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Abstract. Predictive values are measures of the clinical accuracy of a binary diagnostic test, 

and depend on the sensitivity and the specificity of the diagnostic test and on the disease 

prevalence among the population being studied. This article studies hypothesis tests to 

simultaneously compare the predictive values of two binary diagnostic tests in the presence of 

missing data. The hypothesis tests were solved applying two computational methods: the 

expectation maximization and the supplemented expectation maximization algorithms, and 

multiple imputation. Simulation experiments were carried out to study the sizes and the 

powers of the hypothesis tests, giving some general rules of application. Two R programmes 

were written to apply each method, and they are available as supplementary material for the 

manuscript. The results were applied to the diagnosis of Alzheimer’s disease. 
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1. Introduction 

A diagnostic test is a medical test that is applied to a patient to determine the presence or 

absence of a certain disease. When the result of a diagnostic test is positive or negative, the 

diagnostic test is called a binary diagnostic test (BDT). The mammography for breast cancer 

is an example of a BDT. The clinical effectiveness of a BDT is measured in terms of two 

parameters: the positive predictive value and the negative predictive value. Positive predictive 

value ( ) is the probability of a patient having the disease when the result of the BDT is 

positive, and the negative predictive value ( ) is the probability of the patient not having the 

disease when the result of the BDT is negative. The predictive values (PVs) depend on the 

sensitivity (Se) and on the specificity (Sp) of the BDT and on the disease prevalence (p) 

among the population studied, i.e. 

 
   

  and  
1 1

p Se q Sp
τ υ

p Se q Sp p Se q Sp

 
 

       
, (1) 

where 1q p  . While Se and Sp quantify how well the BDT reflexes the true disease status, 

the PVs quantify the clinical value of the BDT, since the patient is more interested in knowing 

the probability of having or not having the disease given a result of the diagnostic test. The 

parameters of a BDT are estimated in relation to a gold standard (GS), which is a medical test 

which determines without any errors whether or not the patient has the disease. A biopsy for 

breast cancer is an example of a GS. 

In clinical practice, the most common sample design to compare the PVs of two BDTs is 

paired design [1, 2]. This type of design consists of applying the two BDTs to all of the 

individuals in a sample sized n whose disease status is known through the application of a GS. 

The comparison of the PVs of two BDTs subject to paired design has been the subject of 

different studies in statistics literature. Leisenring et al [3], Wang et al [4], Kosinski [5] and 

Tsou [6] have studied asymptotic methods to compare the two positive PVs and the negative 
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PVs independently, i.e. solving the two hypothesis tests 0 1 2:H    and 0 1 2:H    each one 

of them to an α  error. The Kosinski method has a better asymptotic performance (in terms of 

type I error and power) than the methods of Leisenring et al and of Wang et al. The method of 

Tsou leads to the same results as the Kosinski method. Roldán Nofuentes et al [7] studied a 

global hypothesis test to simultaneously compare the PVs of two BDTs, i.e. solving the global 

hypothesis test  0 1 2 1 2:   and  H       vs  1 1 2 1 2:   and/or  H      , and proposed a 

method based on chi-squared distribution and multiple comparisons. These authors have 

demonstrated that the comparison of the positive PVs (negative PVs) of two BDTs subject to a 

paired design must be carried out simultaneously, solving the global hypothesis test 

 0 1 2 1 2:   and  H      . They have also demonstrated that the comparison of the PVs is 

made independently, i.e. solving the tests 0 1 2:H    and 0 1 2:H    each one of them to an 

  error, the results may be mistaken. In Appendix A these methods are summarized.  

When assessing or comparing parameters of BDTs it is not common for the GS to be 

applied to all of the individuals in the sample, leading to the problem known as partial disease 

verification [8, 9]. Therefore, if the GS consists of a costly test or one which means some risk 

for the individual, then it will not be applied to all of the individuals in the sample, and 

consequently the true disease status is unknown for a subgroup of individuals. When 

comparing parameters of two BDTs in the presence of partial disease verification, it is 

common to assume that the verification process is missing at random (MAR). This assumes 

that the process to verify the disease status of an individual through the application of the GS 

only conditionally depends on the results of the two BDTs and it does not depend on the 

disease status of the individual. Subject to the MAR assumption, there are many different 

studies in statistics literature which compare parameters of two or more BDTs in the presence 

of partial verification. Zhou [9] studied a hypothesis test to compare the sensitivities 

(specificities) of two BDTs applying the method of maximum likelihood. Roldán Nofuentes 
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and Luna [10] studied the individual comparison of the PVs of two BDTs applying the 

maximum likelihood (ML) method. Marín-Jiménez and Roldán-Nofuentes [11] extended the 

study of Roldán-Nofuentes and Luna [10] to the case of more than two BDTs comparing the 

PVs simultaneously applying the ML method. Harel and Zhou [12] compared the sensitivities 

(specificities) of two BDTs through confidence intervals applying multiple imputation (MI). 

Roldán-Nofuentes and Luna [13] compared the sensitivities and the specificities 

independently, as well as the PVs, of two BDTs applying the expectation maximization (EM) 

algorithm and the supplemented expectation maximization (SEM) algorithm. 

In this article, hypothesis tests are studied to simultaneously compare the PVs of two BDTs 

when in the presence of partial disease verification the missing data mechanism is MAR, 

applying two computational methods: the EM and SEM algorithms, and MI. The EM 

algorithm is a classic method for estimating parameters in the presence of missing data. The 

advantage of the EM algorithm over the ML method [11] is that the EM algorithm can be 

applied when some observed frequency is zero, while the ML method [11] cannot be applied 

in this situation. Regarding the MI, this method offers better results than the ML method when 

comparing the sensitivities (specificities) of two BDTs in the presence of missing data. 

Therefore, it is convenient to evaluate this method to solve the problem presented here. MI 

cannot be applied when some observed frequency is zero. Therefore, with both types of 

computational methods we seek to solve the global hypothesis global test to simultaneously 

compare the positive PVs and the negative PVs of the two BDTs, i.e.  

 
0 1 2 1 2

1 1 2 1 2

  and  

  and/or  

H : τ τ υ υ

H : τ τ υ υ .

 

 
 (2) 

In Section 2, we solve the global test applying the EM and SEM algorithms, and in Section 3 

the same test is solved applying MI. In Section 4, simulation experiments are carried out to 

study the type I error and the power of the previous tests with each one of the two methods 

(EM-SEM algorithms and MI), and some general rules of application are given. In Section 5, 
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two programmes written in R are presented to solve the problem posed by applying each 

computational method. In Section 6, the results were applied to a real example of the 

diagnosis of Alzheimer’s disease, and in Section 7 the results obtained are discussed.  

