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Abstract 

Recent earthquakes have demonstrated that monumental structures located in regions characterized by high seismic hazard are 
particularly sensitive to damage, stimulating a growing attention to the formulation of cost-effective and long-lasting methods for 
damage assessment. Generally, the evaluation of a healthy or damaged state is data-driven and it can be subjected to a large amount 
of uncertainty. In order to associate a damage symptom to an actual structural damage, including all the uncertainties involved in 
the process, a Bayesian-based data fusion methodology is proposed. To this purpose, different sources of information are combined, 
such as dynamic structural properties extracted from monitoring data (natural frequencies and mode shapes), static response data 
(crack amplitudes) and visual inspections. More in depth, the proposed procedure comprises three fundamental steps: i) calibration 
of a finite element (FE) model, partitioned in well-thought-out macro-elements on the basis of engineering judgments and/or 
numerical simulations and, subsequently, construction of a tuned surrogate model (SM) considering pre-selected uncertain 
parameters as inputs, such as the Young's modulus, shear modulus, Poisson's ratio and mass density associated to each macro-
element; ii) solve the Bayesian-based inverse problem aimed at deriving the posterior statistics of the uncertain parameters over 
the space of the surrogate model’s classes in a computational effective manner by using dynamic data; iii) adjust the posterior 
distribution on the basis of the information obtained from static data and visual inspections, i.e., data fusion. The suitability of the 
proposed approach is demonstrated by using the monitoring data pertaining to a monumental palace, located in Gubbio (Italy) and 
named Consoli Palace, which has been monitored by the Authors since 2017. 
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Introduction  

Nowadays, the damage identification process of monumental structures located in regions characterized by high 
levels of seismic risk is a challenging task. Recently, SHM-based approaches are a fast-growing techniques due to 
their ability to respond to structural changes (Cavalagli etal., 2018, Venanzi etal., 2020) through the post-processing 
of the data acquired from an array of sensors deployed on the structure. The main goal is to monitor the health of the 
structure based on measurable response parameters, as these can ultimately become signs of possible damage due to 
excessive loads, earthquakes, material’s degradation and so on. Usually, these data-driven methodologies can be 
classified as unsupervised approaches. Then, different works in literature have contributed to the development 
of SHM-based probabilistic approaches for damage detection  (Behmanesh etal., 2015, Sun etal., 2020) and semi-
supervised methodologies (Ierimonti etal., 2021). Nowadays, the challenge is to make robust decisions considering 
the complex nature of the real-world applications and the high level of uncertainties during the SHM-based data pre-
processing and post-processing. In this context, a fundamental role is played by data fusion, an attractive multi-
informative approach aimed at collecting and interpreting data of different nature. According to Hall, 1997, three 
levels of data fusion can be identified: (i) data-level, consisting of combining data derived from multiple sources with 
the same physical meaning; (ii) feature-level, consisting of analyzing and processing  heterogeneous input data which 
are then concatenated, also with different physical meaning; (iii) decision-level, consisting of separately addressing 
the results from different sources and then the final decision is achieved by means of selected combination rules. 

Different works in the literature make use of data fusion approaches aimed at quantify a post-event damage (Chatzis 
etal., 2015 and Li etal., 2020). In light of the brief literature review, this paper presents a real-time decision-level 
Bayesian-based data fusion methodology for decision making, where SHM is used as a complimentary method to 
visual inspections. Thus, different sources of information are merged together to achieve a more reliable assessment 
of the health of the investigated structure. To do so, a high-fidelity model of the structure is constructed to capture the 
physics involved in the problem. Then, the model is used for identifying damage-sensitive portions on the basis of 
engineering judgement (EJ) and nonlinear static analysis (NLSA). The material’s mechanical characteristics of each 
damage-sensitive portion are assumed as uncertain.  Then, a surrogate twin model is calibrated, i.e., a mathematical 
relationship between the uncertain parameters and the modal features of the structure. The posterior statistics of the 
uncertain parameters are evaluated through the Bayes theorem. Given the complexity of structures and the inability to 
perfectly model all aspects of the system, Bayesian-based results, static measurements and visual inspections are 
merged together to aid engineers in detecting the onset of damage in real-time.  

