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6Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain
7University of Chicago, Chicago, Illinois 60637, USA

8University of Cincinnati, Cincinnati, Ohio 45221, USA
9Colorado State University, Fort Collins, Colorado 80523, USA

10Columbia University, New York, New York 10027, USA
11University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

12Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA
13Universidad de Granada, Granada E-18071, Spain

14Harvard University, Cambridge, Massachusetts 02138, USA
15Illinois Institute of Technology (IIT), Chicago, Illinois 60616, USA

16Indiana University, Bloomington, Indiana 47405, USA
17Kansas State University (KSU), Manhattan, Kansas 66506, USA

18Lancaster University, Lancaster LA1 4YW, United Kingdom
19Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA

20Louisiana State University, Baton Rouge, Louisiana 70803, USA
21The University of Manchester, Manchester M13 9PL, United Kingdom

22Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
23University of Michigan, Ann Arbor, Michigan 48109, USA

24Michigan State University, East Lansing, Michigan 48824, USA
25University of Minnesota, Minneapolis, Minnesota 55455, USA

26Nankai University, Nankai District, Tianjin 300071, China

PHYSICAL REVIEW LETTERS 132, 241801 (2024)

0031-9007=24=132(24)=241801(9) 241801-1 Published by the American Physical Society

https://ror.org/027m9bs27


27New Mexico State University (NMSU), Las Cruces, New Mexico 88003, USA
28University of Oxford, Oxford OX1 3RH, United Kingdom

29University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
30Rutgers University, Piscataway, New Jersey 08854, USA

31SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
32South Dakota School of Mines and Technology (SDSMT), Rapid City, South Dakota 57701, USA

33University of Southern Maine, Portland, Maine 04104, USA
34Syracuse University, Syracuse, New York 13244, USA

35Tel Aviv University, Tel Aviv, Israel, 69978
36University of Tennessee, Knoxville, Tennessee 37996, USA

37University of Texas, Arlington, Texas 76019, USA
38Tufts University, Medford, Massachusetts 02155, USA

39University College London, London WC1E 6BT, United Kingdom
40Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

41University of Warwick, Coventry CV4 7AL, United Kingdom
42Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA

(Received 22 December 2023; revised 24 April 2024; accepted 13 May 2024; published 11 June 2024)

We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to
7.2 × 1020 protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the
neutrino target at the main injector produce π0 and η mesons, which could decay into dark-matter (DM)
particles mediated via a dark photon A0. A convolutional neural network is trained to identify interactions of
the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike
reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level
on the squared kinematic mixing parameter ε2 as a function of the dark-photon mass in the range
10 ≤ MA0 ≤ 400 MeV. The limits cover previously unconstrained parameter space for the production of
fermion or scalar DM particles χ for two benchmark models with mass ratiosMχ=MA0 ¼ 0.6 and 2 and for
dark fine-structure constants 0.1 ≤ αD ≤ 1.

DOI: 10.1103/PhysRevLett.132.241801

Awealth of astronomical data at different scales provide
evidence for the existence of dark matter (DM): the motion
of galaxies and the stars within them, gravitational lensing,
the cosmic microwave background, and the large-scale
structure of the universe [1]. The nature of dark matter,
however, remains elusive. Nonbaryonic particles predicted
by dark-sector models are candidates for dark matter [2].
The search for their production at accelerators is a focus of
the high-energy hadron collider program at the LHC [3]
and of fixed-target experiments exposed to high-intensity
beams [4].
The dark-trident process has been proposed as a new way

to search for low-mass dark-matter particles in neutrino
beams [5]. In this Letter, we report a first search for such dark
tridents with the MicroBooNE liquid-argon time projection
chamber (LArTPC) [6]. In the future, similar searches can be
performed with the DUNE near detector [7] and the
detectors of the Fermilab short-baseline program [8].

A pair of DM particles, χχ̄, is produced through the
decay of neutral π0 or η mesons, which was created by the
interactions of the protons and by secondary interactions in
the neutrino target [Fig. 1(a)]. The decays π0; η → γχχ̄ are
mediated by a virtual, off-shell dark photon A0�. The
masses of the dark photon, MA0 , and of the dark fermion
(or scalar), Mχ , are parameters of the model. The energies
of the DM particles χ are typically in the range 0.1–3 GeV
for the mass range 10 < Mχ < 400 MeV.
The DM particle χ (or χ̄) then travels uninterrupted to the

