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A B S T R A C T

Evolutionary Algorithms (EAs) are becoming increasingly popular for training Variational Quantum Circuits
(VQCs) due to their ability to conserve quantum resources. However, there is currently a lack of user-friendly
tools for implementing this approach. To address this issue, this paper proposes EVOVAQ, a Python-based
framework designed to simplify the use of EAs for training VQCs. EVOVAQ seamlessly integrates evolutionary
computation with quantum libraries such as Qiskit, making it easy to use for both quantum computing and EAs
communities. Furthermore, EVOVAQ’s scalability enables the development of customized solutions, promoting
innovation in the quantum computing field.
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. Motivation and significance

Quantum computing stands at the forefront of the oncoming tech-
ological revolution, thus attracting investments from both private
nd public sectors for its wide-ranging potential impacts. The shared
oal of realizing short-term benefits has fostered closer collaborations
mong governments, companies, and academic institutions, nurturing
he growth of the so-called quantum ecosystem. Within this expanding
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community, efforts are concentrated on demonstrating the practical
supremacy of current-generation quantum computers over digital com-
puters, a concept known as quantum advantage, particularly in tasks
like optimization and machine learning [1].

The current and forthcoming era of quantum computing, known
as Noisy Intermediate-Scale Quantum (NISQ) [2], is characterized by
constraints such as the limited number of physical qubits available on
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quantum processors and the presence of noise affecting the reliability
of extended sequences of quantum operations. As a result, existing
quantum resources are insufficient for constructing fault-tolerant large
quantum processors capable of executing pivotal algorithms like Shor’s
for prime factorization [3] and Grover’s for database search [4]. In
this scenario, Variational Quantum Circuits (VQCs) have gained promi-
nence as an approach to quantum algorithms in the NISQ era. VQCs
are quantum algorithms that harness a quantum computer, trained
by a classical counterpart, to perform diverse tasks. Essentially, a
task is encoded into a parameterized cost function, evaluated using
a quantum computer, and fine-tuned by a classical optimizer [5].
Therefore, VQCs emerge as hybrid quantum–classical algorithms re-
quiring fewer quantum resources, such as qubit count and circuit depth,
compared to algorithms tailored for fault-tolerant devices like Shor’s
and Grover’s. Moreover, this versatile approach has proven effective
in solving problems across various research domains, spanning from
physics to chemistry and from optimization to machine learning. Nev-
ertheless, challenges remain in providing ready-to-implement quantum
algorithms, as some critical issues, especially related to trainability,
limit the performance of VQCs in large-scale applications.

The main problem for VQCs is the emergence of barren plateau
landscapes with narrow gorges as the number of qubits increases [6,7].
This phenomenon is due to the fact that the gradients of the cost
function vanish exponentially in the number of qubits, thus leading to
a flat landscape. This implies that training VQCs can be particularly
challenging, especially when employing conventional gradient-based
optimization algorithms. Furthermore, the noise that plagues NISQ de-
vices may have an impact on the trainability and accuracy of VQCs: in
fact, it could distort the landscape so that the noisy global optimum no
longer corresponds to the noise-free global optimum, and it could affect
the final value of the optimal cost [8]. As a consequence, there is a
strong need of computational methodologies aimed at addressing these
issues in VQCs, always attempting to guarantee maximum efficiency in
terms of quantum resource requirements as well.