 

2. EM and SEM algorithms 

Let us consider two BDTs that are applied to all of the individuals in a random sample sized n, 

and let us also consider a GS that is only applied to a subgroup of the sample. This situation 

leads to the observed frequencies in Table 1a, where the variable hT  models the result of the 

hth BDT ( 1hT   when the result is positive and 0hT   when it is negative), the variable V 

models the verification process ( 1V   when the disease status of an individual is verified 

with the GS and 0V   when it is not), and the variable D models the result of the GS ( 1D   

when the individual verified has the disease and 0D   when this individual does not). In 

Table 1a, ija  is the number of individuals with the disease among whom 1T i  and 2T j , ijb  

is the number of individuals without the disease among whom 1T i  and 2T j , and ijc  is the 

number of individuals with an unknown disease status among whom 1T i  and 2T j , with 

, 0,1i j  . Let 
1

, 0

ij

i j

a a


  , 
1

, 0

ij

i j

b b


  , 
1

, 0

ij

i j

c c


 , ij ij ij ijn a b c    and 
1

, 0

ij

i j

n n


  . For the hth 

BDT, let  1 1h hSe P T D   ,  0 0h hSp P T D   ,  1 1h hP D T     and 

 0 0h hP D T    , with 1,2h  . Let  1p P D   be the disease prevalence and 

 1 0q p P D    . From the expressions (1) each Se and Sp is written, in terms of the PVs 

and of p, as 

 
   

  and  h h h h

h h

h h

q p
Se Sp

pY qY

    
  , (3) 

where 1h h hY     .  
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==== INSERT TABLE 1 HERE ==== 

 

In the presence of partial disease verification, the verification probabilities are designed as 

 1 21 , ,ijk P V T i T j D k     , i.e. ijk  is the probability of verifying the GS the disease 

status of an individual for whom 1T i , 2T j  and D k , with , , 0,1i j k  . Assuming that 

the missing data mechanism is MAR, i.e. that the probability of verifying the disease status of 

an individual only conditionally depends on the results of the two BDTs and does not depend 

on the result of the GS, it is verified that  1 21 ,ijk ij P V T i T j      . Supposing the MAR 

assumption, the data from Table 1a are the product of a multinomial distribution sized n and 

the probabilities are written in terms of the PVs as  
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 (4) 

where 

   1 2 1 2 1

1 2

1 2

1q q

p YY

    


  
  and 

     1 2 1 2 0

0 2

1 2

1 1 1q q

q YY

    


    
 . 

with 1ij   if i j  and 1ij    if i j . Parameters 1  and 0  are the covariances [14] 

between the two BDTs when 1D   and when 0D   respectively, verifying that  

   1

1 1 2 2

1 2

1
1

max ,
q q

pY pY


   

 
  

 
 

 and 
   

0

1 1 2 2

1 2

1
1

max 1 , 1
p p

qY qY


   

 
      

     
     

. 
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If 1 0 1   , then the two BDTs are conditionally independent on the disease, a situation 

which is not realistic in practice, and therefore it must be verified that 1 1   and/or 0 1  . 

An EM algorithm is then proposed to estimate the PVs of the two BDTs. 

 

2.1. EM algorithm 

In the 3 4  table of observed frequencies, the missing information is the true disease status of 

the individuals who are not verified with the GS, i.e. the missing data is the value of the 

variable D  for the individuals among whom 0V  . This information is reconstructed in the E 

step of the algorithm and in the M step the values of the maximum likelihood estimators are 

imputed. Let us assume that that among the ijc  individuals who are not verified  0V  , ijd  

have the disease and ij ijc d  do not have it, with , 0,1i j  . Then the table of observed 

frequencies can be expressed in the form of a 2 4  table with frequencies ij ija d  for 1D   

and ij ij ijb c d   for 0D   (Table 1b). Let  1 1 2 2 1 0, , , , , ,
T

p     θ  be the vector of 

parameters. From the table of complete data, the log-likelihood function based on n 

individuals is 

          
1 1

, 0 , 0

log log ,ij ij ij ij ij ij ij

i j i j

l a d b c d 
 

     θ  (5) 

where  1 2, , 1ij P T i T i D     and  1 2, , 0ijφ P T i T i D    . The expressions of these 

probabilities in terms of the PVs are shown in Appendix B of the supplementary material. The 

components of the vector θ  are going to be estimated applying the EM algorithm. Therefore, 

let us suppose that  k

ijd  is the value of ijd  in the kth iteration of the EM algorithm, and 

   
1

, 0

k k

ij

i j

d d


  . The values of the MLEs in the kth iteration are calculated through the following 

equations 
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 (6) 

The estimators in the  1k th  iteration of the algorithm are calculated applying equations (6) 

substituting the superindex k  with 1k  , where 

 
 

   

1
ˆ

,   , 0,1
ˆ ˆ

k

k ij

ij ij k k

ij ij

d c i j


 


 


, 

when  ˆ k

ij  and  ˆ k

ij  are the estimators of the probabilities ij  and ij  in the kth iteration of the 

algorithm, and which are calculated substituting in the expressions of ij  and ij  (see 

Appendix B of supplementary material) the parameters with their respective estimators 

obtained in the kth iteration. As initial value  0

ijd  one can take any value between 0 and iju . 

The EM algorithm stops when the difference between the values of the log-likelihood 

functions of two consecutive iterations is lower than a value  , for example 1010   or 

1210  . If the EM algorithm has converged in K iterations, we denote through 

 1 1 2 2 1 0
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , ,

T
p     θ  the final estimators obtained. The estimators of the PVs obtained 

by applying the EM algorithm converge to the maximum likelihood estimators [10, 11] (proof 

can be seen in Appendix C of the supplementary material). The variances-covariances of θ̂  

are then estimated applying the SEM algorithm [15]. 
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2.2. SEM algorithm 

The estimation of the matrix of asymptotic variances-covariances of θ̂  can be obtained 

applying the SEM algorithm [15], which is a computational method which estimates the 

variances-covariances matrix of a vector of estimators from the calculations performed in the 

application of the EM algorithm. Let ˆ
θ
 be the variances-covariances matrix of θ̂ , Dempster 

et al [16] demonstrated that  

  
11

ˆ ocI I DM
  

θ
, (7) 

where I is the identity matrix and 
1

mis ocDM I I  , when ocI  is the Fisher information matrix of 

the complete data and misI  is the Fisher information matrix of the missing data. The SEM 

algorithm consists of three phases: 1) assessment of the matrix 
1

ocI 
, 2) assessment of the 

matrix DM, and 3) assessment of the matrix ˆθ
. The main phase is to calculate the elements 

of the DM  matrix. The following three phases are then analysed. 