The effectiveness of the proposed approach is demonstrated by analyzing the effects of a low-intensity earthquake 
occurred on May 2021 on the Consoli Palace, located in Gubbio, central Italy. The palace has been equipped with a 
permanent SHM system since 2017 and the actual configuration has been enhanced in July 2020 with a dense array 
of sensors.   

The rest of the paper is organized as follows. Section 1 describes the steps of the proposed methodology. Section 
2 gives a general frame of the case study, its FE/surrogate model and the installed SHM system. Section 3 highlights 
some preliminary results. Section 4 concludes the paper. 
 

1. The Bayesian-base data fusion procedure 

The Bayesian-based procedure can be divided in two phases: i) the offline phase; ii) the online procedure. Detailed 
information about each phase are summarized in the following Sections. 
 

1.1. Description of the offline phase 

The main purpose of the offline phase is to calibrate a SM which is then used in the Bayesian-based model updating 
stage to make predictions on the possible damage.  
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Fig. 1. Schematic representation of the offline phase. 

The fundamental steps of this phase are: 
 

1) Construction of the FE model.  The FE model can be constructed and calibrated on the basis of Ambient 
Vibration Tests (AVT) and in situ material characterization tests.  

2)  Evaluation of damage-sensitive portions.  The building is subdivided in N regions R={R1, .. , Rj, .., RN} 
potentially prone to damage, defined on the basis of NLSA and EJ. Each region is considered homogeneous 
in terms of material’s mechanical characteristics. Vector K={k1(R1), .. , kj(Rj), .., kN(RN)} collects the damage 
parameters associated to the j-th region. 

3) Calibration of a SM. In order to reduce the computational effort of the analysis, a SM(K) is calibrated as a 
function of the uncertain parameters to be updated. The SM is proposed to present the numerical relationship 
between FE model, in terms of frequencies and mode shapes, and K. 

1.2. Description of the online procedure 

The online procedure is performed by running the following steps: 
 
1) Start continuous SHM. A network of sensors of different nature allows to store acceleration/velocity data, 

temperature/humidity data and static measurements, such as crack amplitudes and tilt rotations.  
2) Feature extraction. The SHM data are post-processed and the modal features MF of the structure are evaluated, 

i.e., fundamental natural frequencies and vibration modes. Furthermore, environmental effects are removed 
from original signals. For the purpose, the MOSS integrated software (García-Macías etal., 2020) is used, 
which is an automated tool based on the stochastic subspace identification (SSI) technique. 

3) Novelty detection. If a novelty is detected go to step 4, otherwise go back to step 1. The novelty at time t is 
related to the estimation of the square Mahalanobis distance T2 (Hotteling, 1947) of the residual E(t), i.e., 
𝑇𝑇!(𝑡𝑡) = (𝐸𝐸(𝑡𝑡) − 𝐸𝐸*)" ∑ (𝐸𝐸(𝑡𝑡) − 𝐸𝐸*)"#$ , where 𝐸𝐸*  represents a vector collecting the mean values of the 
residuals empirically estimated in the training period and ∑ the corresponding covariance matrix. 

4) Intermediate analysis. Perform the Bayesian model updating of the uncertain parameters and proceed with 
visual inspections. More in detail, the posterior distribution 𝑝𝑝 of the j-th uncertain parameter is evaluated as 
follows: 

 
 𝑝𝑝-𝑘𝑘% ∣ 𝐌𝐌𝐌𝐌, 𝑡𝑡3 = 𝑐𝑐 ⋅ 𝑝𝑝-𝐌𝐌𝐌𝐌 ∣ 𝑘𝑘% , 𝑡𝑡3 ⋅ 𝑝𝑝-𝑘𝑘% ∣ 𝜇𝜇%(𝑡𝑡 − 1)3 (1) 

 
where 𝜇𝜇%  is the mean value of 𝑘𝑘% ; 𝑐𝑐  is a constant ensuring the posterior distribution integrates to 1; 
𝑝𝑝-𝐌𝐌𝐌𝐌 ∣ 𝑘𝑘% , 𝑡𝑡3 is the likelihood function modeled as a Gaussian distribution with zero mean (Behmanesh etal., 
2015, Ierimonti etal., 2021); 𝑝𝑝-𝑘𝑘% ∣ 𝜇𝜇%(𝑡𝑡 − 1)3 is the prior distribution calculated as the posterior distribution 
at previous time step 𝑡𝑡 − 1. 

