
Diversity and Distributions. 2024;30:e13849.	 		 	 | 1 of 17
https://doi.org/10.1111/ddi.13849

wileyonlinelibrary.com/journal/ddi

Received:	9	May	2023  | Revised:	8	March	2024  | Accepted:	1	April	2024
DOI: 10.1111/ddi.13849  

R E S E A R C H  A R T I C L E

Climate change is predicted to impact the global distribution 
and richness of pines (genus Pinus) by 2070

Diego F. Salazar- Tortosa1,2,3  |   Bianca Saladin4 |   Jorge Castro1  |    
Rafael Rubio de Casas1,3

This is an open access article under the terms of the Creative	Commons	Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
©	2024	The	Authors.	Diversity and Distributions published by John Wiley & Sons Ltd.

1Department of Ecology, Faculty of 
Sciences, University of Granada, Granada, 
Spain
2Department of Ecology and Evolutionary 
Biology,	University	of	Arizona,	Tucson,	
Arizona,	USA
3Research Unit Modeling Nature, 
University of Granada, Granada, Spain
4Swiss Federal Institute for Forest, 
Snow and Landscape Research WSL, 
Birmensdorf,	Switzerland

Correspondence
Diego	F.	Salazar-	Tortosa	and	Rafael	Rubio	
de Casas, Department of Ecology, Faculty 
of Sciences, University of Granada, 
Granada, Spain.
Email: dsalazar@ugr.es and rubiodecasas@
ugr.es

Funding information
Ministry of Economy and Competitiveness 
of	Spain,	Grant/Award	Number:	
CGL2013-	47558-	P	and	CGL2016-	
79950-	R;	Spanish	Ministry	of	Education,	
Culture	and	Sport,	Grant/Award	Number:	
FPU13/03410;	Swiss	SNF,	Grant/Award	
Number:	#31003A_149508/1;	Consejería	
de Universidad, Investigación e Innovación 
of	the	Junta	de	Andalucía,	Grant/Award	
Number:	QUAL21-011

Editor: Cesar Capinha

Abstract
Aim: Climate change is altering habitat suitability for many organisms and modifying 
species ranges at a global scale. Here we explored the impact of climate change on 
112 pine species (Pinus), fundamental elements of Northern terrestrial ecosystems.
Location: Global.
Methods: We applied a novel methodology for species distribution modelling that 
considers uncertainty in climatic projections and taxon sampling, and incorporates 
elements of species' recent evolutionary history. We based our niche calculations on 
climate	and	soil	data	and	computed	projections	across	multiple	algorithms	and	IPCC	
scenarios, which were ensembled into one single suitability map. We then used phylo-
genetic methods to account for recent evolution in climatic requirements by estimat-
ing the evolution of climatic niche. Edaphoclimatic and evolutionary analyses were 
then combined to calibrate the projections in areas showing high uncertainty. We 
validated	our	models	using	naturalized	occurrences	of	invasive	pine	species.
Results: Our	models	predicted	that	by	2070,	most	pine	species	(58%)	might	face	im-
portant reductions of habitat suitability, potentially leading to range losses and a de-
crease in species richness, particularly in some regions such as the Mediterranean 
Basin	and	South	North	America,	albeit	migration	might	mitigate	these	shifts	in	some	
cases.	In	contrast,	our	projections	showed	increased	habitat	suitability	for	approx.	20%	
of species, which may undergo range expansions under climate change. Moreover, the 
consideration of recent evolutionary trends modified projected scenarios, decreasing 
range loss and increasing range expansion for some species. The independent valida-
tion endorsed our models for many species and the influence of recent evolution in 
some cases.
Conclusions: We predict that climate change will impose drastic changes in pine dis-
tribution and diversity across biogeographical regions, but the magnitude and direc-
tion	of	change	will	vary	significantly	across	regions	and	taxa.	Species-	level	responses	
are likely to be influenced by regional conditions and the recent evolutionary history 
of each taxon.
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1  |  INTRODUC TION

Climate change is altering environmental conditions worldwide, 
modifying species' survival and performance (Lloyd & Bunn, 2007; 
Sinervo et al., 2010). Some of these changes are likely to affect 
demographic rates and ultimately the distribution of biodiversity 
(Allen	&	Breshears,	1998; Chen et al., 2011;	Jump	&	Peñuelas,	2005). 
Therefore, detailed knowledge of the climatic niche of plant and 
animal species is crucial for predicting their response to ongoing 
climate change.

Species distribution models (SDMs) are a widely used approach 
to estimate species niches by relating field observations to environ-
mental predictor variables (Booth et al., 2014; Guisan et al., 2017). 
This approach can benefit from the consideration of some aspects 
that might influence the reliability of current predictions and fu-
ture	projections	 (Araújo	 et	 al.,	2019;	Araújo	&	Rahbek,	 2006; Lyu 
et al., 2022). For example, sampling bias, which may originate from 
uneven sampling efforts across space, time and/or taxa, is common 
in biodiversity databases used for fitting SDMs such as the Global 
Biodiversity Information Facility (GBIF) (Meyer et al., 2015) and can 
influence predictions of habitat suitability (Beck et al., 2014; Merow 
et al., 2014). Similarly, data quality issues, such as those arising from 
imprecise positional accuracies or from plantations, can cause un-
certainty. Selecting the correct environmental predictors is also 
of crucial importance, and although there is often a tendency to 
include as many predictor variables as possible, the avoidance of 
a high number of highly correlated predictors can improve SDMs 
(Brun et al., 2020; Guisan et al., 2017). Simultaneously, the inclusion 
of	non-	climatic	relevant	dimensions	of	a	species'	niche	can	improve	
SDM performance. For instance, in the case of plants, the incorpo-
ration of predictors such as soil properties seems to enhance pre-
dictive power (Hageer et al., 2017). However, it is also important to 
keep in mind that establishing an association between biological oc-
currences and environmental predictors is complex and that results 
might vary across algorithms (Brun et al., 2020; Merow et al., 2014; 
Peterson	et	al.,	2018). Forecasts can also be strongly influenced by 
uncertainty	in	the	projections	of	future	climate	scenarios	(IPCC	sce-
narios and global circulation models [GCMs]) (Goberville et al., 2015; 
Thuiller et al., 2019). Therefore, SDM accuracy and reliability de-
pend not only on their robustness to known sources of error but 
also on their ability to incorporate and manage multiple sources of 
uncertainty	(Araújo	et	al.,	2019). Then, the modelled outcomes can 
be assembled to illustrate both the mean trends as well as variation 
around these means as possible outcomes of projected futures.

SDMs frequently assume that species' niches tend to remain 
unchanged over time, leading to correlation between the niches of 
related	species,	namely	niche	conservatism	(Pearman	et	al.,	2008). 
This, in turn, could hamper the response of species to cope with 

environmental change (Wiens et al., 2010; Wiens & Graham, 2005). 
However, the generality of this assumption is unclear. Whether 
niche conservatism limits an organism's capacity to respond to 
novel conditions will ultimately depend on the characteristics (e.g., 
breadth) of the conserved niche and their correspondence with fu-
ture	environments.	Another	 common	assumption	underlying	most	
SDM approaches is the existence of environmental equilibrium, i.e., 
species occupy all the environmental space suitable to them, while 
no	unsuitable	area	is	occupied	(Jump	&	Peñuelas,	2005). However, 
species are rarely in equilibrium with the environment, particularly 
with climate. Therefore, mismatches are likely between the climatic 
conditions existing in the current distribution of a species and the 
potential range of climatic conditions that are suitable, yet not ex-
plored	due	to	other	biotic	and	abiotic	(non-	climatic)	factors.	In	other	
words, the fundamental niche is not fully occupied (Bocsi et al., 2016; 
Booth, 2017; Booth et al., 1988, 2015; Booth & McMurtrie, 1988; 
Hortal et al., 2012; Lobo et al., 2010;	Perret	et	al.,	2019). Therefore, 
accounting for the capacity of organisms to cope with conditions 
not present in their current ranges can improve forecasts of future 
range	dynamics	 (Araújo	 et	 al.,	2013; Early & Sax, 2014; Maiorano 
et al., 2013; Schurr et al., 2012). New methods have been devel-
oped to consider biological variance into SDMs (e.g., through phe-
notypic	and	genotypic	diversity;	Aguirre-	Liguori	et	al.,	2021; Bush 
et al., 2016;	D'Amen	et	al.,	2013;	Pearman	et	al.,	2010;	Serra-	Varela	
et al., 2015; Smith et al., 2019). In particular, the consideration of 
species' evolutionary trends might provide useful information to 
overcome	this	limitation.	For	example,	Morales-	Castilla	et	al.	(2017) 
used phylogenetic information to improve the fit of SDMs. However, 
their approach requires community data for SDM calibration; thus, 
its	 applicability	 is	 hampered	 by	 presence-	only	 or	 single-	species	
presence-	absence	 data,	 such	 as	 those	 contained	 in	 databases	 like	
GBIF.	A	methodology	that	combines	phylogenetic	 information	and	
SDMs using this sort of presence data could therefore be more gen-
eralizable.	Here,	we	put	forward	an	approach	based	on	the	phyloge-
netic reconstruction of niches encompassing ecological differences 
between related species. This approach uses recent niche evolution 
to deduce climatic conditions that are not present in current ranges 
of species but might be still included in their fundamental niche, thus 
being potentially relevant in their response to climate change. It only 
requires	reliable	species-	level	phylogenies	and	presence	data,	which	
makes it potentially applicable to a wide variety of organisms.