The first phase consists of assessing the 
1

ocI 
. This matrix is the inverse of the Fisher 

information matrix of the complete data, i.e. 
 2

oc

i j

l
I

 


 

 

θ
, where  l θ  is the function (5) 

and each i  is one of the parameters of θ . This matrix is calculated from the last table after 

the application of the EM algorithm, substituting the parameters with their corresponding 

estimations obtained in the last iteration of the EM algorithm. If the EM algorithm has 

converged in K iterations, then the frequencies of the last 2 4  table are 
 K

ij ija d  for 1D   

and 
 K

ij ij ijb c d   for 0D  .  

The second part of the SEM algorithm consists of calculating the DM matrix. The elements 

of this matrix, denoted as ijr , , 1,...,7i j  , are obtained applying the following algorithm: 
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INPUT: θ̂  and                 1 1 2 2 1 0, , , , , ,
T

k k k k k k k k
p     θ . 

Step 1: Calculate                 1 1 1 1 1 1 1 1

1 1 2 2 1 0, , , , , ,
k k k k k k k k

p     
       
θ  applying the EM 

algorithm proposed in Section 2.1. 

Step 2: Obtain the vectors     1 1 1 1 2 1 0

T
k k ˆ ˆ ˆ ˆˆ ˆ, , , , p, ,      θ ,     2 1 1 2 2 1 0

T
k k ˆ ˆ ˆˆ ˆ ˆ, , , , p, ,      θ

,...,     7 1 1 2 2 1 0

T
k kˆ ˆ ˆˆ ˆ ˆ, , , , p, ,      θ , and for each one of these seven vectors run the first 

iteration of the EM algorithm taking 
 k

iθ  as the initial value of θ , and obtain the vectors 

 * 1

1
ˆ k
θ , 

 * 1

2
ˆ k
θ ,..., 

 * 1

7
ˆ k
θ . 

Step 3: Calculating the elements of the DM matrix as 

 
 

 

* 1ˆ ˆ
,   , 1,...,7

ˆ

k

k ij j

ij k

i i

r i j
 

 




 


, 

where 
 * 1ˆ k

ij


 is the jth component of vector 
 * 1ˆ k

i


θ , 

 k

i  is the ith component of vector 
 k
θ  

and ˆ
i  is the ith component of vector θ̂ . 

OUTPUT: 
 1k
θ  and 

 
,   , 1,...,7

k

ijr i j  . 

 

This algorithm is repeated until    1k k

ij ijr r 

   [15]. Consequently, the lower   is, the 

lower the numerical errors that are made when calculating the elements of the DM matrix, 

thus making fewer numerical errors in the estimation of the variances-covariances matrix ˆθ
. 

The last phase of the SEM algorithm consists of estimating the variances-covariances 

matrix ˆθ
 applying equation (7). The estimated variances-covariances matrix is not normally 

symmetrical due to the numerical errors made in the calculation of DM matrix. The 

assessment of ˆ̂
θ
 is performed calculating the matrix  

11

ˆ
ˆ ˆ

ocI DM I DM
  

θ
, a matrix 
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which represents the increase in the variances-covariances estimated owing to the missing 

information. The smaller the value of  is, the more symmetrical the matrix ˆ
ˆ
θ

 will be, and 

therefore the more symmetrical ˆ̂
θ
will be. Thus, the problem of the asymmetry of ˆ̂

θ
 is 

solved taking a value a very small value of   [15].  

 

2.3. Global Test 

The global hypothesis test (2) to simultaneously compare the PVs of the two BDTs is 

equivalent to 0 : 0H Aη  vs 1 : 0H Aη , where  1 1 2 2, , ,
T

   η  and A  is a complete 

range matrix sized 2 4  whose elements are known constants, i.e.  

1 0 1 0

0 1 0 1

 
  

 
A . 

Applying the multivariate central limit theorem it is verified that    ˆ ,
n

n N


  ηη η 0  

where η  is the variance-covariance matrix of η . Then, the statistic 

 
1

2

ˆ
ˆˆ ˆ



 T T TQ
η

η A A A Aη  is distributed according to a Hotelling’s T-squared distribution 

dimension 2 and n degrees of freedom, where 2 is the dimension of the vector η̂ . When n is 

large, the statistic 
2Q  is distributed according to a central chi-squared distribution with 2 

degrees of freedom when the null hypothesis is true, i.e. 

 
1

2 2

ˆ 2
ˆˆ ˆ




  T T T

n
Q 

η
η A A A Aη . 

The matrix ˆ̂
η
 is obtained from the matrix ˆ̂

θ
 eliminating the rows and columns 

corresponding to p̂ , 1̂  and 0̂ . 
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The global hypothesis global test (2) can also be solved from the individual hypothesis test, 

i.e. 0 1 2:H τ τ  and 0 1 2:H   , each one of them independently to an α  error, when the 

corresponding test statistics are 

     
1 2

1 2 1 2

ˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ 2 ,

z

Var Var Cov

 

   




 

 

both with normal standard distributions when the sample size is large and where 
î  is î  or 

î . Another method to solve the global test consists of solving each one of the individual tests 

along with a method of multiple comparisons, such as the classic method of Bonferroni [17] 

or the Holm method [18]. The Bonferroni method consists of solving each individual test to 

an 2  error, and the Holm method is less conservative than the Bonferroni method.  

 

3. Multiple imputation 

Multiple imputation [19, 20, 21] is an alternative method to the EM algorithm which is used 

to solve problems with missing data. Multiple imputation (MI) consists of constructing M sets 

of complete data, with 2M  , obtained replacing the missing data with M sets imputed 

independently. From each complete dataset the parameters are estimated, thereby obtaining M 

estimators of each parameter. Then the M estimators of each parameter are combined properly 

to obtain a global estimator of each parameter and its variance. From these combined values it 

is possible to obtain confidence intervals for each parameter and also to solve the hypothesis 

test. In the context of the comparison of parameters of two BDTs, Harel and Zhou [12] studied 

the comparison of the sensitivities (specificities) of two BDTs in the presence of missing data 

MAR through confidence intervals applying MI.  