Recently, EAs are proving to be the most suitable solution to allevi-
ate some of the issues previously described. EAs are indeed efficient
heuristic search methods with powerful characteristics of robustness
and flexibility which have already shown good performance on training
VQCs, as we will shortly outline. EAs require no fitness gradient infor-
mation of any kind to proceed, they are easy to process in parallel due
to their population-based nature, and have the ability to escape from
local minima where deterministic optimization methods may fail or are
not applicable. Specifically, in [9,10], Genetic Algorithms (GAs) have
been introduced as classical optimizers to train VQCs in combinatorial
optimization and classification tasks respectively. Moreover, for clas-
sification tasks, the performance of GA in visiting the problem search
space has been improved in [11] by combining it with a local search
technique, thus resulting in a Memetic Algorithm (MA). In [12], the
first comparative study between real-coded evolutionary algorithms,
such as Differential Evolution (DE), Particle Swarm Optimization (PSO)
and GA, has been carried out to investigate the performance of these
optimization methodologies in training VQCs used as classifiers for
well-known benchmark datasets. In [13], DE has been applied and com-
pared to other state-of-art optimizers for VQC training in physics. PSO
has been proposed for VQC training in chemistry [14], combinatorial
optimization [15], and data-driven methods for generative modelling
of classical data [16]. Three variants of Estimation of Distribution
Algorithms (EDA) have been applied and compared to other standard
optimizers to train VQCs to solve Max Cut problem and simulate the
behaviour of a molecule [17]. Evolutionary optimization has also been
shown to reach similar or even superior performance compared to
gradient-based Quantum Reinforcement Learning problems [18]. More-
over, EAs have shown promising results for automatically identifying
appropriate circuit architectures for VQCs. To this end, a genome-
length-adjustable evolutionary algorithm has been proposed in [19] to
2

design a robust parameterized quantum circuit, which is optimized over
variations of both circuit architecture and gate parameters. In [20], an
evolutionary quantum neural architecture search has been proposed for
image classification using quantum neural networks.

Despite their increasing popularity for accomplishing the training
of VQCs, current quantum frameworks and platforms do not offer
implementations of EAs for VQC training. Certainly, several Python
packages for evolutionary computation are available in the literature.
The most popular is DEAP (Distributed Evolutionary Algorithms in
Python), which provides a flexible framework for building and testing
EAs [21]. Other available Python packages that offer implementa-
tions of specific EAs are EvoStrat implementing the evolution strategy
(ES) algorithm [22], and CMA-ES implementing the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [23]. However, these Pack-
ages do not provide an integration of EA to solve specific tasks. Other
Python packages were designed to solve specific tasks by means of
EAs, such as PyGAD (Python Genetic Algorithm Library) for building
genetic algorithms and optimizing machine learning algorithms [24],
BluePyOpt for parameter optimization of neural models using EAs [25],
EC-KitY for doing evolutionary computation in a seamless integration
with scikit-learn for machine learning [26]. However, there is a lack
of Python package to tackle tasks in the field of VQCs using EAs. Only
Qiskit from IBM provides the implementation of a single EA for VQC
training, specifically the Continuous Univariate Marginal Distribution
Algorithm (UMDA) [27]. Consequently, the traditional EAs mentioned
above remain unavailable within these frameworks, which prevents
them from becoming routinely used for training VQCs.

With this in mind, this paper introduces EVOVAQ, a novel evolu-
tionary computation-based framework dedicated to VQCs, which offers
a user-friendly interface to existing environments for implementing
quantum circuits, and access to ready-to-use EAs proposed in the
literature. The goal of EVOVAQ is to facilitate seamless the integration
between evolutionary computation and quantum libraries like Qiskit,
while ensuring ease of use, for both quantum computing and EAs
communities. Additionally, EVOVAQ incorporates the implementation
of algorithms, such as MAs, which may not be readily accessible in the
available evolutionary libraries. In the next section, the features of this
novel framework will be discussed in detail.

2. Software description

EVOVAQ is a novel Python framework designed to easily train
VQCs through EAs to perform different tasks such as optimization
and classification. It has been written in Python in order to be easily
integrated with the most popular quantum computing libraries such as
Qiskit1 from IBM, Circq2 from Google, PyQuil3 from Rigetti that are in
fact developed in Python programming language.

EVOVAQ is included in the official Python Package Index (PyPI).
Therefore, in order to install it, it is possible to simply run the following
shell command:

pip install evovaq

which will handle all dependencies automatically and always install
the latest version. Hereafter, the main architectural components of
EVOVAQ and its functionalities are given in detail.

2.1. Software architecture

Fig. 1 shows a UML class diagram aimed at highlighting the three
main components of the EVOVAQ’s architecture. To start, the Problem
class is specially designed to instantiate the problem at issue. Precisely,
the training of VQCs consists of solving real single-objective problems.