Pinus is an adequate system to work within a SDM framework. 
It	 is	 a	genus	of	 tractable	 size	 (112	species)	 the	members	of	which	
are important components of Holarctic and, to a lesser extent, 
Subtropical	 forests.	 As	 a	 result,	 they	 are	 for	 the	 most	 part	 very	
well-	studied	 and	 there	 is	 abundant	 and	 precise	 available	 data	 on	
the distribution of most species (Lyu et al., 2022; Richardson, 2000). 
Pine	species	span	a	wide	variety	of	biomes,	including	arid	(desert	or	

K E Y W O R D S
climate change, data uncertainty, distribution shifts, edaphoclimatic niche, GBIF, habitat 
suitability,	IPCC,	niche	evolution,	species	distribution	models
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semi-	desert),	humid	 (tropical	or	subtropical	 forests)	and	cold	envi-
ronments (e.g., alpine or taiga), and are often found on the timber-
line, which makes them potentially very sensitive to any climatic shift 
(Allen	&	Breshears,	1998; Richardson, 2000). In addition, the evolu-
tion	of	this	group	is	well-	studied	and	both	a	rich	fossil	record	reach-
ing	100 My	and	well-	resolved	phylogenies	are	available	(Alvin,	1960; 
Parks	et	al.,	2012; Ryberg et al., 2012; Saladin et al., 2017). The abun-
dance, diversity and reliability of data make Pinus a good system to 
apply SDM methodologies.

Additionally,	 understanding	 the	 response	 of	 pines	 to	 climate	
change is pressing, since several species are key elements in ecosys-
tems that are particularly sensitive to climate change (Christensen 
et al., 2007; Giorgi & Lionello, 2008; Seager et al., 2007). Many spe-
cies occupy and define boreal ecosystems where the expected in-
crease of temperature could favour a shift of their Southern edge 
towards Northern latitudes (Birch et al., 2019; Lloyd & Bunn, 2007; 
Thuiller et al., 2005). Similarly, pines occupy subalpine ecosystems, 
which represent “cold islands” surrounded by warmer areas, and risk 
“falling upwards” without the possibility of latitudinal or altitudinal 
migration (Krajick, 2004;	 Sánchez-	Salguero	 et	 al.,	 2012; Thuiller 
et al., 2005). Several others are bound within very small ranges, like 
the island endemics P. canariensis and P. luchuensis and even small en-
vironmental changes might drive them to extinction in their native 
ranges (Harter et al., 2015).	Additionally,	several	pine	species	appear	
to occur in places that are already close to the arid tree line, like 
Mediterranean	or	SW	North	American	pines.	The	performance	of	
these species is compromised by intense summer droughts, which 
are already causing mortality events and even distribution shifts 
in	 dry	 ecotones	 (Allen	 et	 al.,	2010;	 Allen	&	Breshears,	1998), and 
are predicted to increase in frequency and severity in the near fu-
ture (Giorgi & Lionello, 2008; Seager et al., 2007).	Aridity	is	also	ex-
pected	to	increase	in	tropical	areas	of	America	and	Asia	(Christensen	
et al., 2007;	Hulme	&	Viner,	1998), which could increase water stress 
and	mortality	risk	for	 (sub)tropical	pines	 (Allen	et	al.,	2015). Given 
the ecological and economic importance of this group, projecting 
the future suitability of global environments for Pinus spp. presents 
an urgent scientific challenge.

Here, we project global distribution patterns under climate 
change across the genus Pinus. To do this, we apply a novel approach 
that incorporates multiple layers of biological and environmental 
data, along with evolutionary information into SDMs. This approach 
is flexible to different biogeographic sources, so we coupled GBIF 
occurrences along with expert knowledge and developed a sam-
pling process to limit the uncertainty caused by the variability in 
data quantity and quality. Modelling was performed using climate 
and soil variables and combining different algorithms. We also con-
sidered the output from several climate models and climate change 
scenarios to project habitat suitability under future climate condi-
tions. Moreover, we applied a phylogenetic approach to include re-
cent niche evolution into areas for which SDMs showed conflicting 
predictions. In that way, we expect to expand our ability to predict 
habitat suitability beyond climatic conditions included in extant dis-
tributions. Finally, we performed an independent validation of our 

models	for	12%	of	the	species	using	naturalized	occurrences	of	in-
vasive pine species.

Our approach predicts marked changes in habitat suitability 
under climate change for most pine species, suggesting the possi-
bility of significant range shifts. However, model projections dif-
fered widely among lineages and, especially, biogeographic regions. 
Based on our results, range loss is to be expected in regions where 
climate change is likely to result in increased aridity, such as the 
Mediterranean	 Basin	 or	 South	 North	 America.	 Conversely,	 newly	
suitable habitat space might open up for pines in cold areas where 
both precipitation and temperature are expected to increase, such as 
Boreal	areas	of	Eurasia	and	North	America,	or	the	Tibetan	Plateau.	
The addition of recent evolutionary history entailed substantial 
changes in SDM predictions for a few, but not all, species. For in-
stance, pines whose ancestors were inferred to occupy niches colder 
than their extant habitat were predicted to have more chances of 
migrating latitudinally. The independent analyses performed on 
naturalized	occurrences	endorsed	the	models	for	most	of	the	spe-
cies included in the validation and supported that the phylogenetic 
correction may be useful in some cases. Our work constitutes the 
first attempt to predict the impact of climate change across pines at 
a global scale considering recent evolutionary history. The results 
provide useful information for the conservation and management 
of pines, but also a new approach to consider recent evolution into 
SDMs requiring only presence data and a phylogeny of the group.

2  |  METHODS

A	detailed	flowchart	showing	the	main	steps	of	our	analyses	can	be	
found	in	Appendix	S1.

2.1  |  Natural ranges

Species-	level	 ranges	 were	 defined	 using	 range	 maps	 (Critchfield	
& Little, 1966; Farjon & Filer, 2013) and distribution data from the 
BRAHMS	 database	 (https:// herba ria. plants. ox. ac. uk/ bol/ brahms). 
Maps from Critchfield and Little (1966)	were	 digitized	 and	 raster-
ized	at	a	50 × 50 km	resolution	for	further	analyses,	considering	them	
as a representation of the natural geographic range of pine spe-
cies based on reliable ecological expertise. We created a 1° buffer 
around the natural distribution of all species in order to reduce the 
probability of not covering the whole natural range of each species 
(see	Appendix	S2 for further details).

Note that the historical distribution of many pine species has 
been influenced by human activities over millennia (Richardson 
et al., 2007). This, however, should not negatively influence our mod-
els as the goal is to predict areas with climatic conditions suitable for 
pine	species.	We	focused	on	regions	known	to	include	self-	sustained	
populations of each species. Therefore, we trained our models to 
predict areas with climatic conditions suitable for recruitment, in-
dependently of other factors like, for example, human influence on 
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dispersal. See the independent validation of the models for an as-
sessment of our approach's ability to achieve this goal.