MicroBooNE detector where it could scatter off argon
nuclei through the trident process χ þ Ar → χ þ Ar þ A0
[see Fig. 1(b)]. The dark photon A0 promptly decays inside
the detector into an eþe− pair. The energies and opening
angles of the eþe− pairs depend on the ratio Mχ=MA0 (see
Fig. 2). The χ production rate depends on the kinematic
mixing parameter ε and a dark fine-structure constant αD,
which is defined in terms of the dark-photon gauge
coupling gD as αD ¼ g2D=ð4πÞ. We consider the mass ratios
Mχ=MA0 ¼ 0.6 and 2 in this search as proposed in Ref. [5].
SinceMχ=MA0 > 0.5, the dark photons need to be off-shell
to decay into χχ̄ pairs, and, when on-shell, they will
exclusively decay to eþe−. The signal rate therefore scales
with ε4α3D.
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In this Letter, we study dark photon masses in the range
10 < MA0 < 400 MeV, since the parameter space below
MA0 ¼ 10 MeV is constrained by beam dump searches [9–
11]. The decay η → χχ̄γ is kinematically forbidden for
MA0 > 457 MeV (assuming Mχ=MA0 ¼ 0.6). Other recent
experimental searches cover the mass range where A0
decays invisibly [12–14].
The MicroBooNE’s LArTPC has an instrumented vol-

ume of 85 ton of liquid argon inside a cryostat. Ionization
charge drifts across an electric field of 273 V=cm and is
read out by one charge collection and two induction planes
forming the anode. The LArTPC was simultaneously
exposed to the on-axis booster neutrino beam (BNB)
[15] and the off-axis beam of neutrinos from the main
injector (NuMI) [16]. Only NuMI data are used in this
search, as the higher average energy of the NuMI beam
gives access to higher values of MA0 .
The NuMI data used for this analysis [17] correspond to

7.2 × 1020 protons on target (POT), which were taken in
two operating modes—forward horn current (FHC) with
2.2 × 1020 POT (run 1 from October 2015 to November
2017) and reverse horn current (RHC) with 5.0 × 1020 POT
(run 3 from November 2017 to July 2018). This dataset has
previously been used to search for heavy neutral leptons
[18,19] and Higgs portal scalars [19,20], and to measure
neutrino cross sections [21,22].
We simulate the dark-trident process with a dedicated

generator in three steps: the neutral meson flux in
the beamline, the decay of the neutral mesons, and the
scattering of the DM particles on argon. First, the

kinematics of the π0 and η mesons for both beam
configurations, FHC and RHC, are obtained using the
g4NuMI simulation [23], which is based on a full GEANT4

description of the beamline geometry. The g4NuMI simu-
lation predicts ≈32 π0 and ≈2.5 η mesons per POT,
compared to 4.5 π0 and 0.5 η mesons in Ref. [5], since
additional mesons can be produced by secondary inter-
actions within the ≈1 m long graphite target and other
beamline components.
We then simulate the radiative decays π0; η → γχχ̄ with

BDNMC [24]. In addition to the scalar DM production
supported by BDNMC, we added the option to generate
fermions. We calculate the rate of the scattering process
χ þ Ar → χ þ Ar þ A0 inside the LArTPC as a function of

FIG. 2. Simulated dark-trident interactions in the MicroBooNE
detector assuming dark photon masses of MA0 ¼ 50 MeV (top)
and 300 MeV (bottom). The horizontal gaps are due to unre-
sponsive wires.

FIG. 1. (a) A pair of DM particles, χχ̄, is produced in a π0 or η0

decay; (b) in the dark-trident process, χ (or χ̄) scatters off an argon
nucleus to produce a dark photon A0 decaying into an eþe− pair
with a branching ratio of 1. The rate depends on the kinematic
mixing parameter ε and the dark fine-structure constant αD.
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the energy of the DM particle and the path traveled inside
the detector [25]. We compare our signal simulation to the
calculations of Ref. [5] and find good agreement in the
kinematics, e.g., the distribution of the eþe− opening angle
as a function of the energy of each lepton. The cross section
of the process shown in Fig. 1(b) is calculated using
GenExLight [25]. We find an agreement better than 1% when
comparing these cross sections to calculations obtained
with MADGRAPH [26].
We use a “beam-on” data sample to search for the dark-