1 Qiskit: https://www.ibm.com/quantum/qiskit.
2 Circq: https://quantumai.google/cirq.
3
 PyQuil: https://www.rigetti.com/applications/pyquil.

https://www.ibm.com/quantum/qiskit
https://quantumai.google/cirq
https://www.rigetti.com/applications/pyquil
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Fig. 1. UML class diagram of EVOVAQ. The three main components are highlighted:
Problem definition, Optimizers, and Support facilities.

Thus, EVOVAQ allows the definition of this kind of optimization prob-
lems by just requiring few information, such as the number of real
circuit parameters to be optimized, their upper and lower bounds, and
the cost function to be minimized. Hence, the Problem instance is
then used during all the optimization process to generate possible solu-
tions, evaluate the fitness function and check the parameter bounds. In
particular, the cost function to be defined involves a quantum circuit –
implemented, for instance, using Qiskit – that relies on real parameters
to be optimized for a desired task. Therefore, a possible solution is
a NumPy array [28] of these real parameters to be bound to the
quantum circuit, with the resultant cost or also fitness value derived
from measuring the circuit.

The Optimizers are classes that the user can use to solve the
optimization problem at issue, that it, learning the real parameters of a
quantum circuit. EVOVAQ makes available several evolutionary algo-
rithms ready to be used as optimizers for training quantum circuits. The
user can select among some evolutionary algorithms already applied in
this context in literature, including Genetic Algorithms, Differential
Evolution, Particle Swarm Optimization and Memetic Algorithms
obtained by combining GA and Hill Climbing (HC). Furthermore, it is
also possible to employ dithering in DE, and readily combine DE and
HC to form MA. Moreover, EVOVAQ includes other two techniques,
which seem to have promising features for training VQCs, namely Big
Bang Big Crunch (BBBC) and Cross generational elitist selection,
Heterogeneous recombination, and Cataclysmic mutation (CHC)
algorithm. Both techniques have proven to be very successful in many
real-world applications, so EVOVAQ allows us to start testing them
in the quantum domain as well. An optimizer can be instantiated by
setting symbolic and numerical hyper-parameter values. To facilitate
non-experts, default hyper-parameters values have been set. Several
ready-to-use genetic operators are available in the operators module
of the tools directory. However, it is possible to integrate user-built
operators into this framework. With regard to the instantiation of MA,
user-built local and/or global search methods can be integrated as well.

Finally, in the module support, we have developed all the func-
tions and classes that serve as support facilities for the optimizers. The
main classes are: BestIndividualTracker, which keeps track of
the best solution ever found during the search; Logbook, which stores
3

Fig. 2. Graphical representation of the general workflow of VQCs.

the statistics of fitness values during the search; FinalResult, which
collects the information of the final results.

An in-depth description of all functions, classes, return types, ar-
guments and other is reported in the API guide available in the
documentation.

2.2. Software functionalities

The main functionality of the current EVOVAQ version is to offer
a user-friendly interface between the quantum libraries implementing
VQCs and EAs used for their training in specific tasks. This implies
that, given the versatility of the VQC workflow, a wide range of tasks,
spanning from classification to optimization, can be accomplished by
training VQCs with EAs using EVOVAQ. Basically, regardless of the task
at hand, as depicted in Fig. 2, the general workflow of VQC involves
the following three initial steps: (1) designing a quantum circuit with
trainable real parameters, known as the ansatz; (2) defining a cost
function tailored to the desired task; (3) selecting a classical optimizer
to train the ansatz. By assigning some initial values to the free param-
eters of the ansatz, the quantum circuit’s measurements are utilized to
compute the cost function, while the optimization algorithm, running
on a classical computer, is employed to update these parameters to
minimize the cost function. This iterative quantum–classical hybrid
loop concludes once a specified stopping criterion is met. Subsequently,
the trained circuit is capable of executing the desired task. In order to
better understand the functionality of EVOVAQ in this workflow, Fig. 3
provides an overview of the interaction between EVOVAQ and possible
users. In detail, after the definition of the problem and the choice of
a classical optimizer, the user can train VQCs by just applying the
method optimize of the algorithm instance. The classical optimizer
operates by assuming a default value for the hyper-parameters, such as
the population size and the stopping criterion, that is, the maximum
number of fitness evaluations or generations. Alternatively, the user
may specify a different value for such hyper-parameters. Finally, the
optimization procedure returns a result containing the best parameters
of the quantum circuit to be learned.