2.2  |  Species occurrences

Occurrence data for each pine species were downloaded from the 
Biodiversity Information Facility (GBIF; www. gbif. org) using gbif 
{dismo} (Hijmans et al., 2017; Raymond et al., 2022). We adjusted the 
taxonomy applied in GBIF to ensure that it matched that of Gallien 
et al. (2016)	 (Appendix	S3). To consider the uncertainty regarding 
the location of occurrence records, we included positional accuracy 
in	our	analyses.	We	used	the	GBIF	variable	“coordinatePrecision”	in-
stead of “coordinateUncertinityInMeters” because the latter treated 
as high precision points some occurrences falling clearly outside of 
forest	patches	(see	Appendix	S4 for further details). We considered 
as high precision points those occurrences with coordinate precision 
between	1	and	25,	and	all	others	as	low	precision.	This	information	
was later used to weight occurrences in the models (see Modelling 
section for details). In addition, precision was considered during the 
process of occurrence resampling. We performed a resampling pro-
cedure to reduce the influence of spatial autocorrelation and sam-
pling bias on model performance (Beck et al., 2014). We established 
a	maximum	of	3	occurrences	per	cell	(50 × 50 km)	inside	the	natural	
range, discarding those occurrences outside that range. We prior-
itized	high-	precision	points,	which	were	 selected	using	 altitude	as	
stratification criterion if more than 3 per cell were present to cover 
the	climatic	variability	within	cells.	We	created	a	low-	precision	ran-
dom occurrence in those cells of the natural range with no occur-
rence	 record	 (see	 Appendix	 S5 for further details). This sampling 
procedure enabled us to combine two complementary sources of 
data while accounting for their reliability: GBIF, which includes high 
and low precision points but may lack data for the complete range of 
a species, and expert knowledge, which lacks precision but describes 
the entire natural distribution of species.

2.3  |  Pseudo- absences

Pseudo-	absences	(i.e.,	locations	of	hypothesized	absence)	were	cre-
ated	inside	a	buffer	of	22.5°	around	the	mapped	distribution	ranges,	
excluding	said	distributions	to	ensure	that	occurrences	and	pseudo-	
absences	did	not	overlap.	 Inside	 this	buffer	zone,	we	performed	a	
proportional stratified sampling of the space to cover all environ-
mental combinations using the {ecospat} R package (Broennimann 
et al., 2016).	Pseudo-	absences	were	distributed	across	environmen-
tal	strata	in	a	number	proportional	to	the	stratum	size.	We	assigned	
ten	times	as	many	pseudo-	absences	as	occurrences	per	species,	i.e.,	
the	ratio	of	presences/pseudo-	absences	was	1/10.	This	is	considered	
a	good	presence/absence	ratio	to	maximize	model	accuracy	(Barbet-	
Massin et al., 2012). In species with few occurrences, we increased 
the	number	of	pseudo-	absences	in	order	to	ensure	full	coverage	of	
all	environmental	strata	(see	Appendix	S6 for further details). During 

model	calibration,	pseudo-	absences	were	given	 lower	weight	 than	
presences	such	that	the	total	weights	of	pseudo-	absences	equalled	
the total weight of presences (see Modelling section for more de-
tails). Therefore, our models were based on data representing envi-
ronmental conditions of confirmed occurrences and likely absences 
(outside the known distribution range) while also quantifying the 
reliability of observed presences. We used a buffer around spe-
cies' natural ranges to create absences because we intended to in-
clude the explicit climatic and edaphic conditions in the vicinity of 
the confirmed distribution of each taxon. Using this approach, we 
also	minimized	potential	biases	introduced	by	globally	acting	factors	
such as dispersal limitation or historical constraints, i.e., we limited 
the	 influence	 of	 absences	 caused	 by	 non-	edaphoclimatic	 factors	
(Lobo et al., 2010; Svenning et al., 2011; J. C. Svenning & Skov, 2004; 
Thuiller et al., 2004;	VanDerWal	et	al.,	2009).

2.4  |  Predictor variables

We chose the target resolution for modelling pine distributions to 
be 10x10 km. We discarded finer resolutions because of the spa-
tial	scale	used	in	this	study	(i.e.,	50 × 50 km	cells	of	natural	ranges).	
In cases where variables were available at higher (finer) resolution, 
we	 aggregated	 cells	 to	 10 × 10 km	 resolution	 using	 the	 bilinear	 in-
terpolation option of resample {raster} (Hijmans et al., 2017), i.e., by 
averaging cell values. We used 19 bioclimatic variables calculated 
with	 biovars	 in	 {dismo}	 (Appendix	 S7). These bioclimatic variables 
are originally based on minimum and maximum monthly tempera-
tures as well as monthly precipitation sums. Instead of precipitation, 
we used a moisture index calculated as the difference between an-
nual precipitation and potential evapotranspiration, which in turn 
was calculated from mean monthly temperature and global radiation 
(Turc, 1961; Zimmermann & Kienast, 1999). The basic climatic data 
were downloaded from WorldClim version 1.4 except for global radi-
ation, which was only available in version 2.0 (Fick & Hijmans, 2017; 
Hijmans et al., 2005).

In order to cover the projection uncertainty that differences 
in climate models and scenarios are likely to cause, we com-
puted our suitability maps considering 28 different combinations 
of	 seven	 climate	 models	 (GCMs:	 BCC-	CSM1-	1,	 CCSM4,	 GISS-	
E2-	R,	 HadGEM2-	ES,	 IPSL-	CM5A-	LR,	MIROC-	ESM,	MRI-	CGCM3)	
and	 four	 representative	 concentration	 pathways	 (RCPs:	 RCP26,	
RCP45,	RCP60,	RCP80)	(Hijmans	et	al.,	2005; Stocker et al., 2013). 
Bioclimatic variables under each of these scenarios were derived 
from WorldClim (Hijmans et al., 2005) following the same ap-
proach used for current bioclimatic variables. Soil characteristics 
can be highly relevant to define plant niches. Thus, in addition to 
climatic conditions, we included physical and chemical properties 
of the soil from SoilGrids (https:// soilg rids. org/ ;	see	Appendix	S7 
for further details about the environmental variables). Note, how-
ever, that we assumed soil variables to remain unaltered under 
climate change. This is a limitation of our analyses given that soil 
properties could be affected by changes in climate (e.g., through 
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modifications of precipitation regimes). We attempted to reduce 
its impact by establishing the same ratio of climate/soil variables 
for all species (see below). Moreover, the ability of soil variables to 
predict current distributions was much lower compared to climatic 
variables (Table S1	Appendix	S7); thus, the impact of this limitation 
should not be very important.

Environmental	variables	tend	to	co-	vary,	which	can	impact	SDM	
projections (Brun et al., 2020; Williams et al., 2012). To avoid multi-
collinearity problems, we performed a selection of predictors. First, 
we clustered species into groups according to which climate and soil 
variables	best	explained	their	distribution	(see	Appendix	S8 for fur-
ther details). Then, we performed the selection of variables within 
each group, considering the corresponding environmental data. 
Predictors	were	selected	based	on	their	predictive	power	(Guisan	&	
Zimmermann, 2000) and signs of collinearity (Heiberger, 2016). In 
order to avoid biases related to the number of soil variables, which 
are predicted to remain unaltered under our climate change projec-
tions, we established a fixed ratio between the number of climatic 
and soil variables across clusters (3 and 2, respectively). In the case 
of species with few occurrences, we further removed variables ac-
cording to their predictive power and the climate/soil ratio to en-
sure a minimum of 10 occurrences per variable (Brun et al., 2020; 
Guisan et al., 2017)	(see	Appendix	S9 for further details about vari-
able selection).

2.5  |  Modelling

We used different modelling methods in order to consider the uncer-
tainty related to algorithm selection. We employed three algorithms 
representing different approaches: parametric (GLM; glm {stats}) 
and	 semi-	parametric	 regressions	 (Generalized	 Additive	 Models,	
GAM;	gam {gam}) (Hastie, 2018; R Core Team, 2017), along with a 
tree-	based	method	(Random	Forest,	RF;	randomForest {randomFor-
est}) (Liaw & Wiener, 2002). In all models, precise and imprecise 
presences	had	a	weight	of	1	and	0.5,	respectively.	 In	addition,	the	
weights	of	pseudo-	absences	were	set	such	that	the	sum	of	absence	
weights	equalled	that	of	all	presences	(Barbet-	Massin	et	al.,	2012).