We then study the simultaneous comparison of the PVs applying MI. Firstly, the MICE 

method is introduced and the hypothesis test is solved. 
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3.1. MICE Method 

For the imputation of the missing data, we have applied the multiple imputation by chained 

equations (MICE), a method which is also known as fully conditional specification or 

sequential regression multivariate imputation. The MICE method requires us to assume that 

the missing data are MAR, and it has the advantage of being a very flexible method which can 

be used with binary, ordinal or continuous variables. White et al [22] provided a detailed 

explanation of the imputation of binary variables with the MICE method. Therefore, in our 

situation we have three random binary variables: 1T , 2T  and D. For the variables 1T  and 2T  

there are no missing data, since the two BDTs have been applied to all of the individuals in a 

sample. Nevertheless, the variable D is missing for a subset of individuals in the sample, since 

the disease status is unknown for these individuals. Firstly, all missing values are filled in at 

random. The variable D is then regressed on the variables 1T  and 2T  through a logistic 

regression. The estimation is thus restricted to individuals with observed 1T  and 2T . The 

missing values in D are then replaced by simulated draws from the posterior predictive 

distribution of D. This process is called a cycle, and to stabilize the results, this process is 

repeated a determined number of times, finally obtaining a set of imputed data. In the 

situation that we study here, from the 3 4  table (see Table 1: Observed frequencies in the 

presence of partial verification) M 2 4  tables are imputed (see Table 1: Complete data), and 

from each one of these M 2 4  tables, we calculate the estimators of the positive (negative) 

PVs and their variances-covariances. As in the case of the EM-SEM algorithms, the 

comparison of the PVs can be solved from the global hypothesis test or from the individual 

hypothesis tests, each one of them to an   error or applying a multiple comparison method. 
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3.2. Global Test  

The solution of multiparametric hypothesis tests in problems with missing data applying MI 

has been the subject of several studies. Li et al [23] proposed a Wald statistic based on the F-

distribution to solve a multidimensional hypothesis test, and Li et al [24] solved the 

hypothesis test combining the p-values (or in an equivalent way, the Wald statistics) obtained 

in the M sets of imputed data from the same F-distribution. Meng and Rubin [25] solved the 

multidimensional hypothesis applying the likelihood ratio test.  

In the situation studied here, let 
 m

ijx    m

ijy  be the numbers of diseased (non-diseased) 

individuals among whom Test 1 leads to a result i and Test 2 leads to result j, with , 0,1i j  , 

in the mth complete dataset ( 1,...,m M ) obtained by applying the MICE method. Let 

          1 1 2 2
ˆ ˆ ˆˆ ˆ, , ,

T
m m m m m

   η  be the estimator of η  in the mth complete dataset and 

 

1

1
ˆ

M
m

mM 

 η η  the overall estimate of η . In each one of the M sets of complete data, we 

estimate the PVs and their variances-covariances. Positive PVs are estimated as 

 
   

       
11 10

1

11 10 11 10

ˆ
m m

m

m m m m

x x

x x y y





  
 and 

 
   

       
11 01

2

11 01 11 01

ˆ
m m

m

m m m m

x x

x x y y





  
, 

and negative PVs as 

 
   

       
01 00

1

01 00 01 00

ˆ
m m

m

m m m m

y y

x x y y





  
 and 

 
   

       
10 00

2

10 00 10 00

ˆ
m m

m

m m m m

y y

x x y y





  
. 

Appendix A shows their variances-covariances. The global hypothesis test (2) can be solved 

through the methods that are now described. 

 

a) Wald Test 

Let 
 ˆ m

  be the estimated variances-covariances matrix of 
 ˆ m
η . The matrix 

 ˆ m
  is calculated 

from the mth dataset applying the delta method, and its elements are shown in Appendix A. 
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Let 
 

1

1 ˆ
M

m

mM 

   , 
     

1

1
ˆ ˆ

1

M T
m m

mM 

  

B η η η η  and    1 1

1 1 trace 2r M    B . 

The matrix   measures the within imputation variability, the matrix B  measures the between 

imputation variability and r is the estimated average odds ratio of the fractions of missing 

information. Then, Wald test statistic [23] for the global hypothesis test is 

 
 

1

1

12 1

T T T

F
r








η A A A Aη
, 

whose distribution is one F with 2 (the dimension of the vector η ) and 

 
 

 

    

2

1

2
1

1

2
4 2 6 1 ,   if  2 1 4

1

3
1 1 ,                    if  2 1 4

2

M
M M

M r
l

M r M

  
      
   


   


 

degrees of freedom. 

 

b) Combination of p-values 

The solution of the global test can be made combining the p-values obtained in each one of 

the M complete datasets [24], or what amounts to the same thing, combining the Wald 

statistics. For the mth set of imputed data the Wald test statistic is 
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The statistic for the global hypothesis test is [25] 
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and the combined p-value is  2, 2lp value P F F    with   
2

3 1

22 1 1Ml M r    . 

 

c) Combined likelihood-ratio tests 

A third method to solve the global test is combining likelihood-ratio tests [25]. Let 

          ( ) ( ) ( ) ( )

11 10 01 00 11 10 01 00, , , , , , ,
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m m m m m m m m mx x x x y y y yz  be the vector of imputed frequencies in the 

mth complete dataset. Let 
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ij  and 
 m

ij  be the probabilities corresponding to each cell of the 

imputed 2 4  table, whose expressions are similar to those given in Appendix A of 

supplementary material adding the superindex (m) to all of the parameters. Let 
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       ψ  be the corresponding vector of probabilities. 

The complete-data log-likelihood function is 
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which are the estimators of 
 m

ψ  subject to the null hypothesis (i.e.  
0

ˆ m
ψ ), with , 0,1i j  . 

Performing algebraic operations, the likelihood-ratio test statistic for the global test 
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m m m m
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. Finally, the likelihood-ratio test statistic for the global 

hypothesis test is [25] 
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3.3. Individual tests 

As with the EM-SEM algorithms, the global hypothesis test can also be solved from the 

individual tests applying MI with methods that compare the positive PVs and the negative PVs 

independently or with a method of multiple comparisons. The methods that are going to be 

considered to individually compare the PVs are those of Leisenring et al [3], Wang et al [4] 

and Kosinski [5]. For the method by Wang et al and for the method by Kosinski, the 

combination of results is achieved applying the rules of Rubin [19]. For the method by 

Leisenring et al, the combination of results is achieved calculating the average statistic. The 

test statistics of the method by Wang et al and of the method by Kosinski are of the type 

 ˆ ˆV̂ar  , and therefore the combination of results is achieved applying the rules of Rubin. 

Nevertheless, in the case of the method by Leisenring et al, the test statistic to compare the 

equality of the two positive (negative) PVs is not of the type  ˆ ˆV̂ar  , and therefore the 

rules of Rubin cannot be applied.  

For the method of Wang et al and for the method of Kosinski the results obtained are then 

combined applying the rules of Rubin. Firstly, we calculate the overall estimate of the 

difference between the two positive PVs, i.e. 
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  is the between imputation variance (the variance of the complete data 

point estimates). Finally, the test statistic for the test 0 1 2:H    is 
 V̂ar
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distribution is (Rubin, 1987) a t-distribution with  
 ˆ

1 1
1

VarM
v M

M B

 
     

 degrees of 

freedom. The comparison of the negative PVs is made in a similar way substituting   with  . 