https://evovaq.readthedocs.io/en/latest/index.html
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Fig. 3. Overview of EVOVAQ’s interactions with the user.
3. Illustrative examples

EVOVAQ can be practically tested on two different application
domains, including optimization and machine learning. In the docu-
mentation, there are two tutorials: (1) how to train quantum classifiers,
implemented in Qiskit, through MA obtained from the combination of
GA and HC; (2) how to solve the Maximum Cut problem on a graph
using QAOA circuit implemented in Qiskit and trained by PSO. In
order to deliver a comprehensive discussion of the tutorials presented
in the documentation, Appendix provides the essentials of quantum
computing and an in-depth description of VQCs in machine learning
and optimization.

This section, instead, describes all the steps in the first tutorial
illustrating how EVOVAQ works in the context of machine learning.
For the sake of simplicity, the classification problem for the first two
classes of the Iris dataset is addressed. In addition to Qiskit for the
implementation of quantum circuits, scikit-learn [29], the traditional
Python library employed by machine learning practitioners, is used
to load the Iris data, a pre-processing method and some metrics. The
following modules are then imported:

from sklearn.datasets import load_iris
from sklearn.model_selection import

train_test_split
from sklearn.metrics import log_loss
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score
from qiskit.circuit.library import

ZZFeatureMap , RealAmplitudes
from qiskit import Aer, execute
from evovaq.problem import Problem
from evovaq.GeneticAlgorithm import GA
from evovaq.HillClimbing import HC
from evovaq.MemeticAlgorithm import MA
import evovaq.tools.operators as op
import numpy as np
4

Initially, the process involves loading classical data and treating it
as a conventional classification problem. The data is then partitioned
into training and testing sets, followed by a pre-processing technique,
as follows:

iris = load_iris()

# For the sake of simplicity , we consider all
the four features but only two classes

iris_data = iris.data[:100, :4]
iris_target = iris.target[:100] # 0 or 1

# Split into train and test subsets
train_data , test_data , train_labels ,

test_labels = train_test_split(iris_data ,
iris_target , test_size=0.2, random_state=42)

# Pre-process data
scaler = MinMaxScaler()
scaler.fit(train_data)

train_data = scaler.transform(train_data)
test_data = scaler.transform(test_data)

The classification model is here a parameterized quantum circuit,
which is trained by MA on a classical processor. In particular, given
their widespread use in the Quantum Machine Learning community, the
ZZ Feature Map for encoding the classical data in quantum states and
the Real Amplitude as ansatz are specified to implement the quantum
classifier as follows:

# Encode classical data in a quantum system
through a FeatureMap

dim = train_data.shape[1]
feature_map = ZZFeatureMap(dim, reps=1,

entanglement= " linear " )

# Define an Ansatz to be trained

https://evovaq.readthedocs.io/en/latest/tutorials_trainVQCs.html
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ansatz = RealAmplitudes(num_qubits=dim, reps=1,
entanglement= " circular " )

# Put together our quantum classifier
circuit = feature_map.compose(ansatz)

# Measure all the qubits to retrieve label
information

circuit.measure_all()

To get the label of an instance, it is necessary to bind the feature and
arameter values to the quantum circuit, and later measure the final
tate. From the measurement procedure, the probability distribution of
easuring the possible 2𝑛 bit-strings is determined. This distribution is
sed to compute the probability of reading label 0 or 1. Specifically, the
idely used parity mapping is adopted: for each measured bit-string,

he count of 1’s is determined, and if this count is odd, its probability
ontributes to the probability of class 1, otherwise of class 0, as defined
s follows:

def get_label_prediction(circuit, features,
params):
# Bind the parameters to our quantum

classifier
bound_circuit =

circuit.bind_parameters(np.concatenate(
(features, params)))
backend = Aer.get_backend( " qasm_simulator " )
counts = execute(bound_circuit ,

backend).result().get_counts()