We randomly partitioned the data 12 times into training and 
evaluation	 datasets	 (70	 and	 30%,	 respectively)	 totalling	 36	 pre-
dictions	of	habitat	 suitability	per	 species	 (3	model	 types × 12	data	
partitions). Continuous predictions of habitat suitability from GLM 
and	GAM	were	binarized	to	combine	them	with	the	binary	predic-
tions	from	RF.	Predictions	were	binarized	using	the	best	True	Skill	
Statistics (TSS), which was obtained from each evaluation dataset 
(ecospat.max.tss	 {ecospat})	 (Allouche	 et	 al.,	 2006; Broennimann 
et al., 2016). This method has been shown to produce highly accu-
rate	predictions	 compared	 to	other	 approaches	 (Jiménez-	Valverde	
& Lobo, 2007). For each species, binary predictions coming from all 
model-	partition	combinations	were	assembled.	For	each	cell,	we	cal-
culated the percentage of binary predictions that assigned the cell as 
suitable for a given species. The final ensemble shows the certainty 
of habitat suitability across modelling choices: high certainty of high 

and	low	suitability	for	100	and	0%,	respectively,	while	intermediate	
certainty values represent discrepancies among modelling choices.

For model evaluation, Kappa and, in the case of continuous pre-
dictions	(GLM	and	GAM),	the	area	under	ROC	curve	(AUC)	were	cal-
culated in each evaluation dataset (evaluate {dismo}). Since these two 
metrics are affected by the lack of equal proportion of presences 
and	pseudo-	absences	(Golicher	et	al.,	2012; Liu et al., 2013), we also 
evaluated	models	using	TSS	(Allouche	et	al.,	2006; Liu et al., 2013). 
Kappa and TSS values ∈	 [−1,	 1],	 while	 AUC	 ranges	 from	 0	 to	 1	
(AUC > 0.75	usually	considered	as	indicative	of	good	model	perfor-
mance,	AUC < 0.6	poor	model	quality;	Elith	et	al.,	2006).

Models were then projected to future conditions using the 
28 combinations of climate change data, totalling 1008 projec-
tions	 per	 species	 (36	models × 28	 climate	 scenarios).	 Projections	
of	GLMs	and	GAMs	were	binarized	using	the	same	TSS	thresholds	
used for current conditions. We assembled these 1008 binary pro-
jections for each species into a single raster as explained above for 
current	predictions.	See	Appendix	S10 for further details about the 
modelling approach.

2.6  |  Phylogenetic analyses

We accounted for recent evolution in ecological preferences of 
pines as a way to incorporate niche space not occupied in the extant 
distribution of species. This is especially relevant for Pinus, a group 
in which climatic disequilibrium seems to be frequent, especially for 
species	with	small	ranges	(Perret	et	al.,	2019). Therefore, it is pos-
sible that not all suitable climatic conditions are represented by cur-
rent distributions.

Given the existence of conservatism for the climatic niche of 
Pinus (see below), we assumed that the fundamental niche of cur-
rent species might still lie within (in niche space) ancestral niches 
recently occupied by their lineage. We approximated unexplored 
regions	of	the	fundamental	niche	by	reconstructing	realized	bio-	
climatic niches across the phylogeny. We used for that the two 
climatic variables that best explain pine distributions, one for tem-
perature	and	another	for	humidity	(BIO4	and	BIO17;	see	below).	
For each variable, the “phylogenetic range” of extant lineages was 
defined as the values encompassed between the current climatic 
value	 and	 that	 of	 the	 most	 recent	 common	 ancestor	 (MRCA).	
In other words, we considered the variation in niche conditions 
since the last evolutionary divergence event. We expected that 
the	 inclusion	 of	 evolution	 until	 the	MRCA	 limited	 the	 consider-
ation of ancestral niches that may no longer be included in the 
fundamental niches of extant species. In addition, this approach 
makes the method easily reproducible and applicable to other 
systems. In order to incorporate these unexplored regions of the 
fundamental niche in our predictions, we used the phylogenetic 
climatic range to correct areas for which SDMs yielded uncertain 
habitat	suitability	by	2070.	This	includes	habitats	projected	to	be	
suitable	by	only	25%–75%	of	model-	data	combinations.	 In	 these	
areas with uncertainty, we calculated the proportion of climate 
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change scenarios for which the expected climate of a given cell 
fell inside the phylogenetic range. In each climate change scenario, 
we only considered cells that fell inside the phylogenetic range of 
both climatic variables We ensured in that way to only included 
areas suitable for the highest possible number of dimensions of 
the climatic niche (temperature and humidity). We then modified 
the predictions of suitability by giving a high predicted suitability 
to those cells within the phylogenetic range, effectively includ-
ing	them	in	the	realized	climatic	niche	of	the	species.	We	only	ap-
plied this phylogenetic correction to areas with ambiguous results 
to avoid confounding robust projections (Schluther et al., 1997). 
Moreover, we ensured that our estimations gave more weight to 
the most recent evolution. For that, we scaled projections accord-
ing to the “position” of the expected value under climate change 
within the estimated phylogenetic range. Those cells with an ex-
pected	climate	closer	 to	 the	ancestral	 state	of	 the	node	 (MRCA)	
were	penalized,	and	those	with	values	close	to	current	conditions	
were favoured. The rationale for this linear scaling is that we 
assume pine species to be more likely to retain past niches that 
are closer to the current state of their niche. This is supported 
by the fact that Pinus shows evidence of niche conservatism, and 
hence, pine niches seem to exhibit temporal autocorrelation (see 
below). Therefore, it is reasonable to assume niches reconstructed 
in deeper evolutionary times to be more distant and hence less 
likely	to	be	retained	as	part	of	current	fundamental	niches.	Values	
equal to the ancestral state were considered as 0 (in effect placing 
them outside the phylogenetic range) whilst those values equal 
to the current niche value were considered to fall fully within the 
phylogenetic range (i.e., were considered as 1). Cells with climatic 
values between current and ancestral states were assigned a value 
of suitability proportional to the distance to the extremes (i.e., 
linear scaling). The results across climate change scenarios were 
assembled into one single raster per species and converted to a 
proportion,	i.e.,	from	0	to	1:	Values	closer	to	1	means	that	the	ex-
pected future climate of a given cell falls inside the phylogenetic 
range for multiple scenarios and it is close to the current state; 
values closer to 0 means that the expected climate does not fall 
within the range in multiple scenarios and/or it is far away from 
the	current	state	(see	Appendix	S11 for further details about the 
specific steps of the phylogenetic correction). Therefore, cells in-
side the phylogenetic range and with conditions not very far away 
from those represented by the current niche were considered as 
suitable even if their expected climate is not present in the current 
distribution. Even if SDMs predict these cells as unsuitable under 
climate change, their climatic conditions could be still included in 
the unexplored space of current fundamental niches.

Phylogenetic	 analyses	 were	 performed	 using	 the	 fossil-	dated	
phylogeny FBDl of Saladin et al. (2017). The ancestral climate niche 
was reconstructed along this phylogeny using two climate variables, 
one representative of adaptations to temperature conditions and the 
other as a proxy of adaptations to varying humidity. The variables 
were selected according to their predictive power in SDMs (Wiens 
et al., 2010) across all pines (i.e., were highly ranked to predict the 

distribution	 for	 multiple	 species;	 see	 Appendix	 S7). The chosen 
variables were “Temperature Seasonality” (BIO4) and “Humidity 
of	Driest	Quarter”	 (BIO17).	 The	 current	niche	 state	of	 these	 vari-
ables was estimated as the median across the natural range of each 
species. In other words, we considered all climatic values falling 
within the current distribution. Following Guerrero et al. (2013), 
we compared four evolutionary models for ancestral reconstruc-
tion, namely: White noise, Brownian motion (BM), Lambda (λ) and 
Ornstein-	Uhlenbeck	 (OU).	We	 found	 that	 both	 climatic	 traits	 (i.e.,	
BIO4	and	BIO17)	exhibited	λ values significantly different from 0, 
along with a low signal of selection (BM and OU models were indis-
tinguishable). These results suggest the existence of niche conser-
vatism in Pinus and support the selection of the simpler (i.e., with 
less parameters) BM models to perform the ancestral reconstruction 
(see	Appendix	S12 for further details about the selection of niche 
evolution models). In these reconstructions, we estimated the an-
cestral state for each climatic variable as the most likely climatic 
value for the common ancestor of each group of sister species. This 
ancestral state was estimated using ace	{ape}.	Ancestral	niches	were	
therefore based on the extant climatic values of the relevant sister 
taxa and also on those of the rest of species considering their phylo-
genetic relationship to the node of interest.