For the method by Leisenring et al, in the mth complete dataset the test statistic for 

0 1 2:H    is  m
z  (its expression can be seen in Appendix A), whose distribution is a normal 

standard one when the sample size is large. Then for the Central Limit Theorem, the average 

of all of the test statistics 
 

1

1 M
m

m

z z
M

 


   has a normal standard distribution when M is large. 

The process for the test 0 1 2:H    is similar to the previous one. 

 

4. Simulation experiments 

Monte Carlo simulation experiments were carried out to study the type I errors and the 

powers of the hypothesis tests studied in Sections 2 and 3, as well as the relative biases of the 

estimators of the PVs obtained with both methods. These experiments consisted of generating 

10000N   random samples of multinomial distributions sized 

 50,100,200,500,1000,2000n  , and whose probabilities were calculated from equations 

(4). As PVs we considered the values  0.70,0.75,0.80,0.85,0.90,0.95 , which are values that 

appear quite frequently in clinical practice, and as disease prevalence we took the values 

 25%,50%,75%p  . Once the PVs and p are set, the Se and the Sp of each BDT were 

calculated from equations (3). As values of the covariances  i  we considered intermediate 

and high values. Finally, the probabilities of the multinomial distributions were calculated 

applying equations (4). Therefore, the probabilities of the multinomial distributions were 

calculated from the PVs, and there was no previous setting of the values of sensitivities and 

specificities of the BDTs. The simulation experiments were designed in such a way that in all 
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of the samples generated it is possible to apply the EM-SEM algorithms and MI. Therefore, if 

in a sample a frequency 
ija  (or 

ijb ) is zero then it is not possible to apply MI (it is not possible 

to apply logistic regression to impute the missing data), then this sample was discarded and 

another one was generated instead until completing the N samples. Regarding the EM-SEM 

algorithms, we established as a stop criterion 1210   and 
610   respectively, and as 

initial values of the EM algorithm the values 
 0

2ij ijd c  are used. Regarding MI, for each one 

of the N random samples 20M   complete data sets were generated and 100 cycles were 

performed. In the first phase simulations were made considering 20M   and 50M   and 

performing 100 and 200 cycles in each case, obtaining very similar results; therefore, to 

reduce computation time we finally considered 20M   and 100 cycles. For all of the study, 

we set as the nominal error 5%  , and considered that a method overwhelms the nominal 

error or exceeds it too much when its type I error is higher than 7%. The simulation 

experiments were carried out with R [26] and for the MI we used the “mice” library [27]. 

Therefore, in the simulation experiments we studied and compared the type I errors and the 

powers of sixteen different methods to solve the global hypothesis test (2). Of the sixteen 

methods, four are based on the EM-SEM algorithms and the other twelve on MI. The methods 

based on the EM-SEM algorithms are: (a) a global hypothesis global test based on the chi-

squared distribution with 5%  ; (b) an individual comparison of the positive PVs and the 

negative PVs with 5%  , Bonferroni and Holm. The twelve methods based on MI are: (a) a 

global hypothesis test applying the Wald method, the combination of p-values and the 

combined likelihood ratio tests, all of them with 5%  ; (b) an individual comparison of the 

positive PVs and the negative PVs applying the methods of Leisenring et al, Wang et al and 

Kosinski, each of them with 5%  , Bonferroni and Holm. 
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4.1. EM-SEM algorithms 

Table 2 shows some of the results obtained for the type I errors of the different methods 

applying the EM-SEM algorithms. In this Table, EM-SEM-Global consists of solving the 

global hypothesis test, EM-SEM-Individual consists of comparing the PVs solving the 

individual hypothesis tests each of them to an error 5%  , and EM-SEM-Bonferroni 

consists of comparing the PVs solving the individual hypothesis tests along with the 

Bonferroni method to an error 5%  . The results obtained applying the Holm method to an 

error 5%   are not shown as they are practically the same as those obtained with the 

Bonferroni method. In general terms, the type I errors of all of the methods increase when the 

verification probabilities increase, and decrease when the covariances iα  increase. In general 

terms, all of the methods are very conservative when the sample size is small  50n   or 

moderate  100 200n   . When the sample size is large  500n  , depending on the 

verification probabilities and on the covariances i , the global test has a type I error that 

fluctuates around the nominal error. On some occasions, above all when the verification 

probabilities are low or the covariances are high, the type I error of the global test may 

slightly exceed the nominal error without actually overwhelming it. Method EM-SEM-

Individual may overwhelm the nominal error, above all when the sample size is large. Method 

EM-SEM-Bonferroni has a type I error whose behaviour is very similar to that of the global 

test.  

 

==== INSERT TABLE 2 HERE ==== 

 

Regarding the powers of these methods, Table 3 shows some results. The power of these 

methods increases when there is an increase in in the verification probabilities, whereas the 
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covariances i  do not have a clear effect upon the power. All of the methods have a very 

small power when the sample size is small  50n   or moderate  100 200n   , and it is 

necessary to have a large sample size (depending on the verification probabilities) so that the 

power is higher (over 80%). Although there are no clear rules, in general terms the global test 

is normally more powerful than Method 2. Regarding the method EM-SEM-Individual, there 

are also no clear rules, sometimes the global test is more powerful and on other occasions the 

method EM-SEM-Individual is more powerful (it is a method that easily overwhelms the 

nominal error), depending on the values that the PVs take. 

 

==== INSERT TABLE 3 HERE ==== 

 

From the results of the simulation experiments applying the EM-SEM algorithms, the 

method to compare the PVs of the two BDTs with the best asymptotic behaviour is the global 

test, since its type I error does not exceed the nominal error too much and, in general terms, it 

has more power than the method EM-SEM-Bonferroni (this is a method whose type I error 

also does not exceed the nominal error too much). Method EM-SEM-Individual may exceed 

the nominal error too much and, therefore, lead to false significances. 

The same previous results are obtained if the global test is solved by applying the ML 

method [10, 11], because the estimators obtained through the EM-SEM algorithms converge 

to the ML estimators. 

 

4.2. Multiple Imputation 

Table 4 shows the results obtained for the type I errors through MI for the same scenarios as 

Table 2. In this table, Leisenring-Individual, Wang-Individual and Kosinski-Individual, refers 

to the individual comparison of the PVs applying the method of Leisenring et al with 5%  , 
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the method of Wang et al with 5%   and the method of Kosinski with 5%  , 

respectively. Similarly, Leisenring-Bonferroni, Wang-Bonferroni and Kosinski-Bonferroni, 

refers to the individual comparison of the PVs applying the method of Leisenring et al, Wang 

et al and Kosisnki, respectively, along with the Bonferroni method and 5%  . The results 

obtained applying the Holm method are not shown as they are practically identical those 

obtained with Bonferroni. As with the EM-SEM algorithms, the type I errors of all the 

methods based on MI increase when the verification probabilities increase, and decrease when 

the covariances i  increase.  