# Read the label by considering the parity
mapping of the final quantum state

parity_1 = 0
for state, count in counts.items():

if state.count( " 1 " ) % 2 == 1:
parity_1 += count

return parity_1 / sum(counts.values())

The resulting outputs from the training instances can be used to
alculate the cross-entropy to be minimized, coinciding with the cost
alue of the solution considered, defined as follows:

def cost_function(params):
predictions =

[get_label_prediction(circuit,
features , params) for features in
train_data]

return log_loss(train_labels , predictions)

The minimization problem to be solved can be now easily defined
by instantiating the Problem class of EVOVAQ, as follows:

problem = Problem(ansatz.num_parameters ,
ansatz.parameter_bounds , cost_function)

The classical optimizer used to train the ansatz parameters is MA
hich is composed of a global and local search method, GA and stochas-

ic variant of HC respectively in this example. Of course, HC requires
he definition of a strategy indicating how to create a neighbour of a
ossible solution to the problem at hand. The following code shows
ow to easily implement MA in EVOVAQ.

# Define the global search method
global_search = GA(selection=op.sel_tournament ,

crossover=op.cx_uniform ,
mutation=op.mut_gaussian , sigma=0.2,
mut_indpb=0.15,

cxpb=0.9, tournsize=5)

# Create a neighbour of a possible solution
def get_neighbour(problem, current_solution):

neighbour = current_solution.copy()
5

index = np.random.randint(0,
len(current_solution))

_min, _max = problem.param_bounds[0]
neighbour[index] = np.random.uniform(_min,

_max)
return neighbour

# Define the local search method
local_search =

HC(generate_neighbour=get_neighbour)

# Compose the global and local search method
for a Memetic Algorithm

optimizer =
MA(global_search=global_search.evolve_

population , sel_for_refinement=op.sel_best,
local_search=local_search.stochastic_var ,
frequency=0.1, intensity=10)

The training is performed by applying the optimize method to
the selected optimizer as follows:

res = optimizer.optimize(problem, 10,
max_gen=10, verbose=True, seed=42)

Therein the user can provide the population size, the maximum
number of generations to finish, the random seed and also the verbose
option to enable the print the statistics of the fitness values during evo-
lution. Specifically, when verbose is True, the number of fitness values
completed, the minimum, maximum, mean and standard deviation of
the fitness values in the population in the 𝑖th generation, as well as
the progress bar showing the percentage of the completed generations
are printed. The final result contains the best parameters and cost
values, the total number of fitness evaluations and generations, and the
logbook containing the information collected during the evolution.

The trained model is now ready to be used to predict labels for the
test subset. The quality of the trained model is evaluated by computing
the accuracy value as follows:

test_predictions = [1 if
get_label_prediction(circuit, features,
res.x) > 0.5 else 0 for features in
test_data]

test_accuracy = accuracy_score(test_labels ,
test_predictions)

print( " Accuracy on the test subset: " ,
test_accuracy)

4. Impact

The growing quantum community looks at VQCs as promising can-
didates to achieve the quantum advantage in key application scenarios,
from optimization to machine learning, from chemistry to physics.
Despite their potential benefits, the performance of VQCs is still limited
by critical challenges such as trainability, efficiency, and resulting
accuracy [5]. EAs are emerging as a suitable strategy to address these
challenges [9–20]. Hence, the great impact of EVOVAQ that makes pos-
sible and simple the application of EAs to train VQCs by assuming a key
role in the development of quantum computing area. Moreover, EVO-
VAQ design allows for the customization and integration of operators,
enhancing the workflow’s flexibility. To conclude, EVOVAQ is not only
a pragmatic tool enabling the construction of bespoke experiments but
also a catalyst in advancing research towards demonstrating quantum
advantage through its ready-to-implement quantum algorithms.