Because methods based on ancestral state reconstruction are 
fraught with uncertainty stemming from the phylogenetic tree used 
(Schluther et al., 1997), we also reconstructed the ancestral state 
of the two climatic variables under BM and OU considering other 
phylogenetic	 hypotheses,	 specifically	 the	 node-	dated	 phylogeny	
NDbl from Saladin et al. (2017).	Ancestral	states	under	the	two	phy-
logenies	were	 quite	 similar	 both	 for	 BIO4	 and	 BIO17	 (ρ > 0.9	 and	
p < 2.2e−16	in	both	cases;	Appendix	S13).

2.7  |  Estimation of range loss and change

We estimated range loss for each species as the proportion of 
current suitable area predicted to be lost under future conditions. 
Current suitable area was calculated as the number of cells with 
a	certainty	of	habitat	 suitability	≥75%	across	all	36	current	pre-
dictions	(3	model	types × 12	data	partitions).	As	explained	in	the	
Modelling section, these suitability values were obtained from the 
ensemble of binary predictions generated for each combination 
of	model	and	data	partition	(Appendix	S14). We used a threshold 
of	75%,	so	as	to	focus	our	predictions	on	the	size	of	the	area	with	
high confidence of suitability for pine species. In other words, we 
selected only cells considered as suitable across a wide range of 
sources	of	uncertainty	 in	order	 to	prioritize	areas	more	 likely	 to	
be suitable in the future, which should be useful for management 
purposes.	Predictions	were	limited	to	a	12.5°	buffer	around	spe-
cies distributions to avoid unrealistic predictions like the inclusion 
of	land	masses	too	far	outside	the	recognized	historic	range	of	a	
species (Zurell et al., 2018). Then, we calculated the number of 
cells predicted to remain suitable under future conditions within 
the	12.5°	buffer.	We	considered	cells	 suitable	according	 to	75%	
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    |  7 of 17SALAZAR-TORTOSA et al.

or	more	of	the	future	projections	(3	types	of	model × 12	random	
data	 partitions × 28	 climate	 scenarios = 1008	 future	 projections;	
Appendix	S14). Then, the number of suitable cells under future 
conditions was divided by the number of current suitable cells to 
obtain a metric of range loss. Finally, the same calculation was 
performed also considering the cells that our phylogenetic correc-
tion rendered suitable under future conditions. However, we only 
considered	cells	with	a	phylo-	corrected	 suitability	≥0.1	 to	avoid	
areas with expected climates outside the phylogenetic range in 
multiple	 scenarios	 and/or	 too	 close	 to	 the	MRCA	 niche.	 In	 this	
way, we selected climatic conditions not very far away from the 
current state, thus being more likely present in the fundamental 
niche of current species.

Range change was estimated as the difference between the pro-
jected suitable area under future conditions and the current suitable 
area, divided by the latter (all areas are estimated as number of cells). 
In this case, projections of future suitability were not limited to areas 
that are currently predicted to be suitable. Instead, we considered 
all	areas	included	in	the	12.5°	buffer	around	species	distributions.	In	
that way, we considered not only the loss of current suitable areas 
but also potential increases of suitability in previously unsuitable 
areas.	As	in	the	case	of	range	loss,	suitable	areas	were	assigned	ac-
cording	to	a	threshold	of	75%	in	suitability	certainty	and	0.1	of	phy-
logenetic	suitability	(see	Appendixes	S15 and S16 for further details 
about range change/loss calculations).

2.8  |  Changes in global species richness

Predictions	under	current	and	future	conditions	for	all	species	were	
combined into global maps. First, the ensembles of projections under 
current	and	future	conditions	of	each	species	were	binarized	using	a	
threshold	of	75%	within	the	12.5°	buffer	mentioned	above.	Binarized	
ensembles across the whole genus were then summed to obtain a 
prediction for the number of species in each cell, i.e., predicted pine 
richness under current and future conditions, respectively. In the 
case of future projections, this was repeated also considering as suit-
able	 those	cells	of	each	species	with	phylo-	suitability	≥0.1.	Finally,	
we calculated the difference in predicted pine richness between cur-
rent	and	future	conditions	(see	Appendix	S17 for further details).

As	 previously	 explained,	we	 considered	 as	 suitable	 those	 cells	
with	a	suitability	certainty	≥75%.	In	this	way,	we	focused	on	regions	
with a higher probability of being suitable in the future, which could 
be	more	relevant	for	prioritization	in	forest	management.	This,	how-
ever, could have the side effect of discarding an excessive number 
of potentially suitable regions if the selected threshold is too high. 
Therefore, we explored the impact of threshold selection on range 
loss/change and pine richness predictions. We calculated these 
metrics across 101 thresholds (from 0 to 100). Results showed that 
only	thresholds	above	75%	tended	to	produce	extreme	reductions	
in suitable area, being likely overconservative. This suggests that 
we have found a good compromise between selecting regions with 
a high certainty of suitability, which could be relevant for forest 

management, without discarding an excessive number of potentially 
suitable	regions.	See	Appendix	S18 for further details.

2.9  |  Independent validation of the models

We performed an independent validation of our models (with and 
without phylogenetic information) by assessing their performance 
against previously unseen, independent data. We used an independ-
ent	dataset	with	naturalized	occurrences	of	 invasive	Pinus species 
across	 5	 continents	 (Perret	 et	 al.,	2019). They included only data 
from	self-	sustained	populations	and	outside	the	natural	ranges.	The	
use	of	naturalized	occurrences	 is	usually	posited	as	useful	to	char-
acterize	the	full	range	of	climatic	conditions	a	species	can	tolerate	
(Booth, 1991, 2023). Therefore, we could obtain relevant informa-
tion about the ability of our models to capture that range of condi-
tions through the evaluation of their performance beyond natural 
ranges. We applied the same processing of the occurrences as in the 
data used for the main analyses. This resulted in a cleaned dataset 
with	naturalized	occurrences	outside	the	current	ranges	of	14	pine	
species. We used these occurrences to evaluate the previously fit-
ted	models	of	each	species,	partition	and	algorithm,	totalling	to	504	
models	 (3	algorithms × 12	data	partitions	and	14	species).	We	per-
formed the evaluation using the continuous Boyce index, a metric 
that	has	been	shown	to	reliably	assess	the	performance	of	presence-	
only models (Boyce et al., 2002;	Hirzel	et	al.,	2006). We evaluated 
how well each model was able to predict as suitable those areas 
showing	a	higher	proportion	of	naturalized	occurrences.	This	metric	
ranges	from	−1	to	1,	being	0	the	random	expectation,	i.e.,	no	correla-
tion between suitability predictions of the model and the propor-
tion of presences. We obtained a value of the Boyce index for each 
model	using	the	function	Boyce{modEvA}	(Barbosa	et	al.,	2013). We 
then tested whether the median Boyce index value across the 12 
partitions of a given species and algorithm combination was signifi-
cantly	higher	than	0	and	0.5	using	a	Wilcoxon	signed	rank	test.	The	
corresponding	 p-	values	 were	 corrected	 for	 multiple	 comparison	
using the False Discovery Rate (FDR) and considering a FDR value 
of	0.05	as	threshold	 (Benjamini	&	Hochberg,	1995). Finally, we re-
peated the calculation of the Boyce index, but also considered as 
suitable those cells within the phylogenetic range for a given species 
(phylo-	suitability	≥0.1).	We	then	tested	for	significant	differences	in	
the Boyce index with and without the phylogenetic correction using 
a	paired	Wilcoxon	test.	See	Appendix	S19 for further details about 
the independent model validation.