Regarding the global tests, the type I error of the test based on the combination of p-values 

is very similar to the type I error of the combined likelihood-ratio tests, both of which 

fluctuate around the nominal error when the sample size is large. The global test based on the 

Wald test is very conservative (even when the sample size is large), and its type I error is 

smaller than that of the other two methods. 

The methods based on the individual comparisons to an error 5%   (Leisenring-

Individual, Wang-Individual and Kosinski-Individual) have type I errors that may exceed the 

nominal error too much, above all when the sample size is large. Therefore, these methods 

may lead to an excess of false significances. Regarding the methods based on the individual 

tests along with Bonferroni, the Leisenring-Bonferroni method has a type I error which may 

exceed the nominal error too much when the sample size is large. Kosinski-Boferroni method 

has a type I error with better fluctuations around the nominal error (with exceeding it too 

much) than the Wang-Bonferroni method, above all when the sample size is large. In general 

terms, there is no important difference between the type I error of the Kosinski-Bonferroni 

method and the type I error of the global test based on the combination of p-values (or 

combined likelihood-ratio tests), above all when the sample size is large. 
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==== INSERT TABLE 4 HERE ==== 

 

Regarding the powers, Table 5 shows the results for the same scenarios given in Table 3. 

The power of all of the methods increases when the verification probabilities increase, 

whereas the covariances i  do not have a clear effect upon the power.  

In general terms, the global test based on the combination of p-values is more powerful 

than the combined likelihood-ratio tests, and the difference is greater when the verification 

probabilities are low than when they are high. Moreover, both methods are more powerful 

than the Wald test (as this test is very conservative in relation to the other two). 

Comparing the global test based on the combination of p-values in relation to the 

Leisenring-Individual, Wang-Individual and Kosinski-Individual methods, there are no clear 

rules about their behaviour. Sometimes the global test is more powerful and on other 

occasions these methods are more powerful (methods which may clearly overwhelm the 

nominal error), depending on the verification probabilities and on the values that the PVs take.  

Regarding the Leisenring-Bonferroni method, in general terms the global test based on the 

combination of p-values is less powerful, due to the fact that the type I error of the 

Leisenring-Bonferroni method (which may clearly overwhelm the nominal error) is greater 

than that of the global test (which does not overwhelm the nominal error). Regarding the 

Wang-Bonferroni method and the Kosinski-Bonferroni method, there is no important 

difference between their powers, and these powers are a little lower than those of the global 

test based on the combination of p-values, above all when the sample size is large. 

Having analysed the results of the simulation experiments applying MI, the method to 

compare the PVs of two BDTs with the best asymptotic behaviour is the global test based on 

the combination of p-values, since its type I error does not overwhelm the nominal error and 
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its power is somewhat higher than that of the other methods which do not overwhelm the 

nominal error. 

 

==== INSERT TABLE 5 HERE ==== 

 

4.3. Relative biases 

Table 6 shows some results for the relative biases of the estimators of the PVs applying the 

EM algorithm and applying MI. The relative biases decrease when the verification 

probabilities increase whereas the covariances i  have practically no effect on the estimators 

obtained applying both methods. In general terms, the difference between the relative biases 

obtained with both methods is very small, and therefore both methods lead to estimations 

which on average are very similar to each other. 

 

==== INSERT TABLE 6 HERE ==== 

 

4.4. EM-SEM algorithms when some frequency is zero 

The EM-SEM algorithms can be applied when some frequency ija  or ijb  is equal to zero. 

Simulation experiments have been carried out to study the asymptotic behavior of these 

algorithms in this situation. These experiments have been designed in a similar way to the 

previous case, but the samples in which some frequency ija  or ijb  is equal to zero have not 

been eliminated. Table 7 shows the type I errors and the powers for the same scenarios given 

in Tables 2 and 3. In general terms, the conclusions are the same as those given in Section 4.1.  

 

==== INSERT TABLE 7 HERE ==== 
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4.5. EM-SEM algorithms or MI? 

Comparing the type I error of the global test based on the EM-SEM algorithms (Table 2) with 

the type I error of the global test based on the combination of p-values (Table 4), In general 

terms, there is no important difference among them. Regarding the power of both methods 

(Table 3 and Table 5), in general terms the power of the test based on MI (combination of p-

values) is a little higher than the power of the test based on the EM and SEM algorithms when 

the sample is small or moderate; when the sample is large, the power of both methods is very 

similar. Therefore, from the simulation experiments, it is possible to give the following 

general rule of application based on the sample size: 

a) Apply the EM-SEM algorithms or MI when the sample size is large. 

b) Apply MI based on the combination of p-values when the sample size is small or 

moderate. 

 

4.6. Causes of the significance 

When the EM-SEM algorithms are applied, if the global test is not significant to an α  error 

then we do not reject the homogeneity of the PVs of both BDTs. If the global hypothesis test 

is significant to an α  error, then the causes of the significance are investigated solving the 

individual hypothesis tests, i.e. 0 1 2:H τ τ  and 0 1 2:H   , along with the Bonferroni (or 

Holm) method to an α  error. The application of the individual tests along with the Bonferroni 

(or Holm) method is justified, just as in the simulation experiments, by the fact that this 

method has a type I error which does not overwhelm the nominal error.  

When MI is applied, the investigation of the causes of the significance is made in a similar 

way to in the previous case. We solve the global test based on the combination of p-values to 

an α  error and if the test is not significant then we do not reject the homogeneity of the PVs. 

If the global test is significant, then the causes of the investigation are studied solving the 
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individual tests applying the Kosinski method along with the Bonferroni (or Holm) method to 

an α  error for any sample size, although it is also possible to apply the method of Wang et al 

along with Bonferroni (or Holm) when the sample size is small or moderate. When the sample 

size is large, the Kosinski method has a better type I error behaviour than the method of Wang 

et al, and their powers are very similar. When the sample size is small or moderate, the 

Kosinski method and the method of Wang et al have very similar type I errors and powers.  

 

5 Empv and Mipv programmes 

Two programmes in R were written: Empv (EM algorithm for PVs) and Mipv (Multiple 

imputation for PVs). The Empv programme compares the PVs of two BDTs in the presence of 

partial disease verification applying the EM-SEM algorithms and the Mipv programme solves 

the same problem applying MI (MICE method). Both programmes are available as 

supplementary material for this article.  