5. Conclusions

EVOVAQ is a user-friendly Python package developed to enable the
use of EAs for training VQCs in a simple interface with existing quan-
tum libraries. To motivate the importance of this tool, we discussed
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why evolutionary techniques are promising classical optimizers for
the practical implementation of VQCs, and thus for the demonstration
of near-term quantum advantage. By means of EVOVAQ, extensive
experimentation can be conducted to investigate which EAs are best
suited for training VQCs in specific tasks.

In the future, EVOVAQ will be extended by introducing the im-
plementation of other more innovative EAs. Additionally, EVOVAQ’s
capabilities will be enhanced to address circuit design by optimizing
also ansatz of the quantum circuits. In this way, EVOVAQ will address
various challenges in the context of VQCs, establishing itself as an
efficient tool for practical implementation of VQCs.
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ppendix

This Appendix provides the basic concepts of quantum computing,
nd a more detailed description of variational quantum circuits in
achine learning and optimization contexts.

asic concepts of quantum computing

The fundamental units of a quantum computer are the qubits, i.e. the
uantum version of digital bits [30]. Mathematically, the most general
ubit state |𝑞⟩ is expressed in bra-ket notation as a combination of both
and 1 logic states, namely |𝑞⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩, where {|0⟩ , |1⟩} is

he computational basis, 𝛼0 and 𝛼1 are complex numbers denoting the
robability amplitudes. Upon a measurement, the qubit |𝑞⟩ collapses to
ither |0⟩ or |1⟩ with probabilities |

|

𝛼0||
2 and |

|

𝛼1||
2, respectively. These

mplitudes must satisfy the normalization condition, hence |

|

𝛼0||
2 +

𝛼1||
2 = 1.
A quantum computer comprises a set of 𝑛 qubits, indicated as n-qubit

egister, manipulated to perform computations. The general state |

|

𝑞𝑛⟩ of
-qubit register is written in bra-ket notation as |

|

𝑞𝑛⟩ =
∑

𝑥∈{0,1}𝑛 𝛼𝑥 |𝑥⟩,
here each 𝛼𝑥 is the probability amplitude related to the n-bit string 𝑥,

herefore ∑

|𝛼 |

2 = 1. The logical operations on one or more
6

𝑥∈{0,1}𝑛 | 𝑥| |
ubits are defined by the quantum logic gates. They are the unitary
perators represented by unitary matrices relative to the computational
asis. For instance, the well-known Pauli unitary matrices (𝑋, 𝑌 , 𝑍)
mplement single-qubit gates. The exponentiation of Pauli gates defines
ther examples of single-qubit operators, known as rotation gates, whose
ctions depend on real tunable parameters (𝜃𝑋 , 𝜃𝑌 , 𝜃𝑍 ) as follows:

𝑅𝑋 (𝜃𝑋 ) = 𝑒−𝑖
𝜃𝑋
2 𝑋 , 𝑅𝑌 (𝜃𝑌 ) = 𝑒−𝑖

𝜃𝑌
2 𝑌 , 𝑅𝑍 (𝜃𝑍 ) = 𝑒−𝑖

𝜃𝑍
2 𝑍 . (1)

he prototypical multi-qubit gate is the controlled version of 𝑋 gate,
alled CNOT. This two-qubit gate is made up of a control and a target
ubit: 𝑋 gate is applied to the target qubit, only if the control qubit is
n the state |1⟩.

A quantum algorithm is delineated by a finite sequence of quantum
ogic gates, forming a quantum circuit, alongside a final measurement
peration. Given a unitary operation 𝑈 acting on a quantum system
𝑞𝑛⟩, the resulting quantum state |

|

𝑞′𝑛
⟩

has the following form:

𝑞′𝑛
⟩

= 𝑈 |

|

𝑞𝑛⟩ =
∑

𝑥∈{0,1}𝑛
𝛼𝑥 𝑈 |𝑥⟩ =

∑

𝑥∈{0,1}𝑛
𝛼′𝑥 |𝑥⟩ , (2)

here 𝛼′𝑥, with 𝑥 ∈ {0, 1}𝑛, are different probability amplitudes which
ffect the measurement outcomes and thus the algorithm result. To
btain the probability distribution of the possible results, the same
uantum circuit is executed many times. For VQCs, the unitary oper-
tor’s behaviour is determined by a specific set of parameter values,
enoted as 𝜗, hence the resultant quantum state is