3  |  RESULTS

3.1  |  Predictions under current conditions

In general, ensembles of predicted habitat suitability under cur-
rent conditions fit species ranges, suggesting a good accuracy of 
SDMs. This is supported by all metrics of model evaluation. Kappa 
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gave	 a	mean	 value	 of	 0.75 ± 0.12,	 0.79 ± 0.11	 and	 0.74 ± 0.14	 for	
GLM,	GAM	and	RF,	respectively	(mean ± standard	deviation	across	
species). TSS showed even higher values with a mean value of 
0.90 ± 0.06,	 0.91 ± 0.06	 and	 0.91 ± 0.04	 for	 GLM,	 GAM	 and	 RF,	
respectively.	 Finally,	 mean	 values	 of	 AUC	 were	 0.98 ± 0.02	 and	
0.98 ± 0.01	for	GLM	and	GAM,	respectively.	See	Appendix	S14 for 
the	visualization	of	uncertainty	in	projections	and	evaluation	met-
rics of all pine species.

Model performance was not optimal in all cases. Some species 
with small ranges like those inhabiting islands had few indepen-
dent points, thus the number of variables that could be used for 
analyses was lower than four, with as few as one in P. amamiana 
(a narrow Japanese endemism). In these cases, models were likely 
not accounting for all important niche dimensions, which could ex-
plain a comparatively lower performance. For example, P. amamiana 
showed	 kappa	 values	 of	 0.39 ± 0.01,	 0.42 ± 0.14	 and	 0.12 ± 0.03	
for	 GLM,	 GAM	 and	 RF,	 respectively	 (Appendix	 S14). The models 
for some pines with broad ranges also showed only moderate per-
formance. For instance, the models of P. contorta, one of the most 
widespread	pines	and	native	to	North	America,	yielded	kappa	values	
of	 0.53 ± 0.01,	 0.61 ± 0.01	 and	0.75 ± 0.01	 for	GLM,	GAM	and	RF,	
respectively	(Appendix	S14). In these cases, the broad range of en-
vironmental conditions under which these species occur might have 
compromised model calibration.

3.2  |  Range loss and change under 
future conditions

For most species, SDMs suggest a decrease of suitable area relative 
to current predicted suitability, i.e., part of their current range is pre-
dicted to become unsuitable (range loss; Figure 1). More than half 
of	pine	species	 (58%)	are	predicted	to	experience	suitability	reduc-
tions	 in	more	 than	10%	of	 their	 current	 predicted	 range.	 Similarly,	
36%	 of	 species	 are	 predicted	 to	 suffer	 range	 losses	 of	more	 than	
20%.	However,	when	the	analyses	are	not	 limited	to	areas	that	are	
currently predicted to be suitable, and hence the possibility of range 
shift	and	expansion	 is	considered	 (range	change),	only	21%	of	pine	
species	 (24/112)	 are	 predicted	 to	 experience	 a	 decrease	 ≥20%	 of	
total suitable area. This reduction in the number of affected spe-
cies is likely due to increases of suitability in previously unsuitable 
areas, which can offset the range losses for some species (Figure 1). 
Around	21%	of	pine	species	are	predicted	to	experience	an	increase	
in	total	suitable	area,	up	to	40%	for	some	species.	Phylogenetic	cor-
rections moderately reduced the risk of complete range loss and even 
increased the probability of range expansion (i.e., positive values of 
range change; Figure 1). Under these conditions, the number of spe-
cies	with	a	predicted	range	loss	of	more	than	20%	of	total	suitable	
area	was	reduced	from	36%	to	27%	(median	range	loss	across	species	
of	10.87	(15.07)	%	and	14.06	(18.22)	%	with	and	without	the	phylo-
genetic correction, respectively; variability expressed as Interquartile 
Range, IQR). Similarly, the amount of pine species that are predicted 
to experience an increase in their total suitable area increased from 

21%	to	42%	(median	range	change	across	species	of	−1.16	(17.03)	%	
and −6.56	(17.56)	%	with	and	without	the	phylogenetic	correction,	re-
spectively; variability expressed as IQR). For instance, models incor-
porating the phylogenetic correction predicted a loss of suitable area 
for P. clausa	 in	its	native	range	of	Southeast	North	America	at	40%.	
This	 represents	a	decrease	of	approx.	50%,	since	without	 the	phy-
logenetic	correction	this	species	is	predicted	to	lose	90%	of	its	total	
suitable area (Figure 2;	Appendix	S15). Similarly, without the phyloge-
netic correction, one of the Taiwanese endemic pines (P. morrisonicola) 
is	predicted	to	suffer	a	negative	range	change	(−12%,	i.e.,	net	loss	of	
total suitable area); in contrast, suitable area is predicted to increase 
69%	 with	 the	 phylogenetic	 correction	 (Figure 2;	 Appendix	 S15). 
See	Appendix	S14 for predictions under climate change for all spe-
cies	and	Appendix	S15 for a numeric comparison of range loss and 
change with and without the phylogenetic correction. In addition, 
Appendix	S16 (Table S1	Appendix	S16) shows results for the phylo-
genetic correction without applying the linear scaling. We simply set 
the phylogenetic suitability to 1 for all cells with an expected climate 
inside the phylogenetic range (i.e., not considering its relative position 
respect	to	the	current	and	ancestral	states).	As	explained	in	Methods,	
the linear scaling was applied to reduce the influence of ancestral 
pine	niches	closer	to	the	MRCA.	Therefore,	the	comparison	of	both	
approaches can give us information about the relevance of these an-
cient pine niches in our results. We found a great correlation in the 
predictions of range loss and range change obtained with and without 
the linear scaling (ρ ≥ 0.996;	p < 2.2e-	16;	Figure S1	Appendix	S16). This 
suggests that our approach is not strongly influenced by very ancient 
pine niches, given that a reduction of their importance did not change 
the results. Therefore, the phylogenetic correction is possibly target-
ing recent pine niches that are more likely to be retained in current 
fundamental niches and hence could be useful in their response to 
climate change. While no species facing a significant reduction in its 
range can be anticipated to overcome this threat based solely on un-
explored space of its fundamental niche, this can represent a relevant 
buffer for certain taxa.

3.3  |  Predicted variation in pine richness

The patterns influencing pine richness varied across continents 
and biomes (sensu Olson et al., 2001).	 Pine	 species	 around	 the	
Mediterranean Basin are projected to undergo remarkable reduc-
tions of suitable habitats, and consequently, species richness is pre-
dicted to decrease in this area. Conversely, mountain and temperate 
forest habitats across Central and Northern Europe are expected 
to undergo moderate suitability reductions for pines and the num-
ber of species (i.e., pine richness) could even increase due to north-
ward shift of pines currently restricted to the South of the region 
(Figure 3;	Appendix	S14). Similarly, projections for the Eurasian taiga 
suggest reduced habitat suitability at the southern edge of the range 
of Siberian pines, but also the possibility of increased suitability at 
the north, which could potentially lead to an increase in pine rich-
ness	at	higher	 latitudes.	A	substantial	 reduction	 in	suitable	area	 is	
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predicted	for	eastern	Asian	pines	in	(sub)tropical	forests.	In	contrast,	
models suggest increases of suitable areas throughout the Tibetan 
Plateau	for	pines	inhabiting	around	the	Himalayan	range.

The	projections	under	climate	change	for	North	American	pines	
of temperate forests suggest reductions of suitable habitats. In 
contrast,	 models	 project	 that	 conditions	 by	 2070	 might	 facilitate	
increases in pine richness at higher latitudes for some eastern and 
western pines, suggesting the possibility of expansion through the 
Canadian Shield and the Western Coast of Canada, respectively. 
At	 lower	 latitudes	of	temperate	zones,	mountain	pines	around	the	
Chihuahuan Desert are projected to experience marked losses in 

suitable area. Conversely, our models projected lower reductions 
and even increases of suitable areas for pines of (sub)tropical forests 
in	the	South	of	Mexico	and	Central	America	(Figure 3;	Appendix	S14).