The Empv programme is run with the command 

 11 10 01 00 11 10 01 00 11 10 01 00"empv , , , , , , , , , , , "a a a a b b b b c c c c . The programme checks that the values of 

the frequencies are feasible (for example, that there are no negative values, frequencies with 

decimals, etc…). By default, the stop criterion of the EM algorithm is 1210 , the confidence 

for the calculation of the intervals is 95% and, as initial values of the EM algorithm, the 

values 
 0

2ij ijd c  are used. The programme provides the estimations of the PVs and their 

corresponding standard errors, the inverse Fisher information matrix of the complete data, the 

DM matrix, the estimated variances-covariances matrix of the PVs, the test statistics and p-

values of the global test and of the individual tests, as well as the confidence intervals for the 

difference of the two positive (negative) PVs. 
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The Mipv programme solves the problem applying the MICE method and is run with the 

command  11 10 01 00 11 10 01 00 11 10 01 00"mipv , , , , , , , , , , , "a a a a b b b b c c c c . The programme checks that 

the values of the frequencies are feasible (for example, that there is no frequency equal to 

zero, negative values, frequencies with decimals, etc…). By default, 20 complete datasets are 

generated, for each complete dataset 100 cycles are performed and the confidence for the 

calculation of the intervals is 95%. The programme provides the estimations of the PVs and 

their corresponding standard errors, the estimated variances-covariances matrix of the PVs, 

the test statistics and p-values of the global test and of the individual tests applying the 

method of Wang et al and the Kosinski method, as well as the confidence intervals for the 

difference of the two positive (negative) PVs. 

 

6. Application 

The results obtained were applied to the study by Hall et al [28] on the diagnosis of 

Alzheimer’s disease. Hall et al used two diagnostic tests for the diagnosis of Alzheimer’s 

disease: a new diagnostic test (Test 1) based on a cognitive test applied to the patient and in 

another relative test to another person who knows the patient, and a standard diagnostic test 

based on a cognitive test (Test 2), and as the GS they used a clinical assessment (neurological 

examination, computerized tomography, neuropsychological and laboratory tests…). Table 8 

shows the results obtained applying the two diagnostic tests to a sample of 588 patients over 

75 years of age, and where the random variable 1T  models the result of Test 1, 2T  models the 

result of Test 2 and D  models the result of the GS. The study by Hall et al corresponds to a 

two-phase study: in the first phase, the two diagnostic tests were applied to all of the patients, 

and in the second phase the GS was only applied to a subset of patients depending on the 

results of both diagnostic tests. Consequently, it is assumed that the verification process is 
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MAR. As the sample size is large, the comparison of the PVs can be made applying the EM-

SEM algorithms and MI.  

 

==== INSERT TABLE 8 HERE ==== 

 

Table 8 (Results with EM-SEM algorithms) shows the estimations of the PVs and their 

standard errors (st.er.) obtained applying the Empv programme with the command 

“empv(31,5,3,1,25,10,19,55,22,6,65,346)”. The EM algorithm has converged in 186 

iterations. The inverse Fisher information matrix of the complete data, the DM matrix and the 

variances-covariances matrix can be seen when the programme is run. The test statistic for the 

global test is 
2 30.097Q   and the p-value is 72.914 10 , and therefore with 5%   we 

reject the equality of the PVs. Solving the individual tests 0 1 2:H    and 0 1 2:H    it holds 

that the respective test statistics are 3.251z    -value 0.001p   and 0.362z   

 -value 0.718p  . Applying the Bonferroni (or Holm) method with 5%  , we reject the 

equality of the two positive PVs and we do not reject the equality of the two negative PVs. 

When the two diagnostic are applied to the population being studied, the positive PV of Test 1 

is significantly higher than that of Test 2 (95% confidence interval for the difference: 0.069 to 

0.278). If the problem is solved applying the maximum likelihood method [11], the same 

results are obtained as applying the EM-SEM algorithms. 

Table 8 (Results with the MICE method) shows the estimations obtained applying the 

Mipv programme with the command “mipv (31,5,3,1,25,10,19,55,22,6,65,346)”. The test 

statistic for the global test applying the method of the combination of p-values is 2 15.974F   

and the p-value is 71.291 10 , and therefore with an error 5%   we reject the equality of 

the PVs of both BDTs. Solving the individual tests 0 1 2:H    and 0 1 2:H    applying the 
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Kosinski method it holds that the respective test statistics are 4.808z   

 7-value 1.527 10p    and 0.747z    -value 0.455p  . Applying the Bonferroni (or 

Holm) method with 5%  , we reject the equality of the two positive PVs and we do not 

reject the equality of the two negative PVs. When the two diagnostic tests are applied to the 

population being studied, the positive PV of Test 1 is significantly greater than that of Test 2 

(95% confidence interval for the difference: 0.101 to 0.239).  

As general conclusions of the simulation experiments, it has been obtained that the EM-

SEM algorithms and MI can be applied when the sample size is large, as in this example. In 

this example, it can be observed how with both methods, EM-SEM algorithms and MI, the 

results obtained are very similar, both in terms of the point estimators and of their variances-

covariances. Moreover, the conclusions are the same: we reject the equality between the two 

positive PVs and we do not reject the equality between the two negative PVs. Therefore, both 

methods lead to the same conclusions and both are equally valid. 

 

7. Discussion 

This manuscript studies the computational methods to solve this problem in the presence of 

missing data. The comparison of the two positive PVs and of the two negative PVs was 

studied simultaneously applying the EM-SEM algorithms and MI. With both methods it is 

required that the missing data be MAR, and therefore if the verification process conditionally 

depends on the disease status then this assumption is not verified and the methods cannot be 

applied. 

Simulation experiments were carried out to study the asymptotic behaviour of the global 

test of comparison of the PVs, and of other alternative methods, both with the EM-SEM 

algorithms and with MI, giving some general rules of application based on the sample size. In 

general terms, MI can be applied to any sample size, whereas the EM-SEM algorithms require 
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the sample size to be large. If the global test is not significant to an α  error then we do not 

reject the homogeneity of the PVs of both BDTs. If the global test is significant then the 

causes of the significance are investigated comparing the two positive PVs and the two 

negative PVs independently and a method of multiple comparisons is applied, such as 

Bonferroni or Holm, which are very easy methods to apply. This procedure is very similar to 

an analysis of variance: the global test is solved and if this is significant paired comparisons 

are carried out and a method of multiple comparisons is applied. 

The application of the EM-SEM algorithms leads to the same results as the application of 

the Marín-Jiménez and Roldán-Nofuentes method [11]. These authors simultaneously 

compared the PVs of multiple BDTs obtaining the estimators through the maximum likelihood 

method and estimating the variances-covariances applying the delta method. The advantage of 

the EM-SEM algorithms over the ML method is that the former can be applied when some ija  

or ijb  frequency is equal to zero, while with the ML method, the variance-covariance matrix 

cannot be estimated if some frequency ija  or ijb  is equal to zero. 