Visual inspections can be numerically quantified by means of a damage index DI, accounting for the 
importance 𝐺𝐺, extension K1	and intensity K2	of damage. The index DI can be evaluated as follows: 

 
DI% =>  

&

'($

𝐺𝐺%' ⋅ K1%' ⋅ K2%' 
(2) 
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where 𝑚𝑚 is the number of damages observed in region Rj. The term 𝐺𝐺 could be, 1,2 or 5 on the basis of the 
observed damage, i.e., absence of damage, local mechanism, global mechanism. The terms K1 and K2, on the 
basis of the observed extension/intensity, could be 0.2, 0.5 or 1. 

 

   

 Fig. 2. Schematic representation of the online phase. 

5) Data fusion. Combine all the information sources as follows: 
i) Evaluate the visual inspection-related DI%  for each region. If DI%  > 0, the region is considered 

"damaged"; 
ii) Evaluate the crack index CI, i.e., assign CI=1 if the crack measurement exhibits a permanent closure 

or opening, otherwise assign CI=0; 
iii) Define the j-th Bayesian-based Index BI, i.e., assign BI=1 if the updated values are reduced more 

than or equal to 10 % with respect to the undamaged state, otherwise assign BI=0; 
iv) Calculate the data fusion results by means of the well-known 2-out-of-3 (2oo3) method (majority 

criterion), named 2oo3 voter and assign 1 if the specific region has the majority of 1, assign 0 
otherwise. In the absence of crack/deformation information for a specific region, the value of DI is 
counted twice. 

v) Adjust the posterior statistics 𝑘𝑘%
)*,,- by means of a correction coefficient Ψ%,- which multiplies the 

posterior distribution 𝑘𝑘%
)*: 

 
 𝑘𝑘%

)*,,- = Ψ%,- ⋅ 𝑘𝑘%
)* (3) 

 
If the 2oo3 voter is 1 (damaged state) assign Ψ%,- = 1, otherwise assign Ψ%,- = 𝑘𝑘%./0/𝑘𝑘%

)* 
 

2. The Consoli Palace: SHM system, FE model and corresponding SM  

The Consoli Palace is a 60 meters high medieval building, located in Gubbio, Umbria, central Italy. The Palace is 
built in calcareous stone masonry with a regular and homogeneous texture.  
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Visual inspections can be numerically quantified by means of a damage index DI, accounting for the 
importance 𝐺𝐺, extension K1	and intensity K2	of damage. The index DI can be evaluated as follows: 

 
DI% =>  

&

'($

𝐺𝐺%' ⋅ K1%' ⋅ K2%' 
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where 𝑚𝑚 is the number of damages observed in region Rj. The term 𝐺𝐺 could be, 1,2 or 5 on the basis of the 
observed damage, i.e., absence of damage, local mechanism, global mechanism. The terms K1 and K2, on the 
basis of the observed extension/intensity, could be 0.2, 0.5 or 1. 

 

   

 Fig. 2. Schematic representation of the online phase. 