Although	general	qualitative	patterns	were	not	affected	by	the	
phylogenetic	correction	(Appendix	S17), this approach had quantita-
tive influence in several regions (Figure 4). For example, it increased 
the probability of range shift or expansion for some European and 
Asian	 pines	 like	 P. nigra, P. mugo, P. cembra or P. squamata, which 
could further contribute to an increase in pine richness in north-
ern latitudes. Similarly, our phylogenetic correction indicated that 
pines	of	temperate	forests	in	the	southeastern	USA	such	us	P. glabra 

F I G U R E  1 Predicted	range	loss	and	change	with	and	without	phylogenetic	correction.	Percentages	of	range	loss	and	change	for	all	pine	
species	are	shown	in	a	right-	closed	histogram.	Each	bar	shows	the	number	of	species	with	a	projected	percentage	of	reduction	in	habitat	
suitability	(i.e.,	range	loss)	and	change	(i.e.,	range	change)	within	the	corresponding	interval	range.	In	both	cases,	data	results	are	summarized	
as	a	proportion	of	the	total	suitable	area	under	current	conditions.	For	example,	10%	of	range	loss	means	that	10%	of	current	suitable	area	
is	predicted	to	be	lost	for	the	number	of	species	indicated	in	the	ordinate	axis,	whilst	10%	of	range	change	indicates	that	the	suitable	area	
is	predicted	to	increase	10%	relative	to	its	current	size	for	the	corresponding	number	of	species.	Results	with	and	without	considering	the	
phylogenetic correction are shown with bars of different colours (light and dark grey, respectively).
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and P. elliottii that were predicted to suffer remarkable reductions 
of habitat suitability could be less negatively affected by climate 
change. In the same region, P. strobus is predicted to increase its suit-
ability, especially if phylogenetic information is taken into account. 
This resulted in higher pine richness in this region compared to the 
predictions of regular SDMs (Figure 4).

3.4  |  Independent validation of the models

The independent validation showed that, overall, our models tend 
to have a good performance when predicting suitability beyond the 
natural ranges and the environmental conditions considered during 
training and evaluation. From the 14 species analysed, 13 showed 

a performance significantly better compared to the random expec-
tation for at least one model (Boyce index significantly above 0; 
Table S1	Appendix	S19). Further, 10 of these species showed a rela-
tively	high	performance,	with	a	Boyce	index	significantly	above	0.5	
for at least one model. Therefore, our SDMs tended to predict natu-
ralized	occurrences	relatively	well	for	most	of	the	species	analysed	
in the independent validation.

Despite the fact that the models without phylogenetic informa-
tion already exhibited a good performance, the application of the 
phylogenetic	 correction	 significantly	 improved	 performance	 in	 5	
out 14 species (Table S1	Appendix	S19). For 4 of these species (e.g., 
P. nigra or P. sylvestris), performance slightly improved with increases 
of	the	Boyce	index	ranging	from	0.0005	to	0.021	(values	for	the	dif-
ference	between	phylo-		and	non-	phylo	Boyce	index;	note	this	metric	

F I G U R E  2 Ensembled	projections	of	suitability	by	2070	for	P. clausa	(upper	plots;	Southeast	North	America)	and P. morrisonicola (lower 
plots;	Taiwan).	In	all	cases,	maps	show	predictions	inside	the	12.5°	buffer	used	for	estimating	range	loss	and	change	(areas	outside	that	
buffer	are	shown	in	black).	Colours	indicate	certainty	in	suitability	projections:	White	and	dark	green	indicate	full	agreement,	i.e.,	0%	and	
100%	of	suitability,	respectively.	Intermediate	values	(25%–75%),	i.e.,	lighter	green,	indicate	variable	suitability	predictions	across	modelling	
choices. Dotted lines delimit the areas currently occupied by each species. Right panels show suitability predictions after the phylogenetic 
correction. Note that this correction increased the suitability prediction for certain areas (e.g., North of the Mississippi delta for P. clausa and 
northern Hainan for P. morrisonicola). See text for details.
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    |  11 of 17SALAZAR-TORTOSA et al.

ranges	from	−1	to	1).	Only	one	case	showed	a	significant	decrease	
of	performance,	GAM	for	P. sylvestris, but the model still exhibited 
a high performance (>0.9). In the case of P. strobus, performance 
improved	more	sharply.	For	 this	species,	 the	Boyce	 index	of	GAM	
increased	from	−0.238	to	−0.133,	while	GLM	increased	from	−0.444	
to	−0.168.	Despite	the	sharp	increases,	models	for	this	species	still	
showed a worse performance compared to the random expectation.

The limited, although significant, impact of the phylogenetic 
correction on model performance could be caused by the conser-
vative approach used, as we limited its application to areas where 
SDMs showed uncertainty (see Methods). Therefore, we performed 

an initial exploration of a more liberal implementation of the phy-
logenetic correction by applying it across the whole study area, 
independently	 of	 SDM	uncertainty	 (see	Appendix	S19 for further 
details). Using this approach, the Boyce index for P. sylvestris showed 
more	marked	increases	ranging	from	0.007	to	0.058	(values	for	the	
difference	between	phylo-		and	non-	phylo	Boyce	 index).	Note	that	
GAM	showed	a	slight	decrease	of	performance	for	this	species	that	
was completely reverted using the liberal approach. Finally, P. stro-
bus	 showed	dramatic	 increases	of	performance	 ranging	 from	0.53	
to	 0.791	 (difference	 between	 phylo	 and	 non-	phylo	 models).	 As	
previously	stated,	the	Boyce	index	ranges	from	−1	to	1.	Therefore,	

F I G U R E  3 Global	patterns	of	predicted	pine	richness.	Top:	pine	richness	according	to	SDMs	under	current	conditions.	Bottom:	
differences in predicted pine richness between current and future conditions, resulting from changes in habitat suitability that could 
ultimately lead to variation in the number of species in each geographic unit (see text for details).
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this	kind	of	improvement	made	poor-	performing	models	(i.e.,	Boyce	
index below 0) to perform above the random expectation and even 
reach a high performance in one case (>0.5).	See	Appendix	S19 for 
more detailed results of the independent validation.

4  |  DISCUSSION

We present a global forecast for the distribution of Pinus in the face 
of climate change. Our projections were established using a novel 
SDM approach that considers multiple layers of biological and en-
vironmental data. We applied a new approach to incorporate evo-
lutionary information into SDMs requiring only presence data and a 
phylogeny of the group under study. With this pipeline, we predict 
reductions	of	suitable	areas	for	58%	of	pine	species	by	2070.	The	
combination of SDMs and evolutionary information modified our 
predictions about the impact of climate change on pine diversity in 
some regions, reducing the rate of suitable habitat loss in several 
cases. These results provide a quantitative insight on pine response 
to climate change at a global scale in the near future.

According	to	our	models,	habitat	suitability	for	the	genus	Pinus at 
global scale might be compromised. Range loss is predicted for many 
species, although these patterns differ among regions and taxa. 
Suitability is projected to decrease drastically in areas expected to 
encounter marked increases of aridity, such as the Mediterranean 
Basin	and	southern	North	America.	This	might	have	a	negative	ef-
fect on pine richness in these areas. Conversely, the opposite trend 
can be important in areas that are expected to undergo increases 
of temperature coupled with higher humidity. For example, Boreal 
regions	 of	 Eurasia	 and	 America,	 the	 Himalayan	 range,	 and	 (sub)
tropical	regions	of	America.	The	projected	changes	might	ultimately	
lead to range shifts and even ecotone displacements, like the south-
ward movement of the ecotone between taiga and tundra in the 
Taymyr peninsula (northern Russia). These projections are congru-
ent with events of forest mortality and forecasts of global climate 

and	vegetation	patterns	(Allen	et	al.,	2015; Christensen et al., 2007; 
Gonzalez	et	al.,	2010; Thuiller et al., 2005;	Venevskaia	et	al.,	2013). 
Note, however, that suitability does not necessarily correlate with 
occupation. Whether a species is present in a given location will be 
ultimately determined by a combination of environmental condi-
tions, dispersal limitations and other factors.

Phylogenetic	analyses	suggested	the	existence	of	climate-	niche	
conservatism in Pinus spp., illustrated by the strong phylogenetic sig-
nal and the adequacy of Brownian motion models of niche evolution 
(Pearman	et	al.,	2008; Wiens et al., 2010). Niche conservatism has 
been described in a variety of organisms (Wiens et al., 2010; Wiens 
& Graham, 2005), although it is unclear if it can be assumed to be 
a	 general	 pattern	 (Pearman	 et	 al.,	2008). In the particular case of 
pines, some studies have found support for niche conservatism at 
the genus level (Jin et al., 2021;	Perret	et	al.,	2019). However, other 
studies have found some evidence of niche divergence, but only 
when considering infraspecific differentiation or within reduced 
groups	of	related	pines	(Moreno-	Letelier	et	al.,	2013;	Ortiz-	Medrano	
et al., 2016; Rehfeldt et al., 1999). This sort of discrepancy is not 
surprising, given that the phylogenetic signal of the niche varies 
depending on the biological diversity and habitat scale considered 
(Cavender-	Bares	et	al.,	2006; Holt, 2009). In our case, we found in-
stances in which taxa sharing a common ancestor diverged widely 
ecologically (e.g., boreal P. banksiana and subtropical P. clausa). 
Therefore, transgression of the ancestral niche is certainly possible, 
but the pattern across Pinus remains one of niche conservatism.

