with holes studied in [20], although, in
this work, the shape preservation criterion is added, whose study is supposed to be more
complex. Hence, the analysis of the results given in Table 1 and Figures 1–4 shows the
validity of the presented approximation method. Moreover, we highlight the advantages of
this work with respect to those existing in the literature (see, for example, [7]). First, the
computation of the solution of the problem is studied; second, some convergence results of
the errors are analyzed.

We can conclude that the presented investigation enables the resolution of a com-
plicated problem due to the study of various conditions. Indeed, the problem of the
approximation and/or interpolation of generalized offset surfaces with holes, on the one
hand, and the preservation of the shape of this type of surface, on the other hand, is studied
at the same time.

As future research, it can be proposed to conduct a similar study with other functions,
such as radial functions. There is also the possibility of imposing more shape conservation
conditions, such as convexity conditions.
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