trident signal where the event triggers coincide with the
arrival time of neutrinos from the NuMI beam. The back-
ground is modeled considering three contributions. Beam-
on background events that are triggered by a cosmic ray and
not a neutrino interaction are modeled by a “beam-off”
sample collected under identical trigger conditions but
when no neutrino beam is present. The beam-off sample
is scaled so that its normalization corresponds to the
number of beam spills of the beam-on sample. Neutrino-
induced background from the NuMI beam is modeled using
a GENIE Monte Carlo simulation [27] embedded in the
LARSOFT software framework [28]. The “in-cryostat ν”
sample contains interactions of neutrinos with the argon
inside the cryostat, and the “out-of-cryostat ν” sample
describes interactions with the material surrounding the
detector.
We reconstruct neutrino interactions and cosmic rays

within the argon with a chain of pattern-recognition algo-
rithms, implemented using the PANDORA software develop-
ment kit [29,30]. The algorithms use hits that are formed
from the waveforms read out by the charge collection
plane and the two induction planes. Collections of hits
are reconstructed as a track, as expected for a minimum
ionizing particle, or a shower, consistent with being an
electron or photon conversion.
We use the results of the PANDORA reconstruction to

select events that are consistent with the signal hypothesis.
Dark-trident events are frequently reconstructed as a single
shower due to the small opening angle of the eþe− pairs
and, in a few cases, as two showers arising from a common
vertex. Background processes that can mimic such signal
topologies are neutral current (NC) interactions νþ Ar →
νþ π0=ηþ X, where the decays π0=η → γγ are recon-
structed as an eþe− pair.
Each event is therefore required to have at least one

vertex, at least one shower, and no tracks. The efficiency of
this preselection for a DM signal lies in the range of
(32–40)% for masses in the range (10–400) MeV. We find
good agreement between the number of data events and the
sum of the predictions for the background processes after
this preselection (Table I).
We use a convolutional neural network (CNN) for

discriminating signal and background based on the pre-
vious development of such algorithms in MicroBooNE for
multiple particle identification (MPID) [31]. Convolutional

neural networks are deep learning networks that are ideally
suited for images reconstructed from LArTPC data [32–
34]. The CNN architecture is based on a model for dense
images with adaptations for LArTPCs. Convolution filters
of size 3 × 3 allow scanning of the information contained in
showers. The output layer has two neurons that correspond
to the probability for signal or background.
We only consider images from the charge collection

plane, as it has the best signal to noise ratio [31]. Adding
information from the induction planes increases the com-
puting time significantly, but has only minimal impact on
the performance of the CNN. The size of each image in
pixels corresponds to 3456 wires multiplied by 6048 time
ticks. To improve processing time, we first compress the
time axis by a factor of 6 and then crop the images around
the interaction vertex producing a region of interest (ROI)
of 512 × 512 pixels. After compression, each pixel has a
resolution of ≈3 × 3 mm2.
We validate the agreement of the vertex reconstruction

by comparing data and the background model after the
preselection (Fig. 3). The increase of beam-off events
towards the top of the detector due to cosmic rays is
reproduced by the background model. While we use the
reconstructed vertices for the data and background samples,
the true vertex location is used for the training. This
prevents the CNN from training on an ROI that does not
contain the interaction of interest, which can occur when a
vertex is reconstructed at a large distance from the true
interaction vertex.
For the training of the CNN we prepare a dedicated

training dataset. We use a single signal sample with the
parameters αD ¼ 0.1,MA0 ¼ 50 MeV, andMA0=Mχ ¼ 0.6.
As background samples we use cosmic rays simulated with
CORSIKA [35] and ν interactions leading to π0 mesons
simulated with GENIE [27]. In addition, we overlay the hits
of cosmic rays simulated with CORSIKA to the ν interaction
background and the signal samples. Further details on the
training of the CNN are provided in the Appendix.
The signal MC samples and the samples listed in Table I

are passed to the trained CNN model. The events with a
CNN signal score < 0 are rejected obtaining a 99% of
background rejection efficiency and signal selection effi-
ciencies in the range (27–30)%. Figure 4 shows the signal

TABLE I. Numbers of events that remain after preselection
normalized to POT for the data and the background model.