5) Data fusion. Combine all the information sources as follows: 
i) Evaluate the visual inspection-related DI%  for each region. If DI%  > 0, the region is considered 

"damaged"; 
ii) Evaluate the crack index CI, i.e., assign CI=1 if the crack measurement exhibits a permanent closure 

or opening, otherwise assign CI=0; 
iii) Define the j-th Bayesian-based Index BI, i.e., assign BI=1 if the updated values are reduced more 

than or equal to 10 % with respect to the undamaged state, otherwise assign BI=0; 
iv) Calculate the data fusion results by means of the well-known 2-out-of-3 (2oo3) method (majority 

criterion), named 2oo3 voter and assign 1 if the specific region has the majority of 1, assign 0 
otherwise. In the absence of crack/deformation information for a specific region, the value of DI is 
counted twice. 

v) Adjust the posterior statistics 𝑘𝑘%
)*,,- by means of a correction coefficient Ψ%,- which multiplies the 

posterior distribution 𝑘𝑘%
)*: 

 
 𝑘𝑘%

)*,,- = Ψ%,- ⋅ 𝑘𝑘%
)* (3) 

 
If the 2oo3 voter is 1 (damaged state) assign Ψ%,- = 1, otherwise assign Ψ%,- = 𝑘𝑘%./0/𝑘𝑘%

)* 
 

2. The Consoli Palace: SHM system, FE model and corresponding SM  

The Consoli Palace is a 60 meters high medieval building, located in Gubbio, Umbria, central Italy. The Palace is 
built in calcareous stone masonry with a regular and homogeneous texture.  
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Fig. 3. The Consoli Palace and its SHM system. 

The current configuration of the SHM system (Figure 2) was activated by the Department of Civil and 
Environmental Engineering of University of Perugia in July 2020 and comprises: (i) No. 1 NI CompactDAQ-9132 
data acquisition system to which sensors A1-A12, C1-C2 and T1-T2 are wired; (ii) No. 1 wireless gateway to which 
sensors C3,C4,T3-T6 are connected; (iii) No. 12 PCB393B12 unidirectional accelerometers A1-A12 wired to the NI 
CompactDAQ-9132 through NI 9234 acquisition modules, installed as reported in Fig. 3; (iii) No. 4 S-series linear 
variable transducers (LVDTs), denoted as C1-C4, wired to the DAQ acquisition system by means of a NI 9219 
acquisition modules; (iv) No. 6 temperature sensors T1-T6. With the main objective of evaluating the dynamic 
characteristics of the building including the rooftop and the bell tower dynamic behavior, an AVT was carried out on 
May 7th 2021 by adding channels A13-19 (Fig. 4). Following AVT results, the first 5 principal vibration modes are 
selected for the numerical simulations: Fx1, a global flexural mode along the East-West direction (f1=2.32 Hz); Ly1, 
a local mode which pertains to the bell tower along the North-South direction (f2=2.99 Hz), Lx1, a local mode which 
pertains to the bell tower along the East-West direction (f3=3.54 Hz); Fy1, a global flexural mode along the North-
South direction (f4=3.75 Hz); T1, global torsional mode (f5=4.2 Hz).  

The FE model is built in the Abaqus environment and an isotropic material is assigned to each region. The non-
linear behavior of the material is reproduced by using the well-known concrete damage plasticity (CDP) model, as 
detailed by Ierimonti etal. (2021). Damage-prone regions are selected by means of NLSA and EJ. The different 
selected regions (1-9) with a brief description are reported in Table 1. Each region allows to define a one-parameter 
dependent model (kj), which is defined as the multiplier of the Young’s Modulus. Then, the Kriging model is used to 
calibrate the SM, i.e., the numerical relationship between kj and the building’s MF. To do this, 1000 FE-based samples 
are simulated by varying each kj between 0.3 and 1. 
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Table 1. Selected damage-sensitive regions. 

Region Description EJ/NLSA Representation 

R1 Arengo floor and the underlying areas EJ 
 

R2 Nobili arched ceiling EJ 
 

R3 rooftop and its annexes EJ 
 

R4 loggia EJ 
 

R5 bell tower EJ 
 

R6 potential cracking patterns x 
 

NLSA 

 

R7 potential cracking patterns y NLSA 
 

R8 vertical walls along the x direction EJ 
 

R9 vertical walls along the y direction EJ 
 

 