𝑞′𝑛(𝜗)
⟩

= 𝑈 (𝜗) |
|

𝑞𝑛⟩ =
∑

𝑥∈{0,1}𝑛
𝛼𝑥 𝑈 (𝜗) |𝑥⟩ =

∑

𝑥∈{0,1}𝑛
𝛼′𝑥(𝜗) |𝑥⟩ . (3)

onsequently, by adjusting the values within the set 𝜗, it is becoming
ossible to search interesting solutions to a given problem.

ariational quantum circuits in machine learning and optimization

The versatility of VQC workflow illustrated in Fig. 2 opens up
he possibility of designing different parameterized quantum circuits
ailored to a desired task.

In the domain of machine learning, VQCs play a key role as inno-
ative classification models [31], leveraging quantum phenomena such
s entanglement and superposition. That involves training a quantum
omputer on labelled data to derive labels for unseen data instances.
pecifically, a variational quantum classifier comprises a feature map,
nabling the encoding of classical data in a quantum circuit, and an
nsatz, serving as a trainable model. The outcomes obtained from
he circuit measurement are utilized to generate labels and compute
he value of the cost function to learn the optimal circuit parameters
or the given task through a classical optimizer. Formally, a param-
terized quantum circuit, represented by the parameterized unitary
perator 𝑈 (𝜗), is trained on labelled data 𝑡𝑟𝑎𝑖𝑛 to generate predictions
or unseen data. This quantum model 𝑈 (𝜗), or ansatz, has a multi-
ayered architecture, where each layer typically comprises rotation
ates defined in (1) alongside CNOT gates. Given their similarity to the
ayered structure controlled by learnable parameters of artificial neural
etworks, VQCs are commonly regarded as quantum neural networks.
ust like their classical counterparts, these quantum models incorporate
n input layer to load classical data for later processing. In particular,
he initial layer is represented by an initial quantum state encoding
he classical data. The unitary operator 𝑈𝜙, called feature map, actually
onnects the real space to the Hilbert space of quantum states. Given
training dataset 𝑡𝑟𝑎𝑖𝑛 = {𝐟1,… , 𝐟𝑀}, each feature vector 𝐟 ∈ R𝑁

s therefore encoded in a quantum state by implementing another
uantum circuit 𝑈𝜙(𝐟 ), now parameterized by the feature vectors of
𝑡𝑟𝑎𝑖𝑛. Assuming that the initial 𝑛-qubit register is initialized to logical

eros (|0…0⟩), the input layer consists of the following quantum state:

𝑖𝑛 ⟩
𝜙 (𝐟 ) = 𝑈𝜙(𝐟 ) |0…0⟩ . (4)
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o
t
f

|

By composing the circuits implementing the feature map 𝑈𝜙(𝐟 ) and the
ansatz 𝑈 (𝜗), the output quantum state is expressed as follows:

|

|

𝜙𝑜𝑢𝑡(𝜗; 𝐟 )
⟩

= 𝑈 (𝜗) |
|

𝜙𝑖𝑛(𝐟 )
⟩

= 𝑈 (𝜗)𝑈𝜙(𝐟 ) |0…0⟩ (5)

A measurement operation on this output state provides the probabilities
of retrieving different bit-strings, which can be used to read the label
and compute the cost function 𝐶(𝜗) (Cross Entropy or even Mean
Squared Error) to train the circuit parameters 𝜗.