It is often posited that niche conservatism might limit the re-
sponse of species to rapid environmental changes like global warm-
ing (Wiens et al., 2010; Wiens & Graham, 2005). However, our results 
suggest that for several Pinus species, retaining ancestral climatic 
niches could be beneficial in the face of climate change. For instance, 
SDMs predict a decrease of pine richness in southern Europe, where 
summer aridity is already a limiting factor and summer tempera-
ture is expected to increase (Boisvenue & Running, 2006; Giorgi & 
Lionello, 2008). However, this regional decrease in diversity might be 

F I G U R E  4 Increase	of	pine	richness	after	applying	the	phylogenetic	correction.	This	map	shows	the	difference	in	predicted	pine	richness	
under	future	conditions	when	the	phylogenetic	correction	is	applied.	Accounting	for	the	recent	evolution	of	the	climatic	niche	increases	the	
pine richness predicted for some regions (see Figure 3 and text for details).
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offset at a continental scale by an increase in species richness in cen-
tral and northern Europe, where low temperatures now represent a 
limiting factor for pines, as rising temperatures might enable more 
species to occupy this area (Boisvenue & Running, 2006; Christensen 
et al., 2007). The phylogenetic correction provides even more sup-
port for high suitability at northern latitudes under climate change. 
Species	that	retain	an	ancestral	niche	characterized	by	cooler	con-
ditions might have an advantage at higher latitudes. If they migrate 
northward, niche conservatism might enable these species to cope 
successfully	with	 still-	cold	winter	 temperatures	 at	 higher	 latitudes	
and to escape the aridification of lower latitudes. Indeed, the com-
parisons	between	native	and	naturalized	niches	conducted	by	Perret	
et al. (2019) show that pine species tend to occupy colder and wet-
ter	habitats	in	non-	native	locations,	suggesting	that	pines	might	be	
able to cope with colder conditions than those experienced in their 
extant ranges. Similarly, SDMs predict an increase of pine richness 
around the Himalayan range, a scenario rendered more likely by the 
phylogenetic correction. This suggests that the expected increase 
of	temperature	in	the	Tibetan	Plateau	could	facilitate	migration,	but	
that this could be more significant for species with colder ancestral 
niches	because	they	might	cope	successfully	with	still-	cold	habitats	
(Boisvenue & Running, 2006; Christensen et al., 2007). The phylo-
genetic correction also increased suitability for pines in the south-
eastern	USA.	SDM	projections	without	the	phylogenetic	correction	
suggest remarkable range losses for some of these species due to the 
expected increase of temperature and decrease of precipitation in 
that region (Christensen et al., 2007). However, several species seem 
to descend from ancestors that occupied drier environments, thus 
they might retain part of this ancestral niche and be able to cope with 
higher aridity than that present in their current range. These results 
suggest that niche conservatism may not be always detrimental in 
the face of environmental change.

Although	our	niche	calculations	are	based	on	a	series	of	assump-
tions, it is important to note that the approach used for including evo-
lutionary information into SDMs was conservative overall. First, we 
limited the range of reconstructed ancestral values used. We only con-
sidered	the	ancestral	values	between	the	current	and	the	MRCA	state	
for the phylogenetic range. In other words, we did not account for con-
ditions not encountered in recent evolutionary time that, although less 
likely, might still be included within the fundamental niche of current 
species. In addition, we only considered regions that were inside the 
phylogenetic range of both climatic variables simultaneously, there-
fore excluding situations in which only one of the two variables fell 
within the ancestral niche (i.e., of partial overlap). Finally, we only ap-
plied the correction in regions showing high uncertainty, leaving out 
regions with high consistency (certainty) across models and climate 
scenarios. In other words, we made a deliberate effort to reduce the 
influence of phylogenetic uncertainty in robust SDM projections.

Admittedly,	 this	 approach	 could	 have	 reduced	 the	 inferential	
power of the phylogenetic correction. Therefore, the lack of influ-
ence of the phylogenetic correction for multiple species cannot be 
regarded	as	 support	 for	a	non-	positive	effect	 (be	 it	deleterious	or	
null) of niche conservatism. Some species with high certainty in their 

predictions could still see their response to climate change positively 
influenced by recent evolutionary trends, but our approach is under-
powered to detect it. Even so, this approach seems to lead to quite 
different predictions for specific groups of pines, suggesting that it 
might provide useful information for species responses to environ-
mental change under certain circumstances.

The consideration of climatic conditions only within the natural 
range of a species can be seen as a limitation for the development 
of SDMs. It neglects the possibility that the species can cope with 
conditions beyond those present in its distribution (Booth, 1991, 
2023). Consequently, we assessed the ability of our models to pre-
dict suitability beyond natural distributions, using an independent 
dataset of invasive pine species that includes occurrences across the 
globe	(Perret	et	al.,	2019). We found a relatively good performance 
of	 our	models	 for	 predicting	 new,	 naturalized	occurrences	 in	most	
of the species analysed. We could not perform a validation of the 
whole Pinus genus due to limited data availability (only 14 were in-
cluded;	12.5%	of	the	genus),	but	given	we	were	able	to	obtain	rea-
sonable predictions for most of the species considered, it is plausible 
that our models could be useful to project suitability for many other 
pine species. Moreover, this independent validation found support 
(at least partially) for some of the predictions of the phylogenetic 
correction. This is the case for the increased probability of range 
expansion in northern and central Europe mediated by the phyloge-
netic correction. For example, one of the species having this pattern 
(P. nigra) showed a significant improvement of model performance 
due to the phylogenetic correction in the validation. Other European 
species with the same pattern of expansion, P. mugo, showed a ten-
dency	of	phylogenetic-	mediated	 improvement	of	performance,	but	
without reaching significance (Table S1	Appendix	S19). In the same 
vein, P. elliottii, a species for which the phylogenetic correction greatly 
improved	 the	predicted	 range	 loss	 in	 southeastern	USA,	 showed	a	
tendency of improvement with the correction in the validation anal-
ysis, but without reaching significance (Table S1	Appendix	S19). One 
of the cases with the largest increase of future suitability mediated by 
the phylogenetic correction, i.e., the expansion of P. strobus through 
southeastern	USA,	is	strongly	supported	by	the	marked	increases	of	
performance	caused	by	the	correction.	Although	significant,	the	in-
creases of performance with the phylogenetic information shown by 
the independent validation were limited for many species. This could 
be caused by the conservative approach followed to implement the 
phylogenetic correction (see above). Indeed, we explored an imple-
mentation not limited to areas where SDMs show uncertainty and 
found more marked and even dramatic improvements in perfor-
mance. We did not further explore this liberal implementation due 
to the risk of overfitting as we should not use a validation dataset to 
tuning the models. In any case, these exploratory analyses provided 
an useful insight about the potential of this approach, pointing it out 
as	a	promising	tool	to	improve	SDMs	(see	Appendix	S19 for further 
details). This validation supports that, overall, our models could pro-
vide reliable predictions of pine suitability even beyond the climatic 
conditions present in current ranges. Therefore, these models are po-
tentially relevant to predict the response of pines to climate change 
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and	prioritize	regions	with	a	higher	probability	to	be	suitable	in	the	
future. These results also suggest that the addition of phylogenetic 
information could be useful to improve predictions (at least for some 
species), opening a new venue for future improvements of SDMs.

In summary, this study predicts remarkable shifts of suitable areas 
for most pine species across the globe, which might lead to significant 
modifications of their ranges, even favouring ecotone displacement. 
The independent validation of the models along with the consistency 
of some projections across different information layers (i.e., similar re-
sults under different modelling choices) supports their relevance for 
forecasting the response of pine species to ongoing climate change. 
Finally, our results suggest that considering evolutionary history might 
nuance projected responses to climate change by incorporating recent 
evolutionary trajectories into species distribution predictions.
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