Sample POT
Run 1 (FHC)
2.2 × 1020

Run 3 (RHC)
5.0 × 1020

Beam-off 2410 4826
In-cryostat ν 1262 2759
Out-of-cryostat ν 354 402
Sum of predictions 4026 7987
Beam-on (data) 4021 7684
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score distribution obtained for the events contained in the
signal region. A data event with a high CNN signal score is
shown in Fig. 5, where the shower points in the direction of
the NuMI beam. By modifying the training events, we
determine that the CNN learns about the orientation of the
showers arising from the scattering process.
We evaluate systematic uncertainties for each bin of the

CNN score distributions separately for the different signal

models and for background. For the in-cryostat ν back-
ground, we consider the impact of the neutrino flux
simulation (10–20)% [23] and the neutrino-argon cross-
section modeling (12–20)% [36], hadron interactions with
argon (≈1%) [37], and detector modeling (≈30%) [38]. The
beam-off sample is taken from data and therefore has no
associated systematic uncertainties other than statistical
fluctuations. The impact of the normalization uncertainty
on the out-of-cryostat sample and of the POT counting is
negligible [19].
The sum of the detector-related systematic uncertainties

on the signal is in the range (10–20)%. A form factor
accounts for the spatial distribution of the argon nucleus in
the χ-Ar scattering [5]. Recalculating the cross sections with
different form factors [39,40] yields uncertainties in the
range (2–20)% in the mass range 10 ≤ MA0 ≤ 200 MeV.
The signal rate also depends on the NuMI π0 and η flux

simulated by g4NuMI. We confirm that the ratio of π0

production relative to π� production in g4NuMI is consistent
with expectations of isospin symmetry. We therefore use
the beam flux uncertainty of 22% determined for the
charged meson flux [21], which includes hadron produc-
tion and beam line modeling uncertainties.
The CNN score distributions, shown for one model point

in Fig. 4, are all found to be consistent with the background
expectation within uncertainties. We therefore proceed to
derive limits on the squared mixing parameter ε2 as a
function of MA0 . The limit setting is performed with the
PYHF algorithm [41], which is an implementation of a
statistical model to estimate confidence intervals [42].
Systematic uncertainties are treated through profile like-
lihood ratios. The results are validated with the modified
frequentist CLs calculation of the COLLIE program [43].
The observed limits of Fig. 6 are shown at the 90% con-

fidence level (CLs ¼ 0.1) for several benchmark points.

FIG. 3. Distribution of the y coordinate of the reconstructed
vertices for the run 3 data after preselection compared to the
background model. The positive direction of the y axis points
vertically upwards. The gray band represents the systematic
uncertainty in the background model.

FIG. 4. Comparison of the CNN signal score distribution for
run 3 data with the background model after the preselection. The
gray band corresponds to the total systematic uncertainty
on the background. The signal distribution for αD ¼ 0.1,
MA0 ¼ 50 MeV, and MA0=Mχ ¼ 0.6 is superimposed, scaled
by an arbitrary factor.

FIG. 5. A dark-trident candidate in data with a CNN score of
6.4, within the ROI of 512 × 512 pixels (≈1.5 × 1.5 m2). A
cosmic ray crosses in the lower right-hand corner.
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Since we use a single CNN model for all signal points, the
background CNN score distributions are highly correlated
between the different mass hypotheses MA0 . All observed
limits are therefore consistently within the 1 and 2 standard
deviation ranges around the median expected limit.
In Fig. 7, we compare the results for a scalar dark matter

particle χ with existing constraints on dark-trident processes
from rare piondecaysmeasured by theNA48/2Collaboration
[45], beam dump experiments [9–11], and searches for
promptly decaying dark photons into eþe− pairs by the
BABAR [46], FASER [47], and NA64 [48] Collaborations.
The limits obtained by theLHCbCollaboration [49] apply for

higher masses MA0 > 200 MeV. The most sensitive con-
straints are obtained for αD ¼ 1 and Mχ=MA0 ¼ 0.6.
For the fermion model, we also compare to reinterpre-

tations of LSND results [5,51]. Cosmological constraints
on χχ̄ annihilation in the early Universe are obtained using
Planck measurements on the cosmic microwave back-
ground [52,53]. The χχ̄ annihilation cross section is only
relevant for a fermion χ and Mχ=MA0 ¼ 0.6. The cosmo-
logical data constrain ε2 from below, since the thermal relic
dark-matter density becomes too small for larger ε2 [5].
In summary, we apply convolutional neural networks to

obtain first constraints on the production of dark matter in a

(a) (b)

FIG. 6. The 90% CL observed limits on ε2 as a function ofMA0 for αD ¼ 0.1 and αD ¼ 1, and (a)Mχ=MA0 ¼ 0.6 and (b)Mχ=MA0 ¼ 2,
together with the 1 and 2 standard deviation bands around the median expected limits. We use a linear interpolation between the
mass points. A total of 13 mass values have been simulated for Mχ=MA0 ¼ 0.6, equally spaced between 10–100 MeV and between
100–400 MeVand a total of 19 mass values forMχ=MA0 ¼ 2, an additional 6 mass values are added at higherMA. A table of the limits at
each point is provided as Supplemental Material [44].