With respect to the optimization field, QAOA [32] employs the
VQC workflow to address combinatorial optimization problems, partic-
ularly Quadratic Unconstrained Binary Optimization (QUBO) instances.
These instances involve binary variables without constraints and aim to
minimize a quadratic objective function. Practically, QAOA tackles the
QUBO problem by minimizing the energy of the quantum computer.
The optimal bit-string is in fact encoded in the ground state, i.e. the low-
est energy quantum state, of the ansatz proposed in [32]. This approach
results in the final state approximating the ground state that encodes
the optimal solution. Formally, QUBO instances involve 𝑛 binary and
unconstrained variables 𝑥 ∈ {0, 1}𝑛, and a quadratic objective function
𝐶(𝑥). In the QAOA variational formulation, the cost function 𝐶(𝑥) to
be minimized is promoted to a problem Hamiltonian 𝐻𝐶 , namely an
Hermitian operator describing the total energy of a 𝑛-qubit register.
Specifically, the total energy of a 𝑛-qubit register in the computational
basis state |𝑥⟩ is represented by the following expectation value of 𝐻𝐶
in that basis state:

⟨𝑥|𝐻𝐶 |𝑥⟩ = 𝐶(𝑥), (6)

which is equivalent to the cost value 𝐶(𝑥) associated with the 𝑛-bit
string 𝑥. In this way, the ground state of this 𝑛-qubit system |𝜓∗

⟩, i.e. the
lowest energy state, encodes the optimal solution 𝑥∗ to a given problem.

Starting from a well-known ground state |

|

𝜓0⟩ of another Hamil-
tonian 𝐻0, called mixer Hamiltonian, this state can slowly evolve to
the desired ground state |𝜓∗

⟩ of 𝐻𝐶 encoding the optimal solution. As
demonstrated in [32], this evolution is represented by the parameter-
ized unitary operator 𝑈 (𝛾, 𝛽) acting on a 𝑛-qubit register. Practically,
this transformation is implemented by 𝑝 repetitions of cost and mixer
layers. The cost layer is represented by the unitary operator 𝑈𝐻𝐶

(𝛾𝑖) =
𝑒−𝑖𝛾𝑖𝐻𝐶 parameterized by 𝛾𝑖, while the mixer layer by the unitary
operator 𝑈𝐻0

(𝛽𝑖) = 𝑒−𝑖𝛽𝑖𝐻0 parameterized by 𝛽𝑖. By altering these layers
n the initial ground state |

|

𝜓0⟩, the final quantum state approximating
he optimal solution for a given QUBO instance has the following
orm:

𝜓(𝛾, 𝛽)⟩ = 𝑈𝐻0
(𝛽𝑝)𝑈𝐻𝐶

(𝛾𝑝)⋯𝑈𝐻0
(𝛽1)𝑈𝐻𝐶

(𝛾1) ||𝜓0⟩ (7)

By measuring all the qubits, it is possible to compute the following
expectation value:

⟨𝐶(𝛽, 𝛾)⟩ = ⟨𝜓(𝛽, 𝛾)|𝐻𝐶 |𝜓(𝛽, 𝛾)⟩ , (8)

where 𝐶(𝛽, 𝛾) represents the cost function to be minimized in this
formulation. By decomposing the quantum state |𝜓(𝛽, 𝛾)⟩ in the com-
putational basis states, |𝜓(𝛽, 𝛾)⟩ =

∑

𝑥∈{0,1}𝑛
√

𝑝𝑥(𝛽, 𝛾) 𝑒𝑖𝛿𝑥 |𝑥⟩, where
√

𝑝𝑥(𝛽, 𝛾) 𝑒𝑖𝛿𝑥 is the exponential form of a complex number, the cost
function in (8) can be expressed as:

⟨𝐶(𝛽, 𝛾)⟩ =
∑

𝑥∈{0,1}𝑛
𝑝𝑥(𝛽, 𝛾)𝐶(𝑥) (9)

where 𝑝𝑥(𝛽, 𝛾) is the probability of measuring the corresponding 𝑛-bit
string 𝑥 with the values (𝛽, 𝛾), and 𝐶(𝑥) is the corresponding cost value.
Therefore, finding the solution to a QUBO instance via QAOA means
finding the set of the optimal parameters (𝛽∗, 𝛾∗). In this way, the state
|𝜓(𝛽∗, 𝛾∗)⟩ approximates the desired ground state |𝜓∗

⟩ encoding the
optimal solution, and the probability of measuring the optimal 𝑛-bit

∗

7

string 𝑥 is highest.
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