As with the ML method, MI can only be applied if all frequencies ija  or ijb  are greater 

than zero. If some frequency ija  or ijb  is equal to zero then it is not possible to generate 

complete datasets through logistic regression. Furthermore, the Wald method and the 

combination of p-values require that the fractions of missing information for all components 

of the parameter vector to be equal. When there are important differences between the 

fractions of missing information and these are large, there may be an important effect on the 

size of the test and on the power [23, 24]. Traditionally, Rubin [19] recommended imputing 

five complete datasets in order to be able to apply MI. In the situation analysed in this 

manuscript, in the initial simulation experiments  20,50M   compete datasets were 

considered, and the results were very similar, and therefore it was decided to generate 
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20M   complete datasets to save computation time. The simulation experiments 

demonstrated that the global test based on the combination of p-values (which is the test 

based on MI with the best asymptotic behaviour) has a type I error which is very similar to the 

global test based on the EM-SEM algorithms. Regarding power, that of the global test based 

on the combination of p-values is a little higher than that of the global test based on the EM-

SEM algorithms when the sample is small or moderate, and they are very similar when the 

sample is large. Therefore, the number of complete datasets was sufficiently large, and did not 

have any negative effect on the size and the power of the global test. 
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Supplementary material of the manuscript: 

Computational methods to simultaneously compare the predictive values of 

two diagnostic tests with missing data: EM-SEM algorithms and multiple 

imputation 

Appendix A 

Let us consider that two BDTs are applied to all the individuals in a random sample sized n, 

whose disease status (present or absent) is known through the application of a GS. Let ijx  

 ijy  be the numbers of diseased (non-diseased) individuals among whom Test 1 leads to a 

result i and Test 2 leads to result j, with , 0,1i j   (0 indicates a negative result and 1 a 

positive result). We now summarize the methods of Leisenring et al [3], Wang et al [4] and 

Kosinski [5]. The Tsou method [6] is not considered since it is equivalent to the Kosinski 

method.  

 

Method of Leisenring et al 

Leisenring et al [3] studied the comparison of the positive and negative PVs of two binary 

tests through marginal regression models, and they were able to estimate these models 

separately or jointly using GEE models. Leisenring et al deduced score statistics to compare 

the positive and negative PVs of two binary tests in paired designs. Using the notation from 

the previous Section, the score statistic for the test 0 1 2:H    is 

   

             

11 1 01 1 10 1

2 2 2 2 2 2 22 2 2 2 2
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and the score statistic to compare the test 0 1 2:H    is 
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Score statistics have a normal distribution when the null hypothesis is true, and where 

11 01 11 01
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, 11 01 10
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Method of Wang et al 

Wang et al [4] studied the comparison of the PVs of two binary tests through a weighted least 

square method and compared their method to that of Leisenring et al, before recommending 

the comparison of the PVs using the weighted least square method based on the difference 

between the two positive (negative) PVs. The test statistics for 0 1 2:H    and 0 1 2:H    

are  
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respectively, where 11 10
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, 01 00
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and 10 00
2

10 00 10 00

ˆ
y y

x x y y





  
. Both test statistics follow a standard normal distribution, and the 

variances are estimated by applying the delta method (the expressions are shown in the 

method of Roldán-Nofuentes et al [7] which will now be summarized). 
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Method of Kosinski 

Kosinski [5] proposed a weighted generalized score statistic to solve the hypothesis test of 

comparison of the PVs. The weighted generalized score statistic for the test 0 1 2:H    is 

  

1 2

10 11 01 11
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ˆ ˆ1 2p p p

z

C
n n n n
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and the weighted generalized score statistic for the test 0 1 2:H    is 
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which has a standard normal distribution when the null hypothesis is true, where 
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 are the pooled positive PV and pooled negative 

PV respectively, and 
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and ij ij ijn x y  . 

 

Method of Roldán-Nofuentes et al 

Roldán-Nofuentes et al [7] studied the simultaneous comparison of the PVs of two BDTs 

subject to a paired design. The simultaneous comparison of the PVs of two binary tests 

consists of solving the hypothesis test 

 0 1 2 1 2:   and  H       vs  1 1 2 1 2:   and/or  H      , 

Applying the delta method, the estimated variances-covariances of the estimators of the PVs 

are: 
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   1 1 2 2
ˆ ˆˆ ˆˆ ˆ, , 0Cov Cov     . 

The test statistic for  0 1 2 1 2:   and  H       is  
1

2 ˆˆ ˆT T TQ


 η A A A Aη , where 

 1 1 1 2
ˆ ˆ ˆˆ ˆ, , ,

T
   η , ̂  is the estimated variance-covariance matrix of η̂  and A  is the design 

matrix, i.e. 

1 0 1 0

0 1 0 1

 
  

 
A . 

The test statistic 
2Q  is distributed asymptotically according to a central chi-square distribution 

with two degrees of freedom if 0H  is true.  

 

When all of these methods are used applying multiple imputation, all the equations are 

valid for the mth complete dataset, adding superindex  m to all of the terms of the equations. 
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Appendix B 

Probabilities  1 2, , 1ij P T i T i D     and  1 2, , 0ijφ P T i T i D     are written in terms 

of the PVs as: 

 

      

   

         

          

1 1 2 1 2 21 1 2 1 2

11 10

1 2 1 2

2 2 1 1 1 1

01

1 2

1 1 2 2 1 1 2 2 2 2 1

00

1 2

1 1 2 0 2 20 1 2 1 2

11 10

1 2

,  ,

,

1 1 1 1
,

1 11 1
,  

q pY qq q

pYY pYY

q pY q

pYY

q p p p Y

pYY

q qY qq q

qYY

        
 

    


         


        
 

       

    

          


          

     

    

      

1 2

2 2 1 0 1 1

01

1 2

2

0 1 2 1 2 1 2

00

1 2

2 1 1 1 1 1 2 1 2

1 2

,

1 1
,

1 1

1 2 1
.

qYY

q qY q

qYY

q q q YY

qYY

p p p Y

qYY

    


    


       



      

    
 

          

 

Appendix C 

The maximum likelihood estimator of PVs in the presence of partial verification of the disease 

are [10, 11] 
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for test 2. From the table of complete data (Table 1b), the log-likelihood function based on n 

individuals is 
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From this function it is obtained that 
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 . In order to 

demonstrate that the EM algorithm converges to the ML estimators, we are going to follow the 

same steps as Little and Rubin [7]. With the EM algorithm, the estimator of 1  is calculated as 
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Therefore it is necessary to show that 
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, then it is obtained that 
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Therefore, 
 1

1̂

k



 converges to 1̂ . The convergence of the rest of the estimators of PVs is 

demonstrated in a similar way. 

 