3. Results 

For the application of the proposed methodology, SHM data recorded between April 22nd and May 29th of 2021 
are analyzed in order to highlight the possible consequences related to the seismic sequence occurred on May 2021, 
with epicenter in Gubbio and a strongest shock of magnitude Mw 4.0 at 07:56 UTC (May 15th). The main ground 
acceleration ag recorded by the “Gubbio Parcheggio Santa Lucia” GBSL station is illustrated in Fig. 4. After the main 
shock, the MOSS (García-Macías and Ubertini, 2020) post-processing tool has revealed an anomaly in the structural 
behavior, consisting of the following permanent frequency decays FD:  FD(f1)=1.3 %; FD(f2)=2.7 %; FD(f3)=2.3 %; 
FD(f4)=1.1 %; FD(f5)=1.4 %.  

As a preliminary result, the proposed procedure is applied considering regions R5 and R6. For data fusion purposes, 
the following information are considered: static measurements recorded by sensor D2, Bayesian model updating, 
visual inspections.  

After the May seismic sequence, sensor D2, measuring the amplitude of an existing crack involving the north wall, 
exhibited an evident shift with a closure of about 0.09 mm with no sign of recovering over time. In light of this, an 
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index CI=1 is assigned to those regions potentially subjected to damage due to the permanent modification of the 
existing crack pattern, i.e., R6. 

Figs. 5 a)-b) illustrated the Bayesian-based results, i.e., the posterior statistics of the uncertain parameters k5 and k6. 
From these results it points out that R5 probably remains undamaged and BI=0 is assigned (reduction of the mean 
value of the posterior distribution lower than 10 %), while R6 is potentially damaged (reduction of the mean value of 
the posterior distribution higher than 10 %) and BI=1 is assigned. 

 

  Fig. 4. The May seismic sequence recorded by the station GBSL. 

Then, Figs 5 c) and d) illustrate the results of visual inspections, which concern R6, i.e., the crack visible from the 
Arengo floor in correspondence of the North wall openings, scored with G=1, K1=0.2 and K2=0.2. Finally, the data 
fusion results are highlighted in Figs. 5 e)-f), comparing the k5 and k6 posterior values before data fusion (w/o VI) 
and after data fusion (VI). Results in terms of DI, CI, BI and 2oo3 voter are summarized in Table 2.  
 

    

Fig. 5. Analysis results: a)-b) Bayesian based posterior statistics; c)-d) results of visual inspections associated with R6; e)-f) Posterior value of k5 
and k6, adjusted after data fusion. 
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On the one hand, the null value of the 2oo3 voter competing to R5 confirms that the bell tower hasn’t suffered any 
damage following the May seismic sequence. On the other hand, the 2oo3 voter = 1 of R6 confirm a possible 
permanent, but very limited (according to the low value of DI), damage associated to a main earthquake loading along 
the weak axis of the building. 

Table 2. Selected damage-sensitive regions. 

Region DI CI BI  2oo3 voter 

R5 0 - 0 0 

R6 0.04 1 1 1 

    

4. Conclusions  

The present paper has presented the results of a Bayesian-based fusion methodology by making use of dynamic and 
static SHM monitoring data, FE/surrogate modelling, EJ and visual inspections. 

The case study building is the Consoli Palace (Gubbio, Umbria, Italy), a monumental masonry building equipped 
with a permanent dense array of sensors, monitored by the Department of Civil and Environmental Engineering of 
University of Perugia since 2017.  The proposed procedure is applied by using the SHM data before and after the low-
intensity seismic sequence which affected central Italy in May 2021. A computationally-effective FE model and a 
twin surrogate model able to reproduce the dynamic behavior of the Palace as a function of selected uncertain 
parameters has been used for the purpose. The uncertain parameters are associated with damage-sensitive regions 
within the building, picked by means of NLSA and EJ. Then, an on-line data fusion approach is proposed by linking 
the SHM static measurements (crack lengths), the Bayesian-based updating and the results of on-site visual inspections 
enabling to continuously identify a possible damage over the selected regions. The data fusion results allow to explore 
all factors that potentially constrain decision making, evaluate options accurately and establish intervention priorities 
in a structured context (selected damaged-prone regions), avoiding the possible detection of false alarms. 
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