(a) (b) (c)

FIG. 7. The 90% CL limits on ε2 as a function ofMA0 for (a) scalar DMwith αD ¼ 1.0,Mχ=MA0 ¼ 0.6; (b) fermion DMwith αD ¼ 1.0,
Mχ=MA0 ¼ 0.6; and (c) for fermion DMwith αD ¼ 1.0,Mχ=MA0 ¼ 2.0. The constraints provided by the NA48=2 [45],BABAR [46], NA64
[50], and LHCbCollaborations [49], and by beam dump experiments [9–11] are displayed as shaded regions. The reinterpretations of LSND
results [5,51] and the unpublished FASER [47] limits are shown as dashed lines. The two isolated contours atMA0 ≈ 200–300 MeV are also
excluded by LHCb data. The upper limits on ε2 from Planck data [52,53] apply for fermion DM with Mχ=MA0 ¼ 0.6.
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liquid argon detector exposed to a neutrino beam. The dark
matter particles are assumed to interact through the dark
photon portal [5]. We consider thermally produced fermion
and boson dark-matter particles χ with Mχ=MA0 ¼ 0.6 and
Mχ=MA0 ¼ 2, and dark fine-structure constants in the range
0.1 ≤ αD ≤ 1. The constraints in the plane of the squared
kinematic mixing parameter ε2 and the dark-photon mass
MA0 exclude previously unexplored regions of parameter
space in the range 10 ≤ MA0 ≤ 400 MeV.

This document was prepared by the MicroBooNE
collaboration using the resources of the Fermi National
Accelerator Laboratory (Fermilab), a U.S. Department of
Energy, Office of Science, HEP User Facility. Fermilab is
managed by Fermi Research Alliance, LLC (FRA), acting
under Contract No. DE-AC02-07CH11359. MicroBooNE
is supported by the following: the U.S. Department of
Energy, Office of Science, Offices of High Energy Physics
and Nuclear Physics; the U.S. National Science
Foundation; the Swiss National Science Foundation; the
Science and Technology Facilities Council (STFC), part of
the United Kingdom Research and Innovation; the
Royal Society (United Kingdom); the UK Research
and Innovation (UKRI) Future Leaders Fellowship; and
the NSF AI Institute for Artificial Intelligence and
Fundamental Interactions. Additional support for the laser
calibration system and cosmic ray tagger were provided by
the Albert Einstein Center for Fundamental Physics, Bern,
Switzerland. We also acknowledge the contributions of
technical and scientific staff to the design, construction, and
operation of the MicroBooNE detector as well as the
contributions of past collaborators to the development of
MicroBooNE analyses without whom this work would not
have been possible. We also thank the authors of Ref. [5]
for useful discussions about the dark-trident model.

Appendix.—This Appendix discusses the training
and performance of the CNN classifier in more detail.
The CNN model is trained during ≈10 000 iterations

(≈5 epochs) with a batch size of 32 images and a
learning rate of 0.001 [32]. Dropout layers, regu-
larization terms, and batch normalization are imple-
mented during the training to prevent overfitting. The
training progress is monitored with a binary cross
entropy (BCE) loss function and using the accuracy,
which is defined as the fraction of correctly classified
images over the total number of images processed by
the CNN.
A test set, comprising≈10% of the events included in the

training set, is used to evaluate the progress of the CNN
training. To determine the number of training steps where
the CNN model is frozen we use the receiver operating
characteristic curve. In Fig. 8(a), the distributions of the
signal scores obtained for the frozen CNNmodel are shown
for the training and test sets. The distributions show no
indication of overfitting. The confusion matrix, obtained
after the CNN training for the test set, is given in Fig. 8(b).
Approximately 93% of events in the test set are labeled
correctly.
The CNN model used in the analysis has been optimized

with a benchmark signal point trained against the NC π0

(b)(a)

FIG. 8. (a) CNN score distributions for the training and test samples; (b) confusion matrix, obtained for the test set.

FIG. 9. Signal score distributions for samples simulated with
MA0 ¼ 10, 50, or 200 MeV.
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and cosmic-ray background samples. Before using the
CNN in the analysis, we validate its performance over
different signal points and the full background sample (see
Table I). The background rejection obtained for the full
background sample is not significantly different from the
rejection achieved with the background training sample.
We also find that the shape of the CNN score distribution
does not vary much for different signal mass points (Fig. 